
Paging with connections:FIFO strikes again

Leah Epstein∗ Yanir Kleiman† Jiřı́ Sgall‡ Rob van Stee§

February 8, 2006

Abstract

We continue the study of the integrated document and connection caching problem. We focus on
the case where the connection cache has a size of one and show that this problem is not equivalent to
standard paging, even if there are only two locations for thepages, by giving the first lower bound that
is strictly higher thank for this problem. We then give the first upper bound below the trivial value of
2k for this problem. Our upper bound isk + 4ℓ whereℓ is the number of locations where the requested
pages in a phase come from. This algorithm groups pages by location. In each phase, it evicts all pages
from one location before moving on to the next location. In contrast, we show that theLRU algorithm is
not better than2k-competitive.

We also examine the resource augmented model and show that the plainFIFO algorithm is optimal
for the caseh = 2 and allk ≥ 2, whereh is the size of the offline document cache. We show that also
in this caseFIFO is better thanLRU, although this is not true for standard paging.

Classification: Algorithms and Data Structures.

1 Introduction

The caching problem is one of the major problems in the field ofonline algorithms. It has been studied
considering many different models and aspects of the problem. The basic problem comes from the real
world of computing. An operating system has a limited amountof high speed memory and needs to decide
which pages of data will be kept in the high speed memory and which pages will be discarded. When a
page that was recently discarded is requested again, the operating system pays a significant cost in order to
retrieve that page from the low speed memory. This decision must be made with each new request, therefore
the solution cannot be pre-computed and must be addressed with an online algorithm.

The abstract representation of the problem is as follows. The operating system hask pages of data in
its cache. There is no a priori upper bound on the total numberof pages that can be requested. An online
algorithm is an algorithm that decides after each request which pages to keep in its cache and which pages

∗Department of Mathematics, University of Haifa, 31905 Haifa, Israel.lea@math.haifa.ac.il.
†The Academic College of Tel-Aviv Yaffo, Antokolski 4 61161 Tel-Aviv, Israel.yanirk@gmail.com.
‡Mathematical Institute, AS CR,̌Zitná 25, CZ-11567 Praha 1, Czech Republic, and Dept. of Applied Mathematics, Fac-

ulty of Mathematics and Physics, Charles University, Praha. sgall@math.cas.cz. Partially supported by research project
MSM0021620838 of M̌SMT ČR.

§Department of Computer Science, University of Karlsruhe, D-76128 Karlsruhe, Germany.vanstee@ira.uka.de. Re-
search supported by Alexander von Humboldt-Stiftung.

1



to discard without knowledge of future requests. The goal isto minimize the number of page faults, i.e.
requests to pages while they are not in cache.

Connection caching is a version of this problem that deals with a small cache of network connections
that has to be maintained in order to access data from different locations. Recently, a combined model was
suggested by Albers and van Stee [1]. The model deals with both document caching and connection caching.
In this model we have two caches, one that holds documents (orpages) and one that holdsconnections.

The algorithms in [1] perform best if the size of the connection cache is equal to the size of the document
cache. However, in practice, the connection cache is usually much smaller. In this article we focus on the
case where we have a cache ofk pages and only one slot in the connection cache. We call this problem
“Paging with Connections”. In such a model the connection that is stored in the connection cache can be
referred to as the (single) current location. There are three types of requests. If the requested page is already
in cache, the request costs nothing. If the requested page isnot in cache but is from the current location, the
request is noted as apage fault(or regular fault) and the cost is one. If the requested page is not in cache
and is from a different location, the request is noted as aconnection faultand it costs 2, one for switching
the connection and another one for putting the requested page in cache.

The competitive ratio is the asymptotic worst case ratio between the cost of an online algorithm and the
cost of an optimal offline algorithm (denoted byOPT) which knows all requests in advance. Throughout the
paper we refer to the online algorithm asALG and to the optimal offline algorithm asOPT wherever they are
mentioned.

A generalization of the model is theresource augmentationmodel. In this model the adversary has less
pages in its cache than the online algorithm. This model obviously gives an advantage to the online algorithm
and may reduce the competitive ratio. This approach was for instance used by Sleator and Tarjan [11] to
give more realistic results for the standard paging problem.

Previous work. The classic paging problem. Two common paging algorithms for the classical paging
problem areLRU (Least Recently Used) andFIFO (First In First Out).LRU computes for each page which is
present in the cache the last time it was used and evicts the page for which this time is minimum.FIFO acts
like a queue, evicting the page that has spent the longest time in the cache. Variants of both are common
in real systems. AlthoughLRU outperformsFIFO in practice,LRU and FIFO are known to have the same
competitive ratio ofk. Further this ratio is known to be the best possible, see [11,9].

