Optimal Non-Preemptive Semi-Online Scheduling on Two Related Machines

Leah Epstein Lene M. Favrholdt

Affiliations:

- Leah Epstein, School of Computer Science, The Interdisciplinary Center, Herzliya, Israel. lea@idc.ac.il
- Lene Monrad Favrholdt, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark. lenem@imada.sdu.dk

Proposed Running Head:

Non-Preemptive Semi-Online Scheduling
All correspondence should be sent to:
Leah Epstein
School of Computer Science
The Interdisciplinary Center
P.O.B 167

46150 Herzliya
Israel
Email: lea@idc.ac.il

Abstract

We consider the following non-preemptive semi-online scheduling problem. Jobs with non-increasing sizes arrive one by one to be scheduled on two uniformly related machines, with the goal of minimizing the makespan. We analyze both the optimal overall competitive ratio, and the optimal competitive ratio as a function of the speed ratio $(q \geq 1)$ between the two machines. We show that the greedy algorithm LPT has optimal competitive ratio $\frac{1}{4}(1+\sqrt{17}) \approx 1.28$ overall, but does not have optimal competitive ratio for every value of q. We determine the intervals of q where LPT is an algorithm of optimal competitive ratio, and design different algorithms of optimal competitive ratio for the intervals where it fails to be the best algorithm. As a result, we give a tight analysis of the competitive ratio for every speed ratio.

Keywords: scheduling, makespan, semi-online, competitive ratio, LPT.

1 Introduction

The Problem. In this paper we study non-preemptive semi-online scheduling on two uniformly related machines. In the model of uniformly related machines, each machine has a speed and each job has a size which is the time it takes to complete it on a machine with unit speed. The jobs arrive one by one in order of non-increasing sizes. Each job must be assigned to one of the machines without any knowledge of future jobs (except for a bound on their size that follows from the size of the current job). Since the jobs are known to have non-increasing sizes, the problem cannot be seen as on-line but semi-online. We study the non-preemptive case, where it is not allowed to split a job in more parts and run the various parts on different machines. The goal is to minimize the makespan, i.e., the latest completion time of any job.

The processing time of a job on a given machine is also called the load of the job on that machine. The load of a machine is the sum of the loads of the jobs assigned to it. Thus, the makespan is the maximum load of any machine.

Since we study the case of two machines, the important parameter is the speed ratio $q \geq 1$ between the two machines. Without loss of generality, we assume that the faster machine has speed 1 , and the other machine has speed $\frac{1}{q}$. We denote the faster machine by M_{1} and the other machine by M_{q}.

Preliminaries. The quality of a semi-online algorithm, similarly to on-line algorithms, is measured by the competitive ratio which is the worst case ratio of the cost (the makespan, in this paper) of the semi-online algorithm to the cost of an optimal off-line algorithm which knows the whole sequence in advance.

The semi-online algorithm under consideration as well as its makespan is denoted by SONL. Similarly, the optimal off-line algorithm as well as its makespan is denoted by OPT. Thus, the competitive ratio of an algorithm SONL is

$$
C=\inf \{c \mid \mathrm{SONL} \leq c \cdot \mathrm{OPT}, \text { for any input sequence }\} .
$$

For any $c \geq C$, SONL is said to be c-competitive.
The greedy algorithm LPT (Longest Processing Time first) was originally designed by Graham [6] for off-line scheduling on identical machines. It sorts the jobs by non-increasing sizes and schedules them one by one on the least loaded machine. This algorithm also works for the semi-online version where the jobs arrive in order of non-increasing sizes. The natural extension for uniformly related machines is as follows:

Algorithm LPT: Assign each arriving job J (of size p) to the machine that would finish it first. Formally, for each machine i let L_{i} be its load before the arrival of J. The job J is assigned to the fastest machine i for which $L_{i}+\frac{p}{s_{i}}$ is minimized.

Previous Work. All previous study of this problem on non-identical machines involves a study of the LPT algorithm. For two machines, Mireault, Orlin and Vohra [7] give a complete analysis of LPT as a function of the speed ratio. They show that the interval $q \geq 1$ is partitioned into nine intervals, and introduce a function which gives the competitive ratio in each interval (they consider the off-line problem, so they do not use the term competitive ratio). Some properties of LPT were already shown earlier. Graham [6] shows that the exact approximation ratio of LPT is $\frac{7}{6}$ for two identical machines. Seiden, Sgall and Woeginger [8] show that this is tight, i.e., LPT has the best possible competitive ratio for the problem. For two related machines, [5] shows that for any speed ratio, the performance ratio of LPT is at most $\frac{1}{4}(1+\sqrt{17}) \approx 1.28$.

For m identical machines, Graham [6] shows that the exact approximation ratio of LPT is $\frac{4}{3}-\frac{1}{3 m}$. For three machines, [8] gives a general lower bound of $\frac{1}{6}(1+\sqrt{37}) \approx 1.18$. For a general setting of m related machines, Friesen [4] shows that the overall approximation ratio of LPT is between 1.52 and $\frac{5}{3}$. Dobson [2] claims to improve the upper bound to $\frac{19}{12} \approx 1.58$. Unfortunately, his proof does not seem to be complete.

Our Results. In this paper we give the exact competitive ratio as a function of the speed ratio q for semi-online non-preemptive scheduling on two related machines with nonincreasing job sizes (see Figure 1). The function involves 15 distinct intervals, as defined in Theorem 1.

In some of those intervals, we give general lower bounds which match the upper bounds in [7]. In those cases, LPT is an optimal semi-online algorithm. In the other intervals, we design new algorithms and prove matching general lower bounds. We show that, in terms of overall competitive ratio, $\frac{1}{4}(1+\sqrt{17})$ is the optimal competitive ratio achieved at $q=\frac{1}{4}(1+\sqrt{17})$ by LPT.

It is interesting to examine our results in the view of the results for on-line scheduling on two related machines. Unlike our problem, for that problem, LPT is optimal for all $q \geq 1$. The overall competitive ratio is ϕ ($\phi \approx 1.618$ is the golden ratio). For $q \leq \phi$ the competitive ratio is $1+\frac{q}{q+1}$ and the competitive ratio for $q \geq \phi$ is $1+\frac{1}{q}$. There are only two distinct intervals and the worst competitive ratio is achieved at ϕ. Surprisingly, for both problems, the highest competitive ratio is equal to the value of q for which it is achieved. The upper bounds, as well as the overall lower bound are given in [1], the other lower bounds are given in [3].

Fig. 1. The competitive ratio as a function of q

2 The Function

Theorem 1. The optimal competitive ratio for semi-online scheduling on two related machines (with speed ratio $q \geq 1$) is described by the following function depicted in Figure 1.

$$
C(q)= \begin{cases}C_{1}(q), & 1 \leq q \leq q_{1} \approx 1.0401 \\ C_{2}(q), & q_{1} \leq q \leq q_{2} \approx 1.1410 \\ C_{3}(q), & q_{2} \leq q \leq \sqrt{\frac{4}{3}} \approx 1.1547 \\ C_{4}(q), & \sqrt{\frac{4}{3}} \leq q \leq \frac{1}{4}(1+\sqrt{17}) \approx 1.2808 \\ C_{5}(q), & \frac{1}{4}(1+\sqrt{17}) \leq q \leq \sqrt{2} \approx 1.4142 \\ C_{6}(q), & \sqrt{2} \leq q \leq \frac{1}{4}(1+\sqrt{33}) \approx 1.6861 \\ C_{7}(q), & \frac{1}{4}(1+\sqrt{33}) \leq q \leq \frac{1}{2}(1+\sqrt{7}) \approx 1.8229 \\ C_{8}(q), & \frac{1}{2}(1+\sqrt{7}) \leq q \leq 2 \\ C_{9}(q), & 2 \leq q \leq \frac{1}{2}(1+\sqrt{11}) \approx 2.1583\end{cases}
$$

$$
\begin{array}{ll}
C(q)= \begin{cases}C_{10}(q), & \frac{1}{2}(1+\sqrt{11}) \leq q \leq q_{10} \approx 2.1956 \\
C_{11}(q), & q_{10} \leq q \leq q_{11} \approx 2.3307 \\
C_{12}(q), & q_{11} \leq q \leq \frac{1}{4}(3+\sqrt{41}) \approx 2.3508 \\
C_{13}(q), & \frac{1}{4}(3+\sqrt{41}) \leq q \leq q_{13} \approx 2.5111 \\
C_{14}(q), & q_{13} \leq q \leq q_{14} \approx 2.5704 \\
C_{15}(q), & q \geq q_{14},\end{cases} \\
\begin{array}{ll}
C_{1}(q)=\frac{2}{3}+\frac{1}{2 q}, & C_{2}(q)=1+\frac{1}{2}\left(4 q^{2}+4 q-1-\sqrt{\left(4 q^{2}+4 q-1\right)^{2}-4 q^{2}}\right), \\
C_{3}(q)=\frac{6 q+4}{3 q+6}, & C_{4}(q)=q, \\
C_{6}(q)=1+\frac{1}{2 q+2}, & C_{7}(q)=\frac{2 q+1}{q+2}, \quad C_{5}(q)=\frac{1}{2}+\frac{1}{q}, \\
C_{9}(q)=1+\frac{1}{2 q+2}, & C_{10}(q)=\frac{3 q+2}{2 q+3}, \quad C_{11}(q)=\frac{2}{3}+\frac{1}{q}, \\
C_{12}(q)=\frac{q}{2}, & C_{13}(q)=\frac{3}{4}+\frac{1}{q},
\end{array} C_{14}(q)=1+\frac{q^{2}+3+\sqrt{q^{4}-6 q^{2}+24 q+9}}{6 q}, \\
C_{15}(q)=1+\frac{1}{2 q+1}, &
\end{array}
$$

q_{1} is the largest real root of $84 q^{4}-24 q^{3}-80 q^{2}+6 q+9$,
q_{2} is the largest real root of $27 q^{4}+48 q^{3}-54 q^{2}-48 q+8$,
q_{10} is the smallest real root of $3 q^{4}-9 q^{3}-8 q^{2}+21 q+18$,
q_{11} is the largest real root of $q^{3}-2 q-8$,
q_{13} is the largest real root of $20 q^{4}-39 q^{3}-46 q^{2}+32 q+32$,
q_{14} is the largest real root of $4 q^{4}-6 q^{3}-12 q^{2}+q+4$.
Note that the function $C(q)$ attains it maximum value of $\frac{1}{4}(1+\sqrt{17})$ at $q=\frac{1}{4}(1+\sqrt{17})$. This is the competitive ratio obtained by LPT [5]. Hence, in terms of overall competitive ratio, LPT is optimal (see also the proof of the lower bound of intervals 4 and 5 in section 5).

The proof of the upper bound is given in Section 4 and the proof of the lower bound in Section 5.

3 Properties and Assumptions

In this section we describe a few facts and assumptions used in the upper bound analysis.

We assume without loss of generality that $\mathrm{OPT}=1$. Thus, the ratio $\frac{\text { SONL }}{\mathrm{OPT}}=$ SONL. For a given input sequence, we denote the total size of jobs by P. Note that $P \leq 1+\frac{1}{q}=\frac{q+1}{q}$ always holds, since the total size of jobs scheduled by OPT is at most 1 on M_{1} and at most $\frac{1}{q}$ on M_{q}.

