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Abstract

In this paper, we consider an ordinal on-line scheduling problem. A sequencedépendent jobs
has to be assigned non-preemptively to two uniformly related machines. We study two objectives which
are maximizing the minimum machine completion time, and minimizingttreorm of the completion
times. Itis assumed that the values of the processing times of jobs are unknown at the time of assignment.
However it is known in advance that the processing times of arriving jobs are sorted in a non-increasing
order. We are asked to construct an assignment of all jobs to the machines at time zero, by utilizing
only ordinal data rather than actual magnitudes of jobs. For the problem of maximizing the minimum
completion time we first present a comprehensive lower bound on the competitive ratio, which is a
piecewise function of machine speed ratioThen we propose an algorithm which is optimal for any
s > 1. For minimizing thel,, norm we study the case of identical machines< 1) and present tight
bounds as a function ¢f.
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1 Introduction

In this paper, we consider the following scheduling problem. Jobs are to be assigned to uniformly related
machines. The objective is either maximizing the minimum machine completion time (also called “machine
covering”) or minimizing thel, norm of the completion times (also called “scheduling in th@orm”).

We are confronted with a sequence of independentjiobs, . . ., p, each with a non-negative processing
time, which must be scheduled non-preemptively on one of two uniformly related madiinasd M.

We identify the jobs with their processing times. Machiig has speed; = 1 and machinel/; has
speedsy = s > 1. If p; is assigned to machin&/;, thenp;/s; time units are required to process this

job. Machines are available at time zero. In trelineversion of the problem, we assume that jobs arrive

“Dept. of Mathematics, State Key Lab of CAD & CG, Zhejiang University, Hangzhou 310027, P. R. China.
tanzy@zju.edu.cn . Research supported by the National Natural Science Foundation of China (10301028).

TDept. of Mathematics, State Key Lab of CAD & CG, Zhejiang University, Hangzhou 310027, P. R. Chiathhey
@zju.edu.cn . Research supported by the Teaching and Research Award Program for Outstanding Young Teachers in Higher
Education Institutions of MOE, China, and National Natural Science Foundation of China (10271110, 60021201).

tCorresponding author. School of Computer Science, The Interdisciplinary Center, P.O. Box 167, 46150 Herzliya, Israel.
lea@idc.ac.il . Research supported in part by Israel Science Foundation (grant no. 250/01).



one by one and must be assigned to a machine immediately upon arrival. The decision cannot be changed
later, when subsequent jobs become available. Furthermore we consider the problem unidignahdata
scenario: the values of the processing times are unknown but the sorted order of the jobs according to their
processing times is known in advance. Accordingly we supppsep, > --- > p,. We are asked to create

an assignment of all jobs at time zero by utilizing only ordinal (rank) data rather than the actual magnitudes.
We denote this problem &32|ordinal on — line|Cyyin.

Scheduling, given the goal of maximizing the minimum machine completion time, has applications in
the sequencing of maintenance actions for modular gas turbine aircraft engines [10] and was deeply studied
for last two decades [5, 4, 22, 2]. But to the best knowledge of the authors, very few papers considered the
case of uniformly related machines. The only such paper we are aware of is [2], where semi-online versions
with known optimal value and non-increasing job processing times were discussed.

Scheduling in thé, norm was first presented in [3] where semi-online scheduling on identical machines
is studied. Theé; norm measure has applications in computation of the average delay in disk access of jobs.
On-line scheduling on identical machines in thenorm was studied in [1]. In that paper (among other
results) the tight bound for two identical machines is given for every valge of

