
The price of anarchy on uniformly related machines revisited∗

Leah Epstein† Rob van Stee‡

January 10, 2012

Abstract

Recent interest in Nash equilibria led to a study of the price of anarchy (POA) and the strong
price of anarchy (SPOA) for scheduling problems. The two measures express the worst case ratio
between the cost of an equilibrium (a pure Nash equilibrium, and a strong equilibrium, respectively)
to the cost of a social optimum.

The atomic players are the jobs, and the delay of a job is the completion time of the machine
running it, also called the load of this machine. The social goal is to minimize the maximum delay
of any job, while the selfish goal of each job is to minimize its own delay, that is, the delay of the
machine running it.

We consider scheduling on uniformly related machines. While previous studies either consider
identical speed machines or an arbitrary number of speeds, focusing on the number of machines as
a parameter, we consider the situation in which the number of different speeds is small. We reveal
a linear dependence between the number of speeds and the POA. For a set of machines of at most p
speeds, the POA turns out to be exactly p + 1. The growth of the POA for large numbers of related
machines is therefore a direct result of the large number of potential speeds. We further consider
a well known structure of processors, where all machines are of the same speed except for one
possibly faster machine. We investigate the POA as a function of both the speed ratio between the
fastest machine and the number of slow machines.

1 Introduction

Many “solution concepts” are used to study the behavior of selfish agents in non-cooperative games. A
Nash equilibrium [23] is a state in non-cooperative games which is stable in the sense that no agent can
gain from unilaterally switching strategies. A strong equilibrium is a pure Nash equilibrium, in which
not only single players cannot benefit from changing their strategy (to a different pure strategy), but no
non-empty subset of players can form a coalition, where a coalition means that all of them can change
their strategies together, and all gain from the change (see [2, 1, 6]).

Following recent interest of computer scientists in game theory [24, 17, 18, 27], we study pure Nash
equilibria and strong equilibria for a scheduling problem on uniformly related machines. This is a basic
assignment problem. A set of jobs J = {j1, j2, . . . , jn} is to be assigned to a set of m machines
M = {M1, . . . ,Mm}, where machine Mi has a speed si. The size of job jk is denoted by wk and
it is equal to its running time on a unit speed machine. Moreover, the running time of this job on a
machine of speed s is wk

s . An assignment or schedule is a function A : J → M. The completion
time of machine Mi, which is also called the delay or load of this machine, is

∑
k:A(jk)=Mi

wk
si

. The
cost, or the social cost of a schedule is the maximum delay of any machine, i.e., the makespan. We see
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jobs as atomic players, thus we use terms such as choice and benefit for these players. As in previous
work [1, 5, 7, 8, 9, 10, 12, 17, 22], the delay of a player is the load that it experiences, i.e., the load of
the machine on which this job is running. This is known as the makespan mechanism. Other so-called
coordination mechanisms have also been studied [15].

A schedule is a Nash equilibrium if there exists no job that can decrease its delay by migrating to a
different machine unilaterally. Formally, consider an assignment A : J → M. The class of schedules
C contains all schedules A′ that differ from A only in the assignment of a single job. That is, A′ ∈ C
if there exists a job jk ∈ J such that A′(jℓ) = A(jℓ) for all Jℓ ∈ J , Jℓ ̸= Jk, and A′(jk) ̸= A(jk).
We say that A is a (pure) Nash equilibrium if for any job jk, the delay of jk in any schedule A′ ∈ C, for
which A′(jk) ̸= A(jk), is no smaller than its delay in A. Pure Nash equilibria do not necessary exist for
all games (as opposed to mixed Nash equilibria). It is known that for the scheduling game we consider,
a pure Nash equilibrium always exists [12, 8].

A schedule is a strong equilibrium if there exists no (non-empty) subset of jobs, such that if all jobs
in this set migrate to different machines of their choice simultaneously, this results in a smaller delay
for each and every one of them. Formally, given a schedule A, we can define a class of schedules C̃
which contains all sets of schedules CK , where K ⊆ J , K ̸= ∅. For any A′ ∈ CK , and ℓ /∈ K, we
have A′(jℓ) = A(jℓ) whereas for ℓ ∈ K, we have A′(jℓ) ̸= A(jℓ). A is a strong equilibrium if for any
K ̸= ∅, and any A′ ∈ CK , there exists at least of job jk ∈ K whose delay in CK is no smaller than
its delay in A. A strong equilibrium is always a pure Nash equilibrium (by definition). Again, strong
equilibria do not necessarily exist. Andelman, Feldman and Mansour [1] were the first to study strong
equilibria in the context of scheduling and proved that scheduling games (of a more general form) admit
strong equilibria. More general classes of congestion games which admit strong equilibria were studied
in [14, 29].

In our scheduling game, the coordination ratio, or price of anarchy (POA) (see [26]) is the worst
case ratio between the cost of a pure Nash equilibrium and the cost (i.e., maximum delay or makespan)
of an optimal schedule. In this paper, we will use OPT to denote a specific optimal schedule (chosen
arbitrarily or in some other way). The strong price of anarchy (SPOA) is defined similarly, but only
strong equilibria are considered. Therefore we refer to the pure price of anarchy by POA and when we
discuss the mixed price of anarchy we call it the mixed POA. Note that a pure equilibrium is a special
case of mixed equilibria. It is noted in a series of papers (e.g., [17, 22, 25, 5, 4]) that the model which
we study is a simplification of problems arising in real networks. This is also where our definition of the
delay of a job comes from.

Previous work A number of papers studied equilibria for scheduling on uniformly related machines
[17, 22, 5, 9, 10]. Czumaj and Vöcking [5] showed that the POA is Θ( logm

log logm) (and Θ( logm
log log logm)

for mixed strategies). Feldmann et al. [9] proved that the POA for m = 2 and m = 3 is
√
4m−3+1

2

which equals ϕ =
√
5+1
2 for two machines and 2 for three machines. In [7], the exact POA and SPOA

for two machines is found as a function of the machine speeds. The two measures give different results
for the interval (ϕ, 2.247) of speed ratios between the two machines, and identical results otherwise.
As for the mixed POA, it was shown in [17] that it is at least 1 + s

s+1 for s ≤ ϕ, where the speeds of
the two machines are denoted by 1 and s > 1. Fiat et al. [10] showed that the SPOA for this model is
Θ( logm

(log logm)2
).

For m identical machines (i.e., the case where all speed are equal), the POA is 2m
m+1 , which can be

deduced from the results of [11] (the upper bound) and [28] (the lower bound). It was shown in [1] that
the SPOA has the same value as the POA for every m. Note, however, that the mixed POA is non constant
already in this case, and equals Θ( logm

log logm), where the lower bound was shown by Koutsoupias and
Papadimitriou [17] and the upper bound by Chumaj and Vöcking [5] and independently by Koutsoupias,
Mavronicolas and Spirakis [16]. Tight bounds of 3

2 on the mixed POA for two identical machines were
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shown in [17].

Our results It can be seen that the POA and SPOA were studied mainly as a function of the number of
machines. Another relevant parameter for uniformly related machines is the number of different speeds.
A natural question is whether the POA and SPOA grow as the number of machines increases even if
the number of different speeds is constant, or whether it is actually the number of speeds that needs to
increase. Previous results, and in particular, the POA for identical machines, already hint that the second
option is the right one. We prove this property formally, specifically, in Section 2 we show that the POA

for inputs with at most p different speeds is exactly p+ 1. We note that it can be deduced from [10] that
the SPOA for inputs with at most p different speeds is Ω( p

log p) (and O(p) by our result), therefore the
SPOA is quite close to the POA and it is it influenced by the number of different speeds as well.

We further focus on a well known architecture of machines, which consists of a single “fast machine”
of speed s ≥ 1 together with m− 1 unit speed machines. Such a structure, where one processor is fast,
and all others are identical, is natural, and was studied in [21, 13, 3, 20, 19]. In Section 3, we give a
complete analysis of the exact POA as a function of the speed of the faster machine, s, and the number
of identical machines, M = m − 1. We believe that our comprehensive analysis would contribute to
a deeper understanding of the POA as a function of several parameters, rather than as a function of the
number of machines as a single parameter. Our results imply that the worst case POA (the supremum
POA over all values of s and m) for this special case of two different speeds is already 3. We conclude
the paper by showing in Section 4 that the worst case SPOA for this variant is strictly smaller than the
POA, already in this special case, but it is still strictly larger than the SPOA for m identical machines.

2 A tight bound on the POA for p speeds

In this section, we consider the general case of a machine set with a fixed number of different speeds,
and show that the POA is linearly dependent on the number of speeds, namely, it is p + 1 if there are
p different speeds. We use ingredients of the proofs in [5], focusing on the load in different groups of
machines. We assume that p > 1, since p = 1 is simply the case of identical machines, for which a tight
bound is known [11, 28, 1].

Lemma 1 The price of anarchy on m related machines that have exactly p different speeds is at most
p+ 1.

Proof Consider a job assignment to machines, denoted by A, that satisfies the conditions of a Nash
equilibrium. Let σ1 > · · · > σp be a sorted list of the speeds. We define the speed class ℓ as the subset
of machines with speed σℓ. We assume that machines are numbered by 1, . . . ,m, and their speeds
s1, . . . , sm are sorted by non-increasing speed (i.e., s1 ≥ s2 ≥ . . . ≥ sm). Moreover, we assume that
the machines of each speed class are sorted by non-increasing load in A. Let T be the maximum load
over all machines and scale the instance so that OPT = 1. Assume T > 1, otherwise we are done. Note
that since some machine has a load that exceeds 1, then there must exist at least one machine whose load
is strictly smaller than 1.

