
Optimal On-line Algorithms for the Uniform Machine Scheduling
Problem with Ordinal Data

Zhiyi Tan ∗ Yong He† Leah Epstein‡

Abstract

In this paper, we consider an ordinal on-line scheduling problem. A sequence ofn independent jobs
has to be assigned non-preemptively to two uniformly related machines. We study two objectives which
are maximizing the minimum machine completion time, and minimizing thelp norm of the completion
times. It is assumed that the values of the processing times of jobs are unknown at the time of assignment.
However it is known in advance that the processing times of arriving jobs are sorted in a non-increasing
order. We are asked to construct an assignment of all jobs to the machines at time zero, by utilizing
only ordinal data rather than actual magnitudes of jobs. For the problem of maximizing the minimum
completion time we first present a comprehensive lower bound on the competitive ratio, which is a
piecewise function of machine speed ratios. Then we propose an algorithm which is optimal for any
s ≥ 1. For minimizing thelp norm we study the case of identical machines (s = 1) and present tight
bounds as a function ofp.

Mathematics Subject Classification.90B35, 90C27

Keywords: analysis of algorithm, scheduling, semi-online, competitive ratio.

1 Introduction

In this paper, we consider the following scheduling problem. Jobs are to be assigned to uniformly related

machines. The objective is either maximizing the minimum machine completion time (also called “machine

covering”) or minimizing thelp norm of the completion times (also called “scheduling in thelp norm”).

We are confronted with a sequence of independent jobsp1, p2, . . . , pn each with a non-negative processing

time, which must be scheduled non-preemptively on one of two uniformly related machinesM1 andM2.

We identify the jobs with their processing times. MachineM1 has speeds1 = 1 and machineM2 has

speeds2 = s ≥ 1. If pi is assigned to machineMj , thenpi/sj time units are required to process this

job. Machines are available at time zero. In theon-lineversion of the problem, we assume that jobs arrive
∗Dept. of Mathematics, State Key Lab of CAD & CG, Zhejiang University, Hangzhou 310027, P. R. China.

tanzy@zju.edu.cn . Research supported by the National Natural Science Foundation of China (10301028).
†Dept. of Mathematics, State Key Lab of CAD & CG, Zhejiang University, Hangzhou 310027, P. R. China.mathhey

@zju.edu.cn . Research supported by the Teaching and Research Award Program for Outstanding Young Teachers in Higher
Education Institutions of MOE, China, and National Natural Science Foundation of China (10271110, 60021201).

‡Corresponding author. School of Computer Science, The Interdisciplinary Center, P.O. Box 167, 46150 Herzliya, Israel.
lea@idc.ac.il . Research supported in part by Israel Science Foundation (grant no. 250/01).

1

one by one and must be assigned to a machine immediately upon arrival. The decision cannot be changed

later, when subsequent jobs become available. Furthermore we consider the problem under theordinal data

scenario: the values of the processing times are unknown but the sorted order of the jobs according to their

processing times is known in advance. Accordingly we supposep1 ≥ p2 ≥ · · · ≥ pn. We are asked to create

an assignment of all jobs at time zero by utilizing only ordinal (rank) data rather than the actual magnitudes.

We denote this problem asQ2|ordinal on− line|Cmin.

Scheduling, given the goal of maximizing the minimum machine completion time, has applications in

the sequencing of maintenance actions for modular gas turbine aircraft engines [10] and was deeply studied

for last two decades [5, 4, 22, 2]. But to the best knowledge of the authors, very few papers considered the

case of uniformly related machines. The only such paper we are aware of is [2], where semi-online versions

with known optimal value and non-increasing job processing times were discussed.

Scheduling in thelp norm was first presented in [3] where semi-online scheduling on identical machines

is studied. Thel2 norm measure has applications in computation of the average delay in disk access of jobs.

On-line scheduling on identical machines in thelp norm was studied in [1]. In that paper (among other

results) the tight bound for two identical machines is given for every value ofp.

Scheduling problems and algorithms for them, which utilize only ordinal data rather than actual magni-

tudes, are calledordinal [17], and have many real world applications. Though the exact values of processing

times of jobs are unknown, the additional knowledge on their relative order is useful to derive algorithms

with good approximation performance. This is the reason why we also say that the problem we study is ac-

tually semi-online. The notion of semi-online was defined to be a relaxation of some on-line problem [13].

Ordinal algorithms are particularly important in practical applications where it is nearly impossible to know

the exact value of a processing time of a job in advance, due to cost, time, or material property. However,

the comparison of two jobs in such situations is relatively simple. Another possibility is that the processing

times of jobs are flexible or easily disturbed, while the relative order remains unchanged. Under these con-

ditions or some other circumstances, we prefer to use an ordinal algorithm rather than an algorithm which

depends on the exact values of processing times, such asLPT . Note that ordinal algorithms are known to

be able to achieve more robustness thanLPT [18, 12]. Due to their various applications, ordinal problems

and algorithms had been studied also in many other classical combinatorial optimization problems, such as

matroids [14], bin-packing [16], and packing [15].