The boundk for the standard problem is actually derived directly from ageneral bound which Sleator
and Tarjan [11] showed and which allows resource augmentation. That is a lower bound of k

k−h+1
for every

online algorithm when the caches ofOPT andALG have sizes ofh andk (h ≤ k) respectively. They also
showed a matching upper bound forLRU andFIFO.
Randomized algorithms. A randomized paging algorithm calledMARK was introduced in [7] with a
competitive ratio of2Hk, whereHk is thek-th harmonic number. Randomized algorithms that achieve a
better competitive ratio ofHk were introduced in [10] and later in [2].
Arbitrary page sizes or costs.In practice not all requested pages are of the same size or cost. Research of
models where every page has an arbitrary size was done by Irani [8]. She considered a model where every
page has a cost of 1 and a model where every page’s cost is equalto its size, and presented randomized
online algorithm with a competitive ratio ofO(log2 k) for both models. Young [12] presented a deterministic
k-competitive online algorithm for the general case where pages have arbitrary sizes and an arbitrary non-
negative loading cost.
Connection caching. Cohen, Kaplan and Zwick [4, 5] introduced the connection caching problem, where

2



there is a sequence of requests for TCP connections. Whenever there is a request for a connection that is
not open, it must be established. When the cost of opening a connection is uniform over all connections,
they presented ak-competitive deterministic online algorithm and aO(Hk)-competitive randomized online
algorithm, wherek is the number of connections that can be simultaneously maintained.
Combined model. As stated above, an integrated document and connection caching model was introduced
by Albers and van Stee [1]. Denote the document cache size byk and the connection cache size byk′. Their
main result is a deterministic algorithm with competitive ratio 2k − k′ + 4. This result is then adapted for
other models like randomized algorithms and Irani’s modelsof pages of arbitrary size.

It can be seen that the performance guarantee of this algorithms is near-optimal for a large connection
cache, but degrades as the connection cache becomes smallerand is only2k for a connection cache of size
1. In this paper, we focus on the practically important case of a small connection cache. Specifically, we
focus on the casek′ = 1, i.e. there is only one slot in the connection cache. Albers and van Stee [1] show
thatLRU andFIFO perform poorly in this scenario, giving a lower bound of2k −O(1) for these algorithms.
FIFO versusLRU. An issue in the analysis of paging algorithms is the relativeperformance ofFIFO and
LRU. AlthoughLRU outperformsFIFO in practice, standard competitive analysis cannot distinguish between
these two algorithms. This was finally accomplished by Chrobak and Noga [3] using a more refined model.
Interestingly, there are several paging models in which theopposite can be shown. One such model was
presented by Epstein, Imreh and van Stee [6]. We show in this paper that this role reversal also occurs in
paging with connections.

New results. We show that this problem is different from the standard paging problem, by showing a lower
bound ofk + k−1

k+1
for k > 2 and 5

2
for k = 2. Recall that the best competitive ratio for standard pagingis

k. Clearly, thek-competitive algorithms for the standard problem are at most 2k-competitive for our model,
since each fault costs an algorithm at most2. We show thatLRU is not better than this bound. However,
FIFO achieves a better bound fork = 2, which is the best possible ratio for this case and equals5

2
.

We further design an algorithm which performs much better thanLRU. Its competitive ratio isk + O(ℓ),
whereℓ is the number of different locations. This ratio isk + 8 if there are two locations.

We explore the resource augmented problem, whereOPT has less pages in its cache. We show that in
this model as well, our problem is different, since a lower bound we show is higher than k

k−h+1
for every

h < k. We focus on the caseh = 2 and show that the tight bound in this case isk+3

k
, achieved byFIFO.

This is in contrast toLRU that has competitive ratio of exactlyk+2

k−1
.

Notation. A page is denoted by a lower case letter together with zero or more apostrophes, or an index. A
location is denoted by a capital letter, which usually (unless stated otherwise) matches the letter of the pages
that are at that location. For example, at locationA we may have the pagesa, a′, a1. . .

We write a state of an algorithm asabC for k = 2, and generalize this in the obvious manner for larger
k. When we compare the state of an online algorithm to the stateof the offline algorithm, we write the online
state first and separate them by a slash. For exampleabB/abA. If there is an order in which the pages are
to be evicted (e.g. in the cache ofLRU or FIFO), then the leftmost page in this writing is first to be evicted,
and the rightmost is last.

3



2 Lower bounds

We prove the following theorem, showing that even the problem with k′ = 1 is not equivalent to the standard
paging problem, even if only two distinct locations are present.

Theorem 1 Any online algorithm for the paging problem with connections has a competitive ratio at least
k + k−1

k+1
.

Proof. We use two locations and construct a sequence which consistsof superphases, where each superphase
consists of phases as defined in the sequel.

