Paging with connectionsiIFo strikes again

Leah Epstein Yanir Kleimari Jifi Sgalf Rob van Steke
February 8, 2006

Abstract

We continue the study of the integrated document and coimmecaching problem. We focus on
the case where the connection cache has a size of one andlsdictis problem is not equivalent to
standard paging, even if there are only two locations forpthges, by giving the first lower bound that
is strictly higher thark for this problem. We then give the first upper bound below theal value of
2k for this problem. Our upper boundis+ 4¢ where/ is the number of locations where the requested
pages in a phase come from. This algorithm groups pages htidoc In each phase, it evicts all pages
from one location before moving on to the next location. Intcast, we show that theru algorithm is
not better thar2k-competitive.

We also examine the resource augmented model and show éhpliaih FIFO algorithm is optimal
for the caseh = 2 and allk > 2, whereh is the size of the offline document cache. We show that also
in this caseriFo is better thanRu, although this is not true for standard paging.

Classification: Algorithms and Data Structures.

1 Introduction

The caching problem is one of the major problems in the fieldrdine algorithms. It has been studied
considering many different models and aspects of the pmbl€he basic problem comes from the real
world of computing. An operating system has a limited amadiitigh speed memory and needs to decide
which pages of data will be kept in the high speed memory andhwbages will be discarded. When a
page that was recently discarded is requested again, thatimgesystem pays a significant cost in order to
retrieve that page from the low speed memory. This decisiost ime made with each new request, therefore
the solution cannot be pre-computed and must be addresgedmbnline algorithm.
The abstract representation of the problem is as follows dperating system ha@spages of data in

its cache. There is no a priori upper bound on the total nurobpages that can be requested. An online
algorithm is an algorithm that decides after each requesthwbages to keep in its cache and which pages
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to discard without knowledge of future requests. The go&b isinimize the number of page faults, i.e.
requests to pages while they are not in cache.

Connection caching is a version of this problem that death wismall cache of network connections
that has to be maintained in order to access data from ditfémeations. Recently, a combined model was
suggested by Albers and van Stee [1]. The model deals withdmtument caching and connection caching.
In this model we have two caches, one that holds documenpaf{m3 and one that holdsonnections

The algorithms in [1] perform best if the size of the connatitache is equal to the size of the document
cache. However, in practice, the connection cache is ysmalch smaller. In this article we focus on the
case where we have a cachekopages and only one slot in the connection cache. We call thislgm
“Paging with Connections”. In such a model the connectiat th stored in the connection cache can be
referred to as the (single) current location. There aresttypes of requests. If the requested page is already
in cache, the request costs nothing. If the requested pam is cache but is from the current location, the
request is noted aspage fault(or regular faul) and the cost is one. If the requested page is not in cache
and is from a different location, the request is noted asramection fauland it costs 2, one for switching
the connection and another one for putting the requested ipazache.

The competitive ratio is the asymptotic worst case ratiavben the cost of an online algorithm and the
cost of an optimal offline algorithm (denoted byT) which knows all requests in advance. Throughout the
paper we refer to the online algorithm asc and to the optimal offline algorithm &g T wherever they are
mentioned.

A generalization of the model is thiesource augmentatiomodel. In this model the adversary has less
pages in its cache than the online algorithm. This modelaisly gives an advantage to the online algorithm
and may reduce the competitive ratio. This approach wasm&iamce used by Sleator and Tarjan [11] to
give more realistic results for the standard paging problem

Previous work. The classic paging problem. Two common paging algorithms for the classical paging
problem are.RU (Least Recently Used) amFo (First In First Out).LRU computes for each page which is
present in the cache the last time it was used and evicts tefpawhich this time is minimumgiFo acts
like a queue, evicting the page that has spent the longestitirthe cache. Variants of both are common
in real systems. Althoughru outperformsrFiFo in practice,LRU and FIFO are known to have the same
competitive ratio ofk. Further this ratio is known to be the best possible, seeqL1,

The boundk for the standard problem is actually derived directly fromesmeral bound which Sleator
and Tarjan [11] showed and which allows resource augmentatihat is a lower bound qj# for every
online algorithm when the caches oPT andALG have sizes oh andk (h < k) respectively. They also
showed a matching upper bound faru andriFo.