Competitive analysisis a type of worst-case analysis where the performance of an on-line (or a semi-

online) algorithm is compared to that of the optimal off-line algorithm [19]. For an on-line (semi-online)

algorithmA, let CA(J) (CA for short) denote the minimum machine completion time of instanceJ pro-

duced by algorithmA, andCOPT (J) (COPT for short) denote the optimal value in an off-line version.

Then the competitive ratio of algorithmA is defined as the smallest numberc such thatcCA ≥ COPT for

all instances. An on-line (semi-online) algorithmA is calledoptimal if there is no on-line (semi-online)

2

algorithm for the discussed problem with competitive ratio smaller than that ofA. The combination of an

on-line (semi-online) algorithm and a negative result showing that the algorithm is optimal, allows us to

find the best competitive ratio for the problem. The competitive ratio of an optimal on-line (semi-online)

algorithm is calleda tight bound. Moreover, for scheduling problems on two uniformly related machines,

we see both the competitive ratio and the lower bound as functions of speed ratios. Algorithm A is called

parametrically optimal, if the two above functions match for anys ≥ 1. We are interested in finding the

tight bound as a function ofs.

For the goal of minimizing thelp norm, given an algorithmA, letCA denote thelp norm of the machine

completion times, and letCOPT denote that value in an optimal off-line algorithm. Then the competitive

ratio of algorithmA is defined as the smallest numberc such thatCA ≤ cCOPT for all instances.

A strongly related problem is ordinal on-line scheduling on parallel identical machines with the objective

of maximizing the minimum machine completion time, denoted byPm|ordinal on − line|Cmin. He and

Tan [12] presented an algorithm with competitive ratio no greater thand
∑m

i=1
1
i e+1 while the lower bound

is
∑m

i=1
1
i for generalm machine case. Both are on the order ofΘ(ln m). Moreover, for the special case of

m = 2, 3, optimal algorithms were presented in [11, 12]. The tight bound for two machines is3/2 which is

a special case of our results. For minimizing the makespan using an ordinal algorithm, [17] showed that the

tight bound for two machines is4/3.

Another strongly related problem is on-line (semi-online) scheduling problem on two uniformly related

machines with the objective of minimizing the makespan, denoted byQ2||Cmax. Epstein et al. [9] showed

LS is a parametric optimal algorithm for the on-line version and presented randomized algorithms with

smaller competitive ratios. Tan and He [21] presented an algorithm for the ordinal on-line version. It is

optimal for the majority of values ofs ∈ [1,∞). The total length of the intervals ofs where the competitive

ratio does not match the lower bound is less than 0.7784 and the biggest gap between them is under 0.0521.

Tan and He [20] also considered algorithms for other two semi-online versions where the total processing

time of jobs is known in advance, or the largest job processing time is known in advance, respectively.

Epstein and Favrholdt [7, 8] considered a semi-online version where jobs arrive in non-increasing order, for

both the preemptive and the non-preemptive cases, parametric optimal algorithms are proposed. Recently,

Epstein [6] considered a generalization of on-line bin stretching problem, which can also be viewed as a

semi-online scheduling problem with known optimal makespan on two uniformly related machines. For

the preemptive version, she gave an optimal algorithm with competitive ratio1, and for the non-preemptive

version she gave an algorithm with largest gap between the competitive ratio and lower bound less than

0.073.

In this paper, we propose a parametric optimal algorithm forQ2|ordinal on− line|Cmin. In Section 2,

3

we will prove that the parametric lower boundc(s) is as follows

c(s) =











2(2k−1)s
ks+2(k−1) , ak−1 ≤ s < bk, k ≥ 2,
2k+1
k+1 , bk ≤ s < ak, k ≥ 2,
2, s ≥ 2,

whereak = 2k
k+1 andbk = 2(k−1)(2k+1)

2k2+k−2 . In Section 3, we present an ordinal algorithmQOrdinal Min

and prove that its competitive ratio matches the lower bound for anys ≥ 1. ThusQOrdinal Min is a

parametric optimal algorithm forQ2|ordinal on− line|Cmin. The graph ofc(s) is shown in Figure 1. Note

thatc(s) ≤ 2 for all values ofs.

In Section 4 we consider scheduling in thelp norm on two identical machines (i.e.s = 1). We give

a simple algorithm and compute its competitive ratio as a function ofp, then we design matching lower

bounds.

1 1.5 2 2.5
1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

Figure 1: The parametric optimal bound forQ2|ordinal on− line|Cmin

2 Lower bound

In this section, we present the parametric lower bound forQ2|ordinal on − line|Cmin, which is stated in

the following theorem.

Theorem 2.1 Any algorithmA has a competitive ratio at least

c(s) =











min{ 2(2k−1)s
ks+2(k−1) ,

2k+1
k+1 } =

{

2(2k−1)s
ks+2(k−1) ak−1 ≤ s < bk, k ≥ 2,
2k+1
k+1 bk ≤ s < ak, k ≥ 2,

2, s ≥ 2,

whereak = 2k
k+1 is the root of the equation2k+1

k+1 = 2(2k+1)x
(k+1)x+2k , bk = 2(k−1)(2k+1)

2k2+k−2 is the root of the equation
2(2k−1)x

kx+2(k−1) = 2k+1
k+1 .