For the first k jobs of an input sequence, we denote the makespan of the semi-online algorithm by SONL_{k}. The jobs in a sequence are denoted $J_{1}, J_{2}, \ldots, J_{\ell}$ and their sizes are denoted $p_{1}, p_{2}, \ldots, p_{\ell}$. Thus, J_{ℓ} is the last job and $p_{1} \geq p_{2} \geq \ldots \geq p_{\ell}$.

In our lower bound proofs we consider only minimal worst-case sequences, i.e., w.l.o.g. we assume that the makespan is determined by the last (and hence the smallest) job of the sequence: $\mathrm{SONL}>\mathrm{SONL}_{\ell-1}$.

Lemma 1. For a given input sequence and a given semi-online algorithm, assume that J_{ℓ} is scheduled according to the LPT rule and that $S O N L>S O N L_{\ell-1}$. Let $P_{1}^{\ell-1}$ and $P_{q}^{\ell-1}$ be the total size of jobs assigned to M_{1} and M_{q}, respectively, just before the arrival of J_{ℓ}. Then,

$$
S O N L=\min \left\{P_{1}^{\ell-1}+p_{\ell}, q\left(P_{q}^{\ell-1}+p_{\ell}\right)\right\} .
$$

Proof. LPT schedules J_{ℓ} on a machine such that the resulting load on that machine is minimized. By the assumption that J_{ℓ} determines the makespan, the final makespan is equal to the load on the machine running J_{ℓ}.

The following lemma appears in [7]. For completeness, we prove it here as well.
Lemma 2. For a given input sequence and a given semi-online algorithm SONL, assume that the last job J_{ℓ} is scheduled according to the LPT rule and that $S O N L>S O N L_{\ell-1}$. Then

$$
S O N L \leq 1+\frac{q}{q+1} p_{\ell} .
$$

Proof. Let $P_{q}^{\ell-1}$ and $P_{1}^{\ell-1}$ denote the total size of jobs assigned to the slow and the fast machine, respectively, just before the last job is assigned. Note that $P=P_{q}^{\ell-1}+P_{1}^{\ell-1}+p_{\ell}$. By Lemma 1, the final makespan is $\min \left\{q\left(P_{q}^{\ell-1}+p_{\ell}\right), P_{1}^{\ell-1}+p_{\ell}\right\}$. 1). This is bounded by the convex combination
$\frac{1}{q+1} q\left(P_{q}^{\ell-1}+p_{\ell}\right)+\frac{q}{q+1}\left(P_{1}^{\ell-1}+p_{\ell}\right)=\frac{q}{q+1}\left(P_{q}^{\ell-1}+P_{1}^{\ell-1}+2 p_{\ell}\right)=\frac{q}{q+1}\left(P+p_{\ell}\right) \leq 1+\frac{q}{q+1} p_{\ell}$.

We will sometimes use Lemma 2 in the following form.

Corollary 1. For a given input sequence and a given semi-online algorithm SONL, assume that the last job J_{ℓ} is scheduled according to the LPT rule and that $S O N L>S O N L_{\ell-1}$.

$$
\text { If } S O N L>C \text {, then } p_{\ell}>(C-1) \frac{q+1}{q} \text {. }
$$

Lemma 3. For a given input sequence and a given semi-online algorithm, assume that J_{ℓ} is scheduled according to the LPT rule and that $S O N L>S O N L_{\ell-1}$. Let $k \in \mathbb{N}$.

$$
\begin{aligned}
& \text { If } S O N L>1+\frac{1}{(k+1)(q+1)} \text {, then OPT runs at most } k \text { jobs on } M_{q} \text {. } \\
& \text { If } S O N L>1+\frac{q}{(k+1)(q+1)} \text {, then OPT runs at most } k \text { jobs on } M_{1} \text {. }
\end{aligned}
$$

Proof. We prove the contrapositive.
If OPT schedules at least $k+1$ jobs on M_{1}, the smallest of these k jobs has size at most $\frac{1}{k+1}$. Thus, $p_{\ell} \leq \frac{1}{k+1}$, and, using Lemma 2, we get SONL $\leq 1+\frac{q}{q+1} \frac{1}{k+1}$.

Similarly, if at least $k+1$ jobs are scheduled on $M_{q}, p_{\ell} \leq \frac{1}{q(k+1)}$. Using Lemma 2, we get SONL $\leq 1+\frac{q}{q+1} \frac{1}{q(k+1)}=1+\frac{1}{(q+1)(k+1)}$.

4 New Algorithms

In this section we present algorithms of optimal competitive ratio, for intervals where LPT is not optimal. We first mention all intervals where LPT is an optimal algorithm. In [7] the exact performance ratio of LPT is given. In all intervals where the lower bound in Section 5 matches the upper bound in [7], clearly LPT has optimal competitive ratio.

The names we use for the intervals are taken from the definition of the function. Hence, we deal with intervals $1-15$. The right endpoint of interval i is called q_{i}. The intervals where LPT is optimal are as follows: The first interval is the point $q=1$. For $q=1$, it is known [6] that the competitive ratio of LPT is $\frac{7}{6}$ and that this is the best possible competitive ratio for any semi-online algorithm [8]. However, for $q=1+\varepsilon$, for small $\varepsilon>0$, this paper shows that LPT is not an optimal semi-online algorithm.

The other intervals where LPT is optimal are $1.18 \approx \frac{1}{6}(1+\sqrt{37}) \leq q \leq q_{\text {LPT }} \approx 2.04$ and $q \geq q_{14} \approx 2.57$, where q_{LPT} is the largest real root of $4 q^{3}-4 q^{2}-10 q+3$.

This leaves the following intervals to deal with. Intervals $1-4$ (not including $q=1$ in interval 1, and interval 4 only up to $\frac{1}{6}(1+\sqrt{37})$) and intervals $9-14$ (interval 9 starting only at $\left.q_{\mathrm{LPT}}\right)$. We design three new algorithms Slow-LPT, Balanced-LPT and Opposite-LPT. Slow-LPT has optimal competitive ratio in the interval $1<q<\frac{1}{6}(1+\sqrt{37})$. Balanced-LPT has optimal competitive ratio in the intervals $q_{\mathrm{LPT}}<q \leq q_{10}$ and $q_{12} \leq q<q_{14}$, and Opposite-LPT has optimal competitive ratio in the interval $q_{10} \leq q \leq q_{12}$.

As can be seen in the next section, the most difficult sequences for the algorithms are quite short sequences (up to six jobs). For longer sequences, the last job is relatively small. Thus, as shown by Lemma 2, the algorithm benefits from the non-increasing order in this case. As may be seen from the definitions of the three new algorithms, the most difficult decision is either the decision for the second job, or the first and the third jobs.

4.1 The First Four Intervals

We design an algorithm Slow-LPT which has optimal competitive ratio in the interval $1<q<\frac{1}{6}(1+\sqrt{37})$. Intuitively, the reason why LPT fails in this interval is that the slow machine is not much slower than the faster one. Since the fast machine does not dominate the slow machine so easily, it often makes sense to use the slow machine first, and keep the fast machine free for future jobs. The algorithm is actually optimal in the interval $1 \leq q \leq q_{4}$, giving an alternative algorithm with optimal competitive ratio in the interval $\frac{1}{6}(1+\sqrt{37}) \leq q \leq q_{4}$.

Algorithm Slow-LPT

Assign J_{1} to M_{q}.
Assign J_{2} to M_{1}.
If $q\left(p_{1}+p_{3}\right) \leq C(q)\left(p_{2}+p_{3}\right)$, assign J_{3} to M_{q}, and otherwise to M_{1}.
Assign the remaining jobs by the LPT rule.

To analyze the algorithm, first note that, for $i, j \in\{1,2,3,4\}, C_{i}(q) \leq C_{j}(q)$ in interval j. Thus, in the first four intervals, $C(q)=\max \left\{C_{1}(q), C_{2}(q), C_{3}(q), C_{4}(q)\right\}$.

By Lemma 2, we need only consider sequences with $p_{\ell}>\frac{1}{4}$, since in these intervals

$$
C(q) \geq C_{2}(q)>1.145 \geq 1+\frac{q}{4 q+4} .
$$

This actually means that OPT runs at most 3 jobs on each machine. Hence, we need only consider sequences of up to 6 jobs, all larger than $\frac{1}{4}$. In the following, we analyze sequences of each length $\ell=1, \ldots, 6$ separately.

One job. Clearly, $\mathrm{OPT}=p_{1}$ and $\mathrm{SONL}=q p_{1}$. Thus, $\mathrm{SONL} \leq q=C_{4}(q) \leq C(q)$.
Two jobs. The makespan of Slow-LPT is determined by the first job, since $q p_{1} \geq q p_{2} \geq p_{2}$.

Three jobs. Since OPT must assign at least two jobs on one machine, OPT $\geq p_{2}+p_{3}$.

By the assumption that the last job determines the makespan, if Slow-LPT schedules J_{3} on M_{1}, then SONL $=p_{2}+p_{3} \leq$ OPT. Otherwise, by the same assumption and the definition of the algorithm SONL $=q\left(p_{1}+p_{3}\right) \leq C(q)\left(p_{2}+p_{3}\right) \leq$ OPT.

Four jobs. If Slow-LPT runs J_{3} on M_{q}, J_{4} will be scheduled on M_{1}, since $p_{2}+p_{4} \leq p_{1}+p_{3} \leq$ $q\left(p_{1}+p_{3}\right)$. Thus, J_{4} will not determine the makespan.

If Slow-LPT runs J_{3} on $M_{1}, \mathrm{SONL}=\min \left\{q\left(p_{1}+p_{4}\right), p_{2}+p_{3}+p_{4}\right\}$. If OPT schedules J_{1} and some other job on one machine, OPT $\geq p_{1}+p_{4}$. In this case, $\frac{\text { SONL }}{\text { OPT }} \leq \frac{q\left(p_{1}+p_{4}\right)}{p_{1}+p_{4}}=q \leq$ $C(q)$. Otherwise, OPT $\geq p_{2}+p_{3}+p_{4} \geq \mathrm{SONL}$.

Five jobs. We split the proof in three cases, according to the way J_{3} and J_{4} are scheduled by Slow-LPT.

