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Abstract. We consider the following non-preemptive semi-online scheduling problem. Jobs with

non-increasing sizes arrive one by one to be scheduled on two uniformly related machines, with the

goal of minimizing the makespan. We analyze both the optimal overall competitive ratio, and the

optimal competitive ratio as a function of the speed ratio (q ≥ 1) between the two machines. We show

that the greedy algorithm LPT has optimal competitive ratio 1
4
(1 +

√
17) ≈ 1.28 overall, but does

not have optimal competitive ratio for every value of q. We determine the intervals of q where LPT

is an algorithm of optimal competitive ratio, and design different algorithms of optimal competitive

ratio for the intervals where it fails to be the best algorithm. As a result, we give a tight analysis of

the competitive ratio for every speed ratio.

Keywords: scheduling, makespan, semi-online, competitive ratio, LPT.
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1 Introduction

The Problem. In this paper we study non-preemptive semi-online scheduling on two uni-

formly related machines. In the model of uniformly related machines, each machine has a

speed and each job has a size which is the time it takes to complete it on a machine with

unit speed. The jobs arrive one by one in order of non-increasing sizes. Each job must be

assigned to one of the machines without any knowledge of future jobs (except for a bound

on their size that follows from the size of the current job). Since the jobs are known to

have non-increasing sizes, the problem cannot be seen as on-line but semi-online. We study

the non-preemptive case, where it is not allowed to split a job in more parts and run the

various parts on different machines. The goal is to minimize the makespan, i.e., the latest

completion time of any job.

The processing time of a job on a given machine is also called the load of the job on

that machine. The load of a machine is the sum of the loads of the jobs assigned to it.

Thus, the makespan is the maximum load of any machine.

Since we study the case of two machines, the important parameter is the speed ratio

q ≥ 1 between the two machines. Without loss of generality, we assume that the faster

machine has speed 1, and the other machine has speed 1
q
. We denote the faster machine

by M1 and the other machine by Mq.

Preliminaries. The quality of a semi-online algorithm, similarly to on-line algorithms, is

measured by the competitive ratio which is the worst case ratio of the cost (the makespan,

in this paper) of the semi-online algorithm to the cost of an optimal off-line algorithm

which knows the whole sequence in advance.

The semi-online algorithm under consideration as well as its makespan is denoted by

SONL. Similarly, the optimal off-line algorithm as well as its makespan is denoted by OPT.

Thus, the competitive ratio of an algorithm SONL is

C = inf{c | SONL ≤ c ·OPT, for any input sequence}.

For any c ≥ C, SONL is said to be c-competitive.

The greedy algorithm LPT (Longest Processing Time first) was originally designed by

Graham [6] for off-line scheduling on identical machines. It sorts the jobs by non-increasing

sizes and schedules them one by one on the least loaded machine. This algorithm also works

for the semi-online version where the jobs arrive in order of non-increasing sizes. The natural

extension for uniformly related machines is as follows:
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Algorithm LPT: Assign each arriving job J (of size p) to the machine that would finish

it first. Formally, for each machine i let Li be its load before the arrival of J . The job J is

assigned to the fastest machine i for which Li + p
si

is minimized.

Previous Work. All previous study of this problem on non-identical machines involves

a study of the LPT algorithm. For two machines, Mireault, Orlin and Vohra [7] give a

complete analysis of LPT as a function of the speed ratio. They show that the interval q ≥ 1

is partitioned into nine intervals, and introduce a function which gives the competitive ratio

in each interval (they consider the off-line problem, so they do not use the term competitive

ratio). Some properties of LPT were already shown earlier. Graham [6] shows that the exact

approximation ratio of LPT is 7
6

for two identical machines. Seiden, Sgall and Woeginger

[8] show that this is tight, i.e., LPT has the best possible competitive ratio for the problem.

For two related machines, [5] shows that for any speed ratio, the performance ratio of LPT

is at most 1
4
(1 +

√
17) ≈ 1.28.

For m identical machines, Graham [6] shows that the exact approximation ratio of LPT

is 4
3
− 1

3m
. For three machines, [8] gives a general lower bound of 1

6
(1 +

√
37) ≈ 1.18. For

a general setting of m related machines, Friesen [4] shows that the overall approximation

ratio of LPT is between 1.52 and 5
3
. Dobson [2] claims to improve the upper bound to

19
12
≈ 1.58. Unfortunately, his proof does not seem to be complete.

Our Results. In this paper we give the exact competitive ratio as a function of the speed

ratio q for semi-online non-preemptive scheduling on two related machines with non-

increasing job sizes (see Figure 1). The function involves 15 distinct intervals, as defined

in Theorem 1.

In some of those intervals, we give general lower bounds which match the upper bounds

in [7]. In those cases, LPT is an optimal semi-online algorithm. In the other intervals,

we design new algorithms and prove matching general lower bounds. We show that, in

terms of overall competitive ratio, 1
4
(1 +

√
17) is the optimal competitive ratio achieved at

q = 1
4
(1 +

√
17) by LPT.

It is interesting to examine our results in the view of the results for on-line scheduling

on two related machines. Unlike our problem, for that problem, LPT is optimal for all

q ≥ 1. The overall competitive ratio is φ (φ ≈ 1.618 is the golden ratio). For q ≤ φ the

competitive ratio is 1+ q
q+1

and the competitive ratio for q ≥ φ is 1+ 1
q
. There are only two

distinct intervals and the worst competitive ratio is achieved at φ. Surprisingly, for both

problems, the highest competitive ratio is equal to the value of q for which it is achieved.

The upper bounds, as well as the overall lower bound are given in [1], the other lower

bounds are given in [3].
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Fig. 1. The competitive ratio as a function of q

2 The Function

Theorem 1. The optimal competitive ratio for semi-online scheduling on two related ma-

chines (with speed ratio q ≥ 1) is described by the following function depicted in Figure 1.

C(q) =





C1(q), 1 ≤ q ≤ q1 ≈ 1.0401

C2(q), q1 ≤ q ≤ q2 ≈ 1.1410

C3(q), q2 ≤ q ≤
√

4
3
≈ 1.1547

C4(q),
√

4
3
≤ q ≤ 1

4
(1 +

√
17) ≈ 1.2808

C5(q),
1
4
(1 +

√
17) ≤ q ≤ √

2 ≈ 1.4142

C6(q),
√

2 ≤ q ≤ 1
4
(1 +

√
33) ≈ 1.6861

C7(q),
1
4
(1 +

√
33) ≤ q ≤ 1

2
(1 +

√
7) ≈ 1.8229

C8(q),
1
2
(1 +

√
7) ≤ q ≤ 2

C9(q), 2 ≤ q ≤ 1
2
(1 +

√
11) ≈ 2.1583
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C(q) =





C10(q),
1
2
(1 +

√
11) ≤ q ≤ q10 ≈ 2.1956

C11(q), q10 ≤ q ≤ q11 ≈ 2.3307

C12(q), q11 ≤ q ≤ 1
4
(3 +

√
41) ≈ 2.3508

C13(q),
1
4
(3 +

√
41) ≤ q ≤ q13 ≈ 2.5111

C14(q), q13 ≤ q ≤ q14 ≈ 2.5704

C15(q), q ≥ q14,

C1(q) =
2

3
+

1

2q
, C2(q) = 1 +

1

2

(
4q2 + 4q − 1−

√
(4q2 + 4q − 1)2 − 4q2

)
,

C3(q) =
6q + 4

3q + 6
, C4(q) = q, C5(q) =

1

2
+

1

q
,

C6(q) = 1 +
1

2q + 2
, C7(q) =

2q + 1

q + 2
, C8(q) =

2

3
+

1

q
,

C9(q) = 1 +
1

2q + 2
, C10(q) =

3q + 2

2q + 3
, C11(q) =

q2 + 3 +
√

q4 − 6q2 + 24q + 9

6q
,

C12(q) =
q

2
, C13(q) =

3

4
+

1

q
, C14(q) = 1 +

q2 + 2q − 2−
√

q4 + 8q + 4

2q + 4
,

C15(q) = 1 +
1

2q + 1
,

q1 is the largest real root of 84q4 − 24q3 − 80q2 + 6q + 9,

q2 is the largest real root of 27q4 + 48q3 − 54q2 − 48q + 8,

q10 is the smallest real root of 3q4 − 9q3 − 8q2 + 21q + 18,

q11 is the largest real root of q3 − 2q − 8,

q13 is the largest real root of 20q4 − 39q3 − 46q2 + 32q + 32,

q14 is the largest real root of 4q4 − 6q3 − 12q2 + q + 4.

