
Optimal Preemptive Scheduling for General Target Functions

Leah Epstein ∗ Tamir Tassa †

Abstract

We study the problem of optimal preemptive scheduling with respect to a general target
function. Given n jobs with associated weights and m ≤ n uniformly related machines, one aims
at scheduling the jobs to the machines, allowing preemptions but forbidding parallelization, so
that a given target function of the loads on each machine is minimized. This problem was
studied in the past in the case of the makespan. Gonzalez and Sahni [6] and later Shachnai,
Tamir and Woeginger [12] devised a polynomial algorithm that outputs an optimal schedule
for which the number of preemptions is at most 2(m − 1). We extend their ideas for general
symmetric, convex and monotone target functions. This general approach enables us to distill
the underlying principles on which the optimal makespan algorithm is based. More specifically,
the general approach enables us to identify between the optimal scheduling problem and a
corresponding problem of mathematical programming. This, in turn, allows us to devise a
single algorithm that is suitable for a wide array of target functions, where the only difference
between one target function and another is manifested through the corresponding mathematical
programming problem.

Keywords: scheduling, preemptive scheduling, optimization, mathematical programming.

1 Introduction

We are interested in the problem of optimal preemptive scheduling with respect to a general
target function. The data in such problems consists of:

• n jobs, J = {Ji}1≤i≤n, where job Ji has a weight wi and w1 ≥ w2 ≥ · · · ≥ wn > 0.

• m machines, M = {Mj}1≤j≤m, m ≤ n, where machine Mj has speed sj and 1 = s1 ≥
s2 ≥ · · · ≥ sm > 0.

If a job of weight w runs on a machine of speed s, its processing time will be w/s. A non-
preemptive schedule of the jobs to the machines is a function σ : J → M. In such schedules,
once a job started its process on a given machine, it is executed continuously until completion.
We, however, are interested here in preemptive schedules, where a job’s execution may be
terminated and then resumed later, possibly on a different machine.

∗Department of Mathematics, University of Haifa, 31905 Haifa, Israel. lea@math.haifa.ac.il. Research sup-

ported by Israel Science Foundation (grant no. 250/01).
†Division of Computer Science, The Open University, Raanana, Israel. tamirta@openu.ac.il.

1

Definition 1.1 A preemptive schedule is a vector σ = (σ1, . . . , σm) where σj is the schedule on
Mj, 1 ≤ j ≤ m. The machine schedule σj takes the form of a pair of sequences, σj = (τj , ηj),
where τj is a sequence of strictly increasing times, 0 = τj,0 < τj,1 < · · · < τj,kj , and ηj is a
sequence of indices, i.e., ηj = (ηj,1, . . . , ηj,kj) where ηj,k ∈ {0, 1, . . . , n} for all 1 ≤ k ≤ kj. Such
a schedule means that Mj processes Jηj,k

in time interval [τj,k−1, τj,k), for all 1 ≤ k ≤ kj, unless
ηj,k = 0 in which case Mj is idle during the corresponding time interval.

The schedule is legal if the same job is never scheduled to be processed at the same time
by two different machines (namely, parallelization is forbidden). The schedule is complete if for
every given job, the sum over all machines of its processed parts amounts to its weight, i.e.,

∑

(j,k): ηj,k=i

(τj,k − τj,k−1) · sj = wi for all 1 ≤ i ≤ n . (1)

Hereinafter we consider only complete and legal schedules.
For a given schedule, σ, we let λ(σ) = (λ1, . . . , λm) denote the corresponding vector of loads,

where λj := τj,kj is the time in which Mj finishes running under the schedule σ. One usually
seeks schedules that minimize the value of some target function of the loads,

f(σ) = f(λ(σ)) = f(λ1, . . . , λm) , (2)

where f is typically a convex, symmetric and monotonically non-decreasing function with respect
to its arguments.

For a given target function f , we let fopt denote its optimal value, i.e.,

fopt = min
σ

f(σ) . (3)

The usual choice is the makespan, f = max. This case was studied in [11, 10, 6, 12]. Liu and
Yang [11] introduced bounds on the cost of optimal schedules. Horvath, Lam and Sethi proved
that the optimal cost is indeed the maximum of those bounds by constructing an algorithm that
uses a large number of preemptions. Gonzalez and Sahni [6] devised a polynomial algorithm
that outputs an optimal schedule for which the number of preemptions is at most 2(m−1). This
number of preemptions was shown to be optimal in the sense that there exist inputs for which
every optimal schedule involves that many preemptions. This algorithm was later generalized
and simplified for jobs of limited splitting constraints by Shachnai, Tamir and Woeginger [12].
In this paper we extend the ideas of [12] for general symmetric, convex and monotone target
functions. This general approach offers several benefits over the study of the particular makespan
problem. By looking at the problem from a more general perspective, we are able to distill the
underlying principles on which the algorithm of [12] is based. This approach enables us to
identify between the optimal scheduling problem and a problem of mathematical programming.
This, in turn, allows us to devise a single algorithm that is suitable for a wide array of target
functions, where the only difference between one target function and another is manifested
through the corresponding mathematical programming problem. Lastly, this approach facilitates
the presentation and analysis of the algorithm.

The paper begins with a study of properties of optimal schedules, Section 2. We show that
when the target function is convex, symmetric and monotone, there always exist optimal sched-
ules of a relatively simple structure. Specifically, there always exist optimal schedules where the

2

loads on faster machines are greater than or equal to the loads on slower machines, Proposition
2.2, and there are no idle times, Proposition 2.3. As a consequence of this characterization
of (some) optimal schedules, we define a mathematical program (i.e., a problem of minimizing
a multivariate target function in a bounded polyhedron) whose solution is the set of machine
loads of an optimal schedule, Theorem 2.5. Section 3 is then dedicated to the presentation and
analysis of Algorithm 3.1. This algorithm receives as an input a set of machine loads from the
polyhedron that corresponds to the equivalent mathematical program, and it outputs a complete
and legal preemptive schedule with those machine loads. Hence, if one runs this algorithm with
the set of machine loads that solved the mathematical program, one gets an optimal preemptive
schedule to the original problem, Theorem 3.10. In Appendix A we illustrate the algorithm with
an example.