Case 1: Slow-LPT assigns J_{3} to M_{q}.
In this case, J_{4} is assigned to M_{1}. After scheduling J_{4} (and before scheduling J_{5}), the total size of jobs on M_{1} is at most the total size on M_{q}, since $p_{1}+p_{3} \geq p_{2}+p_{4}$. Thus, SONL $\leq \frac{1}{2}\left(p_{1}+p_{2}+p_{3}+p_{4}\right)+p_{5}=\frac{1}{2}\left(P+p_{5}\right) \leq \frac{1}{2}\left(1+\frac{1}{q}+p_{5}\right)$. Having five jobs in the sequence, we know that OPT has three jobs on one of the machines. One job must be of size at most $\frac{1}{3}$, since OPT $=1$. This gives $p_{5} \leq \frac{1}{3}$ and thus SONL $\leq \frac{1}{2}\left(1+\frac{1}{q}+\frac{1}{3}\right)=$ $\frac{2}{3}+\frac{1}{2 q}=C_{1}(q)$.
Case 2: Slow-LPT assigns J_{3} and J_{4} to M_{1}.
By Lemma 1, $\mathrm{SONL}=\min \left\{q\left(p_{1}+p_{5}\right), p_{2}+p_{3}+p_{4}+p_{5}\right\}$. As mentioned earlier, OPT runs at most three jobs on each machine, so it runs J_{1} with at least one other job. Thus, $\mathrm{OPT} \geq p_{1}+p_{5}$, and $\mathrm{SONL} \leq q\left(p_{1}+p_{5}\right) \leq q \cdot \mathrm{OPT} \leq C(q)$.
Case 3: Slow-LPT assigns J_{3} to M_{1} and J_{4} to M_{q}.
In this case, $\mathrm{SONL}=\min \left\{q\left(p_{1}+p_{4}+p_{5}\right), p_{2}+p_{3}+p_{5}\right\}$.
If OPT runs J_{1} with two more jobs, OPT $\geq p_{1}+p_{4}+p_{5} \geq \frac{1}{q} \mathrm{SONL} \geq \frac{1}{C(q)}$ SONL.
We split the case where OPT runs J_{1} with exactly one other job in three subcases, based on which job is combined with J_{1}.
Case 3.1: OPT runs J_{4} or J_{5} with J_{1}.
The machine not running J_{1} is loaded by at least $p_{2}+p_{3}+p_{5} \geq$ SONL.
Case 3.2: OPT runs J_{3} with J_{1}.
In this case, $p_{2}+p_{4}+p_{5} \leq 1$. Since $p_{5} \leq p_{4}$, this implies $p_{2}+2 p_{5} \leq 1$. Thus, SONL \leq $p_{2}+p_{3}+p_{5} \leq 2 p_{2}+p_{5}=2\left(p_{2}+2 p_{5}\right)-3 p_{5} \leq 2-3 p_{5}$. Moreover, by Lemma 2, SONL $\leq 1+\frac{q}{q+1} p_{5}$. The two upper bounds on SONL are equal when $p_{5}=\frac{q+1}{4 q+3}$ and hence SONL $\leq 1+\frac{q}{4 q+3}$. Solving $1+\frac{q}{4 q+3} \leq C_{2}(q)$, we get $4 q^{2}-2 q-3 \leq 0$ and thus $q \leq \frac{1}{4}(1+\sqrt{13}) \approx 1.15$, which holds throughout the first two intervals. In the third and fourth intervals, $1+\frac{q}{4 q+3} \leq C_{3}(q)$, as $9 q^{2}-5 q-6 \geq 0$ for $q \geq \frac{1}{18}(5+\sqrt{241}) \approx 1.140$.

Case 3.3: OPT runs J_{2} with J_{1}.
Let $p_{1}+p_{2}=\alpha$ and $p_{3}+p_{4}+p_{5}=\beta$. Then, by the way OPT schedules the jobs, either $\alpha \leq 1$ and $\beta \leq \frac{1}{q}$, or $\beta \leq 1$ and $\alpha \leq \frac{1}{q}$. Since J_{3} was assigned to the fast machine by Slow-LPT, we know that $q\left(p_{1}+p_{3}\right)>C(q)\left(p_{2}+p_{3}\right) \geq C_{2}(q)\left(p_{2}+p_{3}\right)$. This can also be expressed as $q\left(\alpha-p_{2}+p_{3}\right)>C_{2}(q)\left(p_{2}+p_{3}\right)$, which is equivalent to $p_{2}<\frac{q \alpha}{q+C_{2}(q)}+\frac{q-C_{2}(q)}{q+C_{2}(q)} p_{3}$. Thus,

$$
\begin{array}{rlr}
\mathrm{SONL} & <\frac{q \alpha}{q+C_{2}(q)}+\frac{q-C_{2}(q)+q+C_{2}(q)}{q+C_{2}(q)} p_{3}+p_{5} \\
& =\frac{q \alpha}{C_{2}(q)+q}+\frac{2 q}{C_{2}(q)+q} p_{3}+p_{5} \\
& =\frac{q \alpha}{C_{2}(q)+q}+\frac{2 q}{C_{2}(q)+q}\left(\beta-p_{4}-p_{5}\right)+p_{5} \\
& =\frac{(\alpha+2 \beta) q}{C_{2}(q)+q}-\frac{2 q}{C_{2}(q)+q} p_{4}+\frac{C_{2}(q)-q}{C_{2}(q)+q} p_{5} \\
& \leq \frac{1+2 q}{C_{2}(q)+q}-\frac{2 q}{C_{2}(q)+q} p_{4}+\frac{C_{2}(q)-q}{C_{2}(q)+q} p_{5}, & \text { since } \alpha+2 \beta \leq \frac{1}{q}+2 \\
& \leq \frac{2 q+1}{C_{2}(q)+q}+\frac{C_{2}(q)-3 q}{C_{2}(q)+q} p_{5}, & \text { since } p_{4} \geq p_{5}
\end{array}
$$

We show that this is at most $C_{2}(q)$. If $p_{5} \leq\left(C_{2}(q)-1\right) \frac{q+1}{q}$, SONL $\leq C_{2}(q)$ by Corollary 1. If $p_{5}>\left(C_{2}(q)-1\right) \frac{q+1}{q}$, the term $C_{2}(q)-3 q$ in the upper bound on SONL is negative and we get

$$
\mathrm{SONL}<\frac{2 q+1}{C_{2}(q)+q}+\frac{C_{2}(q)-3 q}{C_{2}(q)+q}\left(C_{2}(q)-1\right) \frac{q+1}{q}=C_{2}(q) .
$$

The equality is obtained by substituting $1+\frac{1}{2}\left(4 q^{2}+4 q-1+\sqrt{\left(4 q^{2}+4 q-1\right)^{2}-4 q^{2}}\right)$ for $C_{2}(q)$.

Six jobs. Since we are only considering sequences where $p_{\ell}>\frac{1}{4}$, OPT must schedule exactly three jobs on each machine. Thus, OPT $\geq p_{1}+p_{5}+p_{6}$ and, since among J_{1}, J_{2}, and J_{3}, at least two run on one machine, $\mathrm{OPT} \geq p_{2}+p_{3}+p_{6}$.

We split the proof in four cases according to how jobs J_{3}, J_{4}, and J_{5} are scheduled by Slow-LPT.

Case 1: Slow-LPT runs J_{3} on M_{q}.
By the definition of the algorithm, $q\left(p_{1}+p_{3}\right) \leq C(q)\left(p_{2}+p_{3}\right)$. Furthermore, J_{4} and J_{5} are assigned to M_{1}, since $q\left(p_{1}+p_{3}\right) \geq p_{2}+p_{4}$. Thus, by Lemma 1 , SONL $\leq q\left(p_{1}+p_{3}+p_{6}\right) \leq$ $C(q)\left(p_{2}+p_{3}\right)+q p_{6} \leq C(q)\left(p_{2}+p_{3}+p_{6}\right) \leq C(q) \cdot \mathrm{OPT}$.

Case 2: Slow-LPT runs J_{3} and J_{4} on M_{1}.
Since SONL assigns J_{2}, J_{3}, and J_{4} to M_{1}, SONL $\leq q\left(p_{1}+p_{5}+p_{6}\right) \leq q \mathrm{OPT} \leq C(q) \mathrm{OPT}$. Case 3: Slow-LPT runs J_{3} on M_{1} and J_{4} and J_{5} on M_{q}.

In this case, $\mathrm{SONL} \leq p_{2}+p_{3}+p_{6} \leq \mathrm{OPT}$.
Case 4: Slow-LPT runs J_{3} and J_{5} on M_{1} and J_{4} on M_{q}.
In this case, $\mathrm{SONL} \leq \min \left\{q\left(p_{1}+p_{4}+p_{6}\right), p_{2}+p_{3}+p_{5}+p_{6}\right\}$.
We split the remaining part of the analysis in three cases based on how OPT combines J_{1}, J_{5}, and J_{6}.
Case 4.1: OPT does not run J_{1} with both J_{5} and J_{6}.
In this case, $\mathrm{OPT} \geq p_{1}+p_{4}+p_{6}$, so $\mathrm{SONL} \leq q \cdot \mathrm{OPT} \leq C(q) \cdot \mathrm{OPT}$.
Case 4.2: OPT runs J_{1}, J_{5}, and J_{6} on M_{q}.
From the structure of $\mathrm{OPT}, q\left(p_{1}+p_{5}+p_{6}\right) \leq q$ and $p_{2}+p_{3}+p_{4} \leq 1$, so $p_{4} \leq \frac{1}{3}$. Thus, $\mathrm{SONL} \leq q\left(p_{1}+p_{4}+p_{6}\right)=q\left(p_{1}+p_{5}+p_{6}\right)+q\left(p_{4}-p_{5}\right) \leq 1+q\left(\frac{1}{3}-p_{5}\right)<1+\frac{q}{12}$, since we consider only sequences with $p_{\ell}>\frac{1}{4}$.

$$
\begin{aligned}
& \text { For } q \geq \frac{12}{11} \approx 1.09, \quad 1+\frac{q}{12} \leq q \leq C(q), \\
& \text { for } q \leq \sqrt{10}-2 \approx 1.16, \quad 1+\frac{q}{12} \leq \frac{2}{3}+\frac{1}{2 q}=C_{1}(q) .
\end{aligned}
$$

Case 4.3: OPT runs J_{1}, J_{5}, and J_{6} on M_{1}.
In this case, $\mathrm{SONL} \leq \min \left\{q\left(1+p_{4}-p_{5}\right), \frac{1}{q}-p_{4}+p_{5}+p_{6}\right\}$ and $p_{4} \leq \frac{1}{3 q}$. Let $\alpha=p_{4}-p_{5}$. Then, $p_{6} \leq p_{5} \leq-\alpha+p_{4} \leq-\alpha+\frac{1}{3 q}$. We get SONL $\leq \min \left\{q(1+\alpha), \frac{1}{q}-2 \alpha+\frac{1}{3 q}\right\}=$ $\min \left\{q(1+\alpha), \frac{4}{3 q}-2 \alpha\right\}$. The two terms are equal for $\alpha=\alpha_{1}=\frac{4-3 q^{2}}{q(3 q+6)}$. For $q \leq \sqrt{4 / 3}$, α_{1} is positive, and SONL $\leq q\left(1+\alpha_{1}\right)=\frac{6 q+4}{3 q+6}=C_{3}(q) \leq C(q)$. For $q \geq \sqrt{4 / 3}$, SONL $\leq \frac{4}{3 q}-2 \alpha \leq q \leq C(q)$.

4.2 Intervals 9 and 10, 13 and 14

In intervals $9-14$, only sequences of five jobs and less can be slightly problematic, unlike the intervals $1-4$, where sequences of six jobs had to be considered.

Both algorithms for intervals 9-14 have a special rule for the second job only. In this section, we consider the algorithm Balanced-LPT, which tries to assign the second job to M_{q}.

Algorithm Balanced-LPT

Assign J_{1} to M_{1}.
If $q p_{2}>C(q)\left(p_{1}+p_{2}\right)$, assign J_{2} to M_{1}, and otherwise to M_{q}.
Assign the remaining jobs by the LPT rule.