Note that the function C(q) attains it maximum value of 1
4
(1+

√
17) at q = 1

4
(1+

√
17).

This is the competitive ratio obtained by LPT [5]. Hence, in terms of overall competitive

ratio, LPT is optimal (see also the proof of the lower bound of intervals 4 and 5 in section

5).

The proof of the upper bound is given in Section 4 and the proof of the lower bound

in Section 5.

3 Properties and Assumptions

In this section we describe a few facts and assumptions used in the upper bound analysis.
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We assume without loss of generality that OPT = 1. Thus, the ratio SONL
OPT

= SONL. For

a given input sequence, we denote the total size of jobs by P . Note that P ≤ 1 + 1
q

= q+1
q

always holds, since the total size of jobs scheduled by OPT is at most 1 on M1 and at most
1
q

on Mq.

For the first k jobs of an input sequence, we denote the makespan of the semi-online

algorithm by SONLk. The jobs in a sequence are denoted J1, J2, . . . , J` and their sizes are

denoted p1, p2, . . . , p`. Thus, J` is the last job and p1 ≥ p2 ≥ . . . ≥ p`.

In our lower bound proofs we consider only minimal worst-case sequences, i.e., w.l.o.g.

we assume that the makespan is determined by the last (and hence the smallest) job of

the sequence: SONL > SONL`−1.

Lemma 1. For a given input sequence and a given semi-online algorithm, assume that J`

is scheduled according to the LPT rule and that SONL > SONL`−1. Let P `−1
1 and P `−1

q

be the total size of jobs assigned to M1 and Mq, respectively, just before the arrival of J`.

Then,

SONL = min{P `−1
1 + p`, q(P `−1

q + p`)}.

Proof. LPT schedules J` on a machine such that the resulting load on that machine is

minimized. By the assumption that J` determines the makespan, the final makespan is

equal to the load on the machine running J`. ut

The following lemma appears in [7]. For completeness, we prove it here as well.

Lemma 2. For a given input sequence and a given semi-online algorithm SONL, assume

that the last job J` is scheduled according to the LPT rule and that SONL > SONL`−1.

Then

SONL ≤ 1 +
q

q + 1
p`.

Proof. Let P `−1
q and P `−1

1 denote the total size of jobs assigned to the slow and the fast

machine, respectively, just before the last job is assigned. Note that P = P `−1
q + P `−1

1 + p`.

By Lemma 1, the final makespan is min{q(P `−1
q + p`), P

`−1
1 + p`}. 1). This is bounded by

the convex combination

1

q + 1
q(P `−1

q +p`)+
q

q + 1
(P `−1

1 +p`) =
q

q + 1
(P `−1

q +P `−1
1 +2p`) =

q

q + 1
(P+p`) ≤ 1+

q

q + 1
p`.

ut

We will sometimes use Lemma 2 in the following form.
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Corollary 1. For a given input sequence and a given semi-online algorithm SONL, assume

that the last job J` is scheduled according to the LPT rule and that SONL > SONL`−1.

If SONL > C, then p` > (C − 1)
q + 1

q
.

Lemma 3. For a given input sequence and a given semi-online algorithm, assume that J`

is scheduled according to the LPT rule and that SONL > SONL`−1. Let k ∈ N.

If SONL > 1 +
1

(k + 1)(q + 1)
, then OPT runs at most k jobs on Mq.

If SONL > 1 +
q

(k + 1)(q + 1)
, then OPT runs at most k jobs on M1.

Proof. We prove the contrapositive.

If OPT schedules at least k+1 jobs on M1, the smallest of these k jobs has size at most
1

k+1
. Thus, p` ≤ 1

k+1
, and, using Lemma 2, we get SONL ≤ 1 + q

q+1
1

k+1
.

Similarly, if at least k + 1 jobs are scheduled on Mq, p` ≤ 1
q(k+1)

. Using Lemma 2, we

get SONL ≤ 1 + q
q+1

1
q(k+1)

= 1 + 1
(q+1)(k+1)

. ut

4 New Algorithms

In this section we present algorithms of optimal competitive ratio, for intervals where LPT

is not optimal. We first mention all intervals where LPT is an optimal algorithm. In [7] the

exact performance ratio of LPT is given. In all intervals where the lower bound in Section 5

matches the upper bound in [7], clearly LPT has optimal competitive ratio.

The names we use for the intervals are taken from the definition of the function. Hence,

we deal with intervals 1–15. The right endpoint of interval i is called qi. The intervals where

LPT is optimal are as follows: The first interval is the point q = 1. For q = 1, it is known

[6] that the competitive ratio of LPT is 7
6

and that this is the best possible competitive

ratio for any semi-online algorithm [8]. However, for q = 1 + ε, for small ε > 0, this paper

shows that LPT is not an optimal semi-online algorithm.

The other intervals where LPT is optimal are 1.18 ≈ 1
6
(1 +

√
37) ≤ q ≤ qLPT ≈ 2.04

and q ≥ q14 ≈ 2.57, where qLPT is the largest real root of 4q3 − 4q2 − 10q + 3.

This leaves the following intervals to deal with. Intervals 1–4 (not including q = 1 in

interval 1, and interval 4 only up to 1
6
(1+

√
37)) and intervals 9–14 (interval 9 starting only

at qLPT). We design three new algorithms Slow-LPT, Balanced-LPT and Opposite-LPT.

Slow-LPT has optimal competitive ratio in the interval 1 < q < 1
6
(1+

√
37). Balanced-LPT

has optimal competitive ratio in the intervals qLPT < q ≤ q10 and q12 ≤ q < q14, and

Opposite-LPT has optimal competitive ratio in the interval q10 ≤ q ≤ q12.
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As can be seen in the next section, the most difficult sequences for the algorithms are

quite short sequences (up to six jobs). For longer sequences, the last job is relatively small.

Thus, as shown by Lemma 2, the algorithm benefits from the non-increasing order in this

case. As may be seen from the definitions of the three new algorithms, the most difficult

decision is either the decision for the second job, or the first and the third jobs.

4.1 The First Four Intervals

We design an algorithm Slow-LPT which has optimal competitive ratio in the interval

1 < q < 1
6
(1 +

√
37). Intuitively, the reason why LPT fails in this interval is that the slow

machine is not much slower than the faster one. Since the fast machine does not dominate

the slow machine so easily, it often makes sense to use the slow machine first, and keep

the fast machine free for future jobs. The algorithm is actually optimal in the interval

1 ≤ q ≤ q4, giving an alternative algorithm with optimal competitive ratio in the interval
1
6
(1 +

√
37) ≤ q ≤ q4.

Algorithm Slow-LPT

Assign J1 to Mq.

Assign J2 to M1.

If q(p1 + p3) ≤ C(q)(p2 + p3), assign J3 to Mq, and otherwise to M1.

Assign the remaining jobs by the LPT rule.

To analyze the algorithm, first note that, for i, j ∈ {1, 2, 3, 4}, Ci(q) ≤ Cj(q) in interval j.

Thus, in the first four intervals, C(q) = max{C1(q), C2(q), C3(q), C4(q)}.
By Lemma 2, we need only consider sequences with p` > 1

4
, since in these intervals

C(q) ≥ C2(q) > 1.145 ≥ 1 +
q

4q + 4
.

This actually means that OPT runs at most 3 jobs on each machine. Hence, we need only

consider sequences of up to 6 jobs, all larger than 1
4
. In the following, we analyze sequences

of each length ` = 1, . . . , 6 separately.

One job. Clearly, OPT = p1 and SONL = qp1. Thus, SONL ≤ q = C4(q) ≤ C(q).

Two jobs. The makespan of Slow-LPT is determined by the first job, since qp1 ≥ qp2 ≥ p2.