Randomized algorithms. A randomized paging algorithm calledArRK was introduced in [7] with a
competitive ratio o2 Hy,, where Hy, is the k-th harmonic number. Randomized algorithms that achieve a
better competitive ratio off;, were introduced in [10] and later in [2].

Arbitrary page sizes or costs.In practice not all requested pages are of the same size brResearch of
models where every page has an arbitrary size was done hy8tashe considered a model where every
page has a cost of 1 and a model where every page’s cost isteqtmlsize, and presented randomized
online algorithm with a competitive ratio 6f(log? k) for both models. Young [12] presented a deterministic
k-competitive online algorithm for the general case whemgepehave arbitrary sizes and an arbitrary non-
negative loading cost.

Connection caching. Cohen, Kaplan and Zwick [4, 5] introduced the connectiorhgag problem, where



there is a sequence of requests for TCP connections. Whetheve is a request for a connection that is
not open, it must be established. When the cost of openingiiaection is uniform over all connections,
they presented &-competitive deterministic online algorithm anddH, )-competitive randomized online
algorithm, wheré is the number of connections that can be simultaneouslytaingd.

Combined model. As stated above, an integrated document and connectiomgatiodel was introduced
by Albers and van Stee [1]. Denote the document cache sizeabg the connection cache sizeMdy Their
main result is a deterministic algorithm with competitiegio 2k — &’ + 4. This result is then adapted for
other models like randomized algorithms and Irani's modélsages of arbitrary size.

It can be seen that the performance guarantee of this dlgarits near-optimal for a large connection
cache, but degrades as the connection cache becomes saandllisronly2k for a connection cache of size
1. In this paper, we focus on the practically important case small connection cache. Specifically, we
focus on the cask’ = 1, i.e. there is only one slot in the connection cache. Albads\an Stee [1] show
thatLRU andFIFo perform poorly in this scenario, giving a lower bound2éf— O(1) for these algorithms.
FIFO versusLRU. An issue in the analysis of paging algorithms is the relatiggformance ofiFo and
LRU. AlthoughLRuU outperformsFiFo in practice, standard competitive analysis cannot distsigbetween
these two algorithms. This was finally accomplished by Chkadnd Noga [3] using a more refined model.
Interestingly, there are several paging models in whichojygosite can be shown. One such model was
presented by Epstein, Imreh and van Stee [6]. We show in #perpthat this role reversal also occurs in
paging with connections.

New results. We show that this problem is different from the standard pggroblem, by showing a lower
bound ofk + z—jr} fork > 2 andg for k = 2. Recall that the best competitive ratio for standard paggng
k. Clearly, thek-competitive algorithms for the standard problem are attr@ksompetitive for our model,
since each fault costs an algorithm at m2stWe show that.Ru is not better than this bound. However,
FIFO achieves a better bound fbr= 2, which is the best possible ratio for this case and eqgals

We further design an algorithm which performs much bettanttRu. Its competitive ratio i + O(¢),
where/ is the number of different locations. This ratiokist+ 8 if there are two locations.

We explore the resource augmented problem, wbherehas less pages in its cache. We show that in
this model as well, our problem is different, since a loweatwb we show is higher tha;,g\_’;’bﬁ for every
h < k. We focus on the case = 2 and show that the tight bound in this casé“—*gé, achieved byriFo.
This is in contrast taRU that has competitive ratio of exactfif2.

Notation. A page is denoted by a lower case letter together with zeroove mpostrophes, or an index. A
location is denoted by a capital letter, which usually (aalstated otherwise) matches the letter of the pages
that are at that location. For example, at locatibwe may have the pagesda’, a;. ..

We write a state of an algorithm asC for £ = 2, and generalize this in the obvious manner for larger
k. When we compare the state of an online algorithm to the sfdte offline algorithm, we write the online
state first and separate them by a slash. For exaat@e¢abA. If there is an order in which the pages are
to be evicted (e.g. in the cacheidtu or FIFO), then the leftmost page in this writing is first to be evigted
and the rightmost is last.



