
Preemptive scheduling on selfish machines

Leah Epstein1 and Rob van Stee2

1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel.lea@math.haifa.ac.il .
2 Department of Computer Science, University of Karlsruhe, D-76128 Karlsruhe, Germany.vanstee@ira.uka.de .

Abstract. We consider the problem of scheduling on parallel uniformly related machines, where preemptions are
allowed and the machines are controlled by selfish agents. Our goal is to minimize the makespan, whereas the goal
of the agents is to maximize their profit. We show that a known algorithm is monotone and can therefore be used
to create a truthful mechanism for this problem which achieves the optimal makespan. We extend this result for
additional common goal functions.

1 Introduction

Internet users and service providers act selfishly and spontaneously, without an authority that monitors and
regulates network operation in order to achieve some social optimum such as minimum total delay. Selfish
behavior may affect the performance, and it is interesting to identify the problems in which this happens, and
to find how much performance can be lost as a result of lack of coordination. Many algorithmic problems,
in which we investigate the cost of the lack of coordination arise. The study of lack of coordination can
be compared to the lack of information (that is assumed in online algorithms) or the lack of unbounded
computational resources (assumed in polynomial time approximation algorithms).

There has been a large amount of previous research into approximation and online algorithms for a wide
variety of computational problems, but most of this research has focused on developing good algorithms for
problems under the implicit assumption that the algorithm can make definitive decisions which are always
carried out. On the internet, this assumption is no longer valid, since there is no central controlling agency.

To solve problems which occur, e.g., to utilize bandwidth efficiently (according to some measure), we
now not only need to deal with an allocation problem which might be hard enough to solve in itself, but also
with the fact that the entities that we are dealing with (e.g. agents that wish to move traffic from one point to
the other) do not necessarily follow our orders but instead are much more likely to act selfishly in an attempt
to optimize their private return (e.g. minimize their latency).

Mechanism designis a classical area of research with many results. Typically, the fundamental idea of
mechanism design is to design a game in such a way that truth telling is a dominant strategy for the agents:
it maximizes the profit for each agent individually. That is, each agent has some private data that we have
no way of finding out, but by designing our game properly we can induce them to tell us what that is (out of
well-understood self-interest), thus allowing us to optimize some objective while relying on the truthfulness
of the data that we have. This is done by introducingside paymentsfor the agents. In a way, we reward
them (at some cost to us) for telling us the truth. The role of the mechanism is to collect the claimed private
data (bids), and based on these bids to provide a solution that optimizes the desired objective, and hand out
payments to the agents. The agents know the mechanism and are computationally unbounded in maximizing
their utility.

A seminal paper by Archer and Tardos[4] considered the general problem of one-parameter agents. The
class of one-parameter agents contain problems where any agenti has a private valueti and his valuation
function has the formwi ·ti, wherewi is the work assigned to agenti. Each agenti makes a bidbi depending
on its private value and the mechanism, and each agent wants to maximize its own profit.



The paper [4] shows that in order to achieve a truthful mechanism for such problems, it is necessary and
sufficient to design amonotonealgorithm, and use a payment function of the form

Pi(b−i, bi) = hi(b−i) + biwi(b−i, bi)−
∫ bi

0
wi(b−i, u) du. (1)

Here(b−i, x) is the bid vectorb where the elementbi has been replaced byx, thehi are arbitrary functions,
andwi(b−i, x) is the work assigned to agenti if the bid vector is(b−i, x).

An algorithm is monotone if for every agent, the amount of work assigned to it does not increase if its bid
increases. More formally, an algorithm is monotone if given two vectors of lengthm, b, b′ which represent
a set ofm bids, which differ only in one componenti, i.e.,bi > b′i, and forj 6= i, bj = b′j , then the total size
of the jobs (the work) that machinei gets from the algorithm if the bid vector isb is never higher than if the
bid vector isb′.

Using this result, monotone (and therefore truthful) approximation algorithms were designed for several
classical problems, like scheduling on related machines to minimize the makespan, where the bid of a
machine is the inverse of its speed [4, 2, 6, 1, 13], shortest path [5, 9], set cover and facility location games [7],
and combinatorial auctions [14, 16, 3].

Problem definition In this paper, we consider the problem of scheduling jobs in a multiprocessor setting
where jobs may be preempted, and where the performance measure is the makespan. The makespan of a
given schedule is the time at which the last task finishes.