Let C be the load of the least loaded machine of speed class 1, by the order defined above, that is, a
machine r of speed sr = σ1 such that sr+1 = σ2. We claim that C ≥ T − 1. If the maximum load is
achieved on this machine, then we have C = T and we are done. Otherwise, let k be a machine of load
T . For a given job j of the instance, OPT (which has makespan 1) runs j on one of the machines, which
we denote by ij . Therefore we have that its size satisfies wj ≤ sij ≤ σ1 and thus wj

σ1
≤ 1. Since moving

a job from machine k to machine r is not beneficial, for such a job we have T ≤ C +
wj

σ1
≤ C +1. This

proves the claim. If C ≤ 1 then T ≤ 2 < p+ 1. Therefore we assume C > 1.
We introduce additional notations. Let C ′ = ⌈C⌉ ≥ 2. We define J1, . . . , JC′−1 and I1, . . . , IC′−1

which are indices of machines. We let Ii be the first machine (in the sorted order above) with a load
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which is strictly smaller than C ′ − i, and Ji = Ii − 1. We show that all Ii’s are well defined and the
values Ji are actual indices of machines (i.e., Ji ≥ 1 for i ≥ 1). Since machine r has load C and by
definition C ′ < C + 1, we have that machine r has load C > C ′ − 1. By the ordering of machines,
machines 1, . . . , r− 1 have a load of at least C ′ − 1 as well. By the definition of the indices Ii, we have
I1 ≥ r + 1 and thus J1 ≥ r ≥ 1. Moreover, Ii ≥ Ii−1 for all 2 ≤ i ≤ C ′ − 1, thus Ji ≥ 1 for all i ≥ 1,
as claimed. Since IC′−1 is the first machine with a load smaller than C ′ + 1 − C ′ = 1, this last index
must exist, since some machine must have load less than 1. Note that IC′ is not defined and cannot exist
since this would imply a machine of load less than 0.

By definition, the load of machines 1, . . . , Ji is at least C ′ − i. We now claim that the speed of Ii
is no larger than σi+1 for i = 1, . . . , C ′ − 1. We prove this by induction. For i = 1 we showed that
I1 ≥ r+1, so the speed of I1 is at most σ2. For other values of i, we prove that the speed of Ii is strictly
smaller than the speed of Ii−1. Let s′ be the speed of Ii−1. All machines up to Ji−1 have load of at least
C ′ − (i − 1) = C ′ + 1 − i > 1 since i ≤ C ′ − 1. Recall that Ii ≥ r + 1 for i ≥ 1. We showed that
in A, machines 1, . . . , Ji−1 are loaded by more than 1. Thus in this schedule they must have a job that
OPT schedules on one of the machines Ii−1, . . . ,m. Denote such a job and its size by a. The machine
that runs it in A has load of at least C ′ + 1− i. Let y be the machine to which a is assigned in OPT. We
have a ≤ sy ≤ s′ and Ji−1 < Ii−1 ≤ Ii. If the speed of machine Ii is s′ as well, moving job a to Ii will
result in load of less than (C ′ − i) + 1, which would be a contradiction to A being a Nash equilibrium,
since the load of the machine running a in A is larger.

From this claim it follows that the speed of IC′−1 is at most σC′ , i.e., C ′ ≤ p (since σp is the smallest
speed). We conclude that T ≤ C + 1 ≤ C ′ + 1 ≤ p+ 1. �
Lemma 2 The price of anarchy on m related machines that have exactly p different speeds is at least
p+ 1.

Proof Let ε > 0 be such that 1/ε is an even integer. We consider a set of machines with speeds in the
set {2p−1, 2p−2, . . . , 1} for some integer p ≥ 2. There are Ni machines of speed 2i, where Ni will be
determined later. In OPT, each machine of speed 2i has a job of size (1 − ε)2i, for i ≥ 1. 4N1 of the
machines of speed 1 have a single job of size 1− ε and the rest have sand (throughout the paper, we use
the common term sand to describe arbitrarily small jobs) of total size 1. We will define N0 to be large
enough to ensure N0 > 4N1. Therefore OPT = 1.

In the Nash equilibrium that we define, there is one machine of speed 2p−1 which contains p + 1
jobs of size (1− ε)2p−1. We let Np−1 = p+ 1. Each one of the other machines of speed 2p−1 contains
2p jobs of size (1− ε)2p−2. We let Np−2 = 2p(Np−1 − 1) = 2p2. For 1 ≤ i ≤ p− 2, each machine of
speed 2i in the Nash equilibrium contains 2(i+ 1) jobs of size (1− ε)2i−1. Therefore, for these values
of i (except for i = 1), Ni−1 = 2(i+ 1)Ni. We let N0 = 4N1/ε. Thus if in the Nash equilibrium, each
machine of speed 1 has a total of 1− ε of sand, and in OPT, each machine except 4N1 machines have a
total of 1 of sand, we get that the amount of sand is constant; 4N1/ε− 4N1 = (1− ε)4N1/ε.

Moreover, the load of a machine of speed 2i is (1− ε)(i+1), except for one machine of speed 2p−1

which has a load of (1− ε)(p+ 1).
To show that this is indeed a Nash equilibrium. We do not need to consider cases in which jobs move

to faster machines, since they are more loaded. We first consider the case where a job of size (1−ε)2p−1

moves from the machine of speed 2p−1 that contains all jobs of this size, to a machine of some speed
2j (j ≤ p − 1). It increases the load of the target machine by (1 − ε)2p−1−j . The load of this machine
was (1 − ε)(j + 1), so we need to show (1 − ε)(j + 1 + 2p−1−j) ≥ (1 − ε)(p + 1) or equivalently
2p−1−j ≥ p− j. It is enough to show 2t−1 ≥ t for t ≥ 1. This is easily shown by induction.

We now consider a job of size (1 − ε)2i moving from a machine of speed 2i+1 to a machine of
speed 2j , where j ≤ i. The load of the target machine increases by (1 − ε)2i−j . The load there was
(1 − ε)(j + 1) so we need to show 2i−j + j + 1 ≥ i + 2 for i − j ≥ 0. Taking t = i − j + 1, we get
2t−1 ≥ t as before. �

The previous two lemmas together imply the following Theorem.
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Figure 1: Definitions for Section 3, the structure of the Nash equilibrium which is examined.

Theorem 1 The price of anarchy on m related machines that have exactly p different speeds is exactly
p+ 1.

Note that the SPOA increases rapidly as a function of the number of speeds as well. The lower bound
construction of Fiat et al. [10] uses a parameter ℓ, such that the SPOA is Ω(ℓ) and the number of speeds
is Θ(ℓ log ℓ). This implies a lower bound of Ω( p

log p) on the SPOA for instances with at most p different
speeds.

3 One fast machine: the POA

Recall that the configuration of processors that we consider here consists of M = m− 1 identical slow
machines of speed 1, and one fast machine of speed s, where M ≥ 2. Note that the case M = 1 is fully
covered in [7], for which case the POA is equal to 1 + s

s+2 for 1 ≤ s ≤
√
2 ≈ 1.4142, it is equal to s for

√
2 ≤ s ≤ 1+

√
5

2 ≈ 1.618 and to 1 + 1
s otherwise.

We scale all sizes of jobs in the instances which we consider so that OPT = 1. We can therefore
assume that the sum of jobs sizes is at most s+M . Moreover, in an optimal schedule, all slow machines
contain only jobs that are no larger than 1, and the largest job of any instance is no larger than s.

We assume that we are given a specific schedule A which is a pure Nash equilibrium and study its
properties. The price of anarchy is determined by the highest possible load of any machine. Obviously,
if there is a machine with load above 1, there must also be a machine with load less than 1. To prove
upper bounds we consider two basic cases; the price of anarchy is either determined by the fast machine,
or by some other machine. In this schedule, denote the load on the fast machine by x, and the number of
jobs there by f . Additionally, let y be the highest load of any slow machine, let HIGHLOAD be a slow
machine with this load, and let z be the smallest load of any slow machine. See Figure 1.

We will give a closed formula for the POA for all possible combinations of s and M . We begin with
the case 1 ≤ s ≤ 2 in Section 3.1. An upper bound for x is given in Lemma 5, and upper bounds for
y are given in Lemma 6. Together, these bounds give a closed formula for the POA for 1 ≤ s ≤ 2 in
Theorem 2, where we show matching lower bounds for all possible cases.

We then move to the case s > 2. In Theorem 3, we show a lower bound instance with a specific
load on the fast machine. Given this theorem, the question is whether instances exist with a higher load
on a slow machine. To answer this question, in the remaining text we derive upper bounds on y, and
structural properties for worst-case equilibria in the case that the y ≥ x in Lemmas 7 to 10. Eventually,
we will find that there are always instances with higher load on a slow machine for s > 2.

In Section 3.3, we derive a condition (Equation (5)) under which the POA is equal to a global upper
bound for it, denoted by GLOBMAX. We show that for sufficiently large s, condition (5) is always
satisfied, where the threshold value for s depends on M . In particular, (5) holds for s ≥ 4.562 and any
M (Theorem 6). In Section 3.4, we determine the POA in the cases where (5) does not hold. We first
show an upper bound for y (Lemma 14) which depends on f (the number of jobs on the fast machine).
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We then define a value f∗ in Definition 2 and show that the POA is maximized for f = f∗ or f = f∗−1.
We deal separately with the case f∗ = M +1, because if there are M +1 jobs on the fast machine, then
we can show that one of them is on the fast machine in the optimal schedule as well (Lemma 14). The
results of our analysis are summarized in Theorems 7 and 8.

To conclude, in Section 3.5, we consider the behavior of the POA for M → ∞ and for s → ∞.

3.1 The exact POA for 1 ≤ s ≤ 2

Some of the lemmas and observations in this section hold not only for s ≤ 2, and are used in other sec-
tions as well. When this is the case, we state it explicitly (these are Lemma 3, Lemma 6 and Observation
1) . Otherwise we may assume s ≤ 2.

We begin by defining two values which will upper bound the load x on the fast machine.

FASTMAX =
2M + s

M + s
=2− s

M + s
=1 +

M

M + s

MAXLOAD(f) =
1 + s

M

1 + s
M − s

f

=
(M + s)f

(M + s)f −Ms
=1 +

Ms

(M + s)f −Ms
for f ≥ s, f ∈ N

We motivate these definitions by proving the following lemma. FASTMAX will turn out to be the max-
imum possible load on the FAST machine, whereas MAXLOAD(f) is the maximum possible LOAD on
the fast machine given that there are exactly f jobs on it. MAXLOAD(f) is only defined for f ≥ s
(because then (M + s)f −Ms > 0).

Lemma 3 If x > 1, then x ≤ FASTMAX. If in addition f ≥ sx, then x ≤ MAXLOAD(f). This holds
for any s ≥ 1.