4

Sincea1 = 1, ak−1 < bk < ak < bk+1, k ≥ 2 andak → 2 (k →∞). The functionc(s) is well-defined

for anys ∈ [1,∞).

The proof will be completed by using an adversarial method. All instances used in this section have

optimal value1, and thusCOPT /CA = 1/CA. For easy reading and understanding, we show Theorem 2.1

by distinguishing several cases according to the value ofs. We prove the cases ∈ [2,∞) in detail. The

remaining cases ofs ∈ [1, 2) can be verified by essentially similar arguments, hence we sketch the proof by

listing the schedules of algorithmA, and the adversarial sequences for all possible situations are given in

Tables 1-3 case by case afterwards.

Lemma 2.1 For s ∈ [2,∞), any algorithm forQ2|ordinal on− line|Cmin has competitive ratio of at least

2.

Proof: Obviously, the first two jobs must be assigned to different machines by any algorithmA. Otherwise,

consider the instancep1 = s, p2 = 1, we haveCA = 0 and thus1/CA = ∞. Next, if algorithmA assigns

p1 to M1 andp2 to M2, the above instance impliesCA = 1/s and thus1/CA = s ≥ 2. Finally, if A

assignsp1 to M2 andp2 to M1, consider the assignment ofp3. If A assignsp3 to M1, consider the instance

p1 = p2 = s/2, p3 = 1, we haveCA = 1/2, 1/CA = 2. Otherwise, consider the instancep1 = s,

p2 = p3 = 1/2, we also haveCA = 1/2, 1/CA = 2. 2

We separate the analysis into two cases according to which machine receives the very first job. In Lemma

2.2, we prove that if algorithmA assignsp1 to M2, the competitive ratio ofA is at leastc(s). In Lemma 2.3,

we prove that ifA assignsp1 to M1, the competitive ratio ofA is at leastc(s). Combining Lemmas 2.2,2.3,

we get the desired lower bound for anys ∈ [1, 2).

Lemma 2.2 If A assignsp1 to M2, the competitive ratio ofA is at leastc(s) for anys with 1 ≤ s < 2.

Proof: Table 1 implies that ifA assignsp1 to M2, the competitive ratio ofA is at leastmin{3s/(s+1), 5/3},
which equalsc(s) for anys with 1 = a1 ≤ s < a2 = 4/3.

To prove the result fors with ak−1 ≤ s < ak, k > 2, we replace the last row of Table 1 with all2k − 3

rows of Table 2.

Since2 ≥ 2(2l−1)s
ls+2(l−1) ≥

2(2k−1)s
ks+2(k−1) , 2 ≤ l < k, all values in the last column of the new table are greater

than or equal tomin{ 2(2k−1)s
ks+2(k−1) ,

2k+1
k+1 } for anys with ak−1 ≤ s < ak. The lemma is thus proved.2

Lemma 2.3 If A assignsp1 to M1, the competitive ratio ofA is at leastc(s) for 1 ≤ s < 2.

Proof: Consider Table 3. Note that row 4 is valid only fors ≤ 3/2, while rows 5 and 10 are valid for

s > 3/2. All other rows are valid for the complete interval[1, 2).

5

Schedule byA Adversary instance 1
M1 M2 CA

∅ {p1, p2} {s, 1} ∞
{p2} {p1, p3} {s, 1

2 , 1
2} 2

{p2, p3, p4} {p1} { s
2 , s

2 , 1
2 , 1

2} 2
{p2, p3} {p1, p4, p5} {s, 1

4 , 1
4 , 1

4 , 1
4} 2

{p2, p3, p5, p6} {p1, p4} { s
2 , s

2 , s
2 , 2−s

6 , 2−s
6 , 2−s

6 } 3s
s+1

{p2, p3, p5} {p1, p4, p6} {s, 1
5 , 1

5 , 1
5 , 1

5 , 1
5}

5
3

Table 1: The case1 ≤ s ≤ 4/3 for Lemma 2.2

{p2, p3, p5} {p1, p4, p6, p7} {s, 1
6 , · · · , 1

6} 2
{p2, p3, p5, p7, p8} {p1, p4, p6} { s

2 , s
2 , s

2 , 2−s
10 , · · · , 2−s

10 }
10s

3s+4
...

...
...

...
{p2, p3, p5, · · · , p2l−1} {p1, p4, p6, p2l, p2l+1} {s, 1

2l , · · · ,
1
2l} 2

{p2, p3, p5, · · · , p2l+1, p2l+2} {p1, p4, p6, · · · , p2l} { s
2 , s

2 , s
2 , 2−s

2(2l−1) , · · · ,
2−s

2(2l−1)}
2(2l−1)s
ls+2(l−1)

...
...

...
...