Preemption means that a job may be split into parts, which can be possibly assigned to distinct machines.
A part of job of sizep must be assigned to a time slot on one of the machines. The length of the time slot
should bep

s for a machine of speeds. The time slots assigned to the parts of one job on the different machines
must all be disjoint.

We denote the number of processors bym and the number of jobs byn. We consider the version of this
problem where the machines are related: each machine has a speed at which it runs, which does not depend
on the job being run.

Denote the size of jobj by pj (j = 1, . . . , n). Denote the speed of machinei by si (i = 1, . . . ,m). In
our model, each machine belongs to a selfish user. The private value (ti) of useri is equal to1/si, that is, the
cost of doing one unit of work. The load on machinei, Li, is the total size of the jobs assigned to machinei
divided bysi. The total work assigned to a machinei, denoted byWi, is the total size of jobs assigned to it,
i.e.,Wi = si · Li. The profit of useri is Pi − Li, wherePi is the payment to useri by the payment scheme
defined by (1).

Our goal is to minimize the makespan. The classical version of this problem can be solved in polynomial
time [12, 11, 17, 8]. As is generally the case in algorithmic mechanism design, we are not interested in
maximizing the total profit of the users.

As mentioned above, in order to imply a truthful mechanism, we need to show an algorithm for which
an increase in a speed of a machine does not reduce the amount of work it receives.

Our results We show that the algorithm given by Epstein and Tassa[10] is in fact monotone and can there-
fore also be used in this setting. We describe the algorithm which computesthe loadof every machine.
The algorithm which creates the actual assignment is omitted, since we are only interested in the loads of
machines and not in the exact assignment. This algorithm can be found in [10] as well.

Note that even though in principle idle time is allowed, the algorithm does not create idle time on any
machine. The algorithm actually creates astrongly optimalschedule, in the sense that not only the maximum

2



load is minimized, but also every subsequent load is minimized after the larger loads have been fixed. We
thus show that it is possible to achieve an optimal makespan even with selfish agents.

We extend this result to preemptive scheduling with the goal of minimizing the`p norm of the loads
vector, for1 ≤ p < ∞. This is again done by using the algorithm of [10] for the cases1 < p < ∞, and a
simple algorithm forp = 1.

Throughout the paper, we assume that the jobs are sorted in order of non-increasing size (p1 ≥ p2 ≥
. . . ≥ pn), and the machines are sorted in a fixed order of non-decreasing bids (i.e. non-increasing speeds,
assuming the machine agents are truthful,s1 ≥ s2 ≥ . . . ≥ sm). In case of ties, i.e., machines of identical
speeds, each machine also carries an identifier (a number in{1, . . . , m}), and a set of machines with the
same speed are ordered in a increasing order of identifiers. We call the order implied by the identifiers a
lexicographical orderingof the machines.

2 Makespan minimization (̀ ∞)

2.1 Algorithm

The algorithm is based on the followingm lower bounds on the optimal makespan, given already by Liu
and Yang[15] for a special case.

– Fork = 1, . . . , m− 1,
k∑

i=1

pi/

k∑

i=1

si ,

That is, the total size of thek largest jobs, divided by the sum ofk largest speeds.
– The last lower bound is

n∑

i=1

pi/
m∑

i=1

si ,

That is, the total size of all the jobs, divided by the sum of the speeds.

It is known that the maximum of all these bounds equals the optimal makespan [12, 11, 17, 8]. The algorithm
below is presented in [10]. The algorithm repeatedly executes the following steps until all jobs are assigned.
Based on the bounds above, it determines a valuek (an index of a machine) which determines the smallest
maximum load that can be achieved for the remaining machines. Ifk = m, it assigns the jobs to the
machines so that the load on all machines is equal and halts. Otherwise, it assigns thek largest jobs tok
fastest machines (this set of machines will be called agroup).

We use the following notations.

Pk =





k∑

j=1

pj 1 ≤ k ≤ m− 1

n∑

j=1

pj k = m

,

and

S[a : b] =
b∑

i=a

si.

3



Algorithm 1

1. Sett = 0 andkt = 0 (at each stagekt equals the number of valuesWj that were already determined).
2. For everykt + 1 ≤ k ≤ m, compute

qk =
Pk − Pkt

S[kt + 1 : k]
,

and setkt+1 to be the (minimal) value ofk for which qk is maximal. The set of machines{kt +
1, . . . , kt+1} is defined to be thet + 1-th group.