Proof The average load on the slow machines is at most

s+M − sx

M
= 1− (x− 1)

s

M
. (1)

Since x > 1, and the optimal makespan is 1, there exists a job of size at most 1 on the fast machine in
A. This job does not reduce its delay by moving to the least loaded slow machine. If it moves, the load
on the machine that it moves to becomes at most 2− (x− 1) s

M , which must be at least x. This implies
x(1 + s

M ) ≤ 2 + s
M , and therefore x ≤ FASTMAX.

If f ≥ sx, then f > s. The average size of jobs on the fast machine is sx/f , so among these jobs
there is at least one job of size at most sx/f . Since this job does not benefit from moving to the least
loaded slow machine, using (1), we find x ≤ 1− (x−1) s

M + sx
f which implies x(1+ s

M − s
f ) ≤ 1+ s

M ,
and therefore x ≤ MAXLOAD(f). �

We now consider the question of when each of these upper bounds on x is tight and when these
bounds correspond to the POA (i.e., when is x ≥ y).

Lemma 4 If f ≥ s, we have MAXLOAD(f) ≤ FASTMAX if and only if s
f FASTMAX ≤ 1.

Proof If MAXLOAD(f) ≤ 2− s
M+s , then Ms

(M+s)f−Ms ≤ M
M+s and therefore

s ≤ (M + s)f −Ms

M + s
= f − Ms

M + s
,

so s+ Ms
M+s ≤ f and FASTMAX = 1 + M

M+s ≤ f
s , which implies s

f FASTMAX ≤ 1. It can be seen that
we have in fact an equivalence as long as (M + s)f −Ms > 0 (and M > 0, s > 0 hold as well). �
Lemma 5 If f ≥ s, then x ≤ min(FASTMAX, MAXLOAD(f)).
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Proof We assume x > 1, otherwise the claim follows from MAXLOAD(f) > 1 for f ≥ s and
FASTMAX > 1. The first term is an upper bound by Lemma 3. If MAXLOAD(f) ≤ FASTMAX (and
f ≥ s), then we have s

f FASTMAX ≤ 1 by Lemma 4, so f ≥ s · FASTMAX ≥ sx. The second statement
of Lemma 3 then implies that x ≤ MAXLOAD(f). �
Lemma 6 If there is only one job on HIGHLOAD, then y ≤ s. If there are at least two jobs on
HIGHLOAD, then y ≤ 2z and

y ≤ 2(M + s)

M + 2s
.

This holds for any s ≥ 1 and M ≥ 2.

Proof The first bound follows as there cannot be a job larger than s if the optimal makespan is 1.
Suppose there are at least two jobs and y > 2z. The smallest job on HIGHLOAD has a size of at most

y/2 and (using M ≥ 2) it can reduce its delay by moving to a machine with a load of z where the load
will be at most z + y/2 < y as a result. Thus this is not an equilibrium, which leads to a contradiction.

Therefore z ≥ y/2, and each slow machine has a load of at least y/2. Since none of the jobs
on HIGHLOAD can improve by moving to the fast machine, we find y ≤ x + y/(2s) or equivalently
x ≥ 2s−1

2s y. Since the total size of jobs is at most M + s, this implies y + (M − 1)y2 + 2s−1
2 y ≤

y + (M − 1)z + sx ≤ M + s, from which the desired bound follows directly. �
Corollary 1 If s ≤ 2, then POA ≤ 2.

Proof Follows immediately from Lemma 5 and Lemma 6. In fact, x ≤ FASTMAX < 2 and if y > s,
then y ≤ 2M+2s

M+2s < 2. �
Note: we will show later that in fact limM→∞ POA = 2 for all s ∈ [1, 2].

Observation 1 2(M+s)
M+2s < 2M+s

M+s = FASTMAX for all positive M and s.

Proof Since the denominators are positive, if it enough to prove 2(M + s)2 < (2M + s)(M + 2s),
which is equivalent to sM > 0. �
Observation 2 2(M+s)

M+2s < 3(M+s)
3(M+s)−Ms = MAXLOAD(3) for 3

2 < s ≤ 2 and all M .

Proof For s ≤ 2, MAXLOAD(3) is positive since 3 ≥ s. It is enough to prove 6(M + s) − 2Ms <
3M + 6s, which is equivalent to s > 3

2 . �
Theorem 2 For 1 ≤ s ≤ 2 and M ≥ 2, the POA is given by the following equation:

max

(
min

(
MAXLOAD(2), FASTMAX, 1 +

1

s

)
,min (MAXLOAD(3), FASTMAX) ,

2(M + s)

M + 2s
, s

)
.

Proof The four terms represent the following situations in order: f = 2, f ≥ 3, at least two jobs on
HIGHLOAD, one job on HIGHLOAD. It is easy to see that this covers all the relevant possibilities: if
f ≥ 3, the second term is an upper bound for x since MAXLOAD(f) is decreasing in f , so we can apply
Lemma 5. On the other hand, if f = 1, we have x ≤ 1 because the largest possible size of any job is s.
Since OPT = 1, we have y ≥ x, and Lemma 6 upper bounds y (last two terms).

We discuss the upper bound for each case below and show that it is tight. In the examples for the
lower bound, whenever we want to enforce a specific high load on the fast machine, all other machines
will contain sand. In such a case, each machine will receive the same amount of sand. The amount will
be set such that the total size of all the jobs is M + s, and will be less than 1 per machine. This already
ensures that none of these jobs can improve their delay by moving to the fast machine (where the load
will be more than 1). Thus we only need to check that the jobs on the fast machine cannot benefit from
moving.

The cases which need to be considered are the following.
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1. There are two jobs on the fast machine. To prove the upper bound, we note that the first two terms
in the minimum are implied by Lemma 5. The last term follows because the total size of any two
jobs is at most s + 1 if the optimal makespan is 1. We now show matching lower bounds using
suitable instances for all three terms in the minimum.

(a) We deal with the cases where the minimum is MAXLOAD(f) for f = 2 or f = 3 to-
gether. (The case f = 3 is actually case 2(a) below.) We use MAXLOAD(f) ≤ FASTMAX

to show that it is possible to enforce x = MAXLOAD(f). We have s
f MAXLOAD(f) ≤

s
f FASTMAX ≤ 1 by Lemma 4. Therefore, consider the following instance. There are f jobs
of size MAXLOAD(f) · s

f ≤ 1 which are running on the fast machine. The total amount
of sand is M + s − s · MAXLOAD(f) ≥ 0 (since M ≥ 2, s ≥ 1, s · MAXLOAD(f) ≤
f ≤ 3), which is distributed equally over the slow machines. The optimal makespan is 1
by putting each large job on one machine (we have M + 1 ≥ 3 machines). This schedule
is an equilibrium, since by moving a large job to a slow machine we there get a delay of
M+s−s·MAXLOAD(f)

M + s
f MAXLOAD(f) = MAXLOAD(f) which is easily checked.

(b) If the minimum is FASTMAX, we use FASTMAX ≤ 1 + 1
s to enforce x = FASTMAX.

By Lemma 4, s
2FASTMAX ≥ 1. Consider the following instance. There is one job of size

1 on the fast machine and one job of size sFASTMAX − 1 ≥ 1. Each slow machine has
sand, where the amount of sand on each slow machine is (M + s − sFASTMAX)/M =

(M + s − s(2M+s)
M+s )/M = M

M+s . This is an equilibrium since already moving the smaller
job from the fast machine to a slow machine results in a load of 1 + M

M+s = FASTMAX. If
sFASTMAX − 1 ≤ s, then the optimal makespan is 1, since the fast machine runs this job,
one slow machine runs the job of size 1, and the sand is distributed so that the machines are
balanced. The condition on the size of the largest job holds since FASTMAX ≤ 1+ 1

s in this
case.

(c) In the last case, where the minimum is 1 + 1
s , we show how to enforce x = 1 + 1

s . In
the instance, there is one job of size 1 on the fast machine and one job of size s. Each
slow machine has an amount of (M + s − s − 1)/M = 1 − 1/M of sand. This is an
equilibrium since using 1 + 1/s ≤ FASTMAX in this case, we get Ms ≥ M + s and
therefore 2− 1

M ≥ 1 + 1
s , which means that already the job of size 1 does not benefit from

moving to a slow machine. In an optimal assignment, the fast machine runs the job of size
s, one slow machine runs the job of size 1, and the sand is spread evenly between the other
slow machines.

2. There are at least three jobs on the fast machine. The upper bound follows from Lemma 5 as
above. There are two cases depending on the term for which the minimum is achieved.

(a) See Case 1(a).

(b) If FASTMAX < MAXLOAD(3), we enforce x = FASTMAX. There are two jobs of size
1 on the fast machine and one job of size sFASTMAX − 2. The size of the second job is
more than 1 since sx/3 > 1 by Lemma 4 if we take x = FASTMAX, and at most s since
FASTMAX ≤ 2 ≤ 1 + 2/s for s ≤ 2. In an optimal schedule, for M ≥ 2 the jobs of size
1 can be assigned to two slow machines, and the larger job to the fast machine. This is an
equilibrium (the proof of case 1b, including the calculation of the amount of sand on slow
machines, holds here as well).

3. There are at least two jobs on HIGHLOAD. The upper bound on y follows from Lemma 6. Com-
paring this case to the previous one, by Observations 1 and 2, we have s ≤ 3/2. We show how to
enforce y = 2(M+s)

M+2s , let y denote this value. Note that this function is monotonically increasing
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in M . To prove the lower bound, we consider a schedule with two jobs of size y/2 < 1 on one
slow machine (HIGHLOAD), each other slow machine has y/2 of sand.

If M ≤ 3, the fast machine has one job of size 2s−1
2 y. For M ≥ 4, the fast machine has two jobs

of size 2s−1
4 y ≤ 1. In both cases, its load is 2s−1

2s y ≤ 3
4y ≤ 3

2 .

We show that the optimal makespan of this instance is 1 in all cases. Each job that is not part of
the sand is put on a separate machine. We will show that there is at most one job that is larger
than 1. If there is such a job, it is put on the fast machine. The sand is added to the machines
in a balanced way. The jobs have a total size of y

2 (2 + (M − 1) + (2s − 1)) = M + s. For
M ≤ 3, it is sufficient to show for M = 3 that 2s−1

2 y ≤ s. This holds because in this case
2(M+s)
M+2s (s− 1

2) =
6+2s
3+2s(s−

1
2) ≤ s ⇔ (6 + 2s)(s− 1

2) ≤ s(3 + 2s) ⇔ 5s− 3 ≤ 3s ⇔ s ≤ 3
2 .