Intervals 9 and 10. Recall that $C_{9}(q)=1+\frac{1}{2 q+2}$ and $C_{10}(q)=\frac{3 q+2}{2 q+3}$, and note that, in intervals 9 and $10, C(q)=\max \left\{C_{9}(q), C_{10}(q)\right\}$.

By Lemma 3, for any sequence such that $\mathrm{SONL}>C(q)$, OPT runs at most one job on M_{q}, since $C(q) \geq C_{9}(q)=1+\frac{1}{2(q+1)}$. Similarly, OPT runs at most 4 jobs on M_{1}, since $\frac{1}{2(q+1)} \geq \frac{q}{5(q+1)}$ for $q \leq 2.5$. This means that we need only consider sequences of at most five jobs. If an optimal off-line algorithm does not run any jobs on M_{q}, Balanced-LPT will not break the ratio, so we will only consider sequences where OPT schedules exactly one job on M_{q} and at most four on M_{1}.

In intervals 9 and 10, Balanced-LPT always assigns J_{2} to M_{q}, since $C(q)\left(p_{1}+p_{2}\right) \geq$ $C_{9}(q)\left(p_{1}+p_{2}\right) \geq 2 C_{9}(q) p_{2} \geq q p_{2}$ for $q \leq \frac{1+\sqrt{13}}{2} \approx 2.30$. This shows that sequences of at most two jobs cannot break the ratio.

By Lemma 1, if there are at least three jobs, SONL $\leq P-p_{2}$. If OPT does not run J_{1} on M_{q}, we get OPT $\geq P-p_{2}$. This leaves only the case where OPT runs J_{1} on M_{q} and all other jobs on M_{1} to consider.

Three jobs. Since we consider sequences where OPT runs J_{1} on M_{q} and all other jobs on $M_{1}, \mathrm{OPT}=\max \left\{q p_{1}, p_{2}+p_{3}\right\}$. By Lemma $1, \mathrm{SONL} \leq p_{1}+p_{3} \leq 2 p_{1} \leq q p_{1} \leq \mathrm{OPT}$, since Balanced-LPT runs J_{2} on M_{q}.

Four jobs. Since OPT runs J_{1} on M_{q} and J_{2}, J_{3}, and J_{4} on $M_{1}, p_{1} \leq \frac{1}{q}$ and $p_{2}+p_{3}+p_{4} \leq 1$. Combining the latter inequality with $p_{2} \geq p_{3} \geq p_{4}$ gives $p_{3}+p_{4} \leq \frac{2}{3}$. Thus, using Lemma 1 , we have SONL $\leq p_{1}+p_{3}+p_{4} \leq \frac{1}{q}+\frac{2}{3}=\frac{2 q+3}{3 q} \leq \frac{2 q+3}{2 q+2}=C_{9}(q)$ for $q \geq 2$.

Five jobs. If Balanced-LPT assigns at least one of the jobs J_{3} and J_{4} to the slow machine, SONL $\leq p_{1}+p_{3}+p_{5}=P-p_{2}-p_{4} \leq 1+\frac{1}{q}-2 p_{5}$. Now, by Corollary 1 , SONL $>C_{9}(q)$ implies SONL $<1+\frac{1}{q}-2\left(C_{9}(q)-1\right) \frac{q+1}{q}=1+\frac{1}{q}-\frac{2}{2 q+2} \frac{q+1}{q}=1$, which contradicts the assumption that the optimal makespan is 1 .

Otherwise, SONL $\leq q\left(p_{2}+p_{5}\right)$. Since OPT runs J_{2}, J_{3}, J_{4}, and J_{5} on the fast machine, $p_{3}+p_{4}+p_{5} \leq 1-p_{2}$. Thus, $p_{5} \leq \frac{1}{3}\left(1-p_{2}\right)$, and SONL $\leq q\left(p_{2}+p_{5}\right) \leq \frac{q}{3}\left(1+2 p_{2}\right)$. Furthermore, SONL $\leq P-p_{2} \leq 1+\frac{1}{q}-p_{2}$. Combining these two upper bounds on SONL, we obtain the inequality $\left(\frac{3}{q}+2\right)$ SONL $\leq\left(1+2 p_{2}\right)+\left(2+\frac{2}{q}-2 p_{2}\right)=3+\frac{2}{q}$, which is equivalent to $\mathrm{SONL} \leq \frac{3 q+2}{2 q+3}=C_{10}(q)$.

Note that since the analysis is valid for all of interval 9, this means that Balanced-LPT has optimal competitive ratio for $2 \leq q \leq q_{\mathrm{LPT}} \approx 2.04$, as well as LPT.

Intervals 13 and 14. Recall that $C_{13}(q)=\frac{3}{4}+\frac{1}{q}$ and $C_{14}(q)=1+\frac{q^{2}+2 q-2-\sqrt{q^{4}+8 q+4}}{2 q+4}$, and note that, in intervals 13 and $14, C(q)=\max \left\{C_{13}(q), C_{14}(q)\right\}$.

By Lemma 3, for any sequence such that SONL $>C(q)$, OPT runs at most one job on M_{q} and at most 4 jobs on M_{1}, since

$$
\begin{aligned}
& C_{13}(q)>1+\frac{1}{2 q+2}, \text { for } q<\frac{1}{2}(1+\sqrt{17}) \approx 2.56, \\
& C_{13}(q)>1+\frac{q}{5 q+5}, \text { for } q<\frac{1}{6}(5+\sqrt{105}) \approx 2.54, \\
& C_{14}(q)>1+\frac{1}{2 q+2}, \text { for } q \geq 2.491, \text { and } \\
& C_{14}(q)>1+\frac{q}{5 q+5}, \text { for } q \geq 2.49 .
\end{aligned}
$$

Two jobs. If Balanced-LPT assigns J_{2} to $M_{1}, q p_{2}>C(q)\left(p_{1}+p_{2}\right)>p_{1}+p_{2}$ by the definition of the algorithm, so OPT $=p_{1}+p_{2}=$ SONL. Otherwise, $\mathrm{SONL}=q p_{2} \leq C(q)\left(p_{1}+p_{2}\right) \leq$ $C(q) \mathrm{OPT}$.

Before turning to sequences with exactly three jobs, we make some general observations on sequences of more than two jobs.

Let J_{i} denote the first job assigned to M_{q} by Balanced-LPT. By the definition of the algorithm, $i>1$. If J_{2} runs on M_{1}, then J_{3} runs on M_{q}, since $q p_{3}<3 p_{3} \leq p_{1}+p_{2}+p_{3}$. Thus, $J_{i}=J_{2}$ or $J_{i}=J_{3}$.

Let P_{1} be the total size of jobs that OPT assigns to M_{1}. By Lemma 1, SONL \leq $P_{1}+\frac{1}{q}-p_{i}$, if the sequence has at least $i+1$ jobs. If SONL $>C(q) \geq C_{13}(q)=\frac{3}{4}+\frac{1}{q}$, this gives

$$
\begin{equation*}
p_{i}<P_{1}-\frac{3}{4} \leq \frac{1}{4} P_{1}, \tag{1}
\end{equation*}
$$

since $P_{1} \leq 1$.
Now, let J_{k} be the largest job that OPT runs on M_{1}. Since OPT runs at most 4 jobs on $M_{1}, p_{k} \geq \frac{1}{4} P_{1}>p_{i}$, and hence J_{i} arrives later than J_{k}, i.e., $i>k$. Thus, if Balanced-LPT runs J_{2} on M_{q}, then OPT puts J_{1} on M_{1}. But then the largest job on M_{q} in OPT's schedule is no larger than p_{2}, so OPT $\geq P-p_{2}$, and, by Lemma 1 , SONL $\leq P-p_{2} \leq$ OPT. Therefore, in the remaining part of the analysis, we will only consider the case where Balanced-LPT runs J_{1} and J_{2} on M_{1} and J_{3} on M_{q}.

Three jobs. By Lemma $1, \mathrm{SONL}=q p_{3}$. If OPT runs all jobs on $M_{1}, \mathrm{OPT}=p_{1}+p_{2}+p_{3} \geq$ $3 p_{3}>q p_{3}$. Otherwise $\mathrm{OPT} \geq q p_{3}$.

Four jobs. Since we consider the case where J_{2} is assigned to $M_{1}, q p_{2}>C(q)\left(p_{1}+p_{2}\right)$, by the definition of Balanced-LPT. Thus, SONL $\leq p_{1}+p_{2}+p_{4} \leq \frac{q}{C(q)} p_{2}+p_{4}$.

If OPT runs both J_{1} and J_{2} on M_{1}, OPT $\geq p_{1}+p_{2}+p_{4} \geq$ SONL.
Otherwise, OPT runs J_{1} or J_{2} on M_{q}, meaning that $p_{2} \leq \frac{1}{q}<\frac{1}{C(q)}$. Assuming SONL $>$ $C(q)$, inequality (1) yields $p_{4} \leq p_{3}<\frac{1}{4}$. Substituting these upper bounds on p_{2} and p_{4} in the upper bound on SONL, we get SONL $<\frac{1}{C(q)}+\frac{1}{4}$. Hence, for $C(q)=C_{13}(q)$, SONL $>C(q)$ implies $q>\frac{1}{5}(5+\sqrt{65}) \approx 2.61$ and for $C(q)=C_{14}(q)$, we get $q \leq 2.45$. Both are contradictions.

Five jobs. We first consider the case where Balanced-LPT assigns J_{4} to the slow machine. In this case, Lemma 1 gives that SONL $\leq \frac{q+1}{q}-p_{3}-p_{4} \leq \frac{q+1}{q}-2 p_{5}$. Using Corollary 1 , we get

$$
\mathrm{SONL}<\frac{q+1}{q}-2(C(q)-1) \frac{q+1}{q}=\frac{q+1}{q}(3-2 C(q)) .
$$

For $C(q)=C_{13}(q)$, this is smaller than $C(q)$ as long as $3 q^{2}-6 q-8 \geq 0$, which is true when $q \leq \frac{1}{3}(3+\sqrt{33}) \approx 2.92$. For $C(q)=C_{14}(q)$, the upper bound is smaller than $C(q)$ whenever q is at least the largest root of $9 q^{4}-9 q^{3}-28 q^{2}-5 q+6$. This root is smaller than 2.37.

Thus, the case left to consider is that Balanced-LPT puts J_{1}, J_{2}, and J_{4} on the fast machine and J_{3} on the slow machine. We assume that SONL $>C(q)$ and show that this leads to a contradiction.