The problem of finding an optimal preemptive schedule is therefore separated into two inde-
pendent stages. In the first stage we write down the corresponding mathematical program and
solve it. In that mathematical program we aim at minimizing the function (2) in a bounded
polyhedron in Rm that reflects a set of linear constraints that manifest our demand for com-
pleteness and legality of the schedule. After solving this mathematical program, we face an
algorithmic problem: finding a preemptive schedule whose loads equal the solution of the math-
ematical program. This is achieved by Algorithm 3.1. This second stage is general in the sense
that it is independent of the choice of the target function.

After presenting and studying the general algorithm, we derive explicit results for specific
target functions, Section 4. In Section 4.1 we revisit the makespan problem and we show that
the minimal value of our mathematical program when f = max agrees with the makespan of
optimal preemptive schedules as derived in [6, 12]. In Section 4.2 we apply our analysis to the
`p-norm,

f(λ1, . . . , λm) =

m∑

j=1

λp
j

1/p

, 1 ≤ p ≤ ∞ , (4)

that was studied in the past in the non-preemptive setting [1, 5]. More specifically, we charac-
terize the solution of the corresponding mathematical program when f is as in (4), Section 4.2.1,
and offer a polynomial time algorithm to solve it, Section 4.2.2. In Section 4.3 we continue to
explore the threshold cost function,

f(λ1, . . . , λm) =
m∑

j=1

max(λj , c) , (5)

where c > 0 is some constant threshold. This target function was also studied in the past for
non-preemptive scheduling [2, 3, 4]. Finally, in Section 4.4, we show that an algorithm due to
Hochbaum and Shanthikumar [7] may be applied in order to solve the mathematical program in
a polynomial time whenever the target function is separable, i.e., f(λ1, . . . , λm) =

∑m
j=1 g(λj).

It should be noted that even though the `p-norm target function, (4), with p < ∞, and the
threshold target function, (5), are separable, the algorithms that we offer for these cases are
simpler and more efficient than the general algorithm in [7].

As a concluding remark we recall that the non-preemptive versions of the above problems
are typically strongly NP-hard. Approximation schemes for the makespan problem were given

3

by Hochbaum and Shmoys [8, 9]. The papers [1, 5] offer approximations schemes for a wide
class of target functions, including the `p-norms.

2 Properties of optimal schedules

In this section we derive some qualitative properties of optimal schedules for general symmetric
and monotone target functions.

Proposition 2.1 Let M1 and M2 be two sets of m machines each, Mi = {Mi,j}1≤j≤m, i =
1, 2, with speeds 1 = si,1 ≥ · · · ≥ si,m > 0, i = 1, 2. Assume that the machines in M1 are no
faster than the corresponding machines in M2, namely, s1,j ≤ s2,j for all 1 ≤ j ≤ m. Then for
any input set of jobs J , and for every monotone target function f , (2), fopt,2 ≤ fopt,1, where
fopt,i is the optimal f -value for schedules of J on Mi, i = 1, 2.

Proof. Let σ1 be an optimal schedule of J on M1. Let σ2 be the corresponding schedule
of J on M2 in the following sense: if σ1 scheduled Jηj,k

to run on M1,j during time interval
[τj,k−1, τj,k), then σ2 schedules the same job to run on M2,j during the same time interval. In
case s1,j < s2,j , M2,j will be idle during a fraction of 1− s1,j

s2,j
in each such interval. Concentrating

on the last time interval on M2,j , 1 ≤ j ≤ m, we see that the time in which it finishes working
in σ2, λ2,j , is no later than λ1,j , the time in which it finishes working in σ1. Since f is
monotonically non-decreasing, we conclude that fopt,2 ≤ fopt,1. ¤

Comment. We assume throughout the paper that the number of machines, m, is no larger
than the number of jobs, n. Proposition 2.1 implies that if m > n, an optimal solution simply
ignores the m− n slowest machines.

Proposition 2.2 There exist optimal schedules in which the loads λj are monotonically non-
increasing.

Proof. We start by showing that we may always place the smallest load on the slowest machine,
λm = min1≤j≤m λj , without increasing the value of the target function. Assume a schedule in
which the smallest load is λj for some 1 ≤ j < m. Then, by Proposition 2.1, we may only
improve the value of the target function if we rearrange the post-λj schedule to use the m − 1
fastest machines, {M1, . . . , Mm−1}, rather than using the m − 1 machines in M\ {Mj} (here
we rely upon the symmetry of f). Arguing along the same lines, we may show that the next
smallest load could be placed on Mm−1 and so forth. ¤

Proposition 2.3 There exist optimal schedules with no holes (i.e., no idle times on a machine
after which it resumes processing). Namely, if the last time interval in every machine is always
non-idle, in the sense that ηj,kj ∈ {1, . . . , n} for all 1 ≤ j ≤ m, there exist optimal schedules in
which ηj,k 6= 0 for all 1 ≤ j ≤ m and 1 ≤ k ≤ kj.

4

Proof. Let σ be an optimal schedule. For every k, 0 ≤ k ≤ m − 1, we let Tk = Tk(σ) denote
the first time in which the number of unfinished jobs equals k (namely, it is the (n− k)th time
in which a job completed its process). Setting Tm = 0, we have Tm ≤ Tm−1 ≤ · · · ≤ T0.

First, we show that σ may be modified into a schedule σ(1) that has no holes during
[Tm, Tm−1) and f(σ(1)) ≤ f(σ). Assume that such holes exist in σ. Such a hole takes the form
of a time interval [τj,k−1, τj,k) ⊂ [Tm, Tm−1) during which Mj is idle. Let τ∗ ∈ (τj,k−1, τj,k) be
the first time in which a preemption occurred in any machine during this time interval (if there
are no preemptions at all during that time interval we take τ∗ = τj,k). Then the set of (no more
than) m−1 jobs that are running on the other machines during [τj,k−1, τ

∗) remains unchanged.
Since during [Tm, Tm−1) there are at least m jobs that are still not complete, we select one of
them that is not running during [τj,k−1, τ

∗) and schedule it to run during that time interval (or
at least during part of it, if that job may complete its processing on Mj in less than τ∗ − τj,k−1

time units). After doing so, we recalculate Tk, 1 ≤ k ≤ m, since they may decrease in wake of
such a reschedule. If the modified [Tm, Tm−1) still has holes, we repeat the same procedure until
we reach a schedule σ(1) in which [Tm, Tm−1) is free of holes. Obviously, as the loads in σ(1)

are no larger than the corresponding loads in σ, we conclude that f(σ(1)) ≤ f(σ), i.e., σ(1) is
also optimal.