At the time when a superphase starts,OPT has pages from a single location in its cache. During the
superphase,OPT inserts into its cache pages from the other location. A new superphase starts whenOPT has
pages from the other location only. In the beginning of a superphase, bothOPT andALG are in the same
location, the location from whichOPT has all its pages at that time. We call this locationA and the other
locationB.

We next define the phases of a superphase. The length of each phase is at leastk. The first phase starts
with a request for pageb ∈ B. This is a page fromB that ALG does not have in its cache. Leta1, . . . , ak

denote the pages fromA that reside in the cache ofOPT before the request forb. Every subsequent request
of this phase is made for the page in{a1, . . . , ak, b} that ALG currently does not have in its cache. These
requests are made until the earliest time where exactly one pageaj ∈ {a1, . . . , ak} was not yet requested,
and this ends the first phase.OPT replaces this single page byb in the beginning of the phase, and therefore
faults only onb. In this phase,OPT has a regular fault as well as a connection fault. In all otherphases in
this superphaseOPT will only have one regular fault. Note thatALG is not at locationB when the first phase
ends, since the last request of the phase must be for a page from {a1, . . . , ak}.

We repeat a similar process until after some phaseOPT has only pages fromB. In this process the first
page of a phase is a new page (that is not present in any of the two caches) fromB. The rest of the pages are
a subset ofk − 1 pages out of the contents of the cache ofOPT in the start of the phase. Therefore, except
for the beginning of the very first phase,OPT has pages of both locations in its cache. At most one page is
replaced in the cache ofOPT in each phase, and thus a superphase lasts at leastk phases. Note that at the
end of the superphase, both algorithms are connected toB.

ALG faults on every request, therefore it has at leastk regular faults per phase. It is left to count the
number of connection faults ofALG. In the first phase,ALG has a connection fault twice: once at the first
request, and another one at the second request, which must befor a page ofA. All phases but the last
one must have requests for pages of both locations, since once a phase has requests for pages ofB only the
superphase ends, and each phase has at least one request for apage ofB. Lets ≥ k be the number of phases.
We find a total of at least1 + 2(s − 1) connection faults forALG, and a total cost of at leastsk + 2s − 1,
whereas the total cost ofOPT is s + 1. We get the ratio

sk + 2s − 1

s + 1
≥ k + 1 −

2

s + 1
≥ k + 1 −

2

k + 1
= k +

k − 1

k + 1
.

This concludes the proof.
For the cache size equal to 2, we can prove a slightly strongerlower bound.

Theorem 2 Any online algorithm withk = 2 slots in the cache has a competitive ratio of at least5

2
, even if

only two locations are allowed.

4



Proof. Denote the two locations byA andB. We start in stateabB/abA or abB/a′bA. That is,OPT has
one page from locationA in its cache, which may or may not be the same page as the onlinealgorithm has.
We show how to return to one of these states in such a way that any online algorithm pays at least5/2 times
the optimal cost. The optimal cost in each such phase is non-zero and bounded by a constant. The cost of
reaching such an initial state is also constant. Thus repeating the phase sufficiently many times proves that
the competitive ratio is arbitrarily close to5

2
.

The main line of the lower bound is as follows (only writing states of the online algorithm):

abB
a′

−→ ba′A
a

−→ a′aA
b

−→ a′bB or abB.

OPT serves this request sequence by going toa′bA and then back toabA, at cost at most 2 (the cost is 1 if
it already hada′ in its cache). The online algorithm pays 5. Note that the finalstates are equivalent to the
allowed starting states.

We now check what happens if the online algorithm deviates from this path at the first or second request.
In these cases, the request sequence continues differently. Note that no deviation is possible at the last
request.

1. The online state after the first request isa′aA. The next request is tob. We go back to a starting state:
OPT goes toa′bA for the first request and stays there. The ratio is4 : 1.

2. The online state after the second request isbaA. OPT goes toa′aA for the first request and stays there.
We now alternate between requests toa′ anda until the online algorithm goes toa′aA as well.
Then the next request is tob, followed by a request to the page that the online algorithm drops to
serve this request (a or a′). OPT goes to locationB to serve the request tob, keeping the page that
the online algorithm drops in its cache. The final state is thus abA/abB or a′bA/a′bB, equivalent to
second starting state. The overall ratio is at least8 : 3.
Note: if the online algorithm dropsb to serve the last request (i.e. it goes back toa′aA), we repeat
alternating requests tob and the page fromA thatOPT has until it goes toabA or a′bA. The ratio only
increases.

We further show that in contrast to the standard paging problem, the performance ofLRU is very poor in
this model. The competitive ratio ofLRU is 2k, which can be achieved by any algorithm that uses a marking
strategy for the pages and an arbitrary strategy for the connection cache.