First, $\mathrm{SONL}>C(q)$ implies the following three inequalities, where inequality (4) holds by Corollary 1 .

$$
\begin{gather*}
q\left(p_{3}+p_{5}\right)>C(q) \tag{2}\\
p_{1}+p_{2}+p_{4}+p_{5}>C(q) \tag{3}\\
p_{5}>(C(q)-1) \frac{q+1}{q} \tag{4}
\end{gather*}
$$

Furthermore, since OPT runs four jobs on M_{1},

$$
\begin{equation*}
p_{2}+p_{3}+p_{4}+p_{5} \leq 1 \tag{5}
\end{equation*}
$$

Since Balanced-LPT runs J_{2} on M_{1}, by the definition of the algorithm,

$$
\begin{equation*}
p_{1}+p_{2}<\frac{q}{C(q)} p_{2} \tag{6}
\end{equation*}
$$

- Finally, J_{4} is at least as large as J_{5} :

$$
\begin{equation*}
p_{4} \geq p_{5} \tag{7}
\end{equation*}
$$

We now find a linear combination of inequalities (2)-(7) eliminating all variables p_{1}, \ldots, p_{5}; adding up $\frac{1}{C(q)}$ times (2), (3), $\left(\frac{q}{C(q)}-2\right)$ times (4) (note that $C(q)<\frac{q}{2}$ in the current intervals), $-\frac{q}{C(q)}$ times (5), -1 times (6), and $\left(\frac{q}{C(q)}-1\right)$ times (7), we arrive at the inequality

$$
0>-(q+2) C^{2}(q)+\left(q^{2}+4 q+2\right) C(q)-\left(2 q^{2}+q\right)
$$

This is true for $C(q)<1+\frac{q^{2}+2 q-2-\sqrt{q^{4}+8 q+4}}{2 q+4}=C_{14}(q)$ and for $C(q)>1+\frac{q^{2}+2 q-2+\sqrt{q^{4}+8 q+4}}{2 q+4}$ which is greater than 2 for $q \geq 2$. Both possibilities are contradictions, the latter because $C(q) \leq \frac{1}{4}(1+\sqrt{17}) \approx 1.28$.

4.3 Intervals 11 and 12

When assigning the second job, the following algorithm tries to do the opposite of LPT. If $q p_{2}<p_{1}+p_{2}$, LPT puts J_{2} on M_{q}, so Opposite-LPT puts J_{2} on M_{1}, unless $p_{1}+p_{2}>C(q) q p_{2}$. Similarly, if $q p_{2} \geq p_{1}+p_{2}$, Opposite-LPT puts J_{2} on M_{q}. Note that it is not necessary to check that $q p_{2} \leq C(q)\left(p_{1}+p_{2}\right)$, as argued below.

Algorithm Opposite-LPT

Assign J_{1} to M_{1}.
If $q p_{2}<p_{1}+p_{2} \leq C(q) q p_{2}$, assign J_{2} to M_{1}, and otherwise to M_{q}.
Assign the remaining jobs by the LPT rule.
Recall that $C_{11}(q)=\frac{1}{6 q}\left(q^{2}+3+\sqrt{q^{4}-6 q^{2}+24 q+9}\right)$ and $C_{12}(q)=\frac{q}{2}$, and note that in intervals 11 and $12, C(q)=\max \left\{C_{11}(q), C_{12}(q)\right\}$.

By Lemma 3, if SONL $>C(q)$, OPT runs at most four jobs on M_{1}, since in intervals 11 and $12, C(q) \geq C_{11}(q)>1+\frac{q}{5 q+5}$ for $q>0$, and at most one job on M_{q}, since $C_{11}(q)>1+\frac{1}{2 q+2}$ for $q \geq 2.02$. Thus, we need only consider sequences with up to five jobs, where OPT places exactly one job on the slow machine.

Balanced-LPT
Two jobs. It is always safe to put the second job on M_{q}, since $C(q) \leq \frac{1}{2} q$, i.e., $q p_{2} \leq$ $\frac{1}{2} q\left(p_{1}+p_{2}\right) \leq C(q)\left(p_{1}+p_{2}\right)$.

Furthermore, if Opposite-LPT puts J_{2} on M_{1} then, by the definition of the algorithm, $p_{1}+p_{2} \leq C(q) q p_{2} \leq C(q)$ OPT.

For sequences of more than two jobs, the proof is split in two cases according to where Opposite-LPT schedules J_{2}.

Case A: Opposite-LPT schedules J_{2} on M_{q}.
The analysis of this case is similar to the analysis of Intervals 9 and 10 .
As in Intervals 9 and 10 we need only consider the case where the job that OPT runs on M_{q} is J_{1}, because otherwise OPT $\geq P-p_{2} \geq$ SONL.

Three jobs. The proof is the same as for Intervals 9 and 10: Since we consider the case where OPT runs J_{1} on M_{q} and J_{2} and J_{3} on M_{1}, OPT $=\max \left\{q p_{1}, p_{2}+p_{3}\right\}$. Since Opposite-LPT runs J_{2} on M_{q}, by Lemma 1, SONL $\leq p_{1}+p_{3} \leq 2 p_{1} \leq q p_{1} \leq \mathrm{OPT}$.

Four jobs. We use the same reasoning as in intervals 9 and 10: Since $p_{2}+p_{3}+p_{4} \leq 1$ and $p_{2} \geq p_{3} \geq p_{4}$, we get $p_{3}+p_{4} \leq \frac{2}{3}$. Thus, using Lemma 1 and $p_{1} \leq \frac{1}{q}$, we have SONL $\leq p_{1}+p_{3}+p_{4} \leq \frac{1}{q}+\frac{2}{3}$, which is smaller than $C(q)$ in intervals 11 and 12 .
Five jobs. We split the proof in subcases according to what caused Opposite-LPT to put J_{2} on M_{q}.
Case 1: $p_{1}+p_{2}>C(q) \cdot q p_{2}$.
In this case, $p_{2}<\frac{1}{q C(q)-1} p_{1} \leq \frac{1}{q C(q)-1} \frac{1}{q}$.
Since OPT schedules J_{1} on M_{q} and the remaining jobs on $M_{1}, p_{1} \leq \frac{1}{q}$ and $p_{3}+$ $p_{5} \leq \frac{1}{2}\left(p_{2}+p_{3}+p_{4}+p_{5}\right) \leq \frac{1}{2}$. Thus, if Opposite-LPT schedules J_{3} or J_{4} on M_{q}, SONL $\leq p_{1}+p_{3}+p_{5} \leq \frac{1}{q}+\frac{1}{2}<1$. But this would contradict the assumption that the best possible schedule has a makespan of 1 . Hence, Opposite-LPT must schedule both J_{3} and J_{4} on M_{1}.
Thus,

$$
\mathrm{SONL} \leq q\left(p_{2}+p_{5}\right) \leq q\left(p_{2}+\frac{1-p_{2}}{3}\right)=\frac{2 q}{3} p_{2}+\frac{q}{3}<\frac{2}{3 q C(q)-3}+\frac{q}{3}
$$

which is smaller than $C(q)$ in interval 12 and equal to $C(q)$ in interval 11 .
Case 2: $p_{1}+p_{2} \leq q p_{2}$.
In this case $p_{2} \geq \frac{p_{1}}{q-1}$. Thus, we get

$$
\begin{array}{rlrl}
\text { SONL } & \leq P-p_{2} & & \\
& \leq 1+p_{1}-p_{2}, & & \text { by } p_{2}+p_{3}+p_{4}+p_{5} \leq 1 \\
& \leq 1+p_{1}\left(1-\frac{1}{q-1}\right), & \text { by } p_{2} \geq \frac{p_{1}}{q-1} \\
& \leq 1+\frac{q-2}{q^{2}-q}, & & \text { by } p_{1} \leq \frac{1}{q} \text { and } q \geq 2 \\
& =\frac{q^{2}-2}{q^{2}-q}, & &
\end{array}
$$

which is smaller than both $C_{11}(q)$ and $C_{12}(q)$ for $q>1$.
Case B: Opposite-LPT schedules J_{2} on M_{1}.
By the definition of the algorithm, $q p_{2}<p_{1}+p_{2} \leq C(q) q p_{2}$. Furthermore, Opposite-LPT places J_{3} on M_{q}, since $p_{1}+p_{2}+p_{3} \geq 3 p_{3}>q p_{3}$.

Three jobs. Since, J_{3} determines the makespan, $\mathrm{SONL}=q p_{3}$. However, OPT \geq $\min \left\{q p_{3}, p_{1}+p_{2}+p_{3}\right\}=q p_{3}=$ SONL.

Four jobs. Since Opposite-LPT puts J_{2} on $M_{1}, q p_{2} \leq p_{1}+p_{2}$, which is equivalent to $p_{2} \leq \frac{p_{1}}{q-1}$.
We analyze three cases according to which job is run on M_{q} by OPT.
Case 1: OPT runs J_{3} or J_{4} on M_{q}.
In this case, OPT $\geq p_{1}+p_{2}+p_{4}$. By Lemma $1, \mathrm{SONL} \leq p_{1}+p_{2}+p_{4} \leq \mathrm{OPT}$.
Case 2: OPT runs J_{1} on M_{q}.
This gives $p_{2}+p_{3}+p_{4} \leq 1$ and $p_{1} \leq \frac{1}{q}$. Thus,

$$
\begin{aligned}
\mathrm{SONL} & \leq p_{1}+p_{2}+p_{4} \leq p_{1}+p_{2}+\frac{1-p_{2}}{2}=p_{1}+\frac{1}{2} p_{2}+\frac{1}{2} \\
& \leq p_{1}+\frac{1}{2} \cdot \frac{p_{1}}{q-1}+\frac{1}{2}=\frac{2 q-1}{2 q-2} p_{1}+\frac{1}{2} \leq \frac{2 q-1}{2 q(q-1)}+\frac{1}{2}
\end{aligned}
$$

which is smaller than $C_{11}(q)$ in interval 11 and smaller than $C_{12}(q)$ in interval 12. Case 3: OPT runs J_{2} on M_{q}.

In this case, $p_{2} \leq \frac{1}{q}$ and $p_{1}+p_{3}+p_{4} \leq 1$.
We have two upper bounds on the makespan of Opposite-LPT; SONL $\leq p_{1}+p_{2}+p_{4}$ and SONL $\leq q\left(p_{3}+p_{4}\right) \leq q\left(1-p_{1}\right)$. We use the first upper bound on SONL to derive a lower bound on p_{1} :

$$
\begin{aligned}
\mathrm{SONL} & \leq p_{1}+p_{2}+p_{4} \leq p_{1}+p_{2}+\frac{1-p_{1}}{2}=\frac{1}{2} p_{1}+p_{2}+\frac{1}{2} \\
& \leq \frac{1}{2} p_{1}+\frac{p_{1}}{q-1}+\frac{1}{2}=\frac{q+1}{2(q-1)} p_{1}+\frac{1}{2}
\end{aligned}
$$

Assume for the sake of contradiction that SONL $>C(q)$. Then, by the inequality above, $\frac{q+1}{2(q-1)} p_{1}+\frac{1}{2}>C(q)$, which is equivalent to

$$
p_{1}>\frac{(2 C(q)-1)(q-1)}{q+1}
$$

Thus,

$$
\mathrm{SONL} \leq q\left(1-p_{1}\right) \leq q\left(1-\frac{(2 C(q)-1)(q-1)}{q+1}\right)
$$

which can be simplified to $C(q)<\frac{2 q^{2}}{2 q^{2}-q+1}$. For $C(q)=C_{11}(q)$, this holds only for $q<0$, and for $C(q)=C_{12}(q)$, it holds only for $q<2.28<q_{11}$. Thus, we arrived at a contradiction.