3. For all kt + 1 ≤ j ≤ kt+1, set

Wj = sj ·
Pkt+1 − Pkt

S[kt + 1 : kt+1]
.

4. If kt+1 < m sett = t + 1 and go to Step 2.

This algorithm is optimal. In our analysis, we will use the following property.

Lemma 1. [10] The loads are monotonically non-increasing as a function of the machine indices. Within a
group, loads are identical.

The following corollary holds since machines are sorted by speed.

Corollary 1. The work assigned to machines is a monotonically non-increasing function of the machine
indices.

Proof. Consider machinesi andi + 1 in the sorted list, for some1 ≤ i ≤ m− 1. By Lemma 1,Li ≥ Li+1.
We havesi ≥ si+1 and so

Wi = si · Li ≥ si+1Li+1 = Wi+1.

¤

2.2 Monotonicity

In this section, we prove the following theorem.

Theorem 2. Algorithm 1 is monotone.

We number the groups in the order of creation by the algorithm. We use additional notations. Letsa(b)
be the speed of thea-th machine in groupb, we use(a, b) to denote this machine. LetSa(b) be the sum of
thea largest speeds among machines in groupsb, b + 1, . . .. If groupb consists of at leasta machines, then
this is actually the sum ofa largest speeds of machines in this group. Letpa(b) be the size of thea-th largest
job remaining after the firstb− 1 steps of the algorithm, and letPa(b) be the total size of thea largest such
jobs.

We consider the situation where one machine (thej-th machine of groupg) becomes faster, that is,
decreases its bid. We denote the new speed of this machine bys′j(g) and we let

ε = s′j(g)− sj(g) > 0.

We useS′a(b) to denote the sum of thea largest speeds in groupsb, b + 1, . . ., after the speed change. All
other bids remain unchanged. We call the instance with the original speed theoriginal instance, and the
instance with the changed speed thenew instanceor themodified instance.

The following lemmas reduces the number of cases to be considered.

4



Lemma 2. Consider machine(j, g) of the original instance that changes its speed. If the new location of
this machine is later than the machines of groups1, . . . , h of the original instance (for someh ≤ g− 1), the
groups1, . . . , h created by the algorithm for the new instance consist of the same machines as created for
the original instance.

Proof. Assume by contradiction that the algorithm does not act in the same way on the firsth groups, and
let 1 ≤ c ≤ h be the first group that is different for the new instance compared to the original instance. Letk
be the number of machines in groupc for the original instance and letk′ be the number of machines for the
new instance, wherek 6= k′. Since the algorithm chose a group withk machines for the original instance,
we have

Pk(c)
Sk(c)

>
Pk′(c)
Sk′(c)

(since the algorithm chooses a group of minimal number of machines in case of ties). Ifk′ < k, by the
assumption above, the machines of groups1, . . . , c of the original instance are earlier in the ordering than
the machines which changes its speed. Therefore, thek machines of groupc of the original instance remain
in the same location in the ordering and there is no change in the speeds of any machines of groupc for both
instances, and soSk′(c) = S′k′(c). This derives an immediate contradiction since we get

Pk(c)
S′k(c)

=
Pk(c)
Sk(c)

>
Pk′(c)
Sk′(c)

≥ Pk′(c)
S′k′(c)

,

which would imply our algorithm makes a group of sizek instead ofk′. Otherwise, ifk′ > k, we have
Sk(c) = S′k(c) andSk′(c) ≤ S′k′(c), and the contradiction is derived similarly. ¤

Below we consider the cases where a machine that increases its speed either does not change its location
in the sorted list of machines, or changes places with its predecessor in the sorted list. The following lemma
shows that these cases are sufficient to prove that the algorithm is monotone.

Lemma 3. If there exists an instance for which a machine increases its speed and is allocated less work
by the algorithm as a result, then there exists such an instance where as a result of the speed change the
machine does not change its location in the sorted list, or appears just one place earlier.

Proof. Assume that there exists an instance which disproves monotonicity. We may assume that the machine
which changes its speed moves to a location which is at least two places earlier in the sorted list, as a result.

We split the process of change in speed into several phases. Letz be the index of the machine which
changes its speed in the ordering for the original instance andz′ < z its location for the new instance. A
single phase consists of an increase of speed for a machine until it changes places with the machine before
it. There arez−z′ such phases, and thus we considerz−z′+1 instances, starting with the original instance,
and considering also every instance that results from each additional phase.