In particular,LRU has a ratio of 4 fork = 2, even using only two locations. This is shown as follows.
We start in a statebaB/abA (or a state equivalent to it) whereb is the least recently used page (i.e. the last
request was toa and did not cause a fault). The lower bound then works as follows:

baB/abA
a′

−→ aa′A/a′bA
b

−→ a′bB/a′bA
a′

−→ ba′B/a′bA.

LRU has two connection faults and pays 4. The optimal offline algorithm only pays 1 (for the first request).
The final state is equivalent to the starting state.

The generalization for generalk is as follows. Leta, b1, . . . , bk−1 bek pages fromk distinct locations.
We denote the location ofa by A. Let a′ ∈ A as well. The initial state of a phase is

b1b2 . . . bk−1aX/b1b2 . . . bk−1aA,

5



whereX is the location ofbk−1. The phase consists of requests fora′, b1, . . . , bk−1, a
′. All requests but

the last one are both regular and connection faults. Starting from the first request, each of the pagesbi,
i = 1, . . . , k−1 are evicted and reloaded in the next step. The last step changes the priority ofa′. The phase
ends at the equivalent stateb1b2 . . . bk−1a

′X/b1b2 . . . bk−1a
′A. OPT has a single regular fault, whereasLRU

hask regular faults andk connection faults. Therefore the competitive ratio ofLRU is 2k.
Note that this example can be implemented using only two locations for evenk and three for oddk.

3 Algorithms

In this section we introduce the first algorithms for paging with connections with a competitive ratio strictly
smaller than2k. We first describe an algorithm for the case where all requests come from only two locations,
and then show how to generalize this algorithm for more locations.

3.1 Algorithm TwoLocations

Denote the location of the very first request by A and the otherlocation by B. On any page fault, first, if
all pages are marked, unmark all pages and start a new phase. Second, evict an unmarked page from A if
possible. Otherwise evict the unmarked page which has been in the cache the longest. Load the requested
page and mark it.

Note that pages are only marked when a page fault occurs. Thusthis algorithm is not a marking algo-
rithm in the classical sense. In particular, a phase might last longer than that of a marking algorithm, but all
we need is that a phase contains requests tok distinct pages, so that each algorithm (in particular the optimal
one) must fault at least once per phase.

Definition A newpage is a page which was not requested in the previous phase.

Claim 1 In any phase, the number of connection faults is at most four times the number of new pages
requested.

Proof. Consider a request sequence. Since TwoLocations does not change its state in response to requests
that do not cause faults for it, we begin by removing any requests that do not cause faults. This can only
decrease the optimal cost to serve this sequence. Thus we mayassume that each request causes a fault for
the algorithm TwoLocations.

Pages from B are not evicted until all pages from A which were requested in the previous phase have
been evicted. Say that the first eviction of a page at B happensat therth fault. This implies that in the
previous phase,r − 1 pages from A were requested.

We are going to assign connection faults to new pages, depending on when the connection faults occur,
as follows:

1. To the first new page (that starts the phase), the connection fault that possibly occurs on this request,
and the one that possibly occurs on the first request to an old page fromB

2. Up to requestr, at most two connection faults to each new page fromB

6



3. After requestr, at most two connection faults to each new page requestedup to and including request
r (from A or B), apart from the first new page

4. After requestr, at most two connection faults to each new page fromA

Thus each new page is assigned at most four connection faults. We now explain that this covers all the
connection faults that may occur in the phase.

The first request may obviously cause a connection fault, as may the first request to an old page fromB.
This is handled in Step 1. If no other new pages are requested,these are all the connection faults that occur,
since in this case first all the old pages fromA are requested and then all the old pages fromB.

Consider a request no later thanr. At this point, no old pages from B can be requested, because they
are all still in the cache and each request causes a fault. Only old pages from A can be requested (and, of
course, new pages from anywhere). If this page fault causes aconnection fault, the request must be to a new
page from B, or to a page from A (either old or new) immediatelyafter a new page from B was requested.
This is handled in Step 2.

Consider a request after therth request. Suppose that in the firstr requests, there wereb requests to a
(new) page fromB. Then there werer − b requests to pages from A. Denote the number of requests to new
pages fromA by a. We havea ≥ 1 because the first request, that started this phase, must be toa new page.

In the firstr requests, there werer − b − a requests to old pages fromA. Since there existr − 1 old
pages fromA, this means thatb + a − 1 old pages fromA are not yet requested in the current phase at this
point. In the worst case, these are requested alternatinglywith old pages from B now, leading to at most
2(b + a − 1) additional connection faults. These are assigned to theb + a − 1 new pages in the requests
2, . . . , r in Step 3.