Three jobs. Since OPT must assign at least two jobs on one machine, OPT ≥ p2 + p3.
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By the assumption that the last job determines the makespan, if Slow-LPT schedules

J3 on M1, then SONL = p2 + p3 ≤ OPT. Otherwise, by the same assumption and the

definition of the algorithm SONL = q(p1 + p3) ≤ C(q)(p2 + p3) ≤ OPT.

Four jobs. If Slow-LPT runs J3 on Mq, J4 will be scheduled on M1, since p2+p4 ≤ p1+p3 ≤
q(p1 + p3). Thus, J4 will not determine the makespan.

If Slow-LPT runs J3 on M1, SONL = min{q(p1 + p4), p2 + p3 + p4}. If OPT schedules

J1 and some other job on one machine, OPT ≥ p1 + p4. In this case, SONL
OPT

≤ q(p1+p4)
p1+p4

= q ≤
C(q). Otherwise, OPT ≥ p2 + p3 + p4 ≥ SONL.

Five jobs. We split the proof in three cases, according to the way J3 and J4 are scheduled

by Slow-LPT.

Case 1: Slow-LPT assigns J3 to Mq.

In this case, J4 is assigned to M1. After scheduling J4 (and before scheduling J5), the

total size of jobs on M1 is at most the total size on Mq, since p1 + p3 ≥ p2 + p4. Thus,

SONL ≤ 1
2
(p1 + p2 + p3 + p4) + p5 = 1

2
(P + p5) ≤ 1

2
(1 + 1

q
+ p5). Having five jobs in the

sequence, we know that OPT has three jobs on one of the machines. One job must be

of size at most 1
3
, since OPT = 1. This gives p5 ≤ 1

3
and thus SONL ≤ 1

2
(1 + 1

q
+ 1

3
) =

2
3

+ 1
2q

= C1(q).

Case 2: Slow-LPT assigns J3 and J4 to M1.

By Lemma 1, SONL = min{q(p1 + p5), p2 + p3 + p4 + p5}. As mentioned earlier, OPT

runs at most three jobs on each machine, so it runs J1 with at least one other job. Thus,

OPT ≥ p1 + p5, and SONL ≤ q(p1 + p5) ≤ q ·OPT ≤ C(q).

Case 3: Slow-LPT assigns J3 to M1 and J4 to Mq.

In this case, SONL = min{q(p1 + p4 + p5), p2 + p3 + p5}.
If OPT runs J1 with two more jobs, OPT ≥ p1 + p4 + p5 ≥ 1

q
SONL ≥ 1

C(q)
SONL.

We split the case where OPT runs J1 with exactly one other job in three subcases,

based on which job is combined with J1.

Case 3.1: OPT runs J4 or J5 with J1.

The machine not running J1 is loaded by at least p2 + p3 + p5 ≥ SONL.

Case 3.2: OPT runs J3 with J1.

In this case, p2 + p4 + p5 ≤ 1. Since p5 ≤ p4, this implies p2 + 2p5 ≤ 1. Thus, SONL ≤
p2 + p3 + p5 ≤ 2p2 + p5 = 2(p2 + 2p5) − 3p5 ≤ 2 − 3p5. Moreover, by Lemma 2,

SONL ≤ 1 + q
q+1

p5. The two upper bounds on SONL are equal when p5 = q+1
4q+3

and

hence SONL ≤ 1 + q
4q+3

. Solving 1 + q
4q+3

≤ C2(q), we get 4q2 − 2q − 3 ≤ 0 and thus

q ≤ 1
4
(1+

√
13) ≈ 1.15, which holds throughout the first two intervals. In the third and

fourth intervals, 1 + q
4q+3

≤ C3(q), as 9q2 − 5q − 6 ≥ 0 for q ≥ 1
18

(5 +
√

241) ≈ 1.140.
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Case 3.3: OPT runs J2 with J1.

Let p1 + p2 = α and p3 + p4 + p5 = β. Then, by the way OPT schedules the jobs,

either α ≤ 1 and β ≤ 1
q
, or β ≤ 1 and α ≤ 1

q
. Since J3 was assigned to the fast

machine by Slow-LPT, we know that q(p1 + p3) > C(q)(p2 + p3) ≥ C2(q)(p2 + p3).

This can also be expressed as q(α − p2 + p3) > C2(q)(p2 + p3), which is equivalent to

p2 < qα
q+C2(q)

+ q−C2(q)
q+C2(q)

p3. Thus,

SONL <
qα

q + C2(q)
+

q − C2(q) + q + C2(q)

q + C2(q)
p3 + p5

=
qα

C2(q) + q
+

2q

C2(q) + q
p3 + p5

=
qα

C2(q) + q
+

2q

C2(q) + q
(β − p4 − p5) + p5

=
(α + 2β)q

C2(q) + q
− 2q

C2(q) + q
p4 +

C2(q)− q

C2(q) + q
p5

≤ 1 + 2q

C2(q) + q
− 2q

C2(q) + q
p4 +

C2(q)− q

C2(q) + q
p5, since α + 2β ≤ 1

q
+ 2

≤ 2q + 1

C2(q) + q
+

C2(q)− 3q

C2(q) + q
p5, since p4 ≥ p5

We show that this is at most C2(q). If p5 ≤ (C2(q)−1) q+1
q

, SONL ≤ C2(q) by Corollary 1.

If p5 > (C2(q) − 1) q+1
q

, the term C2(q) − 3q in the upper bound on SONL is negative

and we get

SONL <
2q + 1

C2(q) + q
+

C2(q)− 3q

C2(q) + q
(C2(q)− 1)

q + 1

q
= C2(q) .

The equality is obtained by substituting 1 + 1
2

(
4q2 + 4q − 1 +

√
(4q2 + 4q − 1)2 − 4q2

)

for C2(q).

Six jobs. Since we are only considering sequences where p` > 1
4
, OPT must schedule exactly

three jobs on each machine. Thus, OPT ≥ p1 + p5 + p6 and, since among J1, J2, and J3, at

least two run on one machine, OPT ≥ p2 + p3 + p6.

We split the proof in four cases according to how jobs J3, J4, and J5 are scheduled by

Slow-LPT.

Case 1: Slow-LPT runs J3 on Mq.

By the definition of the algorithm, q(p1+p3) ≤ C(q)(p2+p3). Furthermore, J4 and J5 are

assigned to M1, since q(p1+p3) ≥ p2+p4. Thus, by Lemma 1, SONL ≤ q(p1+p3+p6) ≤
C(q)(p2 + p3) + qp6 ≤ C(q)(p2 + p3 + p6) ≤ C(q) ·OPT.
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Case 2: Slow-LPT runs J3 and J4 on M1.

Since SONL assigns J2, J3, and J4 to M1, SONL ≤ q(p1+p5+p6) ≤ q OPT ≤ C(q) OPT.

Case 3: Slow-LPT runs J3 on M1 and J4 and J5 on Mq.

In this case, SONL ≤ p2 + p3 + p6 ≤ OPT.

Case 4: Slow-LPT runs J3 and J5 on M1 and J4 on Mq.

In this case, SONL ≤ min{q(p1 + p4 + p6), p2 + p3 + p5 + p6}.
We split the remaining part of the analysis in three cases based on how OPT combines

J1, J5, and J6.

Case 4.1: OPT does not run J1 with both J5 and J6.

In this case, OPT ≥ p1 + p4 + p6, so SONL ≤ q ·OPT ≤ C(q) ·OPT.

Case 4.2: OPT runs J1, J5, and J6 on Mq.

From the structure of OPT, q(p1 + p5 + p6) ≤ q and p2 + p3 + p4 ≤ 1, so p4 ≤ 1
3
. Thus,

SONL ≤ q(p1 + p4 + p6) = q(p1 + p5 + p6) + q(p4 − p5) ≤ 1 + q(1
3
− p5) < 1 + q

12
, since

we consider only sequences with p` > 1
4
.

For q ≥ 12

11
≈ 1.09, 1 +

q

12
≤ q ≤ C(q), and

for q ≤
√

10− 2 ≈ 1.16, 1 +
q

12
≤ 2

3
+

1

2q
= C1(q).