{p2, p3, p5, · · · , p2k−1} {p1, p4, p6, p2k, p2k+1} {s, 1
2k , · · · , 1

2k} 2
{p2, p3, p5, · · · , p2k+1, p2k+2} {p1, p4, p6, · · · , p2k} { s

2 , s
2 , s

2 , 2−s
2(2k−1) , · · · ,

2−s
2(2k−1)}

2(2k−1)s
ks+2(k−1)

{p2, p3, p5, · · · , p2k−1, p2k+1} {p1, p4, p6, · · · , p2k, p2k+2} {s, 1
2k+1 , · · · , 1

2k+1}
2k+1
k+1

Table 2: The cases > 4/3 for Lemma 2.2

6

row Schedule byA Adversary instance 1
M1 M2 CA

1 {p1, p2} ∅ {s, 1} ∞
2 {p1, p3} {p2} {s, 1

2 , 1
2} 2s

3 {p1, p4} {p2, p3} {s, 1
3 , 1

3 , 1
3}

3s
2

4 {p1} {p2, p3, p4, p5} {1
2 , 1

2 , s
3 , s

3 , s
3} 2

5 {p1} {p2, p3, p4, p5} { s
3 , s

3 , s
3 , 1

2 , 1
2}

3
s

6 {p1, p5} {p2, p3, p4} {s, 1
4 , 1

4 , 1
4 , 1

4}
4s
3

7 {p1, p5, p6} {p2, p3, p4} {s, 1
5 , 1

5 , 1
5 , 1

5 , 1
5}

5s
3

8 {p1, p5, p7} {p2, p3, p4, p6} {s, 1
6 , 1

6 , 1
6 , 1

6 , 1
6 , 1

6}
3s
2

9 {p1, p5} {p2, p3, p4, p6, p7} {1
2 , 1

2 , 1
2 , 1

2 , s−1
3 , s−1

3 , s−1
3 } 6

2s+1
10 {p1} {p2, p3, p4, p5, p6} {1

2 , 1
2 , 1

2 , 1
2 , 1

2 , s− 3
2} 2

11 {p1, p6} {p2, p3, p4, p5} {s, 1
5 , 1

5 , 1
5 , 1

5 , 1
5}

5s
4

Table 3: Inputs for Lemma 2.3

If A assignsp1 to M1, the first four rows in Table 3 together with row 6 show that the competitive

ratio of A is at least4s/3, and the first four rows together with rows 7-9 imply that the competitive ratio

of A is at leastmin {3s/2, 6/(2s + 1)}. Thus the competitive ratio for1 ≤ s ≤ 3/2 is at leastq(s) =

max{4s/3,min {3s/2, 6/(2s + 1)}}. It is not difficult to show that fors ∈ [1, 3/2], c(s) ≤ 3s/(s + 1),

whereas in the same intervalq(s) ≥ 3s/(s + 1). This proves the lower bound for1 ≤ s ≤ 3/2.

For3/2 < s ≤ 1.6 we use rows 1-3 and 5-6. We get a lower bound ofmin{3/s, 4s/3}. In this interval

4s/3 ≥ 2 and3/s ≥ 15/8 ≥ c(s).

For s > 1.6 we use rows 1-3,6,10,11. We get a lower bound ofmin{5s/4, 2} ≥ 2 ≥ c(s), therefore

Lemma 2.3 is proved.2

By Lemmas 2.1,2.2,2.3, the proof of Theorem 2.1 is completed.

3 A parametric optimal algorithm QOrdinal Min

In this section, we present an algorithmQOrdinal Min (QOM for short) and study its competitive ra-

tio. The algorithm consists of an infinite sequence of procedures. For anys ≥ 1, it chooses exactly one

procedure to assign jobs. We first give the definition of procedures.

Procedure(0):

Assign jobs in the subset{p2i+2|i ≥ 0} to M1;

Assign jobs in the subset{p2i+1|i ≥ 0} to M2.

Procedure(k), k ≥ 1:

7

Assign jobs in the subset{p2, p3}∪ {p3+(2k+1)j+i|j ≥ 0, i = 2, 4, · · · , 2k}∪ {p3+(2k+1)j+2k+1|j ≥ 0}
to M1;

Assign jobs in the subset{p1} ∪ {p3+(2k+1)j+i|j ≥ 0, i = 1, 3 · · · , 2k − 1} to M2.

Algorithm QOrdinal Min:

1. If s ≥ 2, assign all jobs by Procedure(0).

2. If s ∈ [ak, ak+1), k ≥ 1, assign all jobs by Procedure(k).

Theorem 3.1 The parametric competitive ratio of the algorithmQOM is c(s), and it is an optimal algo-

rithm for Q2|ordinal on− line|Cmin.

Proof: As we have already shown thatc(s) is a lower bound forQ2|ordinal on − line|Cmin, we only

need to showCOPT /CQOM ≤ c(s). Let T be the total processing time of all jobs,L1 and L2 be

the completion times ofM1 andM2 after processing all jobs by the algorithmQOM , respectively, then

CQOM = min{L1, L2}. Obviously,COPT ≤ T/(s + 1) andCOPT ≤ T − p1. We get the claimed

competitive ratio by considering two cases according to the value ofs.

Lemma 3.1 For anys ≥ 2, we haveCOPT /CQOM ≤ c(s) = 2.

Proof: Note thatQOM chooses Procedure(0) fors ≥ 2. We only prove the case ofn = 2l, the case

of n = 2l − 1 can be proved by adding a dummy jobp2l = 0. By the definition of the procedure and

p1 ≥ · · · ≥ pn, we have

L1 =
l

∑

i=1

p2i ≥
1
2

l−1
∑

i=1

(p2i + p2i+1) +
1
2
p2l =

T − p1

2
≥ 1

2
COPT ,

L2 =
1
s

l
∑

i=1

p2i−1 ≥
1
2s

l
∑

i=1

(p2i−1 + p2i) =
T
2s
≥ s + 1

2s
COPT .