For M ≥ 4, we find 2s−1
4 y ≤ 1

2y < 1 for s ≤ 3/2.

The assignment is an equilibrium: the job(s) on the fast machine can not improve by moving, since
already for the case where two jobs are assigned to this machine, 2s−1

4 y+ y/2 = 2s+1
4 y ≥ 2s−1

2s y
for s ≥ 1.

Since 2s−1
2s y + y

2s = y, the jobs on HIGHLOAD do not improve by moving to the fast machine.
They also cannot benefit from moving to another slow machine. The sand cannot improve since
the load on the fast machine is (2s−1)y

2s ≥ y
2 for s ≥ 1.

4. There is one job on HIGHLOAD. The upper bound on y follows from Lemma 6. We show
how to enforce a load of y = s on HIGHLOAD using the following schedule. There is one
job of size s on a slow machine HIGHLOAD. Let f = ⌈s(s − 1)⌉. There are f jobs of size
s(s− 1)/f ≤ 1 on the fast machine, so that the load there is s− 1. The remaining machines have
load M−s(s−1)

M−1 = 1− s(s−1)−1
M−1 , which we denote by z′. This load consists entirely of sand.

If z′ > s−1, redistribute the sand among all machines besides HIGHLOAD (i.e. including the fast
machine) so that the load on these machines is equal. This is done by moving some sand to the
fast machine.

It is clear that if this redistribution takes place, we have an equilibrium: we only need to check
whether jobs can benefit by moving to or from HIGHLOAD. But the job on HIGHLOAD cannot
improve since the load on the fast machine is at least s − 1, and s − 1 + s/s = s. No job can
improve by moving to HIGHLOAD because HIGHLOAD has the highest load.

Consider the case where z′ ≤ s − 1. Then clearly, none of the sand jobs can improve. A job on
the fast machine does not improve if it moves to HIGHLOAD (load is higher). We next consider
the option of moving to another slow machine. We need to check that z′ + s(s − 1)/f ≥ s − 1.
Since 1 ≤ s ≤ 2, we have f = 1 or f = 2. For f = 1, the claim is obvious. For f = 2, it is
sufficient to check the case M = 2, because z′ is increasing in M (since s2 > s+ 1 in this case).
Here we get 1− (s(s− 1)− 1) + s(s− 1)/2 ≥ s− 1, which holds for all s ≤ 2.

This shows that the maximum can indeed be achieved in all four cases, and thus the bounds are tight. �

3.2 The case x ≥ y and s ≥ 2

Here we consider the case where the fast machine has the highest load.

Theorem 3 For s ≥ 2, if y ≤ FASTMAX then POA = FASTMAX.

Proof We have x ≤ FASTMAX by Lemma 3, so POA ≤ FASTMAX in this case. For the lower bound
we present an instance where the fast machine has a load of FASTMAX. We place a total size of jobs of
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w = sFASTMAX on the fast machine. We do this by assigning ⌈s(1− s/(M + s))⌉ ≥ 1 jobs of size 1
to this machine, as well as a job of size

q = w − ⌈s(1− s/(M + s))⌉.

We have q = s(2−s/(M +s))−⌈s(1−s/(M +s))⌉ ≤ s and q ≥ s(2−s/(M +s))− (s(1−s/(M +
s)) + 1) = s− 1 ≥ 1 by the assumption s ≥ 2. We get x = FASTMAX, and a total size of sand jobs of
s+M − sx, thus each slow machine receives 1− (x− 1)s/M of sand. This situation is similar to the
one in the proof of Theorem 2 (Case 1b), since the loads of machines are similar, and the smallest job
on the fast machine is of size 1, and we already saw that this is an equilibrium.

To show that the optimal makespan is 1, we need to show that ⌈s(1 − s/(M + s))⌉ ≤ M (i.e., we
can assign all jobs on the fast machine but one to slow machines) and q ≤ s (which we already showed).
The first inequality holds because s(1− s/(M + s)) = M · s

M+s < M . �

3.3 The exact POA for sufficiently large values of s

This section is devoted to proving the following global upper bound on the POA:

GLOBMAX =
s+ 2M − 1

s+ (M − 1)(s− 1)/s
. (2)

We derive bounds for GLOBMAX in Lemmas 12 and 13, and use these bounds to determine when
POA = GLOBMAX holds in Theorems 5 and 6.

In the next few lemmas, we will first prove that there exist equilibrium instances with y > FASTMAX

and several distinct properties. In each case, as soon as we have proved such a statement, we will restrict
our attention to instances which have these properties in the remainder of the text.

Lemma 7 For s ≥ 2, for any equilibrium instance in which y > FASTMAX, there is one job on
HIGHLOAD and there exists an instance which is an equilibrium with the same loads on all machines
and the same optimal makespan, where all slow machines besides HIGHLOAD contain sand.

Proof If there are at least two jobs on HIGHLOAD, then by Lemma 6 and Observation 1, y <
FASTMAX. Let ∆ be the total size of jobs assigned to slow machines, excluding HIGHLOAD. Re-
place these jobs by sand and distribute it evenly. (The same process is applied on these jobs in the
optimal solution.) The only case which the resulting schedule is not an equilibrium is the case where the
fast machine has a smaller load than the resulting load of the slow machines. In this case, the jobs on it
are replaced by sand as well, and the sand is redistributed so that all machines, except for HIGHLOAD,
have equal load. Note that the load on the fast machine increases in this last case, so the job of size y
does not improve by moving there since it did not do so before. �
Lemma 8 For any equilibrium instance, there exists an instance which is an equilibrium with the same
loads on all machines and the same optimal makespan, such that the fast machine has at most one job
which is also on the fast machine in the optimal solution. Specifically, it has at most one job larger than
1.

Proof If there are multiple such jobs, we can merge them into one job with size the total size of these
jobs. This does not affect the optimal makespan, or the makespan of the schedule. Larger jobs can
only benefit less from moving, thus the schedule is still an equilibrium if it was before. Regarding the
second statement, clearly all jobs larger than 1 must be on the fast machine in an optimal solution with
makespan 1. �
Lemma 9 Any schedule which is an equilibrium and for which y > FASTMAX satisfies

y ≤ sx

s− 1
. (3)

Moreover, (3) is a sufficient condition for the job on HIGHLOAD not to benefit from moving.
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Proof Consider HIGHLOAD. This machine has a single job of size y by Lemma 7, which does not
benefit from moving to the fast machine. This holds if and only if y ≤ x+ y

s , which implies (3). �
Lemma 10 For s ≥ 2 and M ≥ 2, if y > FASTMAX, then f ≥ 2 and there exists an instance which
is an equilibrium with the same loads on all machines and the same optimal makespan, in which the
smallest job on the fast machine has size at most 1.

Note: this holds even after possibly merging some jobs as in the proof of Lemma 8.
Proof Suppose there is at most one job on the fast machine. The total size of the jobs on the fast
machine and HIGHLOAD (together) is then at most s + 1. This means that sx + y ≤ s + 1. But then
Lemma 9 implies y ≤ s+1−y

s−1 , and therefore y ≤ s+1
s . But this value is smaller than FASTMAX for s ≥ 2

and M ≥ 2, a contradiction. To prove s+1
s ≤ FASTMAX, we note that 2 − s/(M + s) is increasing in

M . For M = 2, it is equal to 1 + 2
2+s . However 2

2+s ≥ 1
s for s ≥ 2.

The upper bound on the size of the smallest job on the fast machine now follows from Lemma 8. �
The next lemma relates FASTMAX to GLOBMAX, allowing us to prove a general upper bound for

the POA in Theorem 4.

Lemma 11 We have FASTMAX < GLOBMAX for all s ≥ 1, M ≥ 2.

Proof We have FASTMAX = 2M+s
M+s . The desired inequality is equivalent to

(2M + s)s

sM + s2
<

(2M + s− 1)s

s2 + (M − 1)(s− 1)
.

Simple algebra shows that this holds for all s ≥ 1,M ≥ 2 (actually it holds for s > 0,M ≥ 1). �
Theorem 4 For s ≥ 2, POA ≤ GLOBMAX.

Proof By Lemma 11 and Lemma 3, the claim holds if y ≤ FASTMAX. Therefore, suppose y >
FASTMAX. Then by Lemma 9, the load on the fast machine is at least x = y · s−1

s , so the total size
of the jobs there is at least y(s − 1). By Lemma 10, there is at least one job of size at most 1 on the
fast machine. Since we are considering an equilibrium, the load on each slow machine must be at least
x− 1. Finally, the total size of all the jobs must be at most M + s. This implies

y

(
1 + (s− 1) + (M − 1)

s− 1

s

)
− (M − 1) ≤ s+M (4)

which holds if and only if y ≤ s+2M−1
s+(M−1)(s−1)/s = GLOBMAX. This proves the lemma. �

We wish to find out when POA = GLOBMAX holds exactly. To give a condition for this, we first
study the function GLOBMAX further in Lemmas 12 and 13.

Lemma 12 We have GLOBMAX ≤ (s+M)/s for all M ≥ 2 and s ≥ 2.

Proof A straightforward calculation shows that (for s > 0) the inequality holds if 2Ms + M2 ≤
M2s+M+s. This can be shown by induction on M . For M = 2, we get 4s+4 ≤ 4s+2+s ⇔ s ≥ 2.
For the induction step, we need to show

2(M + 1)s+ (M + 1)2 ≤ (M + 1)2s+M + 1 + s

⇔ 2Ms+M2 + (2s+ 2M + 1) ≤ M2s+M + s+ (2Ms+ s+ 1)

and indeed s+ 2M ≤ 2Ms holds, since (2M − 1)(s− 1) ≥ 1 for M ≥ 2, s ≥ 2. �
Lemma 13 We have s−1

s GLOBMAX > 1 for all M ≥ 2 and s > 2.
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Proof We can write the desired inequality as 1/GLOBMAX + 1/s < 1. Thus we need to show that

s2 + (M − 1)(s− 1)

s2 + 2Ms− s
+

1

s
=

s2 + (M − 1)(s− 1) + (s+ 2M − 1)

s2 + 2Ms− s
< 1.