Case 4.3: OPT runs J1, J5, and J6 on M1.

In this case, SONL ≤ min{q(1+p4−p5),
1
q
−p4 +p5 +p6} and p4 ≤ 1

3q
. Let α = p4−p5.

Then, p6 ≤ p5 ≤ −α + p4 ≤ −α + 1
3q

. We get SONL ≤ min{q(1 + α), 1
q
− 2α + 1

3q
} =

min{q(1 + α), 4
3q
− 2α}. The two terms are equal for α = α1 = 4−3q2

q(3q+6)
. For q ≤

√
4/3,

α1 is positive, and SONL ≤ q(1 + α1) = 6q+4
3q+6

= C3(q) ≤ C(q). For q ≥
√

4/3,

SONL ≤ 4
3q
− 2α ≤ q ≤ C(q).

4.2 Intervals 9 and 10, 13 and 14

In intervals 9–14, only sequences of five jobs and less can be slightly problematic, unlike

the intervals 1–4, where sequences of six jobs had to be considered.

Both algorithms for intervals 9–14 have a special rule for the second job only. In this

section, we consider the algorithm Balanced-LPT, which tries to assign the second job to

Mq.

Algorithm Balanced-LPT

Assign J1 to M1.

If qp2 > C(q)(p1 + p2), assign J2 to M1, and otherwise to Mq.

Assign the remaining jobs by the LPT rule.
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Intervals 9 and 10. Recall that C9(q) = 1 + 1
2q+2

and C10(q) = 3q+2
2q+3

, and note that, in

intervals 9 and 10, C(q) = max{C9(q), C10(q)}.
By Lemma 3, for any sequence such that SONL > C(q), OPT runs at most one job

on Mq, since C(q) ≥ C9(q) = 1 + 1
2(q+1)

. Similarly, OPT runs at most 4 jobs on M1, since
1

2(q+1)
≥ q

5(q+1)
for q ≤ 2.5. This means that we need only consider sequences of at most

five jobs. If an optimal off-line algorithm does not run any jobs on Mq, Balanced-LPT will

not break the ratio, so we will only consider sequences where OPT schedules exactly one

job on Mq and at most four on M1.

In intervals 9 and 10, Balanced-LPT always assigns J2 to Mq, since C(q)(p1 + p2) ≥
C9(q)(p1 + p2) ≥ 2C9(q)p2 ≥ qp2 for q ≤ 1+

√
13

2
≈ 2.30. This shows that sequences of at

most two jobs cannot break the ratio.

By Lemma 1, if there are at least three jobs, SONL ≤ P − p2. If OPT does not run J1

on Mq, we get OPT ≥ P − p2. This leaves only the case where OPT runs J1 on Mq and all

other jobs on M1 to consider.

Three jobs. Since we consider sequences where OPT runs J1 on Mq and all other jobs on

M1, OPT = max{qp1, p2 + p3}. By Lemma 1, SONL ≤ p1 + p3 ≤ 2p1 ≤ qp1 ≤ OPT, since

Balanced-LPT runs J2 on Mq.

Four jobs. Since OPT runs J1 on Mq and J2, J3, and J4 on M1, p1 ≤ 1
q

and p2 +p3 +p4 ≤ 1.

Combining the latter inequality with p2 ≥ p3 ≥ p4 gives p3 +p4 ≤ 2
3
. Thus, using Lemma 1,

we have SONL ≤ p1 + p3 + p4 ≤ 1
q

+ 2
3

= 2q+3
3q

≤ 2q+3
2q+2

= C9(q) for q ≥ 2.

Five jobs. If Balanced-LPT assigns at least one of the jobs J3 and J4 to the slow machine,

SONL ≤ p1 + p3 + p5 = P − p2 − p4 ≤ 1 + 1
q
− 2p5. Now, by Corollary 1, SONL > C9(q)

implies SONL < 1 + 1
q
− 2(C9(q) − 1) q+1

q
= 1 + 1

q
− 2

2q+2
q+1

q
= 1, which contradicts the

assumption that the optimal makespan is 1.

Otherwise, SONL ≤ q(p2 + p5). Since OPT runs J2, J3, J4, and J5 on the fast machine,

p3 + p4 + p5 ≤ 1 − p2. Thus, p5 ≤ 1
3
(1 − p2), and SONL ≤ q(p2 + p5) ≤ q

3
(1 + 2p2). Fur-

thermore, SONL ≤ P − p2 ≤ 1 + 1
q
− p2. Combining these two upper bounds on SONL, we

obtain the inequality (3
q
+ 2)SONL ≤ (1 + 2p2) + (2 + 2

q
− 2p2) = 3 + 2

q
, which is equivalent

to SONL ≤ 3q+2
2q+3

= C10(q).

Note that since the analysis is valid for all of interval 9, this means that Balanced-LPT

has optimal competitive ratio for 2 ≤ q ≤ qLPT ≈ 2.04, as well as LPT.
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Intervals 13 and 14. Recall that C13(q) = 3
4
+ 1

q
and C14(q) = 1+

q2+2q−2−
√

q4+8q+4

2q+4
, and

note that, in intervals 13 and 14, C(q) = max{C13(q), C14(q)}.
By Lemma 3, for any sequence such that SONL > C(q), OPT runs at most one job on

Mq and at most 4 jobs on M1, since

C13(q) > 1 +
1

2q + 2
, for q <

1

2
(1 +

√
17) ≈ 2.56,

C13(q) > 1 +
q

5q + 5
, for q <

1

6
(5 +

√
105) ≈ 2.54,

C14(q) > 1 +
1

2q + 2
, for q ≥ 2.491, and

C14(q) > 1 +
q

5q + 5
, for q ≥ 2.49.

Two jobs. If Balanced-LPT assigns J2 to M1, qp2 > C(q)(p1+p2) > p1+p2 by the definition

of the algorithm, so OPT = p1 + p2 = SONL. Otherwise, SONL = qp2 ≤ C(q)(p1 + p2) ≤
C(q)OPT.

Before turning to sequences with exactly three jobs, we make some general observations

on sequences of more than two jobs.

Let Ji denote the first job assigned to Mq by Balanced-LPT. By the definition of the

algorithm, i > 1. If J2 runs on M1, then J3 runs on Mq, since qp3 < 3p3 ≤ p1 + p2 + p3.

Thus, Ji = J2 or Ji = J3.

Let P1 be the total size of jobs that OPT assigns to M1. By Lemma 1, SONL ≤
P1 + 1

q
− pi, if the sequence has at least i + 1 jobs. If SONL > C(q) ≥ C13(q) = 3

4
+ 1

q
, this

gives

pi < P1 − 3

4
≤ 1

4
P1, (1)

since P1 ≤ 1.

Now, let Jk be the largest job that OPT runs on M1. Since OPT runs at most 4 jobs on

M1, pk ≥ 1
4
P1 > pi, and hence Ji arrives later than Jk, i.e., i > k. Thus, if Balanced-LPT

runs J2 on Mq, then OPT puts J1 on M1. But then the largest job on Mq in OPT’s schedule

is no larger than p2, so OPT ≥ P−p2, and, by Lemma 1, SONL ≤ P−p2 ≤ OPT. Therefore,

in the remaining part of the analysis, we will only consider the case where Balanced-LPT

runs J1 and J2 on M1 and J3 on Mq.

Three jobs. By Lemma 1, SONL = qp3. If OPT runs all jobs on M1, OPT = p1 + p2 + p3 ≥
3p3 > qp3. Otherwise OPT ≥ qp3.
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Four jobs. Since we consider the case where J2 is assigned to M1, qp2 > C(q)(p1 + p2), by

the definition of Balanced-LPT. Thus, SONL ≤ p1 + p2 + p4 ≤ q
C(q)

p2 + p4.

If OPT runs both J1 and J2 on M1, OPT ≥ p1 + p2 + p4 ≥ SONL.