Note that1/2 < (s + 1)/(2s), we haveCOPT /CQOM ≤ 2 and thus the result is proved fors ≥ 2. 2

Before we prove the result for the case of1 ≤ s < 2, we give two estimations forCOPT . Denote

P =
∑n

i=4 pi. We assume that the sequence contains at least three jobs, otherwise we add jobs of processing

time zero to the sequence.

Lemma 3.2 (1) If p1 ≥ (p2 + p3)/s, thenCOPT ≥ (p2 + p3)/s.

(2) If p1 + P ≤ (p2 + p3)/s, thenCOPT = p1 + P .

Proof: (1) Consider the following feasible subschedule for the jobs{p1, p2, p3}: p1 is assigned toM1, p2

andp3 are assigned toM2. Sincep1 > (p2 + p3)/s, the objective value of this subschedule is at least

(p2 + p3)/s, which implies thatCOPT ≥ (p2 + p3)/s.

8

(2) Consider the following feasible schedule for the complete sequence of jobs:p2 andp3 are assigned

to M2, and all other jobs are assigned toM1. Then its objective value ismin{p1+P, (p2+p3)/s} = p1+P .

SoCOPT ≥ p1 + P .

On the other hand, ifp1 shares a machine with at least one ofp2, p3 in a schedule, then the objective

value is no greater than the completion time of the machine which is not processingp1, and thus no greater

thanp2 + P ≤ p1 + P . Otherwise, bothp2 andp3 do not share a machine withp1, then we also have

COPT ≤ p1 + P . The lemma is thus proved.2

The next lemma estimates the machine completion times yielded by Procedure(k), k ≥ 1.

Lemma 3.3 If QOM chooses Procedure(k), k ≥ 1, we have

L1 ≥
k + 1
2k + 1

(T − p1) , L2 ≥
1
s

(

p1 +
k

2k + 1
P

)

.

Proof: We only prove the case ofn = 3+(2k+1)l, other cases can be proved by adding at most2k dummy

jobs of processing time zero. Sincep1 ≥ · · · ≥ pn , we have

p2 + p3 ≥
2
3

(p2 + p3 + p4) ,

k−1
∑

i=1

p3+(2k+1)j+2i ≥
1
2

k−1
∑

i=1

(

p3+(2k+1)j+2i + p3+(2k+1)j+2i+1
)

=
1
2

2k−1
∑

i=2

p3+(2k+1)j+i.

Using a similar approach repeatedly, we have

L1 = p2 + p3 +
l−1
∑

j=0

(

k−1
∑

i=1

p3+(2k+1)j+2i + p3+(2k+1)j+2k + p3+(2k+1)j+2k+1

)

≥ 2(p2 + p3 + p4)
3

+
l−2
∑

j=0

(

1
2

2k−1
∑

i=2

p3+(2k+1)j+i +
2
3

2k+2
∑

i=2k

p3+(2k+1)j+i

)

+

(

1
2

2k−1
∑

i=2

p3+(2k+1)(l−1)+i +
2
3

2k+1
∑

i=2k

p3+(2k+1)(l−1)+i

)

=
T − p1

2
+

p2 + p3 + p4

6
+

1
6

l−2
∑

j=0

2k+2
∑

i=2k

p3+(2k+1)j+i +
p2+(2k+1)l + p3+(2k+1)l

6

≥ T − p1

2
+

1
6
· 3
2k + 1

2k+2
∑

i=2

pi +
1
6
· 3
2k + 1

l−2
∑

j=0

4k
∑

i=2k

p3+(2k+1)j+i

+
p2+(2k+1)l + p3+(2k+1)l

6

=
T − p1

2
+

T − p1

2(2k + 1)
=

k + 1
2k + 1

(T − p1) ,

9

and

L2 =
1
s



p1 +
l−1
∑

j=0

k
∑

i=1

p3+(2k+1)j+2i−1





=
1
s



p1 +
l−1
∑

j=0

(

1
2

2k−2
∑

i=1

p3+(2k+1)j+i +
1
3

2k+1
∑

i=2k−1

p3+(2k+1)j+i

)





=
1
s



p1 +
l−1
∑

j=0

(

1
6

2k−2
∑

i=1

p3+(2k+1)j+i +
1
3

2k−2
∑

i=1

p3+(2k+1)j+i +
1
3

2k+1
∑

i=2k−1

p3+(2k+1)j+i

)





=
1
s



p1 +
1
6

l−1
∑

j=0

2k−2
∑

i=1

p3+(2k+1)j+i +
T − (p1 + p2 + p3)

3





≥ 1
s



p1 +
1
6
· 2k − 2
2k + 1

l−1
∑

j=0

2k+1
∑

i=1

p3+(2k+1)j+i +
T − (p1 + p2 + p3)

3





=
1
s

(

p1 +
k − 1

3(2k + 1)
(T − (p1 + p2 + p3)) +

T − (p1 + p2 + p3)
3

)

=
1
s

(

p1 +
k

2k + 1
P

)

. 2

Lemma 3.4 For anys with bk ≤ s < ak, k ≥ 2, we haveCOPT

CQOM ≤ c(s) = 2k+1
k+1 .