After this is accomplished, we may apply the same process to all time intervals [Tk, Tk−1), for
k = m− 1, . . . , 1. During [Tk, Tk−1) there are exactly k unfinished jobs. In view of proposition
2.2, we may assume that they are all scheduled to run on the k faster machines, {Mj}k

j=1, while
the slower m−k machines already exhausted their load. If there are holes in any of the schedules
in the k faster machines, we may always fill them up, as we did earlier. This way, we get a
schedule σ(m+1−k), where σ(m+1−k) has no holes until time Tk−1 and it is optimal. Eventually,
we arrive at σ(m) that is optimal and has no holes. ¤

Hereinafter we concentrate only on optimal schedules that comply with Propositions 2.2 and
2.3. We define the weight on Mj as

µj = sjλj . (6)

Namely, the weight on machine Mj under a schedule σ represents the total weight of job parts
that are scheduled by σ to be processed on Mj (note that prior to Proposition 2.3 there could
have been holes in the schedule and then the weight might not have been related to the load
through (6)). We also define the following:

Wk =

∑k
j=1 wj 1 ≤ k ≤ m− 1

∑n
j=1 wj k = m

. (7)

With these definitions, we state the following key proposition.

Proposition 2.4 In optimal schedules that comply with Propositions 2.2 and 2.3

k∑

j=1

µj ≥ Wk , 1 ≤ k ≤ m− 1 (8)

5

while
m∑

j=1

µj = Wm . (9)

Proof. As (9) is just the completeness requirement, we focus on (8) and prove it for an arbitrary
value of 1 ≤ k ≤ m− 1. In view of Proposition 2.2, the entire schedule is embedded in the time
interval [0, λ1). We break up this interval into a disjoint union [0, λ1) =

⋃k
`=0 R` where R` is

the union of all time intervals in which exactly ` of the k largest jobs are running (recall that
parallelization is forbidden so R` is defined properly). Proposition 2.2 implies that

Rk ⊂ [0, λk)
Rk ∪Rk−1 ⊂ [0, λk−1)

...
Rk ∪ · · · ∪R1 ⊂ [0, λ1)

. (10)

Let r` denote the amount of work that was done on the k largest jobs during R`. Then, as the
schedule is complete,

k∑

`=1

r` = Wk . (11)

On the other hand, since the schedule is legal, r` may not exceed the duration of R` times the
sum of speeds of the ` fastest machines,

r` ≤ S` · |R`| , S` =
∑̀

j=1

sj . (12)

Hence, by (11), (12) and (10),

Wk ≤
k∑

`=1

∑̀

j=1

sj

 · |R`| =

k∑

j=1

sj ·

k∑

`=j

|R`|

 ≤

k∑

j=1

sjλj =
k∑

j=1

µj .

¤

Finally, we state our main result.

Theorem 2.5

fopt = min
Ω

f

(
µ1

s1
, . . . ,

µm

sm

)
(13)

where Ω ⊂ (R+)m is the bounded polyhedron of all nonnegative weights µj that satisfy the legality
and completeness constraints (8)+(9).

Proof. Let fmin denote the minimum of the optimization problem (13) under constraints
(8)+(9) (This optimization problem is a mathematical program to which we refer henceforth
as MP). fmin is well defined since f is convex and Ω, the domain in which the minimum is
sought, is closed and convex. Proposition 2.4 imply that fopt ≥ fmin. Since Algorithm 3.1 in

6

the next section produces a complete and legal preemptive schedule with weights {µj}1≤j≤m

for any (µ1, . . . , µm) ∈ Ω, we infer that fopt = fmin. ¤

We conclude this section with two notes on the properties of the target function:
• A note on the symmetry assumption: If the target function is not symmetric, most of the

properties of optimal solutions on which we relied do no longer hold. As an example, consider
a problem with two machines with speeds s1 = 1 and s2 = 1/2, one job of weight w1 = 5 and
the target function is

f(λ1, λ2) = max(λ1, λ2/4) .

It is not hard to see that an optimal schedule in this case is to run a part of weight 2 of the
input job on M1 in time slot [0, 2) and then run the complementary part of weight 3 on M2

in time slot [2, 8). This optimal solution has a “hole” in M2 and the loads are not monotone,
λ1 = 2 < λ2 = 8. Therefore, asymmetry might require a different approach.

• A note on the convexity and monotonicity assumptions: If the function f is strictly
monotonically increasing with respect to each of its arguments and is also strictly convex, it may
be shown that Propositions 2.2 and 2.3 apply to all optimal schedules (i.e., filling up holes and
arranging the loads so that λj > λk whenever sj > sk and λj = λk if sj = sk, always improve the
value of the target function). As a consequence, Proposition 2.4 applies to all optimal schedules.
We note that the `p-norms are strictly monotone and strictly convex for all 1 < p < ∞. The
`1-norm is strictly monotone, but it is convex only in the weak sense; the `∞-norm, on the other
hand, is neither strictly convex nor strictly monotone. Indeed, it is easy to construct examples
with optimal schedules for the `1-norm that fail to comply with Proposition 2.2, and examples
with optimal schedules for the `∞-norm that fail to comply with both Propositions 2.2 and 2.3.