Finally, connection faults can also occur if new pages fromA are requested after therth request. Each
such page can cause two connection faults: one to switch toA and one to switch back (which can happen
on an old page fromB). This is handled in Step 4.

This completes the proof.

Theorem 3 TwoLocations (TL) has a competitive ratio of at mostk + 8.

Proof. Denote the number of new pages in phasei by pi. Denote the cost of algorithmA in phasei byA(i).
In phasesi − 1 andi, k + pi distinct pages are requested. ThusOPT(i − 1) + OPT(i) ≥ pi for all i > 1.
Summing over all even phasesi > 1, we haveOPT ≥

∑
i evenpi. We haveOPT(1) ≥ p1 since by assumption

OPT and TL start with the same cache contents. So summing over theodd phases givesOPT ≥
∑

i oddpi.
This implies that2OPT ≥

∑
i pi. Additionally, we have as usualOPT ≥ n wheren is the number of phases.

On the other hand, by Claim 1 we haveTL(i) ≤ k + 4pi. Thus overall, we have

TL ≤ nk + 4
∑

pi ≤ kOPT+ 8OPT = (k + 8)OPT.

This completes the proof.

3.2 A generalized algorithm: Evict By Location (EBL)

This algorithm works in phases. During a phase, a page is marked if a request to this page caused a fault.
Only unmarked pages are evicted, and only if there is a page fault. If there is a page fault and all pages are
marked, all pages are unmarked and a new phase begins.

7



At the start of a new phase, group the pages by their locations. Sort the locations in any order, but start
with the location of the current request (which starts this phase). Denote the locations byA1, A2, . . . in this
order.

During a phase, evict all pages fromAi before evicting any page fromAi+1, for anyi.

Theorem 4 The algorithm EBL has a competitive ratio of at mostk+4ℓ for an environment withℓ locations.

Proof. We divide the phase into subphases according to the groupingdefined above. In subphasei, only
pages fromAi are evicted. Denote the length of subphasei by ki. We generalize the connection faults
assignment from the proof of TwoLocations, and prove that the connection faults can be assigned so that
any new page requested in a phase is assigned at most4ℓ connection faults, whereℓ is the number of different
locations requested in this phase.

1. To the first new page in the phase, we assign the first connection fault from each subphase

2. In subphasei, to new pages that are not fromAi we assign at most two connection faults in subphases
i, . . . , ℓ

3. In subphasei, to new pages fromAi we assign at most two connection faults in subphasesi+1, . . . , ℓ

For eachi, the first request in subphasei is not to an old page ofAi, because all of them are still in the cache
at this point. The second request in subphasei (or the first one toAi) will cause a connection fault. This is
handled in Step 1 (note that the first page requested in the phase is new).

Consider subphase 1. All old pages fromA2, . . . are still in cache. Some old pages inA1 may be out.
Any new page not fromA1 can cause a connection fault, plus another one if the next request is forA1 again.
See Step 2. Suppose there area1 such pages. Denote the number of new pages fromA1 by a′1 ≥ 1. (Note
that the first page in this phase is new.) Then after subphase 1, there are stilla1 + a′1 old pages fromA1

which have not been requested in the current phase. We call these pageslate.
In subphase 2, all old pages fromA3 and later are still in the cache. Some old pages inA1 andA2 may

be out. Denote the number of new pages requested in this subphase which are not fromA2 by a2. Each such
page can cause two connection faults in this subphase (Step 2). This also holds for thea1 + a′1 late pages
from A1, if they are requested in subphase 2. Since these correspondto new pages requested in subphase
1, the connection faults are assigned to those new pages (Step 3). Finally, there area′2 new pages fromA2,
which do not cause connection faults in the current subphase, but instead cause late pages.

In fact, any request out of these three categories corresponds to one old page fromA2 which is not
requested in this subphase, and which might still be requested later and cause extra connection faults (Step
2 and 3). Generally, it may be seen that in each subphase, eachnew page requested corresponds in a one-to-
one fashion to an old page which is not requested in its propersubphase. This concludes the explanation of
the assignment procedure.

Denoting the number of new pages in subphasej of phasei by nij, we find that

EBL (i) ≤ k +
ℓ∑

j=1

2nij(ℓ + 1 − j) ≤ k + 2ℓ
ℓ∑

j=1

nij.

8



Here we have used that in any phase,
∑ℓ

j=1
nij ≥ 1. On the other hand,OPT(i − 1) + OPT(i) ≥

∑ℓ
j=1

nij,
andOPT ≥ n wheren is the number of phases. Thus

EBL ≤ kn + 2ℓ

n∑

i=1

ℓ∑

j=1

nij ≤ kOPT+ 4ℓOPT = (k + 4ℓ)OPT.

This completes the proof.