Since the machine that changed its speed gets a smaller amount of work, there must exist at least one
phase in which its work decreases. The instances which is defined just before this phase, with the speed
change that results in the instance just after this phase prove the claim. ¤

We therefore need to consider three cases. In the first two cases we assume that(j, g) is located in the
ordering of the new instance later than all machines of groups1, . . . , g − 1 in the original instance.

5



Case 1.1Machine(j, g) remains in the same group. By Lemma 2 this means that groups1, . . . , g−1 remain
unchanged as a result of the change in speed. We consider the case that groupg contains machinej in both
instances.

Let k denote the number of machines in groupg for the original instance, and letk′ be the number of
machines in this group after the increase of speed. Note that all three casesk < k′, k = k′ andk > k′ are
possible in principle.

The original work assigned to machine(j, g) is

sj(g)
Pk(g)
Sk(g)

.

The work assigned to this machine after the speed change is

s′j(g)
Pk′(g)
S′k′(g)

.

We show that
Pk′(g)
S′k′(g)

≥ Pk(g)
S′k(g)

holds. This statement is trivial in casek = k′. For k 6= k′ it follows from the choice of the algorithm to
create a group ofk′ machines and not ofk machines. Therefore,

s′j(g)
Pk′(g)
S′k′(g)

≥ s′j(g)
Pk(g)
S′k(g)

.

We have that

s′j(g)
Pk(g)
S′k(g)

≥ sj(g)
Pk(g)
Sk(g)

,

since
sj(g) + ε

(Sk(g) + ε
≥ sj(g)

Sk(g)
for sj(g) ≤ Sk(g),

which obviously holds becauseSk(g) =
∑k

i=1 si(g) andj belongs to theg-th group, i.e.,1 ≤ j ≤ k.

Case 1.2We now consider the case where machine(j, g) does not remain in the same group. By Lemma 2
groups1, . . . , g − 1 still remain unchanged as a result of the change in speed, but groupg changes in a way
that it does not contain machine(j, g) of the original instance. This machine becomes a part of a later group
c > g.

This situation is possible. The increase of a speed of a machine in the group has the following effect.
The lower bounds for the maximum load decrease starting from this machine. The bound that determined
the last machine (k) of the groupg may no longer be a maximum. In this case, one or more new groups are
formed before the one that containsj. Since we assume that the machine which changed its speed is located
in the ordering of the new instance later than all machines of groups1, . . . , g−1 in the original instance, this
situation can only mean that the length of theg-th group has decreased, since in the new ordering, machine
(j, g) cannot appear later than in the original ordering (by the definition of the sorting, where ties are broken
in a consistent way).

For an example, see Figures 1, 2 and 3. The set of jobs is{J1, . . . , J6}, and their sizes are 110, 70, 55,
18, 9 and 9, respectively. The output of the algorithm on the original set of speeds (20, 10, 10, 6 and 3) is

6



Fig. 1. The output for the original input

Fig. 2. The output after the second machine changes its speed

given in Figure 1. Figure 2 shows the change in the output after the second machine increases its speed to
15. Figure 3 shows the change in the output after an additional change of speed, in which the fifth machine
increases its speed to 3.

Note that we may assume that groupg is the first group. Since for both instances the algorithm creates
the same groups1, . . . , g−1, running the same jobs, we can omit these machines and jobs from the instance.
Thus we assume that machine 1 is the first machine of groupg, and number the machines starting from the
first machine of groupg before the speed change, and the jobs excluding the jobs that are scheduled on the
machines of groups1, . . . , g − 1.

Let k′ be the last machine of the last group before(j, g) (in its new location) after the speed change. Let
k′′ be the last machine of the group which contains(j, g) after the speed change.

Case 1.2.a:Machine(j, g) remains in the same location in the ordering.

7



Fig. 3. The output after the fifth machine changes its speed as well

Given the original instance (without the jobs we omitted as described above), denote the total size of
thek′ largest jobs byL, and the remaining total size of jobs assigned to machines1 . . . , k by M (that is the
difference between the size of all jobs assigned to these machines, andL). Denote the total size assigned to
machinesk′ + 1, . . . , k′′ after the speed change byN .

We define similarly the total speeds of these three groups of machines asS, T , andU , whereS is the
total speed of machines1, . . . , k′, T is the total speed of machinesk′ + 1, . . . , k, andN is the total speed
of machinesk′ + 1, . . . , k′′. We denote the speed of the machine which changes its speed bys and the new
speed bys′ = s + ε.