Scheduling problems and algorithms for them, which utilize only ordinal data rather than actual magni-
tudes, are calledrdinal [17], and have many real world applications. Though the exact values of processing
times of jobs are unknown, the additional knowledge on their relative order is useful to derive algorithms
with good approximation performance. This is the reason why we also say that the problem we study is ac-
tually semi-online. The notion of semi-online was defined to be a relaxation of some on-line problem [13].
Ordinal algorithms are particularly important in practical applications where it is nearly impossible to know
the exact value of a processing time of a job in advance, due to cost, time, or material property. However,
the comparison of two jobs in such situations is relatively simple. Another possibility is that the processing
times of jobs are flexible or easily disturbed, while the relative order remains unchanged. Under these con-
ditions or some other circumstances, we prefer to use an ordinal algorithm rather than an algorithm which
depends on the exact values of processing times, sutt®ds Note that ordinal algorithms are known to
be able to achieve more robustness thdti" [18, 12]. Due to their various applications, ordinal problems
and algorithms had been studied also in many other classical combinatorial optimization problems, such as
matroids [14], bin-packing [16], and packing [15].

Competitive analysiss a type of worst-case analysis where the performance of an on-line (or a semi-
online) algorithm is compared to that of the optimal off-line algorithm [19]. For an on-line (semi-online)
algorithm A, let C4(.J) (C* for short) denote the minimum machine completion time of instahgeo-
duced by algorithm4, andCOFT(.7) (COFT for short) denote the optimal value in an off-line version.
Then the competitive ratio of algorithr is defined as the smallest numhesuch thai:C4 > COFT for
all instances. An on-line (semi-online) algorith#is calledoptimal if there is no on-line (semi-online)



algorithm for the discussed problem with competitive ratio smaller than that dfhe combination of an
on-line (semi-online) algorithm and a negative result showing that the algorithm is optimal, allows us to
find the best competitive ratio for the problem. The competitive ratio of an optimal on-line (semi-online)
algorithm is calleda tight bound Moreover, for scheduling problems on two uniformly related machines,
we see both the competitive ratio and the lower bound as functions of speesd. ratgorithm A is called
parametrically optimalif the two above functions match for asy> 1. We are interested in finding the
tight bound as a function of.

For the goal of minimizing thé, norm, given an algorithm, let C4 denote thé, norm of the machine
completion times, and [&f'°F” denote that value in an optimal off-line algorithm. Then the competitive
ratio of algorithmA is defined as the smallest numhesuch thatC4 < ¢COFT for all instances.

A strongly related problem is ordinal on-line scheduling on parallel identical machines with the objective
of maximizing the minimum machine completion time, denotedby|ordinal on — line|Cy;,. He and
Tan [12] presented an algorithm with competitive ratio no greater thaji , %1 + 1 while the lower bound
is> % for generalm machine case. Both are on the ordedin m). Moreover, for the special case of
m = 2, 3, optimal algorithms were presented in [11, 12]. The tight bound for two machirg® ishich is
a special case of our results. For minimizing the makespan using an ordinal algorithm, [17] showed that the
tight bound for two machines /3.

Another strongly related problem is on-line (semi-online) scheduling problem on two uniformly related
machines with the objective of minimizing the makespan, denote@\C',,.x. Epstein et al. [9] showed
LS is a parametric optimal algorithm for the on-line version and presented randomized algorithms with
smaller competitive ratios. Tan and He [21] presented an algorithm for the ordinal on-line version. It is
optimal for the majority of values of € [1, co). The total length of the intervals efwhere the competitive
ratio does not match the lower bound is less than 0.7784 and the biggest gap between them is under 0.0521.
Tan and He [20] also considered algorithms for other two semi-online versions where the total processing
time of jobs is known in advance, or the largest job processing time is known in advance, respectively.
Epstein and Favrholdt [7, 8] considered a semi-online version where jobs arrive in non-increasing order, for
both the preemptive and the non-preemptive cases, parametric optimal algorithms are proposed. Recently,
Epstein [6] considered a generalization of on-line bin stretching problem, which can also be viewed as a
semi-online scheduling problem with known optimal makespan on two uniformly related machines. For
the preemptive version, she gave an optimal algorithm with competitivelradiod for the non-preemptive
version she gave an algorithm with largest gap between the competitive ratio and lower bound less than
0.073.