Five jobs. If Opposite-LPT runs J_{4} on M_{1}, then

$$
\begin{aligned}
\text { SONL } & \leq q\left(p_{3}+p_{5}\right) \\
& \leq \frac{q}{2}\left(p_{2}+p_{3}+p_{4}+p_{5}\right), \text { since } p_{3} \leq p_{2} \text { and } p_{5} \leq p_{4} \\
& \leq \frac{q}{2}, \text { since OPT schedules four jobs on } M_{1} \\
& \leq C(q) .
\end{aligned}
$$

If Opposite-LPT runs J_{4} on M_{q}, then $q\left(p_{3}+p_{4}\right) \leq p_{1}+p_{2}+p_{4}$. Assume for the sake of contradiction that SONL $>C(q)$. Then, by Corollary $1, p_{5}>(C(q)-1) \frac{q+1}{q}$, so

$$
p_{1}+p_{2}+p_{4} \leq 1+\frac{1}{q}-\left(p_{3}+p_{5}\right)<\frac{q+1}{q}-2(C(q)-1) \frac{q+1}{q}=(3-2 C(q)) \frac{q+1}{q}
$$

and

$$
q\left(p_{3}+p_{4}\right) \geq 2 q p_{5}>2(C(q)-1)(q+1) .
$$

Since $2(C(q)-1) \geq \frac{(3-C(q))}{q}$ in Intervals 11 and 12 , this contradicts $q\left(p_{3}+p_{4}\right) \leq$ $p_{1}+p_{2}+p_{4}$.

5 Matching Lower Bounds

In this section we present job sequences that prove the lower bounds matching the upper bounds of Section 4 or, in the intervals where LPT is optimal, the bounds of LPT as given in [7]. In all sequences, unless otherwise mentioned, jobs are scaled so that if the sequence is completed, $\mathrm{OPT}=1$. All sequences have between three and six jobs, most of them have exactly five jobs.

Interval $1\left(1 \leq q \leq q_{1} \approx 1.04\right): C_{1}(q)=\frac{2}{3}+\frac{1}{2 q}$.
The sequence consists of five jobs with sizes

$$
p_{1}=p_{2}=\frac{1}{2 q}, \quad p_{3}=p_{4}=p_{5}=\frac{1}{3} .
$$

The schedule of OPT_{2} is achieved by running one job on each machine. This gives $\mathrm{OPT}_{2}=\frac{1}{2}$. If SONL schedules both jobs on $M_{1}, \mathrm{SONL}_{2}=\frac{1}{q}=\frac{2}{q} \cdot \mathrm{OPT}_{2}>C_{1}(q) \cdot \mathrm{OPT}_{2}$,
and assigning both to M_{q} only makes the competitive ratio worse. Thus, we need only consider algorithms that put exactly one of the first two jobs on M_{q}.

For the complete sequence, OPT runs the first two jobs on M_{q} and the other jobs on M_{1}. If SONL assigns two of the last three jobs to M_{1}, SONL $\geq \frac{1}{2 q}+\frac{2}{3}$, and if SONL assigns two of the last three jobs to M_{q}, SONL $\geq \frac{1}{2}+\frac{2}{3} q \geq \frac{1}{2 q}+\frac{2}{3}$.

In the next two intervals, any algorithm putting the first job on the fast machine has a competitive ratio of at least $C(q)$. The sequence proving this is based on a sequence from [7]. The definition of the sequence (as a function of p_{1}) is

$$
p_{2}=\frac{3+2 q-2 q^{2}}{2 q^{2}+q} p_{1}, p_{3}=p_{4}=p_{5}=\frac{q+1}{2 q+1} p_{1} .
$$

For $1 \leq q \leq \frac{1}{2}(1+\sqrt{7}), 0 \leq \frac{3+2 q-2 q^{2}}{2 q^{2}+q} \leq 1$, so the sequence is well-defined and $p_{2} \leq p_{1}$. Furthermore, since $q \leq \frac{1}{6}(1+\sqrt{37}) \approx 1.18, p_{3} \leq p_{2}$.

Putting J_{1} on M_{1} and J_{2} on M_{q}, J_{2} finishes before J_{1}, since $\frac{3+2 q-2 q^{2}}{2 q^{2}+q} q \leq 1$ for $q \geq 1$. Thus, $\mathrm{OPT}_{2}=p_{1}$. Furthermore, scheduling the first two jobs on M_{q} and the last three on M_{1} gives a makespan of $q\left(p_{1}+p_{2}\right)=p_{3}+p_{4}+p_{5}=\frac{3 q+3}{2 q+1} p_{1}$. Thus, OPT $=\frac{3 q+3}{2 q+1} p_{1}$.

Assume that SONL puts J_{1} on M_{1}. Then, if it also schedules J_{2} on M_{1},

$$
\frac{\mathrm{SONL}_{2}}{\mathrm{OPT}_{2}}=\frac{p_{1}+p_{2}}{p_{1}}=\frac{3 q+3}{2 q^{2}+q}>\frac{3}{2 q} \geq \frac{3}{2} \sqrt{\frac{3}{4}}>1.299>C(q)
$$

and if it schedules J_{2} on M_{q},

$$
\mathrm{SONL} \geq q\left(p_{2}+2 p_{3}\right)=p_{1}+2 p_{3}=\frac{4 q+3}{2 q+1} p_{1}=\frac{4 q+3}{3 q+3} \mathrm{OPT}
$$

In Intervals 2 and 3, $\frac{4 q+3}{3 q+3}>C(q)$.
This shows that any algorithm scheduling J_{1} on M_{1} has a competitive ratio of at least $C(q)$ in Intervals 2 and 3. Thus, only the case where SONL schedules J_{1} on M_{q} is left to consider in each of those two intervals.

Interval 2 $\left(q_{1} \leq q \leq q_{2} \approx 1.14\right): C_{2}(q)=1+\frac{1}{2}\left(4 q^{2}+4 q-1-\sqrt{\left(4 q^{2}+4 q-1\right)^{2}-4 q^{2}}\right)$. The sequence consists of five jobs with sizes

$$
\begin{aligned}
& p_{1}=\frac{1}{q}-\frac{2 q+1}{q+1} p_{5}, \quad p_{2}=\frac{2 q+1}{q+1} p_{5}, \quad p_{3}=1-2 p_{5}, \\
& p_{4}=p_{5}=\frac{q+1}{2 q}\left(4 q^{2}+4 q-1-\sqrt{\left(4 q^{2}+4 q-1\right)^{2}-4 q^{2}}\right) .
\end{aligned}
$$

The first job is larger than the second job, since $\frac{1}{q}>\frac{4 q+2}{q+1} p_{5}$ for $q<\frac{1}{4}(1+\sqrt{13}) \approx 1.15$. This is equivalent to $p_{5}<\frac{q+1}{4 q^{2}+2 q}$ for $q<\frac{1}{4}(1+\sqrt{13})$. Since $\frac{q+1}{4 q^{2}+2 q} \leq \frac{1}{3}$ for $q \geq 1$, this also implies $p_{3} \geq p_{4}$. Finally, $p_{2} \geq p_{3}$, since $p_{5} \geq \frac{q+1}{4 q+3}$ for $q \leq \frac{1}{4}(1+\sqrt{13})$.

Case 1: SONL assigns J_{2} to M_{q}.
In this case, $\mathrm{SONL}_{2}=q\left(p_{1}+p_{2}\right)=1$.
Clearly, $\operatorname{OPT}_{2} \leq \max \left\{p_{1}, q p_{2}\right\}$. By the proof that $p_{1} \geq p_{2}, p_{2} \leq \frac{1}{2 q}$. Thus, $q p_{2} \leq \frac{1}{2}$.
Furthermore, $p_{3} \leq p_{2}<\frac{1}{2}$, so $p_{5} \geq \frac{1}{2}\left(1-p_{3}\right)>\frac{1}{4}$. Hence,

$$
p_{1}=\frac{1}{q}-\frac{2 q+1}{q+1} p_{5}<\frac{1}{q}-\frac{2 q+1}{4 q+4} \leq \frac{2}{3}, \text { for all } q \geq 1
$$

This shows that SONL $\geq \frac{3}{2}$ OPT $>C(q)$ OPT.
algorithms.
Case 2: SONL assigns J_{2} to M_{1} and J_{3} to M_{q}.
In this case,

$$
\mathrm{SONL}_{3} \geq\left(p_{1}+p_{3}\right) q=1-\frac{2 q^{2}+q}{q+1} p_{5}+q-\frac{2 q^{2}+2 q}{q+1} p_{5}=q+1-\frac{4 q^{2}+3 q}{q+1} p_{5}
$$

On the other hand,

$$
\mathrm{OPT}_{3} \leq \max \left\{q p_{1}, p_{2}+p_{3}\right\}=\max \left\{1-\frac{2 q^{2}+q}{q+1} p_{5}, 1-\frac{1}{q+1} p_{5}\right\}=1-\frac{1}{q+1} p_{5}
$$

Thus, in this case $\mathrm{SONL}_{3}<C(q) \mathrm{OPT}_{3}$, if and only if $q+1-\frac{4 q^{2}+3 q}{q+1} p_{5}<C(q)\left(1-\frac{1}{q+1} p_{5}\right)$.
Note that $p_{5}=\frac{1}{q}(C(q)-1)(q+1)$. Substituting this in the inequality, we get $C(q)<$ $1+\frac{1}{2}\left(4 q^{2}+4 q-1+\sqrt{\left(4 q^{2}+4 q-1\right)^{2}-4 q^{2}}\right)=C_{2}(q)$, which is a contradiction.

Case 3: SONL assigns J_{2} and J_{3} to M_{1}.
Consider the whole sequence. OPT runs J_{1} and J_{2} on M_{q} and the other jobs on M_{1}. If SONL runs J_{4} and J_{5} on M_{q},

$$
\mathrm{SONL} \geq\left(p_{1}+2 p_{5}\right) q=\left(\frac{1}{q}-\frac{2 q+1}{q+1} p_{5}+\frac{2 q+2}{q+1} p_{5}\right) q=1+\frac{q}{q+1} p_{5}=C_{2}(q) .
$$

Otherwise,

$$
\mathrm{SONL} \geq p_{2}+p_{3}+p_{5}=\frac{2 q+1}{q+1} p_{5}+1-\frac{q+1}{q+1} p_{5}=1+\frac{q}{q+1} p_{5}=C_{2}(q)
$$

Interval $3\left(q_{2} \leq q \leq \sqrt{4 / 3} \approx 1.15\right): C_{3}(q)=\frac{6 q+4}{3 q+6}$.
This is the only case of a lower bound sequence that consists of six jobs. Let $\beta=\frac{4-3 q^{2}}{3 q(q+2)}$. Note that, in this interval, $\beta>0$. The sequence is

$$
p_{1}=1-2 p_{5}, \quad p_{2}=p_{3}=p_{4}=\frac{1}{3 q}, \quad p_{5}=p_{6}=\frac{1}{3 q}-\beta .
$$

The first job is larger than the second job, because $p_{1}=1-2 p_{5}>1-2 p_{2}>p_{2}$, since $p_{2}<\frac{1}{3}$.