We clearly haveT ≥ s, since the machine of this speed is in the set{k′ + 1, . . . , k}. We also let
T ′ = T +ε denote the total speed of machines in{k′+1, . . . , k} after the speed change, and byU ′ = U +ε
the total speed of machines in{k′ + 1, . . . , k′′}.

Since the algorithm chose a groupg with machines1, . . . , k for the original instance, and not1, . . . , k′,
we have

L

S
≤ L + M

S + T
,

implying
LT ≤ MS. (2)

After the speed change, when the algorithm examines the set of machinesk′+1, . . . , m, it chooses the index
k′′ rather thank (although it may be thatk′′ = k), so we have

N

U + ε
≥ M

T + ε
. (3)

The work assigned to the machine which changes its speed, before the change, iss(L+M)
S+T , and after the

change, it iss′N
U ′ , thus we would like to show

s(L + M)
S + T

≤ s′N
U ′ .

8



Using (3), it is enough to show that

(s + ε)M
T + ε

≥ s(L + M)
S + T

.

This holds when

Ms(S + T ) + Mε(S + T ) ≥ s(L + M)(T + ε)
= (L + M)sT + (L + M)sε,

or

s(MS − LT ) + ε(M(S + T )− (L + M)s) ≥ 0

which holds becauseMS ≥ LT and

M(S + T )− (L + M)s ≥ M(S + T )− (L + M)T,

so

M(S + T )− (L + M)s ≥ 0

holds when

M(S + T ) ≥ T (L + M),

or

MS ≥ LT,

which is true by (2).

Case 1.2.b:The location of the machine that changed it speed (for the new instance) is one place before its
location for the original instance. In this case we again assume that the speed changes gradually, and split
the change in speed into three parts, the increase before the change of location, the swap, and an additional
increase. We only need to consider the swap, which happens when the pair of machines have the same
speed, or just after that. By Corollary 1 we have that the swap can only increase the work of the machine
that becomes faster.

Case 2 Machinej is now a part of the previous group. By Lemma 2, this can only happen if the speed of
machinej becomes larger or equal to the speed of the slowest machine in the groupg − 1 of the original
instance, andj changes its location in the sorted list of machines. By Lemma 3 we need to consider the case
where it moves to a location that is just before its previous location.

We consider a process in which the speed of the machine increases gradually, and partition the speed
increase into before the swap, the swap, and after the swap. Denote the two locations that we consider by
i, i + 1.

The proofs of cases 1.1 and 1.2 covers the speed changes before and after the swap, thus we only need
to consider the swap, which takes place when the two machines have the same speed, or just after that. This
means that the machines changed roles, and thus the machine that used to be in locationi + 1 now gets the
work Wi ≥ Wi+1, by Corollary 1.

9



3 Other norms

We start with the simple case of the`1 norm. In this case it is noted in [10] that the jobs are assigned to
the set of fastest machines, that is, letb be a maximal index such thats1 = . . . = sb, then all the jobs are
assigned to the firstb machines. We use a specific variant of this algorithm that assigns all jobs to machine
1. It is straightforward to see the following. We call this algorithmAlgorithm 2.

Proposition 1. Algorithm 2 is monotone.

We next consider the other cases(1 < p < ∞). We use the terminology of [10] and define

Sp[a : b] =
b∑

i=a

s
p

p−1

i .

The algorithm works as follows.

Algorithm 3

1. Sett = 0 andkt = 0 (at each stagekt equals the number of valuesWj that were already determined).
2. For everykt + 1 ≤ k ≤ m, compute

qk =
Pk − Pkt

Sp[kt + 1 : k]
,

and setkt+1 to be the (minimal) value ofk for which qk is maximal. The set of machines{kt +
1, . . . , kt+1} is defined to be thet + 1-th group.

3. For all kt + 1 ≤ j ≤ kt+1, set

Wj = s
p/(p−1)
j · Pkt+1 − Pkt

Sp[kt + 1 : kt+1]
.

4. If kt+1 < m sett = t + 1 and go to Step 2.

It can be seen that the algorithm acts in the same way that Algorithm 1 would work if the set of speeds

were s
p

p−1

1 , . . . , s
p

p−1
m . Since we are not interested in the exact schedule but only in the work that each

machine receives, in order to reduce to the proof in the previous section, we only need the following fact,
that follows fromp > 1.

Fact 1 For a pair of speedss, s′ > 0, and1 < p < ∞ we always haves′ > s if and only ifs′
p

p−1 > s
p

p−1 .