Proof: In fact, by Lemma 3.3, we get

L1 ≥
k + 1
2k + 1

(T − p1) ≥
k + 1
2k + 1

COPT .

To proveL2 ≥ (k + 1)COPT /(2k + 1), we distinguish three cases according to the values ofp1, p2, p3 and

P .

Case 1p1 ≥ (p2 + p3)/s.

By Lemma 3.2(1),COPT ≥ (p2 + p3)/s. By Lemma 3.3 andCOPT ≤ T/(s + 1), we have

L2 ≥ 1
s

(

p1 +
k

2k + 1
P

)

=
(

1
s
− k

(2k + 1)s

)

p1 −
k

2k + 1
· p2 + p3

s
+

k
2k + 1

· T
s

≥ k + 1
(2k + 1)s

p1 −
k

2k + 1
· p2 + p3

s
+

(

k
2k + 1

· s + 1
s

− k + 1
2k + 1

)

COPT +
k + 1
2k + 1

COPT

≥ k + 1
(2k + 1)s

· p2 + p3

s
− k

2k + 1
· p2 + p3

s
+

k − s
(2k + 1)s

· p2 + p3

s
+

k + 1
2k + 1

COPT

=
(

1
s
− k + 1

2k + 1

)

p2 + p3

s
+

k + 1
2k + 1

COPT ≥ k + 1
2k + 1

COPT .

The last inequality is true fors ≥ (2k + 1)/(k + 1) which is always true fors ≤ ak.

10

Case 2(p2 + p3)/s− p1 > 0 andP ≤ (p2 + p3)/s− p1.

In this case, we haveP < 2p1/s− p1 = (2− s)p1/s (sincep1 ≥ p2 ≥ p3). By Lemma 3.3 (2), we get

COPT = p1 + P , and thus

L2 ≥ 1
s

(

p1 +
k

2k + 1
P

)

=
(

1
s
− k + 1

2k + 1

)

p1 +
(

k
(2k + 1)s

− k + 1
2k + 1

)

P +
k + 1
2k + 1

(p1 + P)

≥
(

1
s
− k + 1

2k + 1

)

· s
2− s

P +
(

k
(2k + 1)s

− k + 1
2k + 1

)

P +
k + 1
2k + 1

COPT

=
2k − (k + 1)s

(2k + 1)(2− s)s
P +

k + 1
2k + 1

COPT ≥ k + 1
2k + 1

COPT .

The last inequality is true fors ≥ 2k/(k + 1) = ak.

Case 3(p2 + p3)/s− p1 > 0 andP > (p2 + p3)/s− p1.

Sincep1 > (p2 + p3)/2 andp1 + P > (p2 + p3)/s, we have

L2 ≥ 1
s

(

p1 +
k

2k + 1
P

)

=
(

1
s
− k

(2k + 1)s

)

p1 +
(

k
(2k + 1)s

− k + 1
(2k + 1)(s + 1)

)

(p1 + P)

− k + 1
2k + 1

· p2 + p3

s + 1
+

k + 1
2k + 1

· p1 + p2 + p3 + P
s + 1

≥ k + 1
(2k + 1)s

· p2 + p3

2
+

k − s
s(s + 1)(2k + 1)

· p2 + p3

s
− k + 1

2k + 1
· p2 + p3

s + 1

+
k + 1
2k + 1

· T
s + 1

≥ 2k − (k + 1)s
2s2(2k + 1)

· p2 + p3

s
+

k + 1
2k + 1

COPT ≥ k + 1
2k + 1

COPT . 2

Lemma 3.5 For anys with ak ≤ s < bk+1, k ≥ 1, we haveCOPT

CQOM ≤ c(s) = 2(2k+1)s
(k+1)s+2k .

Proof: Sinces ≥ ak = 2k/(k + 1), we obtain

L1 ≥
k + 1
2k + 1

(T − p1) ≥
(k + 1)s + 2k
2s(2k + 1)

(T − p1) ≥
(k + 1)s + 2k
2s(2k + 1)

COPT .

Similarly to the proof of Lemma 3.4, we split the analysis into three cases according to the values ofp1, p2,

p3 andP . The goal here is to show thatL2 ≥ (k+1)s+2k
2s(2k+1) COPT .

Case 1p1 ≥ (p2 + p3)/s.

L2 ≥ 1
s

(

p1 +
k

2k + 1
P

)

=
(

1
s
− k

(2k + 1)s

)

p1 −
k

2k + 1
· p2 + p3

s
+

k
2k + 1

· T
s

11

≥ k + 1
(2k + 1)s

p1 −
k

2k + 1
· p2 + p3

s
+

(

k
2k + 1

· s + 1
s

− (k + 1)s + 2k
2s(2k + 1)

)

COPT

+
(k + 1)s + 2k
2s(2k + 1)

COPT

≥ k + 1
(2k + 1)s

· p2 + p3

s
− k

2k + 1
· p2 + p3

s
+

k − 1
2(2k + 1)

· p2 + p3

s

+
(k + 1)s + 2k
2s(2k + 1)

COPT

=
(k + 1)(2− s)

2s(2k + 1)
· p2 + p3

s
+

(k + 1)s + 2k
2s(2k + 1)

COPT ≥ (k + 1)s + 2k
2s(2k + 1)

COPT .