4 Resource Augmentation

In this section we consider the case where the document cacheof OPT has size2 ≤ h ≤ k. Recall that the
tight bound on the competitive ratio in the standard model isk

k−h+1
.

We begin by giving a lower bound for the caseh < k. A lower bound forh = k is given by Theorem
1. An interesting question is whether the competitive ratiofor the problem with locations tends to1 whenk

grows. In this section we show that the tight ratio for the caseh = 2 is k+3

k
and thus it is slightly worse but

still tends to1. We show that this ratio is achieved byFIFO, whereas the competitive ratio ofLRU is exactly
k+2

k−1
.

Theorem 5 The competitive ratio of any online algorithm, such that thealgorithm hask slots in its cache
andOPT has2 ≤ h < k slots is at least

k + 2 + ⌈ h−1

k−h+1
⌉

k − h + 2
.

This number is strictly higher thank−h+1

k
for anyh < k.

Proof. We use phases. The only requirement for the starting state isthat ALG is in a different location than
OPT. We denote the pages ofOPT by a1, a2, . . . , ah (though they may be from different locations) and the
location ofOPT by B.

We issue requests for the following sequence of pages:

b1, b2, . . . , bk−h ∈ B.

These pages have in common that none of them appear in either the cache ofOPT or the cache ofALG.
After k − h such requests there is a request for a pagep which is from a different location than all the

pages in the caches ofOPT andALG. Every next step after that,ALG has in its cachek pages, thus at least
one of the pagesqi ∈ {a1, a2, . . . , ah, b1, b2, . . . , bk−h, p} is not present in its cache. The next request will
be issued for pageqi. We issue such requests until at leasth − 1 different pages, not including pagep, are
requested.OPT can choose the pages it discards, so after the firstk − h requests and the request for pagep

it will have in its cache pagep and theh − 1 unique pages that were requested after it. Thus it does not pay
for any request after the request forp.

Since there are at leasth − 1 requests after the request for pagep, there are at leastk requests in the
phase. ALG pays at least1 for any of the requests we issued. It pays2 for at least three requests: The
request for pageb1 (the first request), the request for pagep and the request for pageq1 which must be from
a different location from pagep. In total ALG pays at leastk + 3 for the whole sequence.

9



OPT pays only1 for each of the firstk − h requests and another2 for the request for pagep, to a total of
k − h + 2.

For large values ofh, we can improve the estimate for the cost ofALG by taking into consideration the
maximum amount of pages from the same location thatALG has in its cache. SinceOPT uses a sequence of
k − h pages from the location where it was at the start of the phase,throughout the scheme we need only a
maximum ofk− h + 1 pages from each location. ThereforeALG has to move to a different location at least
everyk − h + 1 pages. This move costsALG 2 instead of 1 and it occurs⌈ h−1

k−h+1
⌉ times. In other words,

the cache ofALG holds pages from at least⌈ h−1

k−h+1
⌉ different locations.

HenceALG pays at leastk + 2 + ⌈ h−1

k−h+1
⌉ and the lower bound is proved.

This lower bound is slightly larger than k
k−h+1

for all values ofh < k. Note that the proof fails for
k = h since in this case there are no initial requests in the phase.

4.1 The caseh = 2

For this case, we show matching upper and lower bounds. The optimal upper bound is achieved byFIFO.
Additionally, we prove that the algorithmLRU performs strictly worse thanFIFO even forh = 2, and give
tight bounds on its competitive ratio.

Theorem 6 Any online algorithm withk ≥ 2 slots in the cache has a competitive ratio of at leastk+3

k
when

compared to an offline algorithm with2 slots in the cache.

Proof. Fork > 3, this follows directly from Theorem 5. Fork = 2, this is Theorem 2.

Theorem 7 The competitive ratio ofFIFO for h = 2 is k+3

k
.

Proof. The lower bound was proved in Theorem 6. Consider now a sequence of requests. Since inFIFO

only faults change the behavior, we are only interested in requests that were faults ofFIFO, and remove all
other requests form the sequence (this may only increase thecost ofOPT and does not change the cost of
FIFO).

We use the names “bad fault” for a fault ofFIFO which is not a fault ofOPT and “good fault” for a fault
of both OPT andFIFO. A bad fault is a fault that raises the competitive ratio ofFIFO and a good fault is a
fault that helpsFIFO maintain a low competitive ratio becauseOPT pays for it as well. We define a phase to
be a sequence of faults which starts with a bad fault and ends one request before the next bad fault. In other
words, the first request in the phase is a bad fault and the other faults in the same phase, if any, are all good
faults.