We can thus prove the following.

Theorem 4. Algorithm 3 is monotone.

Proof. As mentioned above, Algorithm 3 simply runs algorithm 1 with adapted speeds. Thus we need to
show that an increase of a speeds occurs if and only if an increase in “speed”s

p
p−1 occurs. This follows

from Fact 1. ¤

10



4 Conclusion

We have shown that for a class of preemptive scheduling problems, it is possible to obtain truthful mech-
anisms simply by applying previously known algorithms. This is usually not the case for non-preemptive
problems, which are typically NP-hard, whereas polynomial time approximation schemes lack the structure
of optimal solutions. Note also that for makespan minimization in non-preemptive scheduling, if running
time is not limited, it is possible to find an optimal algorithm which is monotone as follows. The machines
are ordered by their lexicographical ordering. Given this ordering, the algorithm chooses an optimal schedule
which has a smallest load vector (lexicographically) [4].

References

1. Nir Andelman, Yossi Azar, and Motti Sorani. Truthful approximation mechanisms for scheduling selfish related machines. In
Proc. of 22nd International Symposium on Theoretical Aspects of Computer Science (STACS), pages 69–82, 2005.

2. Aaron Archer.Mechanisms for Discrete Optimization with Rational Agents. PhD thesis, Cornell University, 2004.
3. Aaron Archer, Christos Papadimitriou, Kunal Talwar, andÉva Tardos. An approximate truthful mechanism for combinatorial

auctions with single parameter agents. InProc. of 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
205–214, 2003.

4. Aaron Archer and́Eva Tardos. Truthful mechanisms for one-parameter agents. InProc. 42nd Annual Symposium on Founda-
tions of Computer Science, pages 482–491, 2001.

5. Aaron Archer and́Eva Tardos. Frugal path mechanisms. InProc. of 13th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 991–999, 2002.

6. Vincenzo Auletta, Roberto De Prisco, Paolo Penna, and Giuseppe Persiano. Deterministic truthful approximation mechanisms
for scheduling related machines. InProc. of 21st International Symposium on Theoretical Aspects of Computer Science
(STACS), pages 608–619, 2004.

7. Nikhil R. Devanur, Milena Mihail, and Vijay V. Vazirani. Strategyproof cost-sharing mechanisms for set cover and facility
location games. InACM Conference on E-commerce, pages 108–114, 2003.

8. Tomás Ebenlendr and Jiri Sgall. Optimal and online preemptive scheduling on uniformly related machines. InProc. of the
21st Annual Symposium on Theoretical Aspects of Computer Science (STACS2004), pages 199–210, 2004.

9. Edith Elkind, Amit Sahai, and Ken Steiglitz. Frugality in path auctions. InProc. of 15th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 701–709, 2004.

10. Leah Epstein and Tamir Tassa. Optimal preemptive scheduling for general target functions.Journal of Computer and System
Sciences, 72(1):132–162, 2006.

11. Teofilo Gonzalez and Sartaj Sahni. Preemptive scheduling of uniform processor systems.Journal of the ACM, 25(1):92–101,
1978.

12. Edward C. Horvath, Shui Lam, and Ravi Sethi. A level algorithm for preemptive scheduling.Journal of the ACM, 24(1):32–43,
1977.

13. Annaḿaria Kov́acs. Fast monotone 3-approximation algorithm for scheduling related machines. InProc. of 13th Annual
European Symposium on Algorithms (ESA), pages 616–627, 2005.

14. Daniel J. Lehmann, Liadan O’Callaghan, and Yoav Shoham. Truth revelation in rapid, approximately efficient combinatorial
auctions. InACM Conference on Electronic Commerce, pages 96–102, 1999.

15. Jane W. S. Liu and Ai-Tsung Yang. Optimal scheduling of independent tasks on heterogeneous computing systems. In
Proceedings of the ACM National Conference, volume 1, page 3845, 1974.

16. Ahuva Mu’alem and Noam Nisan. Truthful approximation mechanisms for restricted combinatorial auctions. InProc. of the
18th National Conference on Artificial Intelligence and 14th Conference on Innovative Applications of Artificial Intelligence
(AAAI/IAAI), pages 379–384, 2002.

17. Hadas Shachnai, Tami Tamir, and Gerhard J. Woeginger. Minimizing makespan and preemption costs on a system of uniform
machines.Algorithmica, 42(3-4):309–334, 2005.

11