In this paper, we propose a parametric optimal algorithntf®@ordinal on — line|Cpy. IN Section 2,



we will prove that the parametric lower boung) is as follows

20k D g <s<bp, k>2

ks+2(k—1)°
c(s) = foll, by <s<ap, k>2,
2, s> 2,

wherea;, = k%’fl andb, = % In Section 3, we present an ordinal algoritliprdinal _Min

and prove that its competitive ratio matches the lower bound forsary 1. ThusQOrdinal _Min is a
parametric optimal algorithm fap2|ordinal on — line|Cp,in. The graph of:(s) is shown in Figure 1. Note
thatc(s) < 2 for all values ofs.

In Section 4 we consider scheduling in thenorm on two identical machines (i.e. = 1). We give
a simple algorithm and compute its competitive ratio as a functiop, #fien we design matching lower
bounds.
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Figure 1: The parametric optimal bound @2|ordinal on — line|Cyyin

2 Lower bound

In this section, we present the parametric lower bound@fordinal on — line|Ci,:y,, Which is stated in
the following theorem.

Theorem 2.1 Any algorithmA has a competitive ratio at least

2(2k—1)s
min{ 22508 2ke1y ) Eerator) Gkl <s<bg, k=2,
o(s) = kst2(k—1)" k+1 21 b < s <ap k>2,
2, §>2,

wherea;, = 2% is the root of the equatiodit = % by = 2E 2D
22k—1)z _ 2k+1
Fer2(h—1) — kil

is the root of the equation




Sincea; =1, ap—1 < by < ap < byy1,k > 2anday — 2 (k — o0). The functionc(s) is well-defined
foranys € [1, 00).

The proof will be completed by using an adversarial method. All instances used in this section have
optimal valuel, and thusC9PT /C4 = 1/C4. For easy reading and understanding, we show Theorem 2.1
by distinguishing several cases according to the value di/e prove the case € [2,00) in detail. The
remaining cases of € [1, 2) can be verified by essentially similar arguments, hence we sketch the proof by
listing the schedules of algorithm, and the adversarial sequences for all possible situations are given in
Tables 1-3 case by case afterwards.

Lemma 2.1 For s € [2,00), any algorithm forQ2|ordinal on —line|C,,;, has competitive ratio of at least
2.

Proof: Obviously, the first two jobs must be assigned to different machines by any algeritiherwise,
consider the instangg = s, po = 1, we haveC# = 0 and thusl /C4 = co. Next, if algorithmA assigns
p1 to My andp, to Mo, the above instance impligs? = 1/s and thusl/C4 = s > 2. Finally, if A
assigng; to Ms andps to M;, consider the assignment pf. If A assigns to M7, consider the instance
p1 = p2 = 5/2, p3 = 1, we haveC4 = 1/2, 1/C4 = 2. Otherwise, consider the instange = s,
p2 = p3 = 1/2, we also have'! = 1/2,1/C4 = 2. O

We separate the analysis into two cases according to which machine receives the very first job. In Lemma
2.2, we prove that if algorithr assigng; to Mo, the competitive ratio ofl is at least:(s). In Lemma 2.3,
we prove that ifA assign®; to M;, the competitive ratio ofl is at least:(s). Combining Lemmas 2.2,2.3,
we get the desired lower bound for any [1, 2).

Lemma 2.2 If A assigng; to Mo, the competitive ratio ofl is at leastc(s) for anys with1 < s < 2.

Proof: Table 1 implies that ifl assign®; to My, the competitive ratio ofl is at leasinin{3s/(s+1),5/3},
which equals:(s) foranyswith 1 = a; < s < ap = 4/3.

To prove the result fos with a1 < s < ag, k > 2, we replace the last row of Table 1 with aklt — 3
rows of Table 2.
lifé&ljf) > ki(f’;(_,:jj) 2 <[ < k, all values in the last column of the new table are greater

than or equal tonin {225 L%, 2L

Since2 >

} for any s with a;,_1 < s < aj. The lemma is thus proved]
Lemma 2.3 If A assigng; to M, the competitive ratio ofl is at leastc(s) for 1 < s < 2.