Otherwise, OPT runs J1 or J2 on Mq, meaning that p2 ≤ 1
q

< 1
C(q)

. Assuming SONL >

C(q), inequality (1) yields p4 ≤ p3 < 1
4
. Substituting these upper bounds on p2 and

p4 in the upper bound on SONL, we get SONL < 1
C(q)

+ 1
4
. Hence, for C(q) = C13(q),

SONL > C(q) implies q > 1
5
(5+

√
65) ≈ 2.61 and for C(q) = C14(q), we get q ≤ 2.45. Both

are contradictions.

Five jobs. We first consider the case where Balanced-LPT assigns J4 to the slow machine.

In this case, Lemma 1 gives that SONL ≤ q+1
q
− p3 − p4 ≤ q+1

q
− 2p5. Using Corollary 1,

we get

SONL <
q + 1

q
− 2(C(q)− 1)

q + 1

q
=

q + 1

q
(3− 2C(q)).

For C(q) = C13(q), this is smaller than C(q) as long as 3q2 − 6q − 8 ≥ 0, which is true

when q ≤ 1
3
(3 +

√
33) ≈ 2.92. For C(q) = C14(q), the upper bound is smaller than C(q)

whenever q is at least the largest root of 9q4 − 9q3 − 28q2 − 5q + 6. This root is smaller

than 2.37.

Thus, the case left to consider is that Balanced-LPT puts J1, J2, and J4 on the fast

machine and J3 on the slow machine. We assume that SONL > C(q) and show that this

leads to a contradiction.

First, SONL > C(q) implies the following three inequalities, where inequality (4) holds

by Corollary 1.

q(p3 + p5) > C(q) (2)

p1 + p2 + p4 + p5 > C(q) (3)

p5 > (C(q)− 1)
q + 1

q
(4)

Furthermore, since OPT runs four jobs on M1,

p2 + p3 + p4 + p5 ≤ 1 (5)

Since Balanced-LPT runs J2 on M1, by the definition of the algorithm,

p1 + p2 <
q

C(q)
p2 (6)

- Finally, J4 is at least as large as J5:

p4 ≥ p5 (7)
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We now find a linear combination of inequalities (2)–(7) eliminating all variables p1,

. . . , p5; adding up 1
C(q)

times (2), (3), ( q
C(q)

− 2) times (4) (note that C(q) < q
2

in the

current intervals), − q
C(q)

times (5), −1 times (6), and ( q
C(q)

− 1) times (7), we arrive at the

inequality

0 > −(q + 2)C2(q) + (q2 + 4q + 2)C(q)− (2q2 + q).

This is true for C(q) < 1+
q2+2q−2−

√
q4+8q+4

2q+4
= C14(q) and for C(q) > 1+

q2+2q−2+
√

q4+8q+4

2q+4

which is greater than 2 for q ≥ 2. Both possibilities are contradictions, the latter because

C(q) ≤ 1
4
(1 +

√
17) ≈ 1.28.

4.3 Intervals 11 and 12

When assigning the second job, the following algorithm tries to do the opposite of LPT. If

qp2 < p1+p2, LPT puts J2 on Mq, so Opposite-LPT puts J2 on M1, unless p1+p2 > C(q)qp2.

Similarly, if qp2 ≥ p1 + p2, Opposite-LPT puts J2 on Mq. Note that it is not necessary to

check that qp2 ≤ C(q)(p1 + p2), as argued below.

Algorithm Opposite-LPT

Assign J1 to M1.

If qp2 < p1 + p2 ≤ C(q) qp2 , assign J2 to M1, and otherwise to Mq.

Assign the remaining jobs by the LPT rule.

Recall that C11(q) = 1
6q

(q2 + 3 +
√

q4 − 6q2 + 24q + 9) and C12(q) = q
2
, and note that

in intervals 11 and 12, C(q) = max{C11(q), C12(q)}.
By Lemma 3, if SONL > C(q), OPT runs at most four jobs on M1, since in intervals

11 and 12, C(q) ≥ C11(q) > 1 + q
5q+5

for q > 0, and at most one job on Mq, since

C11(q) > 1+ 1
2q+2

for q ≥ 2.02. Thus, we need only consider sequences with up to five jobs,

where OPT places exactly one job on the slow machine.

Balanced-LPT

Two jobs. It is always safe to put the second job on Mq, since C(q) ≤ 1
2
q, i.e., qp2 ≤

1
2
q(p1 + p2) ≤ C(q)(p1 + p2).

Furthermore, if Opposite-LPT puts J2 on M1 then, by the definition of the algorithm,

p1 + p2 ≤ C(q) qp2 ≤ C(q) OPT.

For sequences of more than two jobs, the proof is split in two cases according to where

Opposite-LPT schedules J2.
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Case A: Opposite-LPT schedules J2 on Mq.

The analysis of this case is similar to the analysis of Intervals 9 and 10.

As in Intervals 9 and 10 we need only consider the case where the job that OPT runs

on Mq is J1, because otherwise OPT ≥ P − p2 ≥ SONL.

Three jobs. The proof is the same as for Intervals 9 and 10: Since we consider the case

where OPT runs J1 on Mq and J2 and J3 on M1, OPT = max{qp1, p2 + p3}. Since

Opposite-LPT runs J2 on Mq, by Lemma 1, SONL ≤ p1 + p3 ≤ 2p1 ≤ qp1 ≤ OPT.

Four jobs. We use the same reasoning as in intervals 9 and 10: Since p2 + p3 + p4 ≤ 1

and p2 ≥ p3 ≥ p4, we get p3 + p4 ≤ 2
3
. Thus, using Lemma 1 and p1 ≤ 1

q
, we have

SONL ≤ p1 + p3 + p4 ≤ 1
q

+ 2
3
, which is smaller than C(q) in intervals 11 and 12.

Five jobs. We split the proof in subcases according to what caused Opposite-LPT to

put J2 on Mq.

Case 1: p1 + p2 > C(q) · qp2.

In this case, p2 < 1
qC(q)−1

p1 ≤ 1
qC(q)−1

1
q
.

Since OPT schedules J1 on Mq and the remaining jobs on M1, p1 ≤ 1
q

and p3 +

p5 ≤ 1
2
(p2 + p3 + p4 + p5) ≤ 1

2
. Thus, if Opposite-LPT schedules J3 or J4 on Mq,

SONL ≤ p1 + p3 + p5 ≤ 1
q

+ 1
2

< 1. But this would contradict the assumption that

the best possible schedule has a makespan of 1. Hence, Opposite-LPT must schedule

both J3 and J4 on M1.

Thus,

SONL ≤ q(p2 + p5) ≤ q

(
p2 +

1− p2

3

)
=

2q

3
p2 +

q

3
<

2

3qC(q)− 3
+

q

3
,

which is smaller than C(q) in interval 12 and equal to C(q) in interval 11.

Case 2: p1 + p2 ≤ qp2.

In this case p2 ≥ p1

q−1
. Thus, we get

SONL ≤ P − p2

≤ 1 + p1 − p2, by p2 + p3 + p4 + p5 ≤ 1

≤ 1 + p1

(
1− 1

q − 1

)
, by p2 ≥ p1

q − 1

≤ 1 +
q − 2

q2 − q
, by p1 ≤ 1

q
and q ≥ 2

=
q2 − 2

q2 − q
,
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which is smaller than both C11(q) and C12(q) for q > 1.

Case B: Opposite-LPT schedules J2 on M1.

By the definition of the algorithm, qp2 < p1+p2 ≤ C(q) qp2. Furthermore, Opposite-LPT

places J3 on Mq, since p1 + p2 + p3 ≥ 3p3 > qp3.

Three jobs. Since, J3 determines the makespan, SONL = qp3. However, OPT ≥
min{qp3, p1 + p2 + p3} = qp3 = SONL.

Four jobs. Since Opposite-LPT puts J2 on M1, qp2 ≤ p1 + p2, which is equivalent to

p2 ≤ p1

q−1
.

We analyze three cases according to which job is run on Mq by OPT.

Case 1: OPT runs J3 or J4 on Mq.

In this case, OPT ≥ p1 + p2 + p4. By Lemma 1, SONL ≤ p1 + p2 + p4 ≤ OPT.

Case 2: OPT runs J1 on Mq.