We begin by giving a lower bound ofk on the length of any phase. Letp be a request which causes a
bad fault, and letq denote the previous request. Already before the request forpagep, OPT must have in its
cache pageq that was just requested and pagep. Just afterp is requested,FIFO has in its cache pagesp, q

andk − 2 older pages.
If the next bad fault will be on pageq it has to occur after at leastk − 1 faults in order for pageq to be

discarded byFIFO. Similarly, for the next bad fault to be on pagep it has to occur after at leastk good faults.
For the next bad fault to be on a different page, it must occur after at leastk + 1 good faults since one good
fault is necessary to put the new page in the cache ofOPT, and afterwards it takesk faults forFIFO to discard
it. This shows that in all cases, there are at leastk − 1 good faults after the bad fault that starts the phase.

10



The bad faults cost a maximum of 2 forFIFO and nothing forOPT. The first good fault may cost 2 for
FIFO and only 1 forOPT. After that both of the algorithms are in the same location, so the nextk − 2 faults
costs the same forFIFO andOPT. The worst case occurs if all these faults cost 1. In this caseFIFO paysk+2

andOPT paysk − 1. We will call a phase with this exact ratio a “bad phase” forFIFO.
However, during a bad phaseOPT does not change its location. Moreover, the next phase starts with a

request for pageq. This request must be a fault ofOPT. This is true since fork ≥ 2, by definition ofFIFO,
any three consecutive requests must be distinct, therefore, among two consecutive requests, at least one is a
fault. Since the first request for pageq was a fault ofOPT (since the request just after it, which is forp is not
a fault ofOPT), OPT is still in the location of pageq, and so isFIFO which is in the same location.

Therefore in any phase which immediately follows a bad phase, FIFO only pays 1 for the first request,
and the same asOPT for the remaining requests since they are still in the same location. The ratio of the
costs in this phase is at mostk : (k − 1). This is a “good phase” forFIFO.

Every bad phase must be followed by at least one good phase, which yields an average ratio of(2k+2) :

(2k) = (k + 1) : k or even better. To avoid good phases,OPT must either change the connection or prolong
the phase so another page will be requested in the beginning of the next phase.

To change its connectionOPT must at some point suffer a cost of 2 instead of 1, thus raisingits total cost
to k. Such a change of connection may costFIFO 2 instead of 1 if done on one of the lastk − 2 requests,
or nothing extra if done on the second request for whichFIFO already pays 2. Therefore the maximum cost
FIFO will suffer in this case will bek + 3 instead ofk + 2 and the ratio of the phase is(k + 3) : k. We will
call such a phase a “normal phase”.

If OPT does not change its location, the phase must be prolonged by at least one request. If the phase is
prolonged by exactly one request the bad fault will again be the request for pagep, and therefore the next
phase may be a bad phase or a normal phase. In the prolonged phase, the cost of bothOPT and FIFO is
increased by one or two so the ratio of the phase is also(k + 3) : k. This is also a “normal phase”.

Since for every additional requestOPT andFIFO pays the same, prolonging the phase by more than one
request will yield a ratio lower than(k + 3) : k.

Considering the entire request sequence, the average cost ratio is at most(k + 1) : k in good and bad
phases (since there are at least as many good phases as bad phases) and at most(k+3) : k in normal phases.
This proves the upper bound.

Finally, we consider the performance of the algorithmLRU for the caseh = 2. We start with an example
whereLRU achieves a ratio not better thank+2

k−1
, and then show a matching upper bound. This is worse than

the upper bound ofFIFO. The example holds fork > 2, an example fork = 2 was given earlier.
Finally, we prove the following theorem. The proof is in the appendix.

Theorem 8 The competitive ratio ofLRU for h = 2 is exactlyk+2

k−1
, which is strictly worse thanFIFO.

5 Conclusions

We have shown the first algorithms for paging with connections that break the trivial performance bound
of 2k. An open question left by these results is the precise role that the locations play in this model. All
our lower bounds require only two or three locations, and it is unclear whether using more locations can
improve these results. However, it is possible that the competitive ratio of an adaptation of our algorithm
EBL is smaller than2k even for a large number of locations. The idea is to define the size of a location at

11



the time when a phase starts as the number of pages from this location which are present in the cache of the
algorithm. Then we use a sorted list of locations (largest location first).

References

[1] Susanne Albers and Rob van Stee. A study of integrated document and connection caching. InAu-
tomata, Languages and Programming, 30th International Colloquium, ICALP 2003, Proceedings,
pages 653-667, 2003.

[2] Dimitris Achlioptas, Marek Chrobak and John Noga. Competitive analysis of randomized paging
algorithms.Theoretical Computer Science, 234:203-218, 2000.

[3] Marek Chrobak and John Noga. LRU is better than FIFO.Algorithmica, 23:180–185, 1999.

[4] Edith Cohen, Haim Kaplan and Uri Zwick. Connection caching. In Preceedings of the 31st ACM
Symposium on the Theory of Computing, pages 612-621. ACM, 1999.