2 Lower bounds

We prove the following theorem, showing that even the probiéth £’ = 1 is not equivalent to the standard
paging problem, even if only two distinct locations are prds

Theorem 1 Any online algorithm for the paging problem with connectidras a competitive ratio at least
k+ .
+1

Proof. We use two locations and construct a sequence which conémtperphases, where each superphase
consists of phases as defined in the sequel.

At the time when a superphase sta®T has pages from a single location in its cache. During the
superphaseypPTinserts into its cache pages from the other location. A ngyeahase starts whePT has
pages from the other location only. In the beginning of a suipese, bottoPT andALG are in the same
location, the location from whickorPT has all its pages at that time. We call this locatidrand the other
location B.

We next define the phases of a superphase. The length of easé jshat least. The first phase starts
with a request for page € B. This is a page fronB thatALG does not have in its cache. Lef, ..., ax
denote the pages from that reside in the cache ofPT before the request fdr. Every subsequent request
of this phase is made for the page{im, ..., ax, b} thatALG currently does not have in its cache. These
requests are made until the earliest time where exactly ageqy € {ai,...,a;} was not yet requested,
and this ends the first phasepT replaces this single page byn the beginning of the phase, and therefore
faults only onb. In this phasepPT has a regular fault as well as a connection fault. In all offfexses in
this superphasepPTwill only have one regular fault. Note that G is not at locationB when the first phase
ends, since the last request of the phase must be for a pagddro. . . , ax}.

We repeat a similar process until after some pt@sehas only pages fron®B. In this process the first
page of a phase is a new page (that is not present in any of theaiohes) fronB. The rest of the pages are
a subset ok — 1 pages out of the contents of the cacheefr in the start of the phase. Therefore, except
for the beginning of the very first phasepT has pages of both locations in its cache. At most one page is
replaced in the cache afPTin each phase, and thus a superphase lasts atdgdstises. Note that at the
end of the superphase, both algorithms are connect&d to

ALG faults on every request, therefore it has at ldastgular faults per phase. It is left to count the
number of connection faults @fLG. In the first phaseaLG has a connection fault twice: once at the first
request, and another one at the second request, which miist bepage ofA. All phases but the last
one must have requests for pages of both locations, sinaeaphase has requests for pages ahly the
superphase ends, and each phase has at least one requestgecdB. Let s > k be the number of phases.
We find a total of at least + 2(s — 1) connection faults fonLG, and a total cost of at least + 2s — 1,
whereas the total cost afPTis s + 1. We get the ratio

sk+2s—1 2 2 k—1

Skl Skalo 2 _pak—l
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This concludes the proofm
For the cache size equal to 2, we can prove a slightly strdoger bound.

Theorem 2 Any online algorithm withk = 2 slots in the cache has a competitive ratio of at Ie%u,seven if
only two locations are allowed.



Proof. Denote the two locations byt and B. We start in statebB/abA or abB/a’bA. That is,oPT has
one page from locatiodl in its cache, which may or may not be the same page as the @ijogthm has.
We show how to return to one of these states in such a way tiiatrdime algorithm pays at leaSy'2 times
the optimal cost. The optimal cost in each such phase is aomand bounded by a constant. The cost of
reaching such an initial state is also constant. Thus rajetie phase sufficiently many times proves that
the competitive ratio is arbitrarily close @)

The main line of the lower bound is as follows (only writingigts of the online algorithm):

abB - ba' A - d'a A - a/bB or abB.

OPT serves this request sequence by going’tel and then back tabA, at cost at most 2 (the cost is 1 if
it already had:’ in its cache). The online algorithm pays 5. Note that the fatales are equivalent to the
allowed starting states.

We now check what happens if the online algorithm deviata®s fthis path at the first or second request.
In these cases, the request sequence continues differéyitiie that no deviation is possible at the last
request.

1. The online state after the first request’isA. The next request is tla We go back to a starting state:
oPT goes taa’b A for the first request and stays there. The ratié id.