This holds if and only if (M − 1)(s − 1) + s + 2M − 1 = Ms + M < 2Ms − s, which is true for
s > M

M−1 and a forteriori for s > 2 (using M ≥ 2). �
Theorem 5 Let M ≥ 2 and s > 2. Then

(s− 1)GLOBMAX − ⌈s(GLOBMAX − 1)⌉ ≥ 1 (5)

implies that POA = GLOBMAX.

Proof First note that by the condition (5), s(GLOBMAX − 1) ≤ ⌈s(GLOBMAX − 1)⌉ ≤ (s −
1)GLOBMAX − 1 and so GLOBMAX ≤ s− 1.

We present a class of instances where POA = GLOBMAX as long as (5) holds. Note that POA >
GLOBMAX is impossible by Lemma 4. Place one job of size y = GLOBMAX on a slow machine. Set
x = s−1

s · y. Place k = ⌈s(GLOBMAX − 1)⌉ jobs of size 1 on the fast machine, as well as a job of size

q = (s− 1)GLOBMAX − k

≤ (s− 1)GLOBMAX − s(GLOBMAX − 1) = s− GLOBMAX. (6)

Then the total size of the jobs assigned to the fast machine is (s− 1)GLOBMAX = sx, as desired.
On each empty slow machine, place x−1 of sand. This is more than 0 by Lemma 13. We now have

constructed an equilibrium, which can be verified as follows. Note that since y > x > x − 1, we only
need to check that no job can improve by moving away from HIGHLOAD or from the fast machine to a
slow machine with load x − 1. The first part follows from Lemma 9 and the fact that there is only one
job on HIGHLOAD (so that job cannot improve by moving to another slow machine), and the second
part holds as long as all the jobs on the fast machine (in particular, the job of size q) have size at least 1.
This is exactly the condition (5).

We still need to verify that the optimal makespan of this instance is 1. First of all, the total size of
all the jobs must be at most M + s. This follows because (4) holds for y = GLOBMAX, and our loads
are exactly the loads described in Lemma 4. Since q ≤ s − GLOBMAX by (6), the jobs of size q and
GLOBMAX can be placed together on the fast machine. Note that q ≥ 1 since GLOBMAX ≤ s − 1. It
is now sufficient to show that k ≤ M . This holds as long as s(GLOBMAX − 1) ≤ M , or GLOBMAX ≤
1 +M/s. This is true by Lemma 12. �
Theorem 6 For s ≥ 5+

√
17

2 ≈ 4.562, we have POA = GLOBMAX.

Proof We give a condition which ensures that (5) holds. Clearly, (s−1)GLOBMAX−⌈s(GLOBMAX−
1)⌉ ≥ (s − 1)GLOBMAX − s(GLOBMAX − 1) − 1 = s − GLOBMAX − 1. Thus, it suffices to have
s − GLOBMAX − 1 ≥ 1, or GLOBMAX ≤ s − 2, in order to ensure (5). GLOBMAX is monotonically
increasing in M (we have ∂GLOBMAX/∂M = s(s2 + 1)/(s2 + (M − 1)(s − 1))2 > 0) and tends to
2s/(s − 1) for M → ∞. We have 2s/(s − 1) ≤ s − 2 for s ≥ 4.562. The result now follows from
Theorem 5. �

In the following table, for several values of M the minimum value of s is given, based on (5), such
that we can be certain that POA = GLOBMAX for all speeds of at least s, rounded to three decimal
places.

M 2 3 4 5 6 7 8

s 2.774 3.246 3.775 3.563 3.409 3.293 3.887
(7)

Using a computer program, it can be found that in fact POA = GLOBMAX for s ≥ 4.365 for all M ,
and that the value of M for which the bound on s is maximized is 31. There are also several values of
M for which POA = GLOBMAX in non-contiguous intervals. The smallest value of M for which this
happens is M = 14.
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3.4 The POA for intermediate values of s

Theorem 5 gives us a condition under which POA = GLOBMAX. What happens if this condition is not
satisfied? We certainly still have the upper bound from Lemma 3 for the case y ≤ FASTMAX. In this
section, we therefore focus on the case y > FASTMAX > 1. We assume that the modification of Lemma
8 was already applied on the schedule. We give an upper bound for y which depends on the number of
jobs f on the fast machine in Lemma 14. This raises the question of which value of f should be selected
to get the highest possible value of y. We first define a crucial value f∗ in Definition 2, and examine
this value in the remainder of Section 3.4.1. Section 3.4.2 then answers the question of how to select f
based on f∗. The results are summarized in Theorem 8.

3.4.1 The bound MAXSLOW(f) and the value f∗

Definition 1 For f ≥ s, let

MAXSLOW(f) =
s+M

s+ (M − 1)(s− 1)(1− s/f)/s
.

We prove in the following lemma that MAXSLOW(f) is an upper bound for the load on HIGHLOAD

(i.e., it is the maximum possible load on a SLOW machine) if f ≥ s.

Lemma 14 If y > FASTMAX, and f ≥ s, then y ≤ MAXSLOW(f).

Proof For an equilibrium, we require x ≥ s−1
s · y by Lemma 9. The load on any slow machine must

be at least x− sx/f = x(1− s/f), since sx/f is an upper bound on the size of the smallest job on the
fast machine if there are f jobs on that machine. This implies

y

(
s+ (M − 1)

s− 1

s

(
1− s

f

))
≤ s+M (8)

which together with f ≥ s proves the upper bound (using the total size of the jobs). �
Observation 3 Let s ≥ 2, M ≥ 2. If MAXSLOW(f0) > 0 for some f0 ∈ R+, then MAXSLOW(f) is
continuous, decreasing and positive for all f ≥ f0.

This observation follows because MAXSLOW(f0) > 0 implies that its denominator is positive, and
the denominator is strictly increasing in f for all f > 0. Given Observation 3, we would like to choose
f as small as possible in order to maximize MAXSLOW(f). However, if f is too small, we find that one
of the conditions f < s or f < sx will start to hold, in which case Lemma 14 does not give us a useful
bound: in the proof, we use sx/f as an upper bound for the size of the smallest job on the fast machine;
if f < sx, we have the stronger bound of 1. We therefore define the following value, which will give us
an initial upper bound for the POA (Lemma 18). Later, we will deal with the cases where there are fewer
jobs on the fast machine.

Definition 2 Let f∗ be the minimum value of f ∈ N such that f ≥ (s− 1)MAXSLOW(f) > 0.

We will see in the following that f∗ indeed exists (see Lemma 15) and that MAXSLOW(f∗) is the highest
load on a slow machine that can be achieved using f∗ or more jobs on the fast machine, while with fewer
jobs on the fast machine, we get smaller bounds. Before we move on to the proofs of these statements,
we first prove some useful properties of the value f∗ that we will need later. In view of the condition in
Lemma 14, we first derive a lower bound for f∗. Solving the equation f = (s − 1)MAXSLOW(f) for
f ∈ R,M ≥ 2, s ≥ 2 gives

f1 =
s2 + 2(M − 1)(s− 1)− 1

s2 + (M − 1)(s− 1)
· s. (9)

Lemma 15 We have f∗ = ⌈f1⌉ ≥ s for any M ≥ 2 and s ≥ 2.

13



Proof The fraction in the right hand side of (9) is at least 1 for any M ≥ 2 and s ≥ 2, therefore f1 ≥ s.
In particular, this implies f1 > 0, and therefore MAXSLOW(f1) = f1/(s − 1) > 0. By Observation 3
we conclude f∗ = ⌈f1⌉ ≥ s: for f ≤ ⌈f1⌉ − 1, f ∈ N, we must have either MAXSLOW(f) ≤ 0 or
f < (s− 1)MAXSLOW(f). �

This lemma shows that for f ≥ f∗, the second condition in Lemma 14 is always satisfied. We show
two additional bounds involving f∗, which will restrict the number of cases that we need to consider.

Lemma 16 For s ≥ 2 and M ≥ 2, we have f∗ − 1 < (s− 1)MAXSLOW(f∗ − 1).

Proof Given the definition of f∗ and Observation 3, it is sufficient to show that MAXSLOW(f∗−1) > 0.
This holds if the denominator is positive. Solving s+ (M − 1)(s− 1)(1− s/f)/s = 0 for f ∈ R gives

f2 =
(M − 1)(s− 1)

s2 + (M − 1)(s− 1)
· s.

For any f > f2, we have MAXSLOW(f) > 0 and then MAXSLOW(f) is continuous, decreasing in f ,
and positive by Observation 3. Thus if f∗ > f2+1, we have MAXSLOW(f∗−1) > 0 as desired. Given
Lemma 15, it is sufficient to show f1 > f2 + 1. Note that the denominator of f2 is equal to that of f1.
Thus we need to verify

(s2 + 2(M − 1)(s− 1)− 1)s > (M − 1)(s− 1)s+ (s2 + (M − 1)(s− 1))

⇔ (s2 + (M − 1)(s− 1)− 1)s > s2 + (M − 1)(s− 1)

which holds for s ≥ 2 and M ≥ 2. �
Lemma 17 If (5) does not hold, then f∗ ≤ M + 1 for s ≥ 2 and M ≥ 2.

Proof We have that f1 is monotonically strictly increasing in s and in M for s ≥ 2 and M ≥ 2: we
can write it as

f1 = s ·
(
1− 1

s2 + (M − 1)(s− 1)

)
+

1
s

(M−1)(s−1) +
1
s

,

from which both assertions follow easily. Therefore f∗ = ⌈f1⌉ is monotonically increasing in s and M .
If (5) does not hold, then s ≤ 4.56 by Lemma 4. From (9) it is clear that f1 < 2s and therefore

f∗ ≤ ⌈2s⌉. Thus the claim holds for M + 1 ≥ 10, i.e., M ≥ 9. For M = 2, . . . , 8, we use the values
from Table (7). Thus only the interval s ∈ [2, 3.9] remains to be checked, so we are done for M = 8
and M = 7, because f∗ ≤ 8 for s ≤ 4. For M = 6, we know s < 3.5, so we are done for that value as
well. For M = 5 and s = 4, we find f∗ = ⌈39/7⌉ = 6 = M + 1, implying that if M = 5, we have
f∗ ≤ 6 for all s for which (5) does not hold (since then s ≤ 4, and f1 and f∗ are increasing in s).