This gives p2 + p3 + p4 ≤ 1 and p1 ≤ 1
q
. Thus,

SONL ≤ p1 + p2 + p4 ≤ p1 + p2 +
1− p2

2
= p1 +

1

2
p2 +

1

2

≤ p1 +
1

2
· p1

q − 1
+

1

2
=

2q − 1

2q − 2
p1 +

1

2
≤ 2q − 1

2q(q − 1)
+

1

2
,

which is smaller than C11(q) in interval 11 and smaller than C12(q) in interval 12.

Case 3: OPT runs J2 on Mq.

In this case, p2 ≤ 1
q

and p1 + p3 + p4 ≤ 1.

We have two upper bounds on the makespan of Opposite-LPT; SONL ≤ p1 +p2 +p4

and SONL ≤ q(p3 + p4) ≤ q(1 − p1). We use the first upper bound on SONL to

derive a lower bound on p1:

SONL ≤ p1 + p2 + p4 ≤ p1 + p2 +
1− p1

2
=

1

2
p1 + p2 +

1

2

≤ 1

2
p1 +

p1

q − 1
+

1

2
=

q + 1

2(q − 1)
p1 +

1

2

Assume for the sake of contradiction that SONL > C(q). Then, by the inequality

above, q+1
2(q−1)

p1 + 1
2

> C(q), which is equivalent to

p1 >
(2C(q)− 1)(q − 1)

q + 1
.

Thus,

SONL ≤ q(1− p1) ≤ q

(
1− (2C(q)− 1) (q − 1)

q + 1

)
,
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which can be simplified to C(q) < 2q2

2q2−q+1
. For C(q) = C11(q), this holds only for

q < 0, and for C(q) = C12(q), it holds only for q < 2.28 < q11. Thus, we arrived at

a contradiction.

Five jobs. If Opposite-LPT runs J4 on M1, then

SONL ≤ q(p3 + p5)

≤ q

2
(p2 + p3 + p4 + p5), since p3 ≤ p2 and p5 ≤ p4

≤ q

2
, since OPT schedules four jobs on M1

≤ C(q) .

If Opposite-LPT runs J4 on Mq, then q(p3 + p4) ≤ p1 + p2 + p4. Assume for the sake of

contradiction that SONL > C(q). Then, by Corollary 1, p5 > (C(q)− 1) q+1
q

, so

p1 + p2 + p4 ≤ 1 +
1

q
− (p3 + p5) <

q + 1

q
− 2(C(q)− 1)

q + 1

q
= (3− 2C(q))

q + 1

q

and

q(p3 + p4) ≥ 2qp5 > 2(C(q)− 1)(q + 1) .

Since 2(C(q) − 1) ≥ (3−C(q))
q

in Intervals 11 and 12, this contradicts q(p3 + p4) ≤
p1 + p2 + p4.

5 Matching Lower Bounds

In this section we present job sequences that prove the lower bounds matching the upper

bounds of Section 4 or, in the intervals where LPT is optimal, the bounds of LPT as given

in [7]. In all sequences, unless otherwise mentioned, jobs are scaled so that if the sequence

is completed, OPT = 1. All sequences have between three and six jobs, most of them have

exactly five jobs.

Interval 1 (1 ≤ q ≤ q1 ≈ 1.04): C1(q) = 2
3

+ 1
2q

.

The sequence consists of five jobs with sizes

p1 = p2 =
1

2q
, p3 = p4 = p5 =

1

3
.

The schedule of OPT2 is achieved by running one job on each machine. This gives

OPT2 = 1
2
. If SONL schedules both jobs on M1, SONL2 = 1

q
= 2

q
· OPT2 > C1(q) · OPT2,
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and assigning both to Mq only makes the competitive ratio worse. Thus, we need only

consider algorithms that put exactly one of the first two jobs on Mq.

For the complete sequence, OPT runs the first two jobs on Mq and the other jobs on

M1. If SONL assigns two of the last three jobs to M1, SONL ≥ 1
2q

+ 2
3
, and if SONL assigns

two of the last three jobs to Mq, SONL ≥ 1
2

+ 2
3
q ≥ 1

2q
+ 2

3
.

In the next two intervals, any algorithm putting the first job on the fast machine has

a competitive ratio of at least C(q). The sequence proving this is based on a sequence

from [7]. The definition of the sequence (as a function of p1) is

p2 =
3 + 2q − 2q2

2q2 + q
p1, p3 = p4 = p5 =

q + 1

2q + 1
p1.

For 1 ≤ q ≤ 1
2
(1 +

√
7), 0 ≤ 3+2q−2q2

2q2+q
≤ 1, so the sequence is well-defined and p2 ≤ p1.

Furthermore, since q ≤ 1
6
(1 +

√
37) ≈ 1.18, p3 ≤ p2.

Putting J1 on M1 and J2 on Mq, J2 finishes before J1, since 3+2q−2q2

2q2+q
q ≤ 1 for q ≥ 1.

Thus, OPT2 = p1. Furthermore, scheduling the first two jobs on Mq and the last three on

M1 gives a makespan of q(p1 + p2) = p3 + p4 + p5 = 3q+3
2q+1

p1. Thus, OPT = 3q+3
2q+1

p1.

Assume that SONL puts J1 on M1. Then, if it also schedules J2 on M1,

SONL2

OPT2

=
p1 + p2

p1

=
3q + 3

2q2 + q
>

3

2q
≥ 3

2

√
3

4
> 1.299 > C(q) ,

and if it schedules J2 on Mq,

SONL ≥ q(p2 + 2p3) = p1 + 2p3 =
4q + 3

2q + 1
p1 =

4q + 3

3q + 3
OPT .

In Intervals 2 and 3, 4q+3
3q+3

> C(q).

This shows that any algorithm scheduling J1 on M1 has a competitive ratio of at least

C(q) in Intervals 2 and 3. Thus, only the case where SONL schedules J1 on Mq is left to

consider in each of those two intervals.

Interval 2 (q1 ≤ q ≤ q2 ≈ 1.14): C2(q) = 1 + 1
2

(
4q2 + 4q − 1−

√
(4q2 + 4q − 1)2 − 4q2

)
.

The sequence consists of five jobs with sizes

p1 =
1

q
− 2q + 1

q + 1
p5, p2 =

2q + 1

q + 1
p5, p3 = 1− 2p5,

p4 = p5 =
q + 1

2q
(4q2 + 4q − 1−

√
(4q2 + 4q − 1)2 − 4q2).
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The first job is larger than the second job, since 1
q

> 4q+2
q+1

p5 for q < 1
4
(1 +

√
13) ≈ 1.15.

This is equivalent to p5 < q+1
4q2+2q

for q < 1
4
(1 +

√
13). Since q+1

4q2+2q
≤ 1

3
for q ≥ 1, this also

implies p3 ≥ p4. Finally, p2 ≥ p3, since p5 ≥ q+1
4q+3

for q ≤ 1
4
(1 +

√
13).

Case 1: SONL assigns J2 to Mq.

In this case, SONL2 = q(p1 + p2) = 1.

Clearly, OPT2 ≤ max{p1, qp2}. By the proof that p1 ≥ p2, p2 ≤ 1
2q

. Thus, qp2 ≤ 1
2
.

Furthermore, p3 ≤ p2 < 1
2
, so p5 ≥ 1

2
(1− p3) > 1

4
. Hence,

p1 =
1

q
− 2q + 1

q + 1
p5 <

1

q
− 2q + 1

4q + 4
≤ 2

3
, for all q ≥ 1.

This shows that SONL ≥ 3
2
OPT > C(q) OPT.

algorithms.

Case 2: SONL assigns J2 to M1 and J3 to Mq.

In this case,

SONL3 ≥ (p1 + p3)q = 1− 2q2 + q

q + 1
p5 + q − 2q2 + 2q

q + 1
p5 = q + 1− 4q2 + 3q

q + 1
p5 .

On the other hand,

OPT3 ≤ max{qp1, p2 + p3} = max

{
1− 2q2 + q

q + 1
p5, 1− 1

q + 1
p5

}
= 1− 1

q + 1
p5 .

Thus, in this case SONL3 < C(q)OPT3, if and only if q+1− 4q2+3q
q+1

p5 < C(q)(1− 1
q+1

p5).