2. The online state after the second requebi is. OPTgoes taz’a A for the first request and stays there.
We now alternate between requests'tanda until the online algorithm goes t@a A as well.
Then the next request is tg followed by a request to the page that the online algorithiopsl to
serve this requesti(or a’). OPT goes to locationB to serve the request 9 keeping the page that
the online algorithm drops in its cache. The final state is i /abB or a’bA/a’bB, equivalent to
second starting state. The overall ratio is at I8as3.
Note: if the online algorithm dropsto serve the last request (i.e. it goes back'ted), we repeat
alternating requests toand the page froml thatopPThas until it goes tabA or a’bA. The ratio only
increases.

[ ]
We further show that in contrast to the standard paging propthe performance @Ru is very poor in
this model. The competitive ratio @Ru is 2k, which can be achieved by any algorithm that uses a marking
strategy for the pages and an arbitrary strategy for theaxiiomn cache.
In particular,LRU has a ratio of 4 fok = 2, even using only two locations. This is shown as follows.
We start in a statéaB/abA (or a state equivalent to it) whebds the least recently used page (i.e. the last
request was te and did not cause a fault). The lower bound then works aswstlo

baB/abA -, aa’ Aja'bA LR a'bB/a'bA <, ba' B/a'bA.

LRU has two connection faults and pays 4. The optimal offlineritlym only pays 1 (for the first request).
The final state is equivalent to the starting state.

The generalization for generalis as follows. Let, by,...,b,_1 bek pages fronk distinct locations.
We denote the location afby A. Leta’ € A as well. The initial state of a phase is

blbg ce bk_laX/ble ce bk_laA,



where X is the location ofb,_;. The phase consists of requests &arby, ..., b._1,a’. All requests but
the last one are both regular and connection faults. Sgaftom the first request, each of the pades
1 =1,...,k—1are evicted and reloaded in the next step. The last step ehdlng priority ofz’. The phase
ends at the equivalent statgs ... by_1a’ X/b1bs ... bp_1a’ A. OPThas a single regular fault, whereamsu
hask regular faults and connection faults. Therefore the competitive ratia. RU is 2k.

Note that this example can be implemented using only twdilmes for evenk and three for odd.

3 Algorithms

In this section we introduce the first algorithms for paginthwonnections with a competitive ratio strictly
smaller thar2k. We first describe an algorithm for the case where all reguashe from only two locations,
and then show how to generalize this algorithm for more looat

3.1 Algorithm TwoLocations

Denote the location of the very first request by A and the olibeation by B. On any page fault, first, if
all pages are marked, unmark all pages and start a new phasend; evict an unmarked page from A if
possible. Otherwise evict the unmarked page which has letire icache the longest. Load the requested
page and mark it.

Note that pages are only marked when a page fault occurs. thlsualgorithm is not a marking algo-
rithm in the classical sense. In particular, a phase migttideger than that of a marking algorithm, but all
we need is that a phase contains requestsdistinct pages, so that each algorithm (in particular thévog
one) must fault at least once per phase.

Definition A newpage is a page which was not requested in the previous phase.

Claim 1 In any phase, the number of connection faults is at most fioues the number of new pages
requested.

Proof. Consider a request sequence. Since TwolLocations does amngelits state in response to requests
that do not cause faults for it, we begin by removing any retputhat do not cause faults. This can only
decrease the optimal cost to serve this sequence. Thus wagssagne that each request causes a fault for
the algorithm TwoLocations.

Pages from B are not evicted until all pages from A which weauested in the previous phase have
been evicted. Say that the first eviction of a page at B happetiserth fault. This implies that in the
previous phase; — 1 pages from A were requested.

We are going to assign connection faults to new pages, deyeod when the connection faults occur,
as follows:

1. To the first new page (that starts the phase), the connefetidt that possibly occurs on this request,
and the one that possibly occurs on the first request to anagd fsomB

2. Up to request, at most two connection faults to each new page fidm



3. After request, at most two connection faults to each new page requestéo and including request
r (from A or B), apart from the first new page

4. After request, at most two connection faults to each new page frbm

Thus each new page is assigned at most four connection.faésnow explain that this covers all the
connection faults that may occur in the phase.