3 An optimal scheduling algorithm for a general target

function

3.1 The algorithm

Let {µj}1≤j≤m ∈ Ω be a set of nonnegative weights that satisfy conditions (8) and (9). Let

λj =
µj

sj
, Λj =

j∑

k=1

λk , 1 ≤ j ≤ m and Λ0 = 0 . (14)

Next, we define the following state functions on [0, Λm): a potential function

Ψ(x) =
m∑

j=1

sj · χ[Λj−1,Λj)(x) where χI(x) =

{
1 x ∈ I

0 x /∈ I
, (15)

a timing function

Θ(x) =

{
x− Λj−1 if x ∈ [Λj−1, Λj) for some 1 ≤ j ≤ m

0 otherwise
, (16)

7

and an indicator function

Γ(x) =

{
j if x ∈ [Λj−1,Λj) for some 1 ≤ j ≤ m

0 otherwise
(17)

(see Figures 1-3 in Appendix A). The function Ψ represents initially the potential work of the
m machines, assuming the loads λj . Algorithm 3.1 produces a preemptive schedule σ of J on
M such that the weight on machine Mj equals µj .

Algorithm 3.1

1. Initialize Ψ, Θ and Γ according to (14)–(17).

2. i = 1 (current job number).

3. Define End(a) for all a ∈ [0,Λm) in the following manner:

End(a) = min(a + Λj − Λj−1, Λj+1) ∀a ∈ [Λj−1,Λj) , 1 ≤ j ≤ m , (18)

where, for the sake of the last interval, we take Λm+1 = Λm.

4. Find the maximal value of a for which
∫ b=End(a)

a

Ψ(x)dx = wi . (19)

5. Decompose the interval [a, b) into a disjoint union of intervals,

[a, b) =
⋃̀
r=1

[ar−1, ar) (20)

where a0 = a, a` = b, Γ is constant along [ar−1, ar), say Γ|[ar−1,ar) = jr, and j1 < j2 <

· · · < j`.

6. Compute

wi,r =
∫ ar

ar−1

Ψ(x)dx , 1 ≤ r ≤ ` . (21)

7. Break up Ji into ` parts, {Ji,r}1≤r≤`, where the weight of Ji,r is wi,r, 1 ≤ r ≤ `.

8. Schedule Ji,r to run on Mjr in time interval [Θ(ar−1),Θ(ar)) , 1 ≤ r ≤ `.

9. Remove the interval [a, b) from Ψ, Θ and Γ. More specifically, apply on all three functions
the following operator:

U[a,b)Φ := Φ · χ[0,a) + Lb−a

{
Φ · χ[b,∞)

}
, (22)

where Ld is the d-left shift operator, i.e., LdΦ(x) = Φ(x + d).

10. Update m to indicate the number of discontinuities in the modified timing function Θ and
set Λj, 1 ≤ j ≤ m, to be the corresponding jth discontinuity.

11. i = i + 1.

12. If i > n stop. Else go to Step 3.

8

3.2 Analysis

In this section we prove the validity of the algorithm. Hereinafter, whenever necessary to
distinguish between two subsequent rounds, we use the superscript i to denote the values of the
algorithm variables during the ith round in the algorithm, 1 ≤ i ≤ n. Namely, Ψi(x), Θi(x) and
Γi(x) are the three state functions during the ith round (before they are being updated in Step
9), mi is the number of discontinuities of Θi(x) while {Λi

j}1≤j≤mi are those discontinuities (with
Λi

0 = 0), and Endi(a) is the function that is defined in (18) at the ith round. We also define
Ωi = [0, Λi

mi) to be the support of the state functions in round i, Ωi
j = [Λi

j−1, Λ
i
j), 1 ≤ j ≤ mi,

be the decomposition of Ωi into intervals of continuity of Θi(x), and λi
j = |Ωi

j |.

Lemma 3.2 (i) The timing function is linear on each continuity interval, i.e.,

Θi(x) =

{
x− Λi

j−1 if x ∈ Ωi
j for some 1 ≤ j ≤ mi

0 otherwise
. (23)

(ii) λi
j, 1 ≤ j ≤ mi, form a non-increasing sequence for all i.

(iii) The potential function, Ψi(x), is monotonically non-increasing.

Proof. The statement clearly holds when i = 1, in view of (15)–(16) and Proposition 2.2.
Moreover, statement (iii) is obviously true in all rounds since the cut-and-shift operator, U[a,b),
leaves Ψi monotonic non-increasing. Hence, we may concentrate on the first two statements
and we proceed, by induction, to show that if they hold in the ith round they must hold in the
(i + 1)th round as well.

There are three cases to consider, according to the position of a that is selected in Step 4 in
the ith round:

1. a ∈ Ωi
j , j < mi, (namely, a does not fall in the last interval) and End(a) = a + λi

j .

2. a ∈ Ωi
j , j < mi, and End(a) = Λi

j+1.

3. a ∈ Ωi
mi , whence End(a) = Λi

mi .

In the first case, the modification of Θi by means of the cut-and-shift operator U[a,b), Step 9,
creates a continuous linear segment in Θi+1, Ωi+1

j , out of two neighboring segments in Θi, Ωi
j and

Ωi
j+1 (the continuity stems from the fact that Θi(x+λi

j) = Θi(x) for all x ∈ [Λi
j−1, Λ

i
j−1+λi

j+1);
see Figure 3 and compare to Figure 6 and then to Figure 9). The form of Θi+1 is as in (23).
Moreover, λi+1

j = λi
j+1 in this case. Therefore, since the lengths of all other intervals remain

unchanged, the new sequence of lengths is still monotone, λi+1
1 ≥ · · · ≥ λi+1

mi+1 . We note that in
this case the number of intervals decreases by one, mi+1 = mi − 1.

In the second case we also have mi+1 = mi − 1. Here, however, if a ∈ Ωi
j , then the

interval Ωi
j+1 disappears in the next stage, while the preceding interval Ωi

j will be shortened
into Ωi+1

j = [Λi+1
j−1,Λ

i+1
j) where the left end point remains the same, Λi+1

j−1 = Λi
j−1, while the

right end point is modified into Λi+1
j = a < Λi

j . All other intervals remain the same. Θi+1(x) is
still of the form (23). Moreover, the length of the newly formed interval, λi+1

j , is smaller than
the length of the jth interval in round i, and therefore it is smaller than all intervals to the left.