Proof: Consider Table 3. Note that row 4 is valid only for< 3/2, while rows 5 and 10 are valid for
s > 3/2. All other rows are valid for the complete interjal 2).
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Schedule by Adversary instance 1
My Moy cA
0 {p1,p2} {s,1} o
{p2} {p1,p3} {s,3, 3} 2
{p2, p3, pa} {p1} {3151%1%% 2
{p27p3} {pl)p4ap5} {571717171} 2
I=s 2—s 2=
{anPSaPSaPG} {p17p4} %7%7%1’ Tsl’lTs’lTs} %781
{p2>p37p5} {p17p4ap6} {57515737575} 3
Table 1: The casé < s < 4/3 for Lemma 2.2
{p27p37p5} {p17p47p67p7} {‘%é?"'a%} 2
2— 2— 10
{p27p37p57p77p8} {p17p47p6} {%7%7%717087 717()5} 35_*:94
{p2, D3, ps,- D21} {p1.pa, 6, P21, P2141} {s,9," ", %} 2
s s s —s _s 2(21—1
{p2,p3,p5," -, P21+1, P22} {p1,p4,06," -, P21} {5,5’5’2(35_1)7"%2(2%_1)} %
{p2:p3,ps, -+, p2r—1} {p1,p4, 6, P2k, P2r+1} {S,i,"',ﬁ} 2
s s s —s —s 2(2k—1
{p2;p3, 5, , P2k+1,P2k+2} {p1,p4,p6," -, P2k} {5;5357 g(gk_l)w", g(gk_l)} ksg_g(k_)i)
{p2,p3,p5, -, p2k—1, 2641} | {P1,Pa D6 "+ P2k, P2kt ) {S,ﬁ,“',ﬁ} 2;5%11

Table 2: The case >

4/3 for Lemma 2.2




row Schedule byA Adversary instance 1
M, M, cA
1 | A{pipe} 0 {s,1} 00
2 {Pl,ps} {p2} {57%’%} 2s
3 {pl,m} {p27p3} {5’%a%7%} %
4 {pl} {pz,pg,p4,p5} {%7%’§7§a§} 2
5 {p1} {p2,p3,p4,p5} {55555} 2
6 | {pips} {p2, D3, ps} {s, 7.5, 1} Z
7 | {p1,p5,p6} {p2,p3,pa} {s,3, 5, 5 5, &} Bs
8 | {p1,ps,pr} | {p2,p3,P4,P6} {s,%, 5, 5: 5, 5,2} 3
9 {pps} | {pospsipape vt} [ {5:5:33 5 55 ) | oo
10 {pl} {anp37p43p5ap6} %7%a%7%7%?8_%} 2
11 | {p1,ps} {p2,p3,p4,p5} {s,2,2,2,5,1 5

Table 3: Inputs for Lemma 2.3

If A assignsp; to My, the first four rows in Table 3 together with row 6 show that the competitive
ratio of A is at leastds/3, and the first four rows together with rows 7-9 imply that the competitive ratio
of A is at leastmin {3s/2,6/(2s + 1)}. Thus the competitive ratio for < s < 3/2 is at leasty(s) =
max{4s/3,min {3s/2,6/(2s + 1)}}. Itis not difficult to show that fos € [1,3/2], ¢(s) < 3s/(s + 1),
whereas in the same intervgls) > 3s/(s + 1). This proves the lower bound far< s < 3/2.

For3/2 < s < 1.6 we use rows 1-3 and 5-6. We get a lower bounchdfi{3/s, 4s/3}. In this interval
4s/3 > 2and3/s > 15/8 > ¢(s).

Fors > 1.6 we use rows 1-3,6,10,11. We get a lower bounandfi{5s/4,2} > 2 > ¢(s), therefore
Lemma 2.3 is provedd

By Lemmas 2.1,2.2,2.3, the proof of Theorem 2.1 is completed.

3 A parametric optimal algorithm QOrdinal.Min

In this section, we present an algoritt@Ordinal _Min (QOM for short) and study its competitive ra-
tio. The algorithm consists of an infinite sequence of procedures. Fog anyl, it chooses exactly one
procedure to assign jobs. We first give the definition of procedures.