The first request may obviously cause a connection fault,aasthe first request to an old page frdsn
This is handled in Step 1. If no other new pages are requdsikesk are all the connection faults that occur,
since in this case first all the old pages frahare requested and then all the old pages fidm

Consider a request no later thanAt this point, no old pages from B can be requested, becdugse t
are all still in the cache and each request causes a fauly dhpages from A can be requested (and, of
course, new pages from anywhere). If this page fault causesrgection fault, the request must be to a new
page from B, or to a page from A (either old or new) immediatdtgr a new page from B was requested.
This is handled in Step 2.

Consider a request after thth request. Suppose that in the firstequests, there weterequests to a
(new) page fronB. Then there were — b requests to pages from A. Denote the number of requests to new
pages fromA by a. We havea > 1 because the first request, that started this phase, muslseto page.

In the firstr requests, there were— b — a requests to old pages fror. Since there exist — 1 old
pages fromA, this means thdai 4+ a — 1 old pages fromd are not yet requested in the current phase at this
point. In the worst case, these are requested alternatimigfiyold pages from B now, leading to at most
2(b 4+ a — 1) additional connection faults. These are assigned t® the: — 1 new pages in the requests
2,...,rin Step 3.

Finally, connection faults can also occur if new pages frdrare requested after theh request. Each
such page can cause two connection faults: one to switehand one to switch back (which can happen
on an old page fronB). This is handled in Step 4.

This completes the proofm

Theorem 3 TwolLocations (TL) has a competitive ratio of at mbst 8.

Proof. Denote the number of new pages in phabg p;. Denote the cost of algorithtd in phase by A(7).

In phases — 1 andi, k + p; distinct pages are requested. Thast(i — 1) + OPT(z) > p; forall ¢ > 1.

Summing over all even phases- 1, we haveoPT > 3 . . .,pi- We haveoPT(1) > p; since by assumption

opT and TL start with the same cache contents. So summing overdihehases givespPT > > . 4P

This implies thaRopPT > > p;. Additionally, we have as usualPT > n wheren is the number of phases.
On the other hand, by Claim 1 we haV/d (i) < k + 4p;. Thus overall, we have

TL<nk+4) p; <kOPT+80PT= (k + 8)OPT.
This completes the proom

3.2 A generalized algorithm: Evict By Location (EBL)

This algorithm works in phases. During a phase, a page iseddfla request to this page caused a fault.
Only unmarked pages are evicted, and only if there is a pagde fathere is a page fault and all pages are
marked, all pages are unmarked and a new phase begins.



At the start of a new phase, group the pages by their locati®od the locations in any order, but start
with the location of the current request (which starts tlhiage). Denote the locations By, A,, . .. in this
order.

During a phase, evict all pages fraf) before evicting any page from, 1, for anyi.

Theorem 4 The algorithm EBL has a competitive ratio of at mbst4¢ for an environment witli locations.

Proof. We divide the phase into subphases according to the growgfiged above. In subphageonly
pages fromA; are evicted. Denote the length of subphad® k;. We generalize the connection faults
assignment from the proof of TwolLocations, and prove thatabnnection faults can be assigned so that
any new page requested in a phase is assigned atithamhnection faults, wheréis the number of different
locations requested in this phase.

1. To the first new page in the phase, we assign the first cdondault from each subphase

2. In subphase, to new pages that are not fraf we assign at most two connection faults in subphases
Gyeooy

3. In subphase, to new pages froml; we assign at most two connection faults in subphases, . . ., ¢

For eachi, the first request in subphases not to an old page ofl;, because all of them are still in the cache
at this point. The second request in subphage the first one tad;) will cause a connection fault. This is
handled in Step 1 (note that the first page requested in theephaew).

Consider subphase 1. All old pages frofy, . .. are still in cache. Some old pagesAnR may be out.
Any new page not fromd; can cause a connection fault, plus another one if the nexestds forA, again.
See Step 2. Suppose there aresuch pages. Denote the number of new pages figrby o} > 1. (Note
that the first page in this phase is new.) Then after subphatere are stilu; + o} old pages fromA;
which have not been requested in the current phase. We ea# thagekate.

In subphase 2, all old pages frafy and later are still in the cache. Some old pagedirand A, may
be out. Denote the number of new pages requested in this asdp¥hich are not froms by as. Each such
page can cause two connection faults in this subphase (ptdhd also holds for the; + « late pages
from Aq, if they are requested in subphase 2. Since these corresparav pages requested in subphase
1, the connection faults are assigned to those new pagesIptEinally, there are), new pages fromis,
which do not cause connection faults in the current subplagénstead cause late pages.