9

On the other hand, it is longer than the old interval that disappeared, Ωi
j+1, and, consequently,

longer than all intervals that remain to the right. Hence, also in this case the monotonicity of
the interval lengths is preserved.

In the last case, there are two possibilities: either a falls in the interior of Ωi
mi , i.e., a > Λi

mi−1,
or a = Λi

mi−1. In the first case, the number of intervals remains unchanged, mi+1 = mi, and
all intervals remain the same apart from the last one that is shortened to Ωi+1

mi+1 = [Λi
mi−1, a).

In the second case, the last interval vanishes altogether and mi+1 = mi − 1; here also, all other
intervals remain the same. In both cases, Θi+1 is still as described in (23) and the sequence of
lengths remains non-increasing. ¤

Lemma 3.3 Define the sliding window potential function

Ψ̂(a) =
∫ End(a)

a

Ψ(x)dx . (24)

Then End(a) and Ψ̂(a) are both continuous, where the former is non-decreasing while the latter
is non-increasing.

Proof. (Here, since we do not use induction, we omit the superscript i.) End(a) is clearly
continuous in the interior of each interval Ωj . Let Λj be the transition point between Ωj and
Ωj+1. Then, by (18) and Lemma 3.2-(ii),

End(Λj−) = min(Λj + λj , Λj+1) = min(Λj+1 + λj − λj+1,Λj+1) = Λj+1 .

On the other hand,

End(Λj+) = min(Λj + λj+1,Λj+2) = min(Λj+1,Λj+2) = Λj+1 .

Hence, End(a) is continuous. Since it is monotone non-decreasing in the interior of each interval
Ωj , it is monotone non-decreasing along its entire domain of definition [0, Λm).

The definition of Ψ̂(a) as a sliding window integral of a piecewise continuous function, where
the window edges, a and End(a), vary continuously, imply that it is also a continuous function.
It is non-increasing, as can be seen by differentiating (24),

Ψ̂(a)
da

= Ψ(End(a)) · End′(a)−Ψ(a) . (25)

In the domains where End(a) is determined by the first argument in the minimum in (18), its
derivative is 1. Therefore, as End(a) > a and Ψ is non-increasing, Lemma 3.2-(iii), we get

Ψ̂(a)
da

= Ψ(End(a))−Ψ(a) ≤ 0 .

In the domains where End(a) is determined by the second argument in the minimum, End′(a) =
0. Consequently, since Ψ ≥ 0, Ψ̂(a)

da turns out to be non-positive there as well. ¤
Assume that round i∗ was the first round in which we selected in Step 4 a value of a with

Endi∗(a) = Λi∗
mi∗ (namely, this is the first round in which the sliding window went all the way

10

to the right end point of the current support, [0,Λi∗
mi∗), of the three state functions). It is not

hard to see that, as the jobs are ordered in a non-increasing order according to their weight,
the same will happen in all subsequent rounds, i.e., Endi(a) = Λi

mi for all i ≥ i∗. We refer to
the first i∗ − 1 rounds in the execution of the algorithm as Phase 1, while rounds i∗ through n

constitute Phase 2. With this terminology, we proceed as follows.

Lemma 3.4 During Phase 1 the number of Θi-continuity intervals always decreases by one.
Namely, for all i, 1 ≤ i ≤ i∗, mi = m− i + 1. Consequently, Phase 1 lasts no more than m− 1
rounds.

Proof. Referring to the three cases that were discussed in the proof of Lemma 3.2, we note that
during Phase 1 we are always in case 1, or in case 2 with j < mi − 1. In either case, the value
of m decreases in such rounds by 1, as shown there. Consequently, if Phase 1 covers the first
m− 1 rounds, then during the mth round the number of continuity intervals in Θm is one. The
definition of the function End(a) implies that this round must therefore mark the beginning of
Phase 2. ¤

Next, we turn our attention to the following important proposition.

Proposition 3.5 In all rounds, the set of values of a that satisfy requirement (19) in Step 4 of
the algorithm is nonempty and it has a maximum.

The following sequence of lemmas provides a proof for this proposition.

Lemma 3.6 If Proposition 3.5 holds for the first i−1 rounds, where i is any value in the range
1 ≤ i ≤ m, then ∫

Ωi

Ψi(x)dx =
m∑

j=1

µj −Wi−1 ; (26)

i.e., the total potential during the ith round equals the initial total potential minus the sum of
weights of the first i− 1 jobs, Wi−1, (7).

Proof. In each round i we identify an interval [a,End(a)) along which the integral of the
potential function Ψi equals wi, (19), and then update Ψi into Ψi+1 by extracting that interval,
Step 9. Since the total potential of Ψ1 is

∑m
j=1 µj , see (14) and (15), (26) follows. ¤

Lemma 3.7 If in round i

Ψ̂i(0) ≥ wi , (27)

where Ψ̂i is defined in (24), the assertion of Proposition 3.5 holds in that round.

Proof. (The superscript i is omitted.) The definition of End(·) and Ψ̂(·) imply that

Ψ̂(Λm) = 0 . (28)

11

As Ψ̂(·) is continuous, Lemma 3.3, we infer by (27) and (28) that there exists at least one value
of a for which (19) holds. As Ψ̂(·) is also monotone non-increasing, there is either a unique a

that satisfies (19), or a closed interval [amin, amax] from which the algorithm picks the largest
value a = amax. ¤

Lemma 3.8 Let
µi

j =
∫

Ωi
j

Ψi(x)dx , 1 ≤ j ≤ mi (29)

denote the integrals of the potential function in the ith round, Ψi(x), along the intervals of
continuity of Θi(x). Then

k∑

j=1

µi
j ≥

i+k−1∑

j=i

wj , 1 ≤ k ≤ mi − 1 (30)

and
mi∑

j=1

µi
j =

n∑

j=i

wj . (31)

During the ith round there are mi “virtual machines” that correspond to the mi continuity
intervals of Θi. Those continuity intervals generalize the concept of the DPSs (Disjoint Processor
Systems) of [6, 12]. The lemma states that the initial situation where machine weight prefixes
dominate job weight prefixes, while the total sum of machine weights equals the total sum of
job weights, as described in Proposition 2.4, is preserved in all rounds.