For the remaining values, we have the following results. We have

s(GLOBMAX − 1) =
Ms2 + (M − 1)s

s2 + (M − 1)(s− 1)
< M.

This value is more than M − 1 if s2 + (M − 1)2 > s((M − 1)2 − (M − 1)), which holds for 2 ≤
M ≤ 4 and all s ≥ 2. Hence, the values of s such that s > 2, for which (5) does not hold, satisfy
(s− 1)GLOBMAX −M < 1, or equivalently

(s− 1)s2 + (2M − 1)(s− 1)s)

s2 + (M − 1)(s− 1)
< M + 1. (10)

On the other hand, we have

f1 =
s3 − s+ 2s(M − 1)(s− 1)

s2 + (M − 1)(s− 1)
.

We know that as long as f1 ≤ M + 1, we also have f∗ ≤ M + 1. But f1 ≤ M + 1 follows directly
from (10). �
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3.4.2 On the value of f which maximizes y

This section deals with the question: how should we select f , i.e. how many jobs should there be on
the fast machine in order to get the highest possible value of y (recall that y is scheduled on a slow
machine). Lemma 18 deals with the case where there are at least f∗ ≤ M jobs on the fast machine, and
shows that the worst case (highest value for y) is if there are exactly f∗ jobs. Lemma 22 deals with the
case where there are less than f∗ jobs on the fast machine, and shows that the worst case is if there are
exactly f∗ − 1 jobs.

Finally, Lemma 26 (in general, the text below (13)) deals with the case where f∗ = M + 1, which
requires separate attention, and gives a new upper bound for y for this case.

Lemma 18 If f∗ ≤ M , then there is an equilibrium instance with f∗ jobs on the fast machine and
y = min(s, MAXSLOW(f∗)). If y > 1, then we have y ≤ min(s, MAXSLOW(f∗)) for all equilibria
with at least f∗ jobs on the fast machine.

Proof To show existence, let y = min (s, MAXSLOW(f∗)). Place a job of size y on a slow machine,
f∗ jobs of size y(s − 1)/f∗ ≤ 1 on the fast machine and z = y s−1

s (1 − s/f∗) ≥ 0 of sand on each
empty slow machine. The claimed inequalities in the previous line follow from the definition of f∗ and
the fact that f∗ ≥ s (Lemma 15). Then this is an equilibrium with POA = y. The job of size y does
not benefit from moving by Lemma 9, and no job on the fast machine benefits from moving because
z + y(s − 1)/f∗ = y(s − 1)/s. Since y > y(s − 1)/s > y s−1

s (1 − s/f∗), the sand also does not
benefit from moving. The total size of all the jobs is at most M + s since y ≤ MAXSLOW(f∗) so that
y satisfies (8). Since we also have y ≤ s, this shows that the optimal makespan is 1 as long as f∗ ≤ M ,
because we can then assign each job which is on the fast machine to its own slow machine in the optimal
solution, and the job of size y to the fast machine.

With exactly f∗ jobs on the fast machine, the second claim follows from Lemma 6 if y = s ≤
MAXSLOW(f∗). Else, we can use Lemma 14. With more than f∗ jobs on the fast machine, we use
additionally that MAXSLOW(f) is decreasing in f (Observation 3). �
Lemma 19 If (5) does not hold, there is an equilibrium instance with f∗ − 1 equal-sized jobs on the
fast machine and y = min(s, (f∗ − 1)/(s− 1)). Any equilibrium instance with at most f∗ − 1 jobs on
the fast machine, where all those jobs have size at most 1, has y ≤ min(s, (f∗ − 1)/(s− 1)).

Proof To prove the first claim, we use an instance analogous to the one from the proof of Lemma 18.
There is a job of size y = min(s, (f∗ − 1)/(s − 1)) on one slow machine, and f∗ − 1 jobs of size
y(s − 1)/(f∗ − 1) ≤ 1 on the fast machine, where the inequality follows from Lemma 16. Each slow
machine has an equal amount of sand z = max(0, y s−1

s (1− s/(f∗ − 1)). If x < z, we redistribute the
sand among the fast machine and the slow machines excluding HIGHLOAD so that all loads are equal
(without changing the total size of all the jobs).

Then as in the previous proof, this is an equilibrium with POA = y. (If we redistributed some sand
because x < z, the proof is even easier.) We still need to show that the optimal makespan is 1. Note that
f∗ − 1 ≤ M by Lemma 17, so that in the optimal schedule, we can assign each job which is on the fast
machine to its own slow machine, and y ≤ s to the fast machine as before. It remains to be shown that
the total size of all the jobs is at most M + s. If z > 0, this follows since y ≤ MAXSLOW(f∗ − 1) by
Lemma 16 so that y satisfies (8). If z = 0, this follows because y ≤ s and there are f∗ − 1 ≤ M jobs of
size at most 1.

For the second claim, note that if all jobs on the fast machine have size at most 1, their total size
(which is sx) is at most f∗ − 1 in this case. The claim then follows from Lemma 6, Lemma 9 and
Lemma 16. �

Given Lemmas 18 and 19, the only option that we did not yet consider for f∗ ≤ M is to have at
most f∗ − 1 jobs on the fast machine, where one of the jobs is larger than 1. We will consider the case
where f∗ = M + 1 separately later.
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Lemma 20 If there is a job which is larger than 1 on the fast machine, and y > FASTMAX, then
y ≤ 1 + f−1

s .

Proof The total size of the f jobs on the fast machine and the single job (Lemma 7) on HIGHLOAD is
at most s+ f − 1. This holds because all but one job (the one larger than 1) on the fast machine are on a
slow machine in OPT by Lemma 8 and hence have size at most 1. Moreover, the job larger than 1 on the
fast machine, together with the job of size y > 1 on HIGHLOAD have a total size of at most s. In other
words, sx+ y ≤ s+ f − 1, implying that sx ≤ s+ f − 1− y, and with the help of Lemma 9 we then
find that y ≤ s+f−1−y

s−1 , or equivalently y(1 + 1
s−1) ≤

s+f−1
s−1 , and so y ≤ s+f−1

s = 1 + f−1
s . �

Definition 3 Let f3 be the highest value of f ∈ N, f < f∗ such that

f∗ − 1

s− 1
< 1 +

f − 1

s
≤ GLOBMAX, (11)

if such a value exists. (Else f3 is left undefined.)

Lemma 21 If (5) does not hold and f3 is defined, then f3 = f∗ − 1.

Proof We first note that if the condition f∗−1
s−1 < 1 + f−1

s holds for some value f = f0 < f∗, then it
holds for any value in the interval [f0, f∗).

Suppose that (5) does not hold and f3 ≤ f∗ − 2. Thus the condition 1 + f−1
s ≤ GLOBMAX does

not hold for f = f3 + 1, so 1 + f3
s > GLOBMAX. Let φ = 1 + f3/s. Then ⌈s(φ − 1)⌉ = ⌈f3⌉ = f3.

Moreover, from the definition of f3 and the assumptions on f3 we see that GLOBMAX > f∗−1
s−1 ≥ f3+1

s−1 .
Therefore φ > f3+1

s−1 , which implies (s − 1)φ > f3 + 1 and therefore (s − 1)φ − ⌈s(φ − 1)⌉ =
(s− 1)φ− f3 > 1. Now, for any φ′ ≤ 1+ f3/s, in particular for φ′ = GLOBMAX, we clearly have that
⌈s(φ′−1)⌉ ≤ f3. But since we saw above that GLOBMAX > f3+1

s−1 , we find (s−1)GLOBMAX > f3+1
and therefore (5) holds. This is a contradiction. �
Lemma 22 If y > FASTMAX and f3 = f∗ − 1, there is an equilibrium instance with f∗ − 1 jobs on
the fast machine where one job is larger than 1 and y = 1 + (f∗ − 2)/s. For any equilibrium instance
with at most f∗ − 1 jobs on the fast machine, y ≤ 1 + (f∗ − 2)/s if one of those jobs is larger than 1.

Note that f∗ ≥ 2 and therefore f∗ − 2 ≥ 0 by Lemma 15.
Proof Consider the following instance. There is a job of size y = 1 + f∗−2

s on the slow machine
HIGHLOAD. On the fast machine, there are k = ⌈s(y − 1)⌉ jobs of size 1 as well as 1 job of size
q = (s − 1)y − ⌈s(y − 1)⌉ ≤ s − y. Thus x = (s − 1)y/s. On each empty slow machine, we place
max(x − 1, 0) of sand. It then immediately follows that this is an equilibrium, since the condition of
Lemma 9 is satisfied, and no job can improve by moving to a slow machine with load max(x− 1, 0).

We need to show that the optimal makespan is 1. The total size of all the jobs is at most M + s
because y ≤ GLOBMAX by definition of f3, so that the loads on the fast machine and on HIGHLOAD

are at most those from the example from Theorem 5, where the total size was exactly M + s. This holds
because we maintain x = (s − 1)y/s, which is now not larger. If x > 1, the loads on the remaining
machines are also smaller in the current example.

Suppose x − 1 < 0. Then y < s/(s − 1). For y = s/(s − 1) < GLOBMAX (Lemma 13), we
have x = 1, and the loads on the other machines are zero. It is clear that for smaller y, if we maintain
x = s−1

s y, the total size of the jobs on HIGHLOAD and the fast machine is smaller. Thus also in the case
that x− 1 < 0 we have that the total size of all the jobs in the current example is not more than M + s.

We also need that q ≥ 1. For y = 1 + (f∗ − 2)/s, we have ⌈s(y − 1)⌉ = ⌈f∗ − 2⌉ = f∗ − 2. This
means that q ≥ 1 holds if

(s− 1)(1 + (f∗ − 2)/s)− (f∗ − 2) ≥ 1,

or (s − 1)(1 + (f∗ − 2)/s) ≥ f∗ − 1, or equivalently 1 + (f∗ − 2)/s ≥ (f∗ − 1)/(s − 1). But this
follows from the assumption that f3 = f∗ − 1.
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Note also that this immediately implies that y ≤ s − q ≤ s − 1. In addition, we actually find that
k = f∗−2 ≤ M , so each of these f−1 jobs can be placed on their own machine in the optimal solution,
thus the optimal makespan is 1. The second claim follows immediately from Lemma 20. �

We are now ready to give a full characterization of the POA in the case that f∗ ≤ M and (5) does
not hold.