Procedure(0):
Assign jobs in the subsépo;2|i > 0} to My;
Assign jobs in the subsépo;1]i > 0} to M.

Procedure), k > 1:



Assign jobs in the subsgbs, ps} U {p34 ak+1)j4ild > 0,4 = 2,4, -, 2k} U{psy(opt1)j1204117 = 0}
to M;y;

Assign jobs in the subsép: } U {ps4 2k+1)j+4ld = 0,4 =1,3---,2k — 1} to Ma.

Algorithm QOrdinal_Min:

1. If s > 2, assign all jobs by Procedure(0).

2. If s € [ag,ars1), k > 1, assign all jobs by Procedufg(

Theorem 3.1 The parametric competitive ratio of the algorithO M is ¢(s), and it is an optimal algo-
rithm for Q2|ordinal on — line|Cpiy.

Proof: As we have already shown thdt) is a lower bound foiQ2|ordinal on — line|Cpin, We only
need to showCOPT /CROM < ¢(s). Let T be the total processing time of all jobg; and L, be
the completion times of\/; and M, after processing all jobs by the algorith@O M, respectively, then
CROM = min{Ly, Ly}. Obviously,CO"T < T/(s + 1) andCPT < T — p;. We get the claimed
competitive ratio by considering two cases according to the valge of

Lemma 3.1 For anys > 2, we haveCOFT /CROM < ¢(s) = 2.

Proof: Note thatQOM chooses Procedure(0) fer > 2. We only prove the case of = 2I, the case
of n = 21 — 1 can be proved by adding a dummy jply = 0. By the definition of the procedure and
p1 > -+ > pp, We have

l

-1

1 1 T—m 1

Ly = E P2 > 5 E (p2i +P2i+1) + §p2l = B > §COPT7
i=1 i=1

l l

1 1 T _s+1 opr
Ly= = > — . )= —> 2T gorT
2 S;mzl_%;(mzﬁ-m) 55 2 o5

Note thatl /2 < (s + 1)/(2s), we haveCOFPT /CROM < 2 and thus the result is proved fer> 2. O

Before we prove the result for the caselok s < 2, we give two estimations foe©"”. Denote
P =73%"", pi. We assume that the sequence contains at least three jobs, otherwise we add jobs of processing
time zero to the sequence.

Lemma 3.2 (1) If p1 > (p2 + ps)/s, thenCOPT > (py + p3) /.
(2) If p1 + P < (p2 + p3) /s, thenCOFT = p, + P.

Proof: (1) Consider the following feasible subschedule for the johsps, ps}: p1 is assigned td\fy, p,
andps are assigned td/,. Sincep; > (p2 + p3)/s, the objective value of this subschedule is at least
(p2 + p3)/s, which implies thaC """ > (py + p3)/s.
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(2) Consider the following feasible schedule for the complete sequence ofjphadps are assigned
to M,, and all other jobs are assigneditfy. Then its objective value isiin{p; + P, (p2+p3)/s} = p1 + P.
SoCOPT > p + P.

On the other hand, if; shares a machine with at least onepgfps in a schedule, then the objective
value is no greater than the completion time of the machine which is not processengd thus no greater
thanp, + P < p; + P. Otherwise, botlp, andps do not share a machine wigh, then we also have
COPT < p, + P. The lemma is thus proved!

The next lemma estimates the machine completion times yielded by Prodgdiére( 1.