Case 2(p2 + p3)/s− p1 > 0 andP ≤ (p2 + p3)/s− p1.

L2 ≥ 1
s

(

p1 +
k

2k + 1
P

)

=
(

1
s
− (k + 1)s + 2k

2s(2k + 1)

)

p1 +
(

k
(2k + 1)s

− (k + 1)s + 2k
2s(2k + 1)

)

P

+
(k + 1)s + 2k
2s(2k + 1)

(p1 + P)

≥
(

1
s
− (k + 1)s + 2k

2s(2k + 1)

)

· s
2− s

P +
(

k
(2k + 1)s

− (k + 1)s + 2k
2s(2k + 1)

)

P

+
(k + 1)s + 2k
2s(2k + 1)

COPT

=
(k + 1)s + 2k
2s(2k + 1)

COPT .

Case 3(p2 + p3)/s− p1 > 0 andP > (p2 + p3)/s− p1.

L2 ≥ 1
s

(

p1 +
k

2k + 1
P

)

=
(

1
s
− k

(2k + 1)s

)

p1 +
(

k
(2k + 1)s

− (k + 1)s + 2k
2s(s + 1)(2k + 1)

)

(p1 + P)

−(k + 1)s + 2k
2s(2k + 1)

· p2 + p3

s + 1
+

(k + 1)s + 2k
2s(2k + 1)

· p1 + p2 + p3 + P
s + 1

≥ k + 1
(2k + 1)s

· p2 + p3

2
+

k − 1
2(s + 1)(2k + 1)

· p2 + p3

s

−(k + 1)s + 2k
2s(2k + 1)

· p2 + p3

s + 1
+

(k + 1)s + 2k
2s(2k + 1)

· T
s + 1

=
(k + 1)s + 2k
2s(2k + 1)

COPT . 2

Combining Lemmas 3.1, 3.4 and 3.5, the proof of Theorem 3.1 is completed.2

12

4 Scheduling in thelp norm

We start with defining the algorithm which is the same for all values ofp. We simply use Procedure(1) from

Section 3.

P(1): Assign jobs in the subset{p3i+2, p3i+3|i ≥ 0} to M1;

Assign jobs in the subset{p3i+1|i ≥ 0} to M2.

Note that the same ordinal algorithm was used for identical machines both for minimizing makespan,

and maximizing the minimum completion time [11, 17].

Theorem 4.1 The competitive ratio of any on-line algorithm for scheduling on two identical machines in

thelp norm is at least
(

max
a≥1

(a + 1)p + 2p

ap + 3p

) 1
p

.

The competitive ratio of P(1) is at most this bound, and therefore it is an optimal ordinal algorithm for all

norms. Note that forp = 2 this value is
√

7 +
√

13/3 ≈ 1.0855.

Proof: We start with the lower bound. Consider a sequence of four jobs. Ifp1 is assigned on a machine

alone then use the values1, 1, 1, 1 for the processing times. Otherwise usea, 1, 1, 1 for the value ofa ≥ 1

that maximizes((a + 1)p + 2p)/(ap + 3p). In the first case clearlyCOPT ≥ (2 · 2p)1/p and in the second

case clearlyCOPT ≥ (ap + 3p)1/p. The cost of the ordinal algorithm is(1 + 3p)1/p in the first case and

((a + 1)p + 2p)1/p in the second case. It is possible to show, using some algebra and calculus, that for

every value ofa, (1 + 3p)/(2 · 2p) ≥ ((a + 1)p + 2p)/(ap + 3p). Note that the maximum of the function

((a + 1)p + 2p)/(ap + 3p) is achieved in a single point in the interval[1,∞) which is the solution of the

equation3(3/a)p−1 = 1 + 2(2/(a + 1))p−1. For p = 2 we get the quadratic equationa2 − 4a − 9 = 0

whose positive root isa =
√

13 + 2.

To prove the upper bound we use some additional notations. LetX be the load ofM1 andY be the load

of M2. By the definition of P(1) we know thatY ≥ X/2. On the other hand we can see thatY − p1 ≤ X/2.

We consider two cases.

Case 1: If p1 ≤ (X + Y)/2, then(COPT)p ≥ 2 · ((X + Y)/2)p and(CP (1))p = Xp + Y p. We can

use the two bounds onp1 to getX ≥ Y/2. The maximum of the function(Xp + Y p)/((X + Y)/2)p) is

obtained in the boundary, i.e. forX = 2Y and forY = 2X. The maximum value for(CP (1))p/(COPT)p

is (4p + 2p)/(2 · 3p). This is exactly the function((a + 1)p + 2p)/(ap + 3p) for a = 3, and therefore is it at

mostmax
a≥1

((a + 1)p + 2p)/(ap + 3p).