In fact, any request out of these three categories corresptinone old page froml, which is not
requested in this subphase, and which might still be reqddater and cause extra connection faults (Step
2 and 3). Generally, it may be seen that in each subphaseneacpage requested corresponds in a one-to-
one fashion to an old page which is not requested in its praggphase. This concludes the explanation of
the assignment procedure.

Denoting the number of new pages in subphaeéphasei by n;;, we find that

¢ ¢
EBL (i) Sk + Y 2n(+1—4) <k +20)  nyj.
j=1 j=1



Here we have used that in any phalg,_, n;; > 1. On the other handyPT(i — 1) + OPT(i) > 37, nyj,
andoPT > n wheren is the number of phases. Thus

n A
EBL < kn + %Z Z n;j < kOPT+ 400PT = (k + 40)OPT.
=1 j=1

This completes the proofm

4 Resource Augmentation

In this section we consider the case where the document cdicheT has size2 < h < k. Recall that the
tight bound on the competitive ratio in the standard modeHis—.

We begin by giving a lower bound for the case< k. A lower bound forh = k is given by Theorem
1. Aninteresting question is whether the competitive ridrahe problem with locations tends tovhenk
grows. In this section we show that the tight ratio for theedas= 2 is % and thus it is slightly worse but

still tends tol. We show that this ratio is achieved b0, whereas the competitive ratio bRuU is exactly

k+2
k—1°

Theorem 5 The competitive ratio of any online algorithm, such that éifgorithm hask slots in its cache
andoprThas2 < h < k slots is at least

k+2+ [5535]
k—h+2

This number is strictly higher thab=L for anyh < k.

Proof. We use phases. The only requirement for the starting stétatisLG is in a different location than
OPT. We denote the pages oPT by aq, as, . .., ap (though they may be from different locations) and the
location ofoPTby B.

We issue requests for the following sequence of pages:

bi,bo,...,bp_p € B.

These pages have in common that none of them appear in ditheathe obpPT or the cache oALG.

After k£ — h such requests there is a request for a pagich is from a different location than all the
pages in the caches ofPTandALG. Every next step after thatL.G has in its cach& pages, thus at least
one of the pages; € {a1,a2,...,ap,b1,b2,...,bp_p,p} IS NOt present in its cache. The next request will
be issued for pagg. We issue such requests until at least 1 different pages, not including pageare
requestedoPT can choose the pages it discards, so after thekfirsth requests and the request for page
it will have in its cache pagg and theh — 1 unique pages that were requested after it. Thus it does got pa
for any request after the request for

Since there are at least— 1 requests after the request for pagehere are at leagt requests in the
phase. ALG pays at leasi for any of the requests we issued. It p&yor at least three requests: The
request for page, (the first request), the request for pagend the request for page which must be from
a different location from page. In total ALG pays at least + 3 for the whole sequence.



OPT pays onlyl for each of the firsk — h requests and anothifor the request for page to a total of
k—h+2.

For large values of,, we can improve the estimate for the costafs by taking into consideration the
maximum amount of pages from the same location shat has in its cache. SincePT uses a sequence of
k — h pages from the location where it was at the start of the phlasmjghout the scheme we need only a
maximum ofk — h + 1 pages from each location. TherefereG has to move to a different location at least
everyk — h + 1 pages. This move costa G 2 instead of 1 and it occur(s,%} times. In other words,
the cache oALG holds pages from at Ieaé%} different locations.

HenceaLG pays at least + 2 + (kﬁ—g}rll and the lower bound is proveads

This lower bound is slightly larger tha@_’;ﬁ for all values ofh < k. Note that the proof fails for
k = h since in this case there are no initial requests in the phase.

4.1 The casé =2

For this case, we show matching upper and lower bounds. Timalpper bound is achieved IsyFo.
Additionally, we prove that the algorithmru performs strictly worse thaniFo even forh = 2, and give
tight bounds on its competitive ratio.