[5] Edith Cohen, Haim Kaplan and Uri Zwick. Connection caching under various models of communica-
tion. In Preceedings of the Twelfth ACM Symposium on Parallel Algorithms and Architectures, pages
54-63. ACM, 2000.

[6] Leah Epstein, Csanad Imreh, and Rob van Stee. More on weighted servers or FIFO is better than LRU.
Theoretical Computer Science, 306(1-3):305–317, 2003.

[7] Amos Fiat, Richard Karp, Michael Luby, Lyle A. McGeoch, Daniel Sleator and Neal E. Young.
Competitive paging algorithms.Journal of Algorithms, 12(4):685-699, Dec 1991.

[8] Sandy Irani. Page replacement with multi-size pages andapplications to web caching. InPreceedings
of the 29th ACM Symposium on the Theory of Computing, pages 701-710, 1997.

[9] Anna Karlin, Mark Manasse, Lyle Rudolph, and Daniel Sleator. Competitive snoopy caching.Algo-
rithmica, 3:79–119, 1988.

[10] Lyle McGeoch and Daniel Sleator. A strongly competitive randomized paging algorithm.J. Algo-
rithms, 6:816-825, 1991.

[11] Daniel Sleator and Robert E. Tarjan. Amoritzed efficiency of list update and paging rules.Communi-
cations of the ACM, 28:202-208, 1985

[12] Neal E. Young. On-line file caching. InProceedings of the 9th ACM-SIAM Symposium on Discrete
Algorithms, pages 82-86, 1998.

A Proof of Theorem 8

Proof. We first show the lower bound. For simplicity, leta1, . . . , ak−1, ak = a0 be pages from a location
A, anda be a page of locationA. The initial state of a phase is

a1a2 . . . ak−2bak−1B/ak−1bA.

12



The phase starts with requests forak, a1, . . . , ak−2. At this timeLRU does not haveb in its cache anymore
and this is the next request. The last request is forak−2. This is not a fault for any of the two algorithms,
but it changes the state ofLRU which is nowaka1 . . . ak−3bak−2B. OPT is in the stateak−2bA, it hadk − 1

regular faults on the firstk − 1 requests. Note thatOPT never changes its location.LRU has a connection
fault on the first page of a phase and onb. It has regular faults on all requests but the last one. Therefore the
costs ofLRU arek + 2 and the optimal cost isk − 1. Note that the state we reached at the end of a phase is
equivalent to the initial one.

We now prove the upper bound. We use terminology similar to the proof of Theorem 7, only here we
cannot assume that all requests are faults for the algorithm, therefore there are “good faults”, “bad faults”
and “non-faults” which are requests that are not a fault for any of the two algorithms, and “excellent faults”
which are faults ofOPT but not of the algorithm.

A change that we do in the sequence without changing the operation of LRU or the cost is removal of all
requests but one, in sub-sequences of consecutive identical requests.

A phase is the sub-sequence of requests, from the time that a bad fault occurs, until just before the next
such time. Similarly to the proof forFIFO, we denote the first request in a phase byp and the request just
before that byq. OPT must have had a fault onq. Otherwise the request just beforeq, r, must be identical to
p or to q. Since we removed multiple consecutive instances of the same request, it must bep. However, ifp
appeared just beforeq, it is still in the cache ofLRU, and cannot be a fault ofLRU.

After the first good fault and until the end of the phase,LRU pays no more thanOPT. This can be seen
as follows. Immediately after the good fault,LRU andOPT are at the same location. This does not change as
long as there are good faults. There can be no bad faults by definition. LRU andOPT pay the same as long
as they remain at the same location. IfOPT changes its location andLRU does not, this happens on a request
that is not a fault forLRU. The cost thatOPT has for this fault can be assigned to the first good fault that
follows. Note that we showed above that the phase ends in a good fault. This shows thatLRU does not pay
more thanOPT after its first good fault.

Between the bad fault that starts the phase and the first good fault, LRU pays nothing. HoweverLRU

possibly pays two more thanOPT for the bad fault that starts the phase, and one more thanOPT for the first
good fault. Thus its overall cost for the phase is at most 3 more thanOPT .

Denote the page that starts the next phase (i.e. causes a bad fault) by p′. After the last time thatp′ is
requested,OPT keepsp′ in its cache (otherwise it would not have a reason to load it again before the next
request top′, and that means that would not be a bad fault). ¿From this point on, OPT can at most serve the
very next request without a fault, but after that it has to fault on every request since it has only one free slot
in the cache. There are at leastk requests untilLRU dropsp′, soOPT pays at leastk − 1 (more if there are
also connection faults). Note thatp′ may bep or q.

This completes the proof.

13