First note that

$$
\begin{aligned}
\mathrm{OPT}_{4} & \leq \max \left\{p_{1}+p_{2}, q\left(p_{3}+p_{4}\right)\right\}=\max \left\{1-2\left(\frac{1}{3 q}-\beta\right)+\frac{1}{3 q}, \frac{2}{3}\right\} \\
& =\max \left\{1-\frac{1}{3 q}+2 \beta, \frac{2}{3}\right\}=1-\frac{1}{3 q}+2 \beta=\frac{3 q(q+2)-(q+2)+2\left(4-3 q^{2}\right)}{3 q(q+2)} \\
& =\frac{6+5 q-3 q^{2}}{3 q(q+2)} .
\end{aligned}
$$

If SONL puts all three jobs J_{2}, J_{3}, and J_{4} on M_{1},

$$
\mathrm{SONL}_{4} \geq \frac{1}{q}=\frac{6+5 q-3 q^{2}}{3 q+6} \mathrm{OPT}_{4}>C_{3}(q) \mathrm{OPT}_{4}, \text { for } q<\frac{1}{6}(5+\sqrt{97}) \approx 2.47
$$

If SONL puts exactly one of the jobs J_{2}, J_{3}, and J_{4} on M_{1},

$$
\mathrm{SONL}_{4} \geq q\left(p_{1}+p_{3}+p_{4}\right)=q\left(1-2\left(\frac{1}{3 q}-\beta\right)+\frac{2}{3 q}\right)=q(1+2 \beta)>1
$$

yielding an even worse ratio.
We finally consider the case that SONL puts exactly two of the jobs J_{2}, J_{3}, and J_{4} on M_{1}. If J_{5} and J_{6} are both scheduled on M_{1},

$$
\mathrm{SONL} \geq p_{3}+p_{4}+p_{5}+p_{6}=\frac{2}{3 q}+\frac{2}{3 q}-2 \beta=\frac{4(q+2)-2\left(4-3 q^{2}\right)}{3 q(q+2)}=\frac{6 q+4}{3 q+6} .
$$

Otherwise,
$\mathrm{SONL} \geq q\left(p_{1}+p_{4}+p_{5}\right)=q\left(1-2 p_{5}+p_{4}+p_{5}\right)=q\left(1+p_{4}-p_{5}\right)=q(1+\beta)=\frac{6 q+4}{3 q+6}$.

In the remaining intervals, $q \geq C(q)$, so any algorithm scheduling the first job on M_{q} has a competitive ratio of at least $C(q)$. Thus, only the case where SONL schedules J_{1} on M_{1} needs to be analyzed.

For intervals 4-9, we use sequences given in [7] as negative examples for LPT. We show that those sequences are in fact lower bound sequences for any semi-online algorithm. In intervals 4 and 9 , the proof holds for the entire interval, even though LPT is not optimal in the complete interval.

Intervals 4 and $5\left(\sqrt{4 / 3} \leq q \leq \frac{1}{4}(1+\sqrt{17}) \approx 1.28\right.$ and $\left.\frac{1}{4}(1+\sqrt{17}) \leq q \leq \sqrt{2} \approx 1.41\right)$: $C_{4}(q)=q$ and $C_{5}(q)=\frac{1}{2}+\frac{1}{q}$.

The sequence consists of three jobs with sizes

$$
p_{1}=\frac{1}{q}, \quad p_{2}=p_{3}=\frac{1}{2} .
$$

The optimal makespan of 1 is achieved by running J_{1} on M_{q} and J_{2} and J_{3} on M_{1}.
If SONL assigns both p_{2} and p_{3} to M_{q}, SONL $\geq q$. Otherwise, $\mathrm{SONL} \geq \frac{1}{q}+\frac{1}{2}$.
In Interval $4, \frac{1}{q}+\frac{1}{2} \geq q$, so SONL $\geq q$. In Interval $5, \frac{1}{q}+\frac{1}{2} \leq q$, so SONL $\geq \frac{1}{q}+\frac{1}{2}$.
Intervals 6 and $9\left(\sqrt{2} \leq q \leq \frac{1}{4}(1+\sqrt{33}) \approx 1.69\right.$ and $\left.2 \leq q \leq \frac{1}{2}(1+\sqrt{11}) \approx 2.16\right)$ $C_{6}(q)=C_{9}(q)=1+\frac{1}{2 q+2}$.
The sequence consists of four jobs with sizes

$$
p_{1}=\frac{2 q^{2}+q-2}{2 q(q+1)}, \quad p_{2}=\frac{q+2}{2 q(q+1)}, \quad p_{3}=p_{4}=\frac{1}{2 q} .
$$

Since $q \geq \sqrt{2}, p_{2} \leq p_{1}$. Moreover, it is easy to see that $p_{3} \leq p_{2}$ for all $q \geq 1$.
OPT_{2} is achieved by running J_{1} on M_{1} and J_{2} on the slow machine. In Interval 6, $q p_{2} \geq p_{1}$, so $\mathrm{OPT}_{2}=q p_{2}$. In Interval $9, q p_{2} \leq p_{1}$, so $\mathrm{OPT}_{2}=p_{1}$.

If the algorithm assigns J_{2} to M_{1}, we get $\mathrm{SONL}_{2}=p_{1}+p_{2}$. In Interval 6 , this gives a ratio of

$$
\frac{\mathrm{SONL}_{2}}{\mathrm{OPT}_{2}}=\frac{p_{1}+p_{2}}{q p_{2}}=\frac{2 q+2}{q+2}=1+\frac{q}{q+2} \geq 1+\frac{1}{2 q+2}=C_{6}(q), \text { for } q \geq 1
$$

In Interval 9, it gives a ratio of

$$
\frac{\mathrm{SONL}_{2}}{\mathrm{OPT}_{2}}=\frac{p_{1}+p_{2}}{p_{1}}=1+\frac{q+2}{2 q^{2}+q-2} \geq 1+\frac{1}{2 q+2}=C_{9}(q), \text { for } q>0
$$

We now turn to the case where SONL assigns J_{2} to M_{q}. If SONL runs at least one of the jobs J_{3} and J_{4} on M_{q}, then

$$
\mathrm{SONL} \geq q\left(p_{2}+p_{4}\right)=\frac{2 q+3}{2 q+2}=C_{6}(q)=C_{9}(q)
$$

Otherwise, all jobs but J_{2} run on M_{1}, and

$$
\mathrm{SONL} \geq p_{1}+p_{3}+p_{4}=\frac{2 q^{2}+3 q}{2 q(q+1)}=\frac{2 q+3}{2 q+2}=C_{6}(q)=C_{9}(q) .
$$

The optimal makespan is achieved by running the first two jobs on M_{1} and the last two jobs on M_{q}.

Interval $7\left(\frac{1}{4}(1+\sqrt{33}) \leq q \leq \frac{1}{2}(1+\sqrt{7}) \approx 1.82\right): C_{7}(q)=\frac{2 q+1}{q+2}$. The sequence consists of four jobs with sizes

$$
p_{1}=\frac{1}{q}=\frac{q+2}{q(q+2)}, \quad p_{2}=\frac{2+2 q-q^{2}}{q(q+2)}, \quad p_{3}=p_{4}=\frac{q^{2}-1}{q(q+2)} .
$$

Since $q \geq 1, p_{1} \geq p_{2}$. Moreover, $p_{2} \geq p_{3}$, since $2 q^{2}-2 q-3 \leq 0$ holds for $q \leq \frac{1}{2}(1+\sqrt{7})$.
OPT_{2} is achieved by running J_{1} on M_{1} and J_{2} on M_{q}. In this interval, $q p_{2} \geq p_{1}$, since $q+2 \leq q\left(2+2 q-q^{2}\right)$ for $1 \leq q \leq 2$, so $\mathrm{OPT}_{2}=q p_{2}$.

Any algorithm assigning J_{2} to M_{1} has a competitive ratio of at least $C_{7}(q)$, since $\frac{p_{1}+p_{2}}{q p_{2}} \geq \frac{2 q+1}{q+2}$ when $2 q^{4}-4 q^{3}-5 q^{2}+8 q+8 \geq 0$, and this latter inequality is true throughout the interval. Thus, we turn to algorithms assigning J_{2} to M_{q}.

For the complete sequence, OPT runs J_{1} on M_{q}, and all other jobs on M_{1}. If the semionline algorithm runs at least one more job than J_{2} on M_{q}, it gives a load of at least $q\left(p_{2}+p_{3}\right)=\frac{2 q+1}{q+2}$. Otherwise, the load on M_{1} is at least $p_{1}+p_{3}+p_{4}=\frac{2 q^{2}+q}{q(q+2)}=\frac{2 q+1}{q+2}$. In both cases, the lower bound on the competitive ratio is achieved.

Interval $8\left(\frac{1}{2}(1+\sqrt{7}) \leq q \leq 2\right): C_{8}(q)=\frac{2}{3}+\frac{1}{q}$.
The sequence consists of four jobs with sizes

$$
p_{1}=\frac{1}{q}, \quad p_{2}=p_{3}=p_{4}=\frac{1}{3} .
$$

OPT runs J_{1} on M_{q}, and the other jobs on M_{1}. If SONL runs at least two jobs on M_{q}, SONL $\geq \frac{2 q}{3} \geq \frac{2}{3}+\frac{1}{q}$, for $q \geq \frac{1}{2}(1+\sqrt{7})$. Otherwise, SONL $\geq \frac{1}{q}+\frac{2}{3}$. In both cases the lower bound on the competitive ratio is achieved.

Interval $10\left(\frac{1}{2}(1+\sqrt{11})<q \leq q_{10} \approx 2.20\right): C_{10}(q)=\frac{3 q+2}{2 q+3}$.
The sequence consists of five jobs:

$$
p_{1}=\frac{1}{q}, \quad p_{2}=\frac{-q^{2}+3 q+3}{2 q^{2}+3 q}, \quad p_{3}=p_{4}=p_{5}=\frac{q^{2}-1}{2 q^{2}+3 q}=\frac{1}{3}\left(1-p_{2}\right) .
$$

The sequence is non-increasing, since $p_{1} \geq p_{2}$ for all $q \geq 1$ and $p_{2} \geq p_{3}$ for $q \leq \frac{1}{4}(3+\sqrt{41})$.
Consider the subsequence J_{1}, J_{2}. Since $q^{3}-3 q^{2}-q+3 \leq 0$ for $1 \leq q \leq 3, \mathrm{OPT}_{2}=$ $\max \left\{p_{1}, q p_{2}\right\}=q p_{2}$. If SONL puts J_{2} on $M_{1}, \mathrm{SONL}_{2}=\frac{-q^{2}+5 q+6}{2 q^{2}+3 q}$. This is larger than $C_{10}(q) \cdot q p_{2}$ for $q \leq q_{10}$.

Consider now the case, where SONL puts J_{2} on M_{q}. If J_{2} is the only job to be put on M_{q},

$$
\mathrm{SONL} \geq p_{1}+3 p_{3}=\frac{2 q+3+3 q^{2}-3}{2 q^{2}+3 q} \frac{3 q+2}{2 q+3}=C_{10}(q)
$$

If J_{2} is not alone on M_{q},

$$
\mathrm{SONL} \geq q\left(p_{2}+p_{3}\right)=q \frac{3 q-q^{2}+3+q^{2}-1}{2 q^{2}+3 q}=C_{10}(q) .
$$

Since $q p_{1}=p_{2}+3 p_{3}=1$, this proves the lower bound.
Interval $11\left(q_{10} \leq q \leq q_{11} \approx 2.33\right)$: $C_{11}(q)=\frac{1}{6 q}\left(q^{2}+3+\sqrt{q^{4}-6 q^{2}+24 q+9}\right)$.
The sequence consists of five jobs:

$$
p_{1}=\frac{1}{q}, \quad p_{2}=\frac{1}{4 q^{2}}\left(3-q^{2}+\sqrt{q^{4}-6 q^{2}+24 q+9}\right), \quad p_{3}=p_{4}=p_{5}=\frac{1}{3}\left(1-p_{2}\right) .
$$

To show that the sequence is valid we need to show $p_{1} \geq p_{2}$ and $p_{2} \geq p_{3}$. The first is true for all $q \geq \sqrt{7}-1 \approx 1.65$. The second results in the inequality $q^{3}-2 q-8 \leq 0$ which is true for all $q \leq q_{11}$.