Theorem 7 If f∗ ≤ M and (5) does not hold, and y > FASTMAX, then

y = POA = min

(
s,max

(
MAXSLOW(f∗),

f∗ − 1

s− 1
, 1 +

f∗ − 2

s

))
.

Proof The first upper bound follows from Lemma 6. There are three cases, depending on where the
maximum is achieved. The case numbers indicate the term that achieves the maximum.

Case 1. We use Lemma 18 to get an instance with y = min(s, MAXSLOW(f∗)). The lemma
(combined with Lemma 6) states that no higher load can be achieved on a slow machine using at least
f∗ jobs on the fast machine. If there are less than f∗ jobs on the fast machine, we have the bounds from
Lemma 19 and Lemma 22 which are not larger in this case.

Case 2. We use Lemma 19 to get an instance with y = min(s, (f∗ − 1)/(s − 1)) with f∗ − 1 jobs
of size at most 1 on the fast machine. Similar to in Case 1, it can be seen that other possibilities for jobs
on the fast machine do not give higher values for y.

Case 3. We use Lemma 22 to get an instance with y = 1 + (f∗ − 2)/s. The proof of Lemma 22
shows that if 1 + (f∗ − 2)/s ≥ f∗−1

s−1 , then 1 + (f∗ − 2)/s ≤ s− 1. �

3.4.3 The case f∗ = M + 1

Suppose that f∗ = M + 1. This case requires special attention because of the following lemma.

Lemma 23 For s > 2, consider an instance where y > FASTMAX. In this case, there exists an instance
which is an equilibrium with the same loads on all machines and the same optimal makespan, where no
two jobs on the fast machine have a total size of at most 1.

Proof We first show that we can assume f ≤ M + 1. Suppose this does not hold. By Lemma 8, there
are at least f −1 ≥ M +1 jobs on the fast machine which are on slow machines in the optimal solution,
so there are at least two jobs from the same slow machine. Now these two jobs can be merged without
affecting the equilibrium or the optimal makespan.

For the second statement, if there do exist two such jobs, we merge them into one larger job. Since
f ≤ M + 1, this leaves at most M jobs on the fast machine, all of which have size at most 1. Thus we
can assign each such job to its own slow machine, and the other jobs as in the previous case. �

Thus, if we have M+1 jobs on the fast machine, in the optimal solution all these jobs are on different
machines, and in particular one of them is on the fast machine both in the optimal solution and in A.
Hence the sum of y and one of the jobs on the fast machine must be at most s.

Definition 4 Let

SPECIALMAX =
(s+ 1)M

s+ (M − 1)(2− 1/s)
.

We will see that SPECIALMAX is an upper bound for the POA in this special case. We first prove two
technical lemmas which give upper bounds for the value SPECIALMAX.

Lemma 24 For M ≥ 2 and s > 2, if SPECIALMAX ≤ MAXSLOW(M + 1), then SPECIALMAX <
1 +M/s.

17



Proof First of all, SPECIALMAX and 1+M/s are both continuous for s ≥ 2 and M ≥ 2. Furthermore,
MAXSLOW(M +1) is also continuous for s ≥ 2 and M ≥ 2 by Observation 3 and Lemma 16. Solving
for M , we have SPECIALMAX = MAXSLOW(M + 1) for

M1,2 =
s±

√
17s2 − 4s3 − 20s+ 8

2s− 4
.

(For s = 2, we find M1,2 = {1
2 , 1}, and SPECIALMAX < MAXSLOW(M + 1) for M ≥ 2.) The

values M1,2 are not real if 17s2 − 4s3 − 20s + 8 < 0, that is, if s ≥ 2.65. Taking for instance M = 3
and s = 3, we find SPECIALMAX = 1.89 > 1.8 = MAXSLOW(M + 1). Thus if SPECIALMAX ≤
MAXSLOW(M + 1), we know that 2 ≤ s < 2.65 since both functions are continuous for s ≥ 2 and
M ≥ 2. On the other hand, we have SPECIALMAX = 1 +M/s for

M3 = s(s− 1)2/(2s− 1).

The value M3 is continuously increasing for all s ≥ 2: the derivative is (4s3− 7s2+4s− 1)/(2s− 1)2,
which is positive for all s ≥ 2 since the numerator is larger than 4s3 − 8s2 + 4s− 1 ≥ 4s− 1 > 0, and
the denominator is positive. Furthermore, for s = 2.65, M3 < 1.678 < 2. Thus for M ≥ 2, we never
have SPECIALMAX = 1 +M/s for 2 < s ≤ 2.65. Since SPECIALMAX = 12/7 < 1 +M/s = 2 for
s = 2 and M = 2, and both functions are continuous for s ≥ 2 and M ≥ 2, the lemma is proved. �
Lemma 25 For s ≥ 2 and M ≥ 2, SPECIALMAX < s.

Proof We have equality for s = 1
2(−M +2+

√
M2 + 4M). This is less than 2 for all M ≥ 2, and for

s = 2 and M = 2 we have SPECIALMAX = 6/3.5 < 2 = s. Finally, SPECIALMAX is continuous in s
and M for s ≥ 2, M ≥ 2. This proves the lemma. �
Lemma 26 Let M ≥ 2 and s > 2. If there are M + 1 jobs on the fast machine, and y > FASTMAX,
then

y ≤ min (MAXSLOW(M + 1), SPECIALMAX) . (12)

An instance with this y exists if f∗ = M + 1.

Proof The first upper bound follows from Lemma 14. Denote the size of the smallest job on the fast
machine by a. Since the optimal makespan is 1, and since we may assume no two jobs on the fast
machine have total size less than 1 by Lemma 23, we must have a ≤ s− y (and y ≤ s− a < s).

We have x ≥ s−1
s y as usual (Lemma 9), and the condition that z + a ≥ x, because the job of size

a may not benefit from moving to a slow machine. This implies z ≥ x − a ≥ y(s − 1)/s + y − s =
y(2− 1/s)− s. Moreover, the total size of all the jobs must be at most M + s, leading to the condition
that

y (1 + (s− 1) + (M − 1)(2− 1/s))− (M − 1)s ≤ M + s. (13)

For M ≥ 2, s > 2, this is equivalent to y ≤ SPECIALMAX. Note that this bound is also valid in case
y(2− 1/s)− s < 0. (In this case, it would however be better to use the bound z ≥ 0.) In particular, the
denominator of SPECIALMAX is positive for all s > 2, M ≥ 2.

For the second claim, assume f∗ = M + 1. Note that MAXSLOW(f∗) > 0 by definition, and
f∗ > s by Lemma 15. If MAXSLOW(M + 1) ≤ SPECIALMAX, it follows that if we take y =
MAXSLOW(M+1) > 0, inequality (13) is satisfied, whereas (8) holds with equality. We therefore have

y (s+ (M − 1)(2− 1/s))− (M − 1)s ≤ M + s = y

(
s+ (M − 1)

(
1− 1

s

)(
1− s

M + 1

))
⇒ y(M − 1)− (M − 1)s ≤ y(M − 1)

(
1− 1

s

)(
− s

M + 1

)
⇒ y − s ≤ y

(
− s− 1

M + 1

)
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Figure 2: The price of anarchy for M = 2, 3, 4 as a function of s. The top line in each case is GLOBMAX,
a global upper bound on the POA. The bottom line is the actual POA for each s. For M = 4 and
s ∈ [3, 3.7], we have POA = 1 + 3/s < GLOBMAX.

This implies y(s − 1)/(M + 1) ≤ s − y. This immediately shows that we can use the instance from
Lemma 18 for f∗ = M+1, and in the optimal solution assign the job of size y = MAXSLOW(M+1) to
the fast machine together with one job of size y(s− 1)/(M +1) ≤ s− y. Note that in this case we also
have y ≤ s−y(s−1)/(M+1) < s, that is, we do not have to worry about the case MAXSLOW(M+1) >
s.

On the other hand, if SPECIALMAX < MAXSLOW(M + 1), it follows that if we take y =
SPECIALMAX, we find s − y < y(s − 1)/(M + 1). Since SPECIALMAX < s by Lemma 25, we
have s− y > 0 also in this case. In this case we place one job of size s− y on the fast machine and M
jobs of total size y(s − 1) − (s − y) = s(y − 1). In order for the optimal makespan to be 1, we must
have s(y − 1)/M ≤ 1.

To prove this, we use that y = SPECIALMAX ≤ 1+M/s, which holds by Lemma 24. This implies
that sy ≤ M + s, and then y(s− 1) ≤ M + s− y. This last value, M + s− y, would be the total size of
the jobs on the fast machine if we placed M jobs of size 1 there plus a job of size s − y. Thus that last
inequality implies that the M jobs in our instance have size at most 1, since we have sx = y(s− 1).

Finally, since we have M + 1 jobs on the fast machine in this instance, one of them of size s− y <
y(s− 1)/(M +1), and the other M jobs all equal-sized, it follows that those M jobs all have size more
than s−y. Thus the job of size s−y is indeed the smallest on the fast machine, and since sx = y(s−1),
this means that (13) is a sufficient condition to have an equilibrium. �
Theorem 8 If (5) does not hold, y > FASTMAX, s > 2 and f∗ = M + 1, the POA is given by

min

(
s,max

(
min (MAXSLOW(M + 1), SPECIALMAX) , 1 +

M − 1

s
,

M

s− 1

))
.

Proof If the maximum is achieved in the first term, we use one of the instances from Lemma 26 to give
a tight lower bound, depending on where the inner minimum is achieved. Else, the bound follows as in
the proof of Theorem 7. Note that Lemmas 19 and 22 do not require f∗ ≤ M . �
Theorem 9 The POA is achieved on a slow machine for all M ≥ 2 and s > 2.

Proof It can be verified that the bounds in Theorem 7 and 8 are larger than FASTMAX for M ≥ 2 and
s ∈ (2, 4.57]. The claimed result then follows for all s > 2 by Lemma 11 and Theorem 6.