Lemma 3.3 If QOM chooses Procedurg), £ > 1, we have

E+1
2k +1

1 k
Ly > T — Lo > — P.
1> (T —p1), 2_3(p1+2k+1 )

Proof: We only prove the case of= 3+ (2k + 1)l, other cases can be proved by adding at Rhstummy
jobs of processing time zero. Singe> --- > p, , we have

2

3 (p2 +p3 +pa),

k—1 1 k—1 2k—1

1
Zp3+(2k+1)j+2i > B Z (p3+(2k+1)]+22 + p3+(2k+1)j+21+1 Z P34+ (2k+1)5+i-
i=1 i=1 i=2

P2 +p3 =

Using a similar approach repeatedly, we have

-1 /k
Li = pa+ps+ Z (Z D3+(2k+1)j+2i T P3+(2k+1)j+2k +p3+(2k+1)]+2k+1>
Jj=0 \i=
1—2 2%—1 2%+2
2(p2 + p3 + pa) 1 2
> — — *+ Z 5 Z D3+ (2k+1)j+i T 3 Z D3+ (2k+1)j+i
j=0 =2 =2k
| 21 o 2kl
+ (2 Z P3+(2k+1)(1—1)+i T 3 Z p3+(2k+1)(l1)+z’>
i=2 i=2k
1-2 2k+2
T—p1  p2+p3s+ps 1 Dot (2k+1)1 + P34 (2k41)1
- ) + 6 Te Z Z P3+(2k+1)j+i ( ) 6 e
] =0 =2k
2k+2 1-2 4k
T— pl 1
> —
= T3 T§ k: +1 Z it
j=0 i=2k
D2+(2k+1)l T P3+(2k+1)1
6
T— T— k+1
_ /4! i P (T —p1),

2 202k +1)  2k+1



and

-1 k
1
Ly = S\t Zzp3+(2k+l)j+2i—l
j=0 i=1
1 =1/ 2k—2 | 2kl
= S |» + Z (2 Z D34(2k+1)j+i T 3 Z p3+(2k+1)j+i>
j=0 i=1 i=2k—1
1 =1/ 2k=2 | 22 | 2l
= S\ + Z (6 Z P3+(2k+1)j+i T 3 Z P3+(2k+1)j+i T 3 Z p3+(2k+1)j+i>
=0 i=1 i=1 i=2k—1
| L1 2k-2
1 — (p1+p2+ps)
= s\t Z Z D3+(2k+1)j+i T 3
] 0 =1
-1 2k+1
1 1 2k—2 — (p1+ P2+ p3)
> Z
Z 3 p1+ 6 o1 jz: ; D3+ (2k+1)j+i T 3
1 k—1 T — (p1+p2 + p3)
= = — (T -
S <P1+3(2k+1)( (p1+p2+p3) + 3
1 k
= - _p
s (pl TS >

. OPT
Lemma 3.4 For anys with by < s < ag, k > 2, we haveSgom < c(s) = Zeil,

Proof: In fact, by Lemma 3.3, we get

k41 k+1 opr
L > T .
12 o T=p) 2 57 ¢

To proveLs > (k+1)COPT /(2k + 1), we distinguish three cases according to the values,af,, p3 and
P.

Case 1p1 > (p2 + p3)/s.
By Lemma 3.2(1)CO"T > (py + p3)/s. By Lemma 3.3 and’°"T < T/(s + 1), we have

1 k 1 k k P2 + D3 k T
L, > = Pl=(--_% ), — : L
2 = s<p1+2k+1 > <s (2/<:+1)s>p1 %+1 s 2%+l s

> k+1 o — k P2tps ko s+l k+1\oopr, k+1 opr
(2k+1)s 2k +1 s 2k+1 s 2k +1 2k +1

s _k+1 patps Kk patps k—s  p2+ps k?-l-lcopT

~ (2k+1)s s 2k +1 s (2k+1)s s 2k +1

_ (1 k41 p2+p3+k+1COPTZk+1COPT_

s 2k+1 5 2k +1 2k +1

The last inequality is true for > (2k + 1)/(k + 1) which is always true fos < ay.
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Case 2(p2 +p3)/s —p1 > 0andP < (p2 +p3)/s — p1.