Note that p5 = 1
q
(C(q) − 1)(q + 1). Substituting this in the inequality, we get C(q) <

1 + 1
2

(
4q2 + 4q − 1 +

√
(4q2 + 4q − 1)2 − 4q2

)
= C2(q), which is a contradiction.

Case 3: SONL assigns J2 and J3 to M1.

Consider the whole sequence. OPT runs J1 and J2 on Mq and the other jobs on M1.

If SONL runs J4 and J5 on Mq,

SONL ≥ (p1 + 2p5)q =

(
1

q
− 2q + 1

q + 1
p5 +

2q + 2

q + 1
p5

)
q = 1 +

q

q + 1
p5 = C2(q).

Otherwise,

SONL ≥ p2 + p3 + p5 =
2q + 1

q + 1
p5 + 1− q + 1

q + 1
p5 = 1 +

q

q + 1
p5 = C2(q).
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Interval 3 (q2 ≤ q ≤
√

4/3 ≈ 1.15): C3(q) = 6q+4
3q+6

.

This is the only case of a lower bound sequence that consists of six jobs. Let β = 4−3q2

3q(q+2)
.

Note that, in this interval, β > 0. The sequence is

p1 = 1− 2p5, p2 = p3 = p4 =
1

3q
, p5 = p6 =

1

3q
− β.

The first job is larger than the second job, because p1 = 1 − 2p5 > 1 − 2p2 > p2, since

p2 < 1
3
.

First note that

OPT4 ≤ max{p1 + p2, q(p3 + p4)} = max

{
1− 2

(
1

3q
− β

)
+

1

3q
,

2

3

}

= max

{
1− 1

3q
+ 2β,

2

3

}
= 1− 1

3q
+ 2β =

3q(q + 2)− (q + 2) + 2(4− 3q2)

3q(q + 2)

=
6 + 5q − 3q2

3q(q + 2)
.

If SONL puts all three jobs J2, J3, and J4 on M1,

SONL4 ≥ 1

q
=

6 + 5q − 3q2

3q + 6
OPT4 > C3(q) OPT4, for q <

1

6
(5 +

√
97) ≈ 2.47.

If SONL puts exactly one of the jobs J2, J3, and J4 on M1,

SONL4 ≥ q(p1 + p3 + p4) = q(1− 2(
1

3q
− β) +

2

3q
) = q(1 + 2β) > 1,

yielding an even worse ratio.

We finally consider the case that SONL puts exactly two of the jobs J2, J3, and J4 on

M1. If J5 and J6 are both scheduled on M1,

SONL ≥ p3 + p4 + p5 + p6 =
2

3q
+

2

3q
− 2β =

4(q + 2)− 2(4− 3q2)

3q(q + 2)
=

6q + 4

3q + 6
.

Otherwise,

SONL ≥ q(p1 + p4 + p5) = q(1− 2p5 + p4 + p5) = q(1 + p4 − p5) = q(1 + β) =
6q + 4

3q + 6
.

In the remaining intervals, q ≥ C(q), so any algorithm scheduling the first job on Mq

has a competitive ratio of at least C(q). Thus, only the case where SONL schedules J1 on

M1 needs to be analyzed.

For intervals 4–9, we use sequences given in [7] as negative examples for LPT. We show

that those sequences are in fact lower bound sequences for any semi-online algorithm. In

intervals 4 and 9, the proof holds for the entire interval, even though LPT is not optimal

in the complete interval.
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Intervals 4 and 5 (
√

4/3 ≤ q ≤ 1
4
(1 +

√
17) ≈ 1.28 and 1

4
(1 +

√
17) ≤ q ≤ √

2 ≈ 1.41) :

C4(q) = q and C5(q) = 1
2

+ 1
q
.

The sequence consists of three jobs with sizes

p1 =
1

q
, p2 = p3 =

1

2
.

The optimal makespan of 1 is achieved by running J1 on Mq and J2 and J3 on M1.

If SONL assigns both p2 and p3 to Mq, SONL ≥ q. Otherwise, SONL ≥ 1
q

+ 1
2
.

In Interval 4, 1
q

+ 1
2
≥ q, so SONL ≥ q. In Interval 5, 1

q
+ 1

2
≤ q, so SONL ≥ 1

q
+ 1

2
.

Intervals 6 and 9 (
√

2 ≤ q ≤ 1
4
(1 +

√
33) ≈ 1.69 and 2 ≤ q ≤ 1

2
(1 +

√
11) ≈ 2.16)

C6(q) = C9(q) = 1 + 1
2q+2

.

The sequence consists of four jobs with sizes

p1 =
2q2 + q − 2

2q(q + 1)
, p2 =

q + 2

2q(q + 1)
, p3 = p4 =

1

2q
.

Since q ≥ √
2, p2 ≤ p1. Moreover, it is easy to see that p3 ≤ p2 for all q ≥ 1.

OPT2 is achieved by running J1 on M1 and J2 on the slow machine. In Interval 6,

qp2 ≥ p1, so OPT2 = qp2. In Interval 9, qp2 ≤ p1, so OPT2 = p1.

If the algorithm assigns J2 to M1, we get SONL2 = p1 + p2. In Interval 6, this gives a

ratio of

SONL2

OPT2

=
p1 + p2

qp2

=
2q + 2

q + 2
= 1 +

q

q + 2
≥ 1 +

1

2q + 2
= C6(q), for q ≥ 1.

In Interval 9, it gives a ratio of

SONL2

OPT2

=
p1 + p2

p1

= 1 +
q + 2

2q2 + q − 2
≥ 1 +

1

2q + 2
= C9(q), for q > 0.

We now turn to the case where SONL assigns J2 to Mq. If SONL runs at least one of

the jobs J3 and J4 on Mq, then

SONL ≥ q(p2 + p4) =
2q + 3

2q + 2
= C6(q) = C9(q).

Otherwise, all jobs but J2 run on M1, and

SONL ≥ p1 + p3 + p4 =
2q2 + 3q

2q(q + 1)
=

2q + 3

2q + 2
= C6(q) = C9(q).

The optimal makespan is achieved by running the first two jobs on M1 and the last two

jobs on Mq.
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Interval 7 (1
4
(1 +

√
33) ≤ q ≤ 1

2
(1 +

√
7) ≈ 1.82): C7(q) = 2q+1

q+2
. The sequence consists of

four jobs with sizes

p1 =
1

q
=

q + 2

q(q + 2)
, p2 =

2 + 2q − q2

q(q + 2)
, p3 = p4 =

q2 − 1

q(q + 2)
.

Since q ≥ 1, p1 ≥ p2. Moreover, p2 ≥ p3, since 2q2 − 2q − 3 ≤ 0 holds for q ≤ 1
2
(1 +

√
7).

OPT2 is achieved by running J1 on M1 and J2 on Mq. In this interval, qp2 ≥ p1, since

q + 2 ≤ q(2 + 2q − q2) for 1 ≤ q ≤ 2, so OPT2 = qp2.

Any algorithm assigning J2 to M1 has a competitive ratio of at least C7(q), since
p1+p2

qp2
≥ 2q+1

q+2
when 2q4−4q3−5q2 +8q+8 ≥ 0, and this latter inequality is true throughout

the interval. Thus, we turn to algorithms assigning J2 to Mq.

For the complete sequence, OPT runs J1 on Mq, and all other jobs on M1. If the semi-

online algorithm runs at least one more job than J2 on Mq, it gives a load of at least

q(p2 + p3) = 2q+1
q+2

. Otherwise, the load on M1 is at least p1 + p3 + p4 = 2q2+q
q(q+2)

= 2q+1
q+2

. In

both cases, the lower bound on the competitive ratio is achieved.

Interval 8 (1
2
(1 +

√
7) ≤ q ≤ 2): C8(q) = 2

3
+ 1

q
.

The sequence consists of four jobs with sizes

p1 =
1

q
, p2 = p3 = p4 =

1

3
.

OPT runs J1 on Mq, and the other jobs on M1. If SONL runs at least two jobs on Mq,

SONL ≥ 2q
3
≥ 2

3
+ 1

q
, for q ≥ 1

2
(1+

√
7). Otherwise, SONL ≥ 1

q
+ 2

3
. In both cases the lower

bound on the competitive ratio is achieved.