Proof. The statement is obviously true for i = 1 since then it agrees with Proposition 2.4. We
proceed by induction to prove it for the (i+1)th round, assuming that it holds for the ith round.
To avoid too many indices we denote all entities of the ith round with no superscript, while
the entities in the subsequent round will be denoted by an apostrophe. To further simplify the
notations, we concentrate on the transition from the first round to the second one, i.e., i = 1.

First, we assume that the first round was in Phase 1, so that the number of intervals in the
second round is m′ = m− 1. So, given that

µ1 + · · ·+ µk ≥ w1 + · · ·+ wk , 1 ≤ k ≤ m− 1 and µ1 + · · ·+ µm = w1 + · · ·+ wn , (32)

we need to show that if µ′j , 1 ≤ j ≤ m′ = m − 1, are the corresponding weights in the second
round, (29), then

µ′1+· · ·+µ′k ≥ w2+· · ·+wk+1 , 1 ≤ k ≤ m−2 and µ′1+· · ·+µ′m−1 = w2+· · ·+wn . (33)

Let us assume that the first job was scheduled on an interval [a,End(a)) where a ∈ Ωj for some
1 ≤ j ≤ m − 1 (j < m in view of our assumption that the first round was in Phase 1). Then
after the update of the state functions, Step 9, the first j − 1 weights are not effected,

µ′k = µk , 1 ≤ k ≤ j − 1 . (34)

12

The new jth weight equals the sum of the previous jth and (j + 1)th weights, minus w1 (which
equals the integral of Ψi over the interval [a,End(a)) that was extracted),

µ′j = µj + µj+1 − w1 . (35)

The remaining weights in the new round are obtained by a left shift of the remaining weights
in the previous round,

µ′k = µk+1 , j + 1 ≤ k ≤ m− 1 . (36)

When k < j the corresponding inequality in (33) holds due to (34), (32) and the monotonicity
of the job weights,

µ′1 + · · ·+ µ′k = µ1 + · · ·+ µk ≥ w1 + · · ·+ wk ≥ w2 + · · ·+ wk+1 .

If j ≤ k ≤ m− 2, the corresponding inequality in (33) holds due to (34)–(36) and (32),

µ′1 + · · ·+ µ′k = µ1 + · · ·+ µk+1 − w1 ≥ w2 + · · ·+ wk+1 .

The equality in (33) is proved similarly. This completes the proof for i = 2 if the first round
was in Phase 1. If the first round was in Phase 2 the proof is very similar and should take into
account the two possible cases: either m′ = m (if a > Λm−1) or m′ = m− 1 (if a ≤ Λm−1 and
End(a) = Λm); we omit further details. ¤

Proof of Proposition 3.5. Lemma 3.8 implies that in all rounds

Ψ̂i(0) =
∫

Ωi
1

Ψi(x)dx = µi
1 ≥ wi , 1 ≤ i ≤ n .

Hence, Proposition 3.5 holds in view of Lemma 3.7. ¤

Theorem 3.9 Algorithm 3.1 generates a complete and legal schedule. Moreover, the number of
preemptions that are enforced by the algorithm is bounded by 2(m− 1).

Proof. The algorithm is well defined in view of Lemma 3.2 and Proposition 3.5. This implies the
completeness of the resulting schedule since each job is assigned time shares on the machines
that enable its completion. The schedule is legal since End(a) is defined so that the timing
function Θi(x) is one-to-one along the interval [a,End(a)).

Next, we turn our attention to the number of preemptions. We prove that the number of
segments in the schedule,

∑m
j=1 kj (see Definition 1.1), is bounded by n + 2(m − 1). Let Qi

denote the number of segments in the schedule after the assignment of the first i jobs. Then
we aim at showing that Qn ≤ n + 2(m − 1). Initially, Q0 = m since in each machine there
is exactly one idle segment of duration µj/sj . During Phase 1 in the algorithm, the overall
number of segments may increase by no more than 2. Indeed, going back to Step 5 in the
algorithm and to the decomposition (20) of the interval [a, End(a)), we note that the assignment
of such a job may increase the number of segments only in the first and last machines, Mj1 and
Mj`

, while in the intermediate machines, {Mjr}1<r<`, the number of segments remains the

13

same. During Phase 2, however, the number of segments may increase by 1 at the most. More
specifically, if the interval assigned to the job is exactly the last interval of discontinuity of Θi,
i.e., [a,End(a)) = [Λi

mi−1, Λ
i
mi), the number of segments does not increase; if, on the other

hand, a > Λi
mi−1 or a < Λi

mi−1, the number of segments will increase by 1. Note that in the
last round a must equal 0, as implied by condition (9). In view of all of the above, if t is the
number of rounds in Phase 1, Qm ≤ Q0 + 2t + (n− t− 1) = m + t + (n− 1). Since t ≤ m− 1,
Lemma 3.4, we conclude that Qm ≤ m + (m− 1) + n− 1 = n + 2(m− 1). ¤

We note that this number of segments, n + 2(m − 1), was shown to be minimal for some
inputs for the makespan minimization problem [6].

In view of all of the above, we arrive at our final statement regarding Algorithm 3.1.

Theorem 3.10 Algorithm 3.1 outputs an optimal preemptive schedule when the input µ =
(µ1, . . . , µm) is a solution of the corresponding mathematical program MP, namely, when it
minimizes (13) under constraints (8)+(9).

3.2.1 A semi-online version

Here we show that our algorithm works even when the jobs are not ordered according to a
non-increasing job weight. We describe herein all the necessary modifications that need to be
made in order to prove that also the semi-online version of the algorithm works.

When the jobs are not ordered, the terms Phase 1 and Phase 2 are no longer suitable.
Instead, one should speak of rounds of Type 1 and Type 2. Round number i is a round of
Type 1 if the value of a that was selected in Step 4 was in the range [0, Λi

mi−1]. Otherwise, if
a ∈ (Λi

mi−1, Λ
i
mi), the round is referred to as a round of Type 2. When the jobs are ordered, all

round of Type 1 (if any) occur first, and once a round of Type 2 occurs, all subsequent rounds
are also of Type 2. This enabled the distinction between Phase 1 and Phase 2. However, when
the jobs are not ordered, the two types of rounds may be interleaved. Hence, Lemma 3.4 should
be modified as follows:

Lemma 3.11 In each round of Type 1, the number of Θi-continuity intervals decreases by one.
Consequently, there are no more than m− 1 rounds of Type 1.