In this case, we hav® < 2p;/s —p1 = (2 — s)p1/s (sincep; > p2 > ps3). By Lemma 3.3 (2), we get
COPT = p; + P, and thus

1 k
Ly > - P
2 = s(p1+2k+1 >
1 k+1 k k+1 k+ 1
<s 2/~c+1> +<(2k+1)s 2/~c+1> o1l
1 k41 s k kE+1 E+1 opr
> (= S p - P
- (s 2k:—|—1> 2—s +<(2k—|—1)s 2kz—|—1> +2k+10
(2/<:+1)( — )s 2k + 1 2k + 1

The last inequality is true for > 2k/(k + 1) = ay.
Case 3(py +p3)/s —p1 > 0andP > (ps +p3)/s — p1.
Sincep; > (p2 + p3)/2 andp; + P > (p2 + p3)/s, we have

1 k
Ly > - P
2 = s(p1+2k:+1 )

(1 kY E k1l (01 4 P)
- G @krns) PP\ @k rys @+
k+1 pat+ps  k+1 pi+pt+ps+P

C2%k+1 s+1 @ 2%k+1 s+1
s _k+1 P2tps k—s p2tps  k+1 pa+ps
— (2k+1)s 2 s(s+1)(2k + 1) s 2k+1  s+1
k+1 T
2k+1 s+1
252(2k + 1) s 2k+1 ~2%+1
Lemma 3.5 For anys witha, < s < b1, k> 1, we havegg% <c(s) = (,sz)%

Proof: Sinces > a; = 2k/(k 4+ 1), we obtain

k+1 (k+1)s + 2k
Ly > T—py) > o )ST R
12 e TP 2 g

(k+1)s+2k _opr
2s(2k + 1)
Similarly to the proof of Lemma 3.4, we split the analysis into three cases according to the vahues,of

p3 andP. The goal here is to show thab > %COPT

(T'—p1) >

Case 1p1 > (p2 + p3)/s.

1 k 1 k k p2 + p3 k T
L, > = Pl=(f- " - - Lz
2 = s<p1+2k—|—1 ) <s (2k—|—1)s>p1 %+l s 2ktl s

11



k+1 k _p2+p3+( k .5+1_(k:+1)s+2k:>COPT

= 2kr1)st T 2%kl s %+1 s 25(2k + 1)
(k+1)s+2k opr
25(2k + 1)
k+1 pat+ps kK patps k—1 pa+ps3
— (2k+1)s s 2k +1 s 2(2k+1) s
(k+1)s+2k _opr
25(2k + 1)
_ (E+1)@2=5) patps, (k+Ds+2% opr (k+Ds+2k opr
25(2k + 1) s 2s(2k + 1) — 2s(2k+1) ’

Case 2(p2 + p3)/s —p1 > 0andP < (p2 + p3)/s — p1.

1 k
Ly > - P
2 = s<p1+2k+1 >

<1 (k+1)s+2k:>p1+<( k (k:+1)s+2k>P

s 2s(2k+1)
(k +1)s + 2k
—_ P
22kt 1) PP
L (Lo GrDstoky s k (k+1)s +2k\
s 2s(2k + 1) 2—s (
(k+1)s+2k opr
25(2k + 1)
(k+1)s+2k opr
25(2k + 1)

2%k +1)s  2s5(2k+1)

2% +1)s  2s(2k+1)

Case 3(p2 +p3)/s —p1 > 0andP > (p2 + p3)/s — p1.

1 k
Ly > - P
2 = s<p1+2k+1 )

_ (! k k (k+1)s + 2k
N <8_(2k+1)8>p1+ ((2k+1)s_2s(s+1)(2k+1)> (1 +P)

_(k+1)s+2k:.p2+173 (k‘+1)s+2k"p1+p2+p3+P

2s(2k+1) s+1 2s(2k + 1) s+1
k+1  p2+ps k-1 P2+ p3
— (2k+1)s 2 2(s+1)(2k+ 1) s

(k4 D)st2k patps , (kt1)st2k T
25(2k + 1) s+1 2s(2k+1) s+1
(k+1)s+ 2k ~opr
25(2k + 1) ‘

d

Combining Lemmas 3.1, 3.4 and 3.5, the proof of Theorem 3.1 is complgted.
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4 Scheduling in thel, norm

We start with defining the algorithm which is the same for all valugs ®/e simply use Procedure(1) from
Section 3.