For instance, for M ≥ 10, POA > 2 > FASTMAX in the interval s ∈ (2, 4.57]. See Figures 2 and 3
for graphs of the POA as a function of s for several values of M . �
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Figure 3: The price of anarchy for M = 5, 10, 20 as a function of s. The top line in each case is
GLOBMAX, a global upper bound on the POA. The bottom line is the actual POA for each s.

3.5 The limit of the POA for s → ∞ and for M → ∞

If s → ∞, by Theorem 5 we find POA → 1 for any M ≥ 2. What happens with the POA if M grows
without bound? By Theorem 2, POA → 2 as M → ∞ for s ∈ [1, 2]; the third term in the maximum
tends to 2 (so the limit is not lower) and FASTMAX → 2 as M → ∞ (so the limit is not higher). By
Theorem 6, POA = GLOBMAX for s ≥ 4.562. To answer this question for s ∈ (2, 4.562], we first need
to consider the value MAXSLOW(f). By Definition 1, we have

lim
M→∞

MAXSLOW(f) =
1

(s− 1)(1− s/f)/s
=

1

(s− 1)/s− (s− 1)/f
=

sf

(s− 1)(f − s)
.

From this, we can derive limM→∞ f∗ using Definition 2. We have

f = (s− 1) · sf

(s− 1)(f − s)
=

sf

f − s
⇔ s = f − s ∨ f = 0 ⇔ f = 2s ∨ f = 0.

Hence, for s ≤ 4.562 and large enough M , we certainly have f∗ < M . (Note that f∗ > 0 by Lemma
15.) We have

lim
M→∞

MAXSLOW(2s) =
2s2

(s− 1)s
=

2s

s− 1
= lim

M→∞
GLOBMAX.

Since POA ≤ GLOBMAX by Lemma 4, and FASTMAX ≤ GLOBMAX by Lemma 11, we can conclude
the following from Lemma 18.

Theorem 10 For s ∈ [1, 2], limM→∞ POA = 2. For s ∈ [2, 3], limM→∞ POA = s. For s ≥ 3,
limM→∞ POA = 2s/(s− 1).

4 One fast machine: the SPOA

In this section we demonstrate the fact that the SPOA is strictly smaller than the POA. We consider the
overall bounds (i.e., the supremum bounds over all values of s and M ) and compare them. The overall
bound on the POA, as implied by the previous sections, is 3.

Theorem 11 The SPOA is 2 for M ≤ 5. For any M , SPOA ≤ 3+
√
5

2 ≈ 2.618. For M ≥ 16,

SPOA ≥ 1+
√
13

2 ≈ 2.3027756.
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Proof We first slow a lower bound of 2 for any value of M . Consider from the following instance.
The fast machine has speed 2. There are M jobs of size 1, and one job of size 2. An optimal solution is
clearly to assign one unit job to each slow machine, and the larger job to the faster machine. This gives
OPT = 1. In a schedule S that we consider, two jobs of size 1 are scheduled on the fast machine. One
slow machine is empty, one has a job of size 2, and all remaining slow machines have one job of size 1.
It can be seen that no coalition can improve from trading places; the two jobs on the fast machine can
not obtain smaller load by moving, so they would not move to a slow machine. As long as these two
jobs do not move, no other job can benefit from moving.

We next prove an upper bound. Consider a strong equilibrium S. We use the notations HIGHLOAD,
x, y and z, as before. Let r be the smallest job on the fast machine as well as its size. Lemma 3 and
Lemma 6 both hold for any s ≥ 1 and any schedule that is a pure equilibrium, thus we can use them in
this proof. If x ≤ 1 then since any job on HIGHLOAD is of size at most s, we get that y ≤ x + 1 ≤ 2
(since moving this job to the fast machine is not beneficial). In this case the SPOA is no larger than 2,
and therefore, since by Lemma 3, we have x < 2, we only need to consider a case where 1 < x < 2,
and the SPOA is achieved on HIGHLOAD.

Since x > 1, there must be a machine with load smaller than 1, and therefore z < 1. If HIGHLOAD

contains a job of size d that OPT assigns to a slow machine, we have z + d ≥ y and therefore y ≤
z + 1 < 2. Thus HIGHLOAD only contains jobs assigned by OPT to the fast machine (and SPOA ≤ s).
We therefore have y ≤ s and we can assume that s > 2, otherwise we would again get a SPOA of at
most 2.

Since x > 1, in the schedule S, the fast machine must have a job that OPT assigns to a slow machine.
Thus r ≤ 1. Since the job of size r does not benefit from moving to the least loaded slow machine, we
get z + r ≥ x.

We claim that sx+y ≥ r+sy and therefore sx ≥ (s−1)y+r. Recall that HIGHLOAD contains only
jobs that belong to the fast machine (otherwise y ≤ 2 in OPT). Consider the coalition consisting of all
the jobs scheduled on HIGHLOAD and a job of size r, scheduled on the fast machine. Upon a deviation
of this coalition, the job r moves to the slow machine HIGHLOAD and as a result, has a delay of r ≤ 1.
Its previous delay was x > 1. Since there exists a job of the coalition which does not reduce it load upon
deviation, the jobs of HIGHLOAD are those that do not benefit from moving: we find (sx−r+y)/s ≥ y.
This proves the claim.

Let W be the total size of all the jobs. We get

Ms+ s2 ≥ Ws ≥ s2x+ ys+ (M − 1)zs ≥ rs+ s2y + (M − 1)(x− r)s

= rs+ s2y + sx(M − 1)− rs(M − 1)

≥ r(s− sM + s) + s2y + ((s− 1)y + r)(M − 1)

= r(2s− sM +M − 1) + y(s2 + sM −M − s+ 1).

If 2s−sM+M−1 ≤ 0, then we use r ≤ 1 to get Ms+s2 ≥ 2s−sM+M−1+y(s2+sM−M−s+1)
or

y ≤ s2 + 2Ms− 2s−M + 1

s2 + sM − s−M + 1
(14)

(note that s2 + sM −M − s+1 = s2 + (s− 1)(M − 1) > 0). If 2s+M − 1− sM ≥ 0 we use r ≥ 0
to get,

y ≤ Ms+ s2

s2 +Ms− s−M + 1
= 1 +

s+M − 1

s2 +Ms− s−M + 1
≤ 2 ,

since s+M − 1 ≤ s2 +Ms− s−M + 1 ⇔ s2 +Ms+ 2 ≥ 2s+ 2M which holds for any s ≥ 2 (by
(s− 1)2 ≥ 0).
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By (14), y ≤ 2 holds if s2 −M + 1 ≥ 0, i.e., if M ≤ 5 (since s ≥ 2). For larger M , we show that
y ≤ 2s−1

s−1 or y − 1 ≤ s
s−1 . For this we need to show Ms−s

s2+sM−s−M+1
≤ s

s−1 , i.e., (M − 1)(s − 1) ≤
s2+ sM − s−M +1 which holds since s2 > 0. Since we also know SPOA ≤ s, we get SPOA ≤ 2.618.

For the lower bound, consider a fast machine of speed σ = 1+
√
13

2 ≈ 2.303. In an optimal schedule,
the fast machine has a job of size σ, there are 12 slow machines that contain two jobs, of sizes 1

4 and
3
4 and the remaining slow machines have one job of size 1 each. Therefore OPT = 1. In the schedule
we consider, the fast machine has four jobs of size 1, 12 slow machines have jobs of size 3

4 , three slow
machines have four jobs of size 1

4 each, one slow machine has a job of size σ and the remaining slow

machines have jobs of size 1. The load on the fast machine is 2(
√
13−1)
3 ≈ 1.736865 and the makespan

is achieved on the slow machine which contains the job of size σ ≈ 2.303.
Consider the terms on which each type of job would join a coalition. We first discuss the case where

the job of size σ does not join. If no job which is assigned to the fast machine joins, then no job which
is scheduled to a slow machine would want to move to the fast machine, and jobs that are single on
their machine would not join, so no coalition can be created. On the other hand, since the load on the
fast machine is strictly less than 1.75, then the jobs on this machine would join a coalition only if they
could move to a slow machine with a resulting load of less than 1.74, i.e. due to the structure of the
instance, the load excluding the additional job should be at most 1

2 . For that, some jobs of size 1
4 , 3

4 or
1 would need to join the coalition. There is clearly no advantage to exchanges between jobs of size 1,
thus we need to consider only smaller jobs. A job of size 3

4 benefits from moving to the fast machine
only if the resulting total size there is no larger than 1.74, i.e., at most 1.5, but this can happen if all jobs
of size 1 on the fast machine join the coalition. Jobs of size 1

4 would move to the fast machine if the
resulting total size there is at most 2.25. For that, at least two jobs from the fast machine need to join the
coalition. We consider three cases based on the number of jobs migrating from the fast machine. If two
jobs migrate, only a single job of size 1

4 can migrate, so the room created for the migrating jobs of size
1 does not suffice. If three jobs migrate, then five jobs of size 1

4 can migrate, and there is room only for
two migrating jobs of size 1. If four large jobs migrate, in order to make room for the migrating jobs of
size 1, six jobs of size 1

4 and one job of size 3
4 must migrate (if there are more jobs of size 3

4 migrating,
and less pairs of jobs of size 1

4 , then the load on the fast machine would only be larger). This would
create a total size of 2.25 on the fast machine, therefore the job of size 3

4 would not join the coalition.
If the job of size σ joins the coalition, at least two jobs of size 1 from the fast machine must join the

coalition as well, since 3+σ
σ = σ. In order to make it beneficial for these two jobs to migrate, and since

moving both of them to the machine that becomes empty would create a load of 2 there, at least two jobs
of size 1

4 or one job of size 3
4 needs to join the coalition. But then the load on the fast machine is already

larger than 1 due to the job of size σ, so no such jobs would join the coalition. �

5 Conclusion

We studied the POA as a function of the number of different speeds. We found a tight overall bound,
and completely resolved the case where all machines are identical, except for one faster machine. It can
be interesting for find a tighter result for the SPOA as a function of the number of different speeds, p,
and find whether it is strictly smaller than p+ 1, which is the POA for this case. Another direction is to
study the influence of additional factors on the POA, such as the ratio of the largest and smallest speeds,
or even as a function of all the machine speeds, possibly as the solution of a mathematical program.
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