The next lemma that needs to be modified is Lemma 3.8. Here is its modification:

Lemma 3.12 For every round number i, 1 ≤ i ≤ n, let {wi
j}1≤j≤n+1−i denote the sequence

of job weights that were still not scheduled thus far, ordered so that wi
1 ≥ wi

2 ≥ · · · ≥ wi
n+1−i.

Furthermore, let µi
j denote the integrals of the potential function in the ith round, Ψi(x), along

the intervals of continuity of Θi(x), see (29). Then
k∑

j=1

µi
j ≥

k∑

j=1

wi
j , 1 ≤ k ≤ mi − 1 (37)

and
mi∑

j=1

µi
j =

n+1−i∑

j=1

wi
j . (38)

14

Proof. The statement is obviously true for i = 1 since then it agrees with Proposition 2.4. We
proceed by induction to prove it for the (i+1)th round, assuming that it holds for the ith round.
To that end, we denote the weight of the job that was scheduled in the ith round by wi

s, where
1 ≤ s ≤ n + 1− i.

There are two cases to consider: either the ith round was of Type 1 or it was of Type 2. If it
was of Type 1, the number of intervals in the (i + 1)th round is mi+1 = mi − 1 and there exists
`, 1 ≤ ` < mi, such that

µi+1
j = µi

j 1 ≤ j ≤ `− 1
µi+1

` = µi
` + µi

`+1 − wi
s

µi+1
j = µi

j+1 ` + 1 ≤ j ≤ mi+1

. (39)

In light of (39), the new set of machine weights µi+1
j , 1 ≤ j ≤ mi+1, and the weights of the

remaining job weights,
{wi+1

j }1≤j≤n−i = {wi
j}1≤j≤n+1−i,j 6=s , (40)

obviously satisfy the required equality (38). Thus, we concentrate on proving that they satisfy
the set of inequalities in (37), i.e., that

k∑

j=1

µi+1
j ≥

k∑

j=1

wi+1
j , 1 ≤ k ≤ mi+1 − 1 . (41)

Those inequalities hold for all k ≤ `− 1 because, by (39), (37) and (40),

k∑

j=1

µi+1
j =

k∑

j=1

µi
j ≥

k∑

j=1

wi
j ≥

k∑

j=1

wi+1
j .

As for ` ≤ k ≤ mi+1 − 1, (39) and (37) imply that

k∑

j=1

µi+1
j =

k+1∑

j=1

µi
j − wi

s ≥
k+1∑

j=1

wi
j − wi

s . (42)

Now, if s ≤ k +1, the right hand side in (42) equals the sum of the k largest jobs in round i+1,
i.e.,

∑k
j=1 wi+1

j , whence
∑k

j=1 µi+1
j ≥ ∑k

j=1 wi+1
j as required. If, on the other hand, s > k + 1,

we get that
k∑

j=1

µi+1
j ≥

k∑

j=1

wi
j + (wi

k+1 − wi
s) ≥

k∑

j=1

wi
j =

k∑

j=1

wi+1
j ;

namely, the set of k largest job weights remains unchanged in this case.
If the ith round was of Type 2, the number of intervals in the (i + 1)th round is mi+1 = mi

and
µi+1

j = µi
j 1 ≤ j ≤ mi+1 − 1

µi+1
mi+1 = µi

mi − wi
s

. (43)

Also here, the new set of machine weights µi+1
j , 1 ≤ j ≤ mi+1, and the weights of the remaining

job weights, (40), obviously satisfy the required equality (38). Thus, we concentrate on prov-
ing that they satisfy (41). Arguing along the same lines as before, this is a straightforward

15

consequence of (43), (37) and (40),

k∑

j=1

µi+1
j =

k∑

j=1

µi
j ≥

k∑

j=1

wi
j ≥

k∑

j=1

wi+1
j .

¤
Next, we should modify inequality (27) in Lemma 3.7 into Ψ̂i(0) ≥ wi

1 (namely, the first
machine weight in each round, µi

1, should be at least as large as the weight of the largest job
that was still not scheduled). That, in turn, proves Proposition 3.5. That summarizes all the
necessary changes.

3.3 Implementation

Algorithm 3.1 maintains three state functions and, in Step 4, it needs to find a specific value
of a out of a continuum of possible values. Hence, it is necessary to demonstrate how such an
algorithm, that deals with non-discrete entities, may be implemented efficiently.

The three state functions may be easily represented by vectors of length m that store their
discontinuities. To that end, the algorithm maintains the following variables:

1. The variable mt that holds the value mi. It is initialized to mt= m.

2. The vector T[0 : m] that holds in round i the discontinuities of the timing function Θi(x),
i.e., Λi

j , 1 ≤ j ≤ mi. It is initialized to T[j]=Λj for all 0 ≤ j ≤ m.

3. The vector G[0 : m] that holds in round i the discontinuities of the indicator function Γ(x).
It is initialized in the same way as T[·].

We note that the discontinuities of the potential function, Ψ(x), coincide with those of Γ(x)
(When we talk hereinafter about discontinuities of Ψ we actually mean a transition point from
one machine to another, namely, a discontinuity in Γ. Note that if two adjacent machines have
the same speed, there is a discontinuity in Γ but not in Ψ; still, we count that point as a
discontinuity in our discussion). During the entire execution of the algorithm, the vector T[·]
will represent the function Θ(x) in the sense that

Θ(x) =

{
x− T[j− 1] x ∈ [T[j− 1], T[j]) , 1 ≤ j ≤ mt

0 Otherwise
,

see (23). The vector G[·], on the other hand, represents both Γ(x) and Θ(x) as

Γ(x) =

{
j x ∈ [G[j− 1], G[j]) , 1 ≤ j ≤ m

0 Otherwise
,

and

Ψ(x) =

{
sj x ∈ [G[j− 1], G[j]) , 1 ≤ j ≤ m

0 Otherwise
. (44)

Assume that in a given round we identified an interval [a, b) that should be extracted, see
Step 9. Implementing the cut-and-shift operation, (22), on T[·], G[·] and mt is a straightforward
task. Hence, we proceed to explain how to find the appropriate value of a in Step 4. To that

16

end, we construct in each round a third vector that will represent the sliding window function
Ψ̂(a) =

∫ End(a)

a
Ψ(x)dx, (24). As shown in Lemma 3.3, Ψ̂ is continuous and monotonic non-

increasing. Its derivative however, (25), is piecewise constant and has discontinuities of three
types:

• Type I. Points a in which the left end point of the sliding window, a, is a discontinuity of
Ψ.