Case 2:If p1 > (X + Y)/2, then(COPT)p ≥ pp
1 + (X + Y − p1)p and(CP (1))p = Xp + Y p. Since the

problem is scalable, we can assume without loss of generality thatX = 2. We also substituteY = b + 1.

We now need to bound the maximum of the function((b + 1)p + 2p)/(pp
1 + (b + 3 − p1)p))1/p. First we

13

can see that the function is clearly bounded from above by 2 (even if all jobs were scheduled on the same

machine by the ordinal algorithm). We search for the maximum of((b + 1)p + 2p)/(pp
1 + (b + 3 − p1)p).

Given the conditions onX, Y, p1, we can restrict ourselves tob ≤ p1 ≤ b + 1 and2p1 ≥ b + 3. Taking the

partial derivative with respect top1 we get that an extremal point must satisfyp = (b+3)/2 and therefore it

is only left to consider the boundary. The casep = b + 1 gives the value 1 for the function. The casep = b

gives((b + 1)p + 2p)/(bp + 3p). The casep = (b + 3)/2 gives((b + 1)p + 2p)/(2((b + 3)/2)p) which is

at most((b + 1)p + 2p)/(bp + 3p) for b ≥ 1. For b < 1 the function((b + 1)p + 2p)/(bp + 3p) is smaller

than one and thus irrelevant. We are therefore left with the upper boundmax
a≥1

((a + 1)p + 2p)/(ap + 3p) as

claimed.2

References

[1] A. Avidor, Y. Azar, and J. Sgall. Ancient and new algorithms for load balancing in the`p norm.

Algorithmica, 29 , 422-441(2001).

[2] Y. Azar, L. Epstein, On-line machine covering,Algorithms-ESA’97, Lecture Notes in Computer Sci-

ence 1284, Springer Verlag, 23-36(1997).

[3] A.K. Chandra and C.K. Wong. Worst-case analysis of a placement algorithm related to storage alloca-

tion. SIAM Journal on Computing, 4(3), 249-263 (1975).

[4] J. Csirik, H. Kellerer, G. Woeginger, The exact LPT-bound for maximizing the minimum machine

completion time,Operations Research Letters, 11,281-287(1992).

[5] B. Deuermeyer, D. Friesen, M. Langston, Scheduling to maximize the minimum processor finish time

in a multiprocessor system,SIAM Journal of Discrete Methods,3, 190-196(1982).

[6] L. Epstein, Bin stretching revisited,Acta Informatica, 39, 98-117(2003).

[7] L. Epstein, L. M. Favrholdt, Optimal preemptive semi-online scheduling to minimize makespan on two

related machines,Operations Research Letters, 30,269-275(2002).

[8] L. Epstein, L. M. Favrholdt, Optimal non-preemptive semi-online scheduling on two related machines,

Proc. of the 27th International Symposium on Mathematical Foundations of Computer Science, 245-

256(2002).

[9] L. Epstein, J. Noga, S. Seiden, J. Sgall, G. Woeginger, Randomized on-line scheduling on two uniform

machines,Journal of Scheduling, 4, 71-92(2001).

[10] D. Friesen, B. Deuermeyer, Analysis of greedy solutions for a replacement part sequencing problem,

Mathematics of Operations Research, 6, 74-87(1981).

14

[11] Y. He, Semi-on-line scheduling problems for maximizing the minimum machine completion time,Acta

Mathematica Applicatae Sinica, 17,107-113(2001).

[12] Y. He, Z. Y. Tan, Ordinal on-line scheduling for maximizing the minimum machine completion time,

Journal of Combinatorial Optimization, 6, 199-206(2002).

[13] H. Kellerer, V. Kotov, M. Speranza, Z. Tuza, Semi online algorithms for the partition problem,Opera-

tions Research Letters, 21,235-242(1997).

[14] E. L. Lawler, Combinatorial optimization: Networks and matroids, Holt, Rinehart and Winston,

Toronto(1976).

[15] W. P. Liu, J. B. Sidney, Ordinal algorithm for packing with target center of gravity,Order, 13, 17-

31(1996).

[16] W. P. Liu, J. B. Sidney, Bin packing using semi-ordinal data,Operations Research Letters, 19, 101-

104(1996).

[17] W. P. Liu, J. B. Sidney, A. van Vliet, Ordinal algorithms for parallel machine scheduling,Operations

Research Letters, 18,223-232(1996).

[18] N. V. R. Mahadev, A. Pekec, F. S. Roberts, On the meaningfulness of optimal solutions to scheduling

problems: Can an optimal solution be nonoptimal,Operations Research, 46,S120-S134(1998).

[19] D. Sleator, R. E. Tarjan, Amortized efficiency of list update and paging rules,Communications of the

ACM,28,202-208(1985).

[20] Z. Y. Tan, Y. He, Semi on-line scheduling on two uniform machines,Systems Engineering-Theory and

Practice, 21, 53-57(2001). (in Chinese)

[21] Z. Y. Tan, Y. He, Semi-on-line scheduling with ordinal data on two uniform machines,Operations

Research Letters, 28,221-231(2001).

[22] G. Woeginger, A polynomial time approximation scheme for maximizing the minimum machine com-

pletion time,Operations Research Letters, 20,149-154(1997).

15