Theorem 6 Any online algorithm wittk > 2 slots in the cache has a competitive ratio of at Ie%?i when
compared to an offline algorithm withslots in the cache.

Proof. For k > 3, this follows directly from Theorem 5. Fdr= 2, this is Theorem 2=

Theorem 7 The competitive ratio afiFo for h = 2 is 3.

Proof. The lower bound was proved in Theorem 6. Consider now a sequairequests. Since RFO
only faults change the behavior, we are only interesteddnests that were faults fFo, and remove all
other requests form the sequence (this may only increaseoteofoPT and does not change the cost of
FIFO).

We use the names “bad fault” for a fault Fo which is not a fault ofoPT and “good fault” for a fault
of bothopT andFIFO. A bad fault is a fault that raises the competitive raticcfo and a good fault is a
fault that helpsriFo maintain a low competitive ratio becauseT pays for it as well. We define a phase to
be a sequence of faults which starts with a bad fault and emelsemuest before the next bad fault. In other
words, the first request in the phase is a bad fault and the fathis in the same phase, if any, are all good
faults.

We begin by giving a lower bound @f on the length of any phase. Lete a request which causes a
bad fault, and ley denote the previous request. Already before the requegiafgep, OPT must have in its
cache page that was just requested and pagelust afterp is requestedriFo has in its cache pagesq
andk — 2 older pages.

If the next bad fault will be on pageit has to occur after at leagt— 1 faults in order for page to be
discarded byiFo. Similarly, for the next bad fault to be on pagé has to occur after at leastgood faults.
For the next bad fault to be on a different page, it must ocfter at least + 1 good faults since one good
fault is necessary to put the new page in the cacteraf and afterwards it takésfaults forFiFo to discard
it. This shows that in all cases, there are at léast1 good faults after the bad fault that starts the phase.
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The bad faults cost a maximum of 2 feiFo and nothing foropT. The first good fault may cost 2 for
FIFO and only 1 foropPT. After that both of the algorithms are in the same locatiathe nextt — 2 faults
costs the same fanFo andoPT. The worst case occurs if all these faults cost 1. In this easepaysk + 2
andopPT paysk — 1. We will call a phase with this exact ratio a “bad phase”Hwo.

However, during a bad phaseeT does not change its location. Moreover, the next phases stéitt a
request for page. This request must be a fault oPT. This is true since fok > 2, by definition ofFIFO,
any three consecutive requests must be distinct, thereforeng two consecutive requests, at least one is a
fault. Since the first request for pagevas a fault ofopT (since the request just after it, which is fois not
a fault ofopT), opTis still in the location of page, and so isfiFo which is in the same location.

Therefore in any phase which immediately follows a bad phase only pays 1 for the first request,
and the same aspPT for the remaining requests since they are still in the saroation. The ratio of the
costs in this phase is at mdst (k — 1). This is a “good phase” foFIFO.

Every bad phase must be followed by at least one good phageh yiblds an average ratio (2« +2) :
(2k) = (k+1) : k or even better. To avoid good phases;T must either change the connection or prolong
the phase so another page will be requested in the beginhthg aext phase.

To change its connectiobPT must at some point suffer a cost of 2 instead of 1, thus raisrtgtal cost
to k. Such a change of connection may cesto 2 instead of 1 if done on one of the ldst- 2 requests,
or nothing extra if done on the second request for wifielo already pays 2. Therefore the maximum cost
FIFo will suffer in this case will bék + 3 instead ofk + 2 and the ratio of the phase ({5 + 3) : k. We will
call such a phase a “normal phase”.

If opTdoes not change its location, the phase must be prolongeti&gsa one request. If the phase is
prolonged by exactly one request the bad fault will againheerequest for page, and therefore the next
phase may be a bad phase or a normal phase. In the prolongsel, fiiha cost of botloPT and FIFO is
increased by one or two so the ratio of the phase is@sp3) : k. This is also a “normal phase”.

Since for every additional requesPT andFIFO pays the same, prolonging the phase by more than one
request will yield a ratio lower thafk + 3) : .