Consider the subsequence J_{1}, J_{2}. Since $q p_{2} \geq \frac{1}{q}$ is equivalent to $q^{2}-3 q-1 \leq 0$, which holds for $q \leq \frac{1}{2}(3+\sqrt{13}), \mathrm{OPT}_{2}=q p_{2}$. If SONL puts J_{2} on $M_{1}, \mathrm{SONL}_{2}=p_{1}+p_{2}$ which gives the ratio $\frac{p_{1}}{q p_{2}}+\frac{1}{q}$ that is exactly equal to $C_{11}(q)$. Thus, we turn to the case where SONL puts J_{2} on M_{q}. If at least one other job is put on $M_{q}, \mathrm{SONL} \geq q\left(p_{2}+\frac{1-p_{2}}{3}\right)=\frac{q}{3}\left(2 p_{2}+1\right)=C_{11}(q)$. Otherwise, $\mathrm{SONL}=p_{1}+1-p_{2}=\frac{1}{q}+1-p_{2} \geq C_{11}(q)$, when q is at least q_{10} and at most the largest root of $3 q^{4}-9 q^{3}-8 q^{2}+21 q+18$ which is approximately 2.76 .

Intervals 12 and $13\left(q_{11} \leq q \leq \frac{1}{4}(3+\sqrt{41}) \approx 2.35\right.$ and $\left.\frac{1}{4}(3+\sqrt{41}) \leq q \leq q_{13} \approx 2.51\right)$: $C_{12}(q)=\frac{q}{2}, C_{13}(q)=\frac{3}{4}+\frac{1}{q}$.
The sequence for both intervals consists of five jobs:

$$
p_{1}=\frac{1}{q}, \quad p_{2}=p_{3}=p_{4}=p_{5}=\frac{1}{4} .
$$

OPT runs J_{1} on M_{q}, and all other jobs on M_{1}.
The algorithm needs to either run at least three of the other jobs on M_{1}, or at least two of them on M_{q}. In the first case, $\mathrm{SONL} \geq \frac{1}{q}+\frac{3}{4}$. In the second case SONL $\geq \frac{q}{2}$. Thus, the competitive ratio is at least $\min \left\{\frac{1}{q}+\frac{3}{4}, \frac{q}{2}\right\}$. In interval $12, \frac{q}{2} \leq \frac{3}{4}+\frac{1}{q}$, and the competitive ratio is at least $C_{12}(q)$. In interval $13, \frac{3}{4}+\frac{1}{q} \leq \frac{q}{2}$, and the competitive ratio is at least $C_{13}(q)$.

Interval $14\left(q_{13} \leq q \leq q_{14} \approx 2.57\right): C_{14}(q)=1+\frac{q^{2}+2 q-2-\sqrt{q^{4}+8 q+4}}{2 q+4}$.
The sequence consists of five jobs:

$$
\begin{aligned}
& p_{1}=\frac{1}{q}, \quad p_{2}=1-\frac{1}{q}-\frac{q+2}{q+1} p_{5}, \quad p_{3}=\frac{1}{q}-\frac{q}{q+1} p_{5} \\
& p_{4}=p_{5}=\frac{q+1}{2 q(q+2)}\left(q^{2}+2 q-2-\sqrt{q^{4}+8 q+4}\right)
\end{aligned}
$$

The sequence is valid, since $p_{1} \geq p_{2} \geq p_{3}$ for $q \geq 2, p_{3} \geq p_{4}$ for $q \leq q_{14}$, and $p_{5} \geq 0$ for $q \geq 2$.

Case 1: SONL assigns J_{2} to M_{q}.
In this case,

$$
\frac{\mathrm{SONL}_{2}}{\mathrm{OPT}_{2}} \geq \frac{q p_{2}}{p_{1}+p_{2}}=C_{14}(q) .
$$

Case 2: SONL assigns J_{2} and J_{3} to M_{1}.
Note that $\mathrm{OPT}_{3} \leq \max \left\{p_{1}+p_{2}, q p_{3}\right\}=p_{1}+p_{2}$, since $p_{1}+p_{2}>q p_{3}$ for any $q>2$. Thus,

$$
\frac{\mathrm{SONL}_{3}}{\mathrm{OPT}_{3}}=\frac{p_{1}+p_{2}+p_{3}}{p_{1}+p_{2}} \geq C_{14}(q), \text { for any } q \leq 2.8
$$

Case 3: SONL assigns J_{2} to M_{1} and J_{3} to M_{q}.
For the whole sequence, OPT runs J_{1} on M_{q} and the remaining four jobs on M_{1}.
If SONL runs both J_{4} and J_{5} run on M_{1}, we get SONL $\geq p_{1}+p_{2}+2 p_{5}=1+\frac{q}{q+1} p_{5}=$ $C_{14}(q)$. Otherwise, SONL $\geq q\left(p_{3}+p_{5}\right)=q\left(\frac{1}{q}+\frac{1}{q+1} p_{5}\right)=C_{14}(q)$.

Interval $15\left(q \geq q_{14}\right): C_{15}(q)=1+\frac{1}{2 q+1}$.
For this whole interval, LPT is optimal. However, using the negative example in [7] does not directly yield the desired general bound. We use an adaptation of that sequence.

For $q \geq 1+\sqrt{3}$, the adapted sequence consists of the five jobs

$$
p_{1}=\frac{2 q^{2}-2 q-3}{2 q^{2}+q}, \quad p_{2}=\frac{1}{q}, \quad p_{3}=p_{4}=p_{5}=\frac{q+1}{2 q^{2}+q} .
$$

Note that $p_{1} \geq p_{2}$ for $q \geq 1+\sqrt{3}$ and $p_{2} \geq p_{3}$ for $q \geq \frac{1}{4}(3+\sqrt{41})$.
For $q<1+\sqrt{3}$, the above sequence does not apply, since $p_{1}<p_{2}$. Thus, we switch the order of the first two jobs and use the sequence

$$
p_{1}^{\prime}=p_{2}, \quad p_{2}^{\prime}=p_{1}, \quad p_{3}^{\prime}=p_{4}^{\prime}=p_{5}^{\prime}=p_{3} .
$$

For $1-\sqrt{3} \leq q \leq 1+\sqrt{3}, p_{1}^{\prime} \geq p_{2}^{\prime}$. Furthermore, $p_{2}^{\prime} \geq p_{3}^{\prime}$, since $2 q^{2}-3 q-4 \geq 0$ for $q \geq \frac{1}{4}(3+\sqrt{41}) \approx 2.35\left(<q_{14}\right)$.

Case 1: SONL runs the second job on M_{q}.
After two jobs, $\mathrm{OPT}_{2} \leq p_{1}+p_{2}=\frac{2 q^{2}-2}{2 q^{2}+q}$.
For $q \geq 1+\sqrt{3}, \mathrm{SONL}_{2} \geq q p_{2}=1$. In this case, the competitive ratio is at least $\frac{2 q^{2}+q}{2 q^{2}-2} \geq \frac{2 q+2}{2 q+1}$, since $(2 q+1)^{2} \geq 2 q(2 q+2) \geq\left(2 q-\frac{2}{q}\right)(2 q+2)$.
For $q<1+\sqrt{3}$, SONL $_{2} \geq q p_{2}^{\prime}=q p_{1}=\frac{2 q^{2}-2 q-3}{2 q+1}$. This violates the competitive ratio when $\frac{2 q^{2}-2 q-3}{2 q^{2}-2} \geq \frac{2 q+2}{2 q^{2}+q}$. This is true when q is at least the largest root of $4 q^{4}-6 q^{3}-12 q^{2}+q+4$.

Case 2: SONL runs the second job on M_{1}.
OPT is achieved by running J_{2} on M_{q} and all other jobs on M_{1}. If SONL schedules at least two jobs on M_{q}, then SONL $\geq \frac{2 q(q+1)}{q(2 q+1)}=\frac{2 q+2}{2 q+1}$. Otherwise, two extra jobs (apart from J_{1} and J_{2}) run on M_{1}, which gives SONL $\geq \frac{2 q^{2}-2}{2 q^{2}+q}+\frac{2(q+1)}{2 q^{2}+q}=\frac{2 q^{2}+2 q}{2 q^{2}+q}=\frac{2 q+2}{2 q+1}$ as needed.

6 Conclusion

We have given a complete analysis of deterministic semi-online algorithms for two related machines and non-increasing job sizes. It is left as an open problem to analyze the behavior of randomized algorithms for two machines. For a general setting of m machines, it should be difficult to give a complete analysis depending on the speeds. However, it is intriguing to close the open question: what is the best overall competitive ratio for m machines?

7 Acknowledgements

- We would like to thank Jiří Sgall, Joan Boyar and Gerhard Woeginger for helpful comments.
- We would like to thank an anonymous referee for thorough comments that significantly improved the presentation of the paper.
- A preliminary version of this paper appeared in Proc. of 27th Mathematical Foundations of Computer Science (MFCS'2002), pages 245-256.
- The research of Leah Epstein was supported in part by the Israel Science Foundation, (grant no. 250/01).
- The research of Lene M. Favrholdt was supported in part by the Danish Natural Science Research Council (SNF) and in part by the Future and Emerging Technologies program of the EU under contract number IST-1999-14186 (ALCOM-FT).

References

1. Y. Cho and S. Sahni. Bounds for List Schedules on Uniform Processors. SIAM Journal on Computing, 9(1):91103, 1980.
2. G. Dobson. Scheduling Independent Tasks on Uniform Processors. SIAM Journal on Computing, 13(4):705-716, 1984.
3. L. Epstein, J. Noga, S. S. Seiden, J. Sgall, and G. J. Woeginger. Randomized Online Scheduling on Two Uniform Machines. Journal of Scheduling, 4(2):71-92, 2001.
4. D. K. Friesen. Tighter Bounds for LPT Scheduling on Uniform Processors. SIAM Journal on Computing, 16(3):554-560, 1987.
5. T. Gonzalez, O. H. Ibarra, and S. Sahni. Bounds for LPT Schedules on Uniform Processors. SIAM Journal on Computing, 6(1):155-166, 1977.
6. R. L. Graham. Bounds on Multiprocessing Timing Anomalies. SIAM J. Appl. Math, 17:416-429, 1969.
7. P. Mireault, J. B. Orlin, and R. V. Vohra. A Parametric Worst Case Analysis of the LPT Heuristic for Two Uniform Machines. Operations Research, 45:116-125, 1997.
8. S. Seiden, J. Sgall, and G. J. Woeginger. Semi-Online Scheduling with Decreasing Job Sizes. Operations Research Letters, 27(5):215-221, 2000.