Interval 10 (1
2
(1 +

√
11) < q ≤ q10 ≈ 2.20): C10(q) = 3q+2

2q+3
.

The sequence consists of five jobs:

p1 =
1

q
, p2 =

−q2 + 3q + 3

2q2 + 3q
, p3 = p4 = p5 =

q2 − 1

2q2 + 3q
=

1

3
(1− p2).

The sequence is non-increasing, since p1 ≥ p2 for all q ≥ 1 and p2 ≥ p3 for q ≤ 1
4
(3 +

√
41).

Consider the subsequence J1, J2. Since q3 − 3q2 − q + 3 ≤ 0 for 1 ≤ q ≤ 3, OPT2 =

max{p1, qp2} = qp2. If SONL puts J2 on M1, SONL2 = −q2+5q+6
2q2+3q

. This is larger than

C10(q) · qp2 for q ≤ q10.

Consider now the case, where SONL puts J2 on Mq. If J2 is the only job to be put on

Mq,

SONL ≥ p1 + 3p3 =
2q + 3 + 3q2 − 3

2q2 + 3q

3q + 2

2q + 3
= C10(q).
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If J2 is not alone on Mq,

SONL ≥ q(p2 + p3) = q
3q − q2 + 3 + q2 − 1

2q2 + 3q
= C10(q).

Since qp1 = p2 + 3p3 = 1, this proves the lower bound.

Interval 11 (q10 ≤ q ≤ q11 ≈ 2.33): C11(q) = 1
6q

(q2 + 3 +
√

q4 − 6q2 + 24q + 9).

The sequence consists of five jobs:

p1 =
1

q
, p2 =

1

4q2
(3− q2 +

√
q4 − 6q2 + 24q + 9), p3 = p4 = p5 =

1

3
(1− p2).

To show that the sequence is valid we need to show p1 ≥ p2 and p2 ≥ p3. The first is true

for all q ≥ √
7 − 1 ≈ 1.65. The second results in the inequality q3 − 2q − 8 ≤ 0 which is

true for all q ≤ q11.

Consider the subsequence J1, J2. Since qp2 ≥ 1
q

is equivalent to q2 − 3q − 1 ≤ 0, which

holds for q ≤ 1
2
(3+

√
13), OPT2 = qp2. If SONL puts J2 on M1, SONL2 = p1+p2 which gives

the ratio p1

qp2
+ 1

q
that is exactly equal to C11(q). Thus, we turn to the case where SONL puts

J2 on Mq. If at least one other job is put on Mq, SONL ≥ q(p2+
1−p2

3
) = q

3
(2p2+1) = C11(q).

Otherwise, SONL = p1 + 1− p2 = 1
q

+ 1− p2 ≥ C11(q), when q is at least q10 and at most

the largest root of 3q4 − 9q3 − 8q2 + 21q + 18 which is approximately 2.76.

Intervals 12 and 13 (q11 ≤ q ≤ 1
4
(3 +

√
41) ≈ 2.35 and 1

4
(3 +

√
41) ≤ q ≤ q13 ≈ 2.51):

C12(q) = q
2
, C13(q) = 3

4
+ 1

q
.

The sequence for both intervals consists of five jobs:

p1 =
1

q
, p2 = p3 = p4 = p5 =

1

4
.

OPT runs J1 on Mq, and all other jobs on M1.

The algorithm needs to either run at least three of the other jobs on M1, or at least two

of them on Mq. In the first case, SONL ≥ 1
q

+ 3
4
. In the second case SONL ≥ q

2
. Thus, the

competitive ratio is at least min{1
q

+ 3
4
, q

2
}. In interval 12, q

2
≤ 3

4
+ 1

q
, and the competitive

ratio is at least C12(q). In interval 13, 3
4

+ 1
q
≤ q

2
, and the competitive ratio is at least

C13(q).

Interval 14 (q13 ≤ q ≤ q14 ≈ 2.57): C14(q) = 1 +
q2+2q−2−

√
q4+8q+4

2q+4
.

The sequence consists of five jobs:

p1 =
1

q
, p2 = 1− 1

q
− q + 2

q + 1
p5, p3 =

1

q
− q

q + 1
p5,

p4 = p5 =
q + 1

2q(q + 2)

(
q2 + 2q − 2−

√
q4 + 8q + 4

)
.
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The sequence is valid, since p1 ≥ p2 ≥ p3 for q ≥ 2, p3 ≥ p4 for q ≤ q14, and p5 ≥ 0 for

q ≥ 2.

Case 1: SONL assigns J2 to Mq.

In this case,
SONL2

OPT2

≥ qp2

p1 + p2

= C14(q).

Case 2: SONL assigns J2 and J3 to M1.

Note that OPT3 ≤ max{p1 +p2, qp3} = p1 +p2, since p1 +p2 > qp3 for any q > 2. Thus,

SONL3

OPT3

=
p1 + p2 + p3

p1 + p2

≥ C14(q), for any q ≤ 2.8 .

Case 3: SONL assigns J2 to M1 and J3 to Mq.

For the whole sequence, OPT runs J1 on Mq and the remaining four jobs on M1.

If SONL runs both J4 and J5 run on M1, we get SONL ≥ p1 + p2 + 2p5 = 1 + q
q+1

p5 =

C14(q). Otherwise, SONL ≥ q(p3 + p5) = q(1
q

+ 1
q+1

p5) = C14(q).

Interval 15 (q ≥ q14): C15(q) = 1 + 1
2q+1

.

For this whole interval, LPT is optimal. However, using the negative example in [7] does

not directly yield the desired general bound. We use an adaptation of that sequence.

For q ≥ 1 +
√

3, the adapted sequence consists of the five jobs

p1 =
2q2 − 2q − 3

2q2 + q
, p2 =

1

q
, p3 = p4 = p5 =

q + 1

2q2 + q
.

Note that p1 ≥ p2 for q ≥ 1 +
√

3 and p2 ≥ p3 for q ≥ 1
4
(3 +

√
41).

For q < 1 +
√

3, the above sequence does not apply, since p1 < p2. Thus, we switch the

order of the first two jobs and use the sequence

p′1 = p2, p′2 = p1, p′3 = p′4 = p′5 = p3.

For 1 − √
3 ≤ q ≤ 1 +

√
3, p′1 ≥ p′2. Furthermore, p′2 ≥ p′3, since 2q2 − 3q − 4 ≥ 0 for

q ≥ 1
4
(3 +

√
41) ≈ 2.35 (< q14).

Case 1: SONL runs the second job on Mq.

After two jobs, OPT2 ≤ p1 + p2 = 2q2−2
2q2+q

.

For q ≥ 1 +
√

3, SONL2 ≥ qp2 = 1. In this case, the competitive ratio is at least
2q2+q
2q2−2

≥ 2q+2
2q+1

, since (2q + 1)2 ≥ 2q(2q + 2) ≥ (2q − 2
q
)(2q + 2).

For q < 1+
√

3, SONL2 ≥ qp′2 = qp1 = 2q2−2q−3
2q+1

. This violates the competitive ratio when
2q2−2q−3

2q2−2
≥ 2q+2

2q2+q
. This is true when q is at least the largest root of 4q4−6q3−12q2+q+4.
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Case 2: SONL runs the second job on M1.

OPT is achieved by running J2 on Mq and all other jobs on M1. If SONL schedules at

least two jobs on Mq, then SONL ≥ 2q(q+1)
q(2q+1)

= 2q+2
2q+1

. Otherwise, two extra jobs (apart

from J1 and J2) run on M1, which gives SONL ≥ 2q2−2
2q2+q

+ 2(q+1)
2q2+q

= 2q2+2q
2q2+q

= 2q+2
2q+1

as

needed.

6 Conclusion

We have given a complete analysis of deterministic semi-online algorithms for two related

machines and non-increasing job sizes. It is left as an open problem to analyze the behavior

of randomized algorithms for two machines. For a general setting of m machines, it should

be difficult to give a complete analysis depending on the speeds. However, it is intriguing

to close the open question: what is the best overall competitive ratio for m machines?
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