Considering the entire request sequence, the averageatiosisrat mos{k + 1) : k in good and bad
phases (since there are at least as many good phases as $es) pimal at mosk + 3) : k£ in normal phases.
This proves the upper bounaa

Finally, we consider the performance of the algoritbru for the casér = 2. We start with an example
whereLRuU achieves a ratio not better th%ﬁ_ﬁ, and then show a matching upper bound. This is worse than
the upper bound afiFo. The example holds fdt > 2, an example fok = 2 was given earlier.

Finally, we prove the following theorem. The proof is in th@pandix.

Theorem 8 The competitive ratio afru for h = 2 is exactly%, which is strictly worse thariFo.

5 Conclusions

We have shown the first algorithms for paging with connedtitivat break the trivial performance bound
of 2k. An open question left by these results is the precise ralettie locations play in this model. All
our lower bounds require only two or three locations, and itinclear whether using more locations can
improve these results. However, it is possible that the aditive ratio of an adaptation of our algorithm
EBL is smaller thar2k even for a large number of locations. The idea is to defineiteecf a location at
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the time when a phase starts as the number of pages from ¢hisolio which are present in the cache of the
algorithm. Then we use a sorted list of locations (largesttion first).
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A Proof of Theorem 8

Proof. We first show the lower bound. For simplicity, let, ..., ar_1,ar = ag be pages from a location
A, anda be a page of locatior. The initial state of a phase is

ajag ... ak_gbak_lB/ak_le.
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The phase starts with requests éqf, a1, ..., ar_o. At this timeLRU does not have in its cache anymore
and this is the next request. The last request isifor,. This is not a fault for any of the two algorithms,
but it changes the state bRu which is nowaya; ... ai_3bay_oB. OPTIis in the statey,_obA, ithadk — 1
regular faults on the first — 1 requests. Note thatPT never changes its locationRu has a connection
fault on the first page of a phase andtorit has regular faults on all requests but the last one. Toer¢he
costs ofLRU arek + 2 and the optimal cost i8 — 1. Note that the state we reached at the end of a phase is
equivalent to the initial one.

We now prove the upper bound. We use terminology similar ¢optitoof of Theorem 7, only here we
cannot assume that all requests are faults for the algarittenefore there are “good faults”, “bad faults”
and “non-faults” which are requests that are not a fault for af the two algorithms, and “excellent faults”
which are faults obpPTbut not of the algorithm.

A change that we do in the sequence without changing the tigei@t LRU or the cost is removal of all
requests but one, in sub-sequences of consecutive idemtipgests.

A phase is the sub-sequence of requests, from the time tteat fablt occurs, until just before the next
such time. Similarly to the proof fafiFO, we denote the first request in a phaseptand the request just
before that by;. oPTmust have had a fault ap Otherwise the request just befarer, must be identical to
p or to g. Since we removed multiple consecutive instances of thesanuest, it must be. However, ifp
appeared just beforg it is still in the cache of Ru, and cannot be a fault aRu.

After the first good fault and until the end of the phasey pays no more thaopPT. This can be seen
as follows. Immediately after the good faulgu andopPT are at the same location. This does not change as
long as there are good faults. There can be no bad faults hyitdefi LRU andoPT pay the same as long
as they remain at the same locationoHT changes its location andrku does not, this happens on a request
that is not a fault for.Ru. The cost thabpT has for this fault can be assigned to the first good fault that
follows. Note that we showed above that the phase ends indfgoti. This shows thatRu does not pay
more thanopT after its first good fault.

Between the bad fault that starts the phase and the first gadtl IfRu pays nothing. Howeverru
possibly pays two more thaopT for the bad fault that starts the phase, and one moreairarfor the first
good fault. Thus its overall cost for the phase is at most 3enttwanO P7T'.

Denote the page that starts the next phase (i.e. causes aldgcf/p’. After the last time thap’ is
requestedpPT keepsp’ in its cache (otherwise it would not have a reason to loadatragefore the next
request tg’, and that means that would not be a bad fault). ¢ From thig pajoPT can at most serve the
very next request without a fault, but after that it has tdtfan every request since it has only one free slot
in the cache. There are at ledstequests untiLRu dropsp’, SOOPT pays at leaskt — 1 (more if there are
also connection faults). Note thattmay bep or q.

This completes the proofm
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