P(1): Assign jobs in the subséps; o, psi+3|i > 0} to My;
Assign jobs in the subséps;1|i > 0} to Mo.

Note that the same ordinal algorithm was used for identical machines both for minimizing makespan,
and maximizing the minimum completion time [11, 17].

Theorem 4.1 The competitive ratio of any on-line algorithm for scheduling on two identical machines in
thel, norm is at least

< (a+1)" + QP) v
max —————— .
a>1 aP + 3P

The competitive ratio of P(1) is at most this bound, and therefore it is an optimal ordinal algorithm for all
norms. Note that fop = 2 this value is\/7 + /13/3 = 1.0855.

Proof: We start with the lower bound. Consider a sequence of four jols. i#f assigned on a machine
alone then use the valuésl, 1,1 for the processing times. Otherwise usé, 1, 1 for the value ofa > 1
that maximizeg(a 4 1)? + 2P)/(a? + 3P). In the first case clearlg©"” > (2 - 2?)1/? and in the second
case clearlyCOPT > (a? 4 3P)'/P. The cost of the ordinal algorithm {d + 37)'/? in the first case and
((a 4 1)? +27)'/7 in the second case. It is possible to show, using some algebra and calculus, that for
every value ofu, (1 +3P)/(2-2P) > ((a + 1)P 4+ 2P)/(aP 4 3P). Note that the maximum of the function
((a + 1)P + 2P)/(aP + 3P) is achieved in a single point in the interjal co) which is the solution of the
equation3(3/a)P~! = 1 +2(2/(a + 1))P~L. Forp = 2 we get the quadratic equatia — 4a — 9 = 0
whose positive root is = /13 + 2.

To prove the upper bound we use some additional notationsX Ltet the load ofi/; andY be the load
of Ms. By the definition of P(1) we know thaf > X/2. On the other hand we can see thiat p; < X/2.
We consider two cases.
Case 1:1f p; < (X +Y)/2, then(COPTY > 2. ((X +Y)/2)? and(CP(M)P = XP + YP. We can
use the two bounds gm to getX > Y/2. The maximum of the functiofX? + Y?)/((X + Y)/2)P) is
obtained in the boundary, i.e. f6f = 2Y and forY = 2X. The maximum value fofC*M)? /(COFT P
is (47 4-2P) /(2 - 3P). This is exactly the functiofi(a + 1)? + 2P) /(a? 4 3P) for a = 3, and therefore is it at
mostr;@ic((a + 1)P +2P)/(aP + 3P).

Case 2:If p; > (X +Y)/2, then(COPTYP > pP + (X +Y — py)P and(CPM)? = XP + YP. Since the
problem is scalable, we can assume without loss of generalityXthat2. We also substitut®” = b + 1.
We now need to bound the maximum of the functioh+ 1)? + 2P)/(p} + (b + 3 — p1)P))'/P. First we
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can see that the function is clearly bounded from above by 2 (even if all jobs were scheduled on the same
machine by the ordinal algorithm). We search for the maximurt(lof- 1) + 27)/(p] + (b + 3 — p1)P).

Given the conditions oX, Y, p1, we can restrict ourselves to< p; < b+ 1 and2p; > b+ 3. Taking the

partial derivative with respect fo we get that an extremal point must satisfy- (b+ 3)/2 and therefore it

is only left to consider the boundary. The case b + 1 gives the value 1 for the function. The case- b
gives((b+ 1)P 4+ 2P) /(b + 3P). The case = (b + 3)/2 gives((b+ 1)P + 2P)/(2((b + 3)/2)P) which is

at most((b + 1)? + 2P) /(b + 3P) for b > 1. Forb < 1 the function((b + 1)? + 2P)/(b? + 3P) is smaller

than one and thus irrelevant. We are therefore left with the upper hggllad(a + 1)P 4+ 2P)/(aP + 3P) as
claimed.O
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