• Type II. Points a in which the right end point of the sliding window, End(a), is a discon-
tinuity of Ψ.

• Type III. Points a in which End′ is discontinuous. End′ has discontinuities in every point
T[j], 1 ≤ j ≤ mt, and also in internal points of the intervals (T[j-1],T[j]) in which
the two arguments in the max in (18) are equal. The discontinuities of the first kind, T[j],
are always of Type I as well, since the discontinuities of Θ(x) are always discontinuities of
Ψ too.

There are no more than m − 1 internal discontinuities of Ψ. Therefore, the number of discon-
tinuities of Type I is no more than m − 1, and the same holds for discontinuities of Type II,
since End(a) is monotone. As for discontinuities of Type III that are not also discontinuities
of Type I, there are no more than m − 1 such points because End′ has no more than m − 1
discontinuities in the interior of the intervals (T[j-1],T[j]), 1 ≤ j ≤ m. In view of all of the
above we conclude that Ψ̂ is continuous and piecewise linear and it has no more than 3(m− 1)
singular points. Therefore, what we need to do in order to recompute Ψ̂(·) in each round is as
follows:

1. Find its set of (no more than 3(m− 1)) singularities.

2. Compute Ψ̂ at each of these singularities, at a = 0 and at a = G[m] (in the latter point Ψ̂
is always zero, (28)).

Having identified the nodes of Ψ̂ and its values at those nodes, we may then easily find (the
maximal) point a where Ψ̂(a) = wi, (19), by means of a binary search of wi in the list of values
of Ψ̂ at the nodes, followed by a linear interpolation. Hence, we proceed to discuss how we may
carry out the above two tasks. The second one is easy: given a value of a it is straightforward
to compute End(a), according to T [·] and (18), and then Ψ̂(a), according to (44). It remains
to discuss the first task above, namely, finding the singularities of Ψ̂. The singularities of Type
I are just the points G[j], 1 ≤ j ≤ m-1. The additional singularities of Type III are easily
computable from T[·]. Finally, the singularities of Type II are just InvEnd(G[j]), 1 ≤ j ≤
m-1, where InvEnd(·) is the inverse function of End(·). InvEnd(·) is well defined everywhere
apart from {T[j], 1 ≤ j ≤ mt}. So we may find all singularities of Type II for which G[j]

does not coincide with a discontinuity of Θ(x), T[k]. We claim that we may ignore at this stage
points G[j] that do coincide with some T[k]. The reason is that such points give rise to two
singularities of Type II: the first one is also a singularity of Type III and the second one is also a
singularity of Type I. Therefore, we may ignore such points in our search of Type II singularities
because they were already covered in our search for Type I and Type III singularities.

17

4 Examples of Target Functions

4.1 The makespan

In [6] it is shown that the optimal makespan is

fopt := max
1≤k≤m

qk where qk =
Wk

Sk
, (45)

Wk is given in (7) and Sk is the sum of the speeds of the k fastest machines, (12), 1 ≤ k ≤ m. We
continue to prove that fopt is indeed the minimum of MP with f = max. First, we claim that fopt

is a lower bound for the minimum: Let µ = (µ1, . . . , µm) ∈ Ω and let fµ = max
(

µ1
s1

, . . . , µm

sm

)
.

Then µj ≤ fµ · sj for all 1 ≤ j ≤ m. Invoking (8)+(9), we conclude that

Wk ≤
k∑

j=1

µj ≤ fµ ·
k∑

j=1

sj = fµ · Sk , 1 ≤ k ≤ m .

We infer that fµ ≥ qk for all 1 ≤ k ≤ m, where qk are given in (45). This implies that

min
µ∈Ω

fµ ≥ fopt . (46)

Next, we need to construct a solution µ = (µ1, . . . , µm) ∈ Ω for which max
(

µ1
s1

, . . . , µm

sm

)
= fopt.

Algorithm 4.1 that is presented in the next section constructs such a solution (see at the end of
Section 4.2).

4.2 The `p-norm

Here, we concentrate on the solution of MP where f is as in (4). Even though this section
concentrates on 1 < p < ∞, the results presented herein apply equally to p = 1 and p = ∞
by taking the corresponding limit. We begin in Section 4.2.1 with a characterization of optimal
solutions of this problem. This characterization provides also a method to compute all optimal
solutions. However, the run-time of this method is exponential in m. In Section 4.2.2 we describe
a polynomial time algorithm that constructs an optimal solution for the problem. In analyzing
that algorithm and proving its correctness, we rely upon some of the results of Section 4.2.1.

4.2.1 Optimal solutions for the `p-minimization problem

In the mathematical program MP we aim at finding a solution µ = (µ1, . . . , µm) ∈ Ω that

minimizes
∑m

j=1

(
µj

sj

)p

. Using (9) to express µm as a function of all other arguments, we aim
at minimizing

g(µ1, . . . , µm−1) =
m−1∑

j=1

(
µj

sj

)p

+
(

Wm − µ1 − · · · − µm−1

sm

)p

, (47)

in the domain

Ω′ =
{
(µ1, . . . , µm−1) ∈ (R+)m−1 : ∃µm ∈ R+ such that (µ1, . . . , µm−1, µm) ∈ Ω

}
. (48)

18

Differentiating with respect to each of the m− 1 variables we find out that the minimum occurs
when

∂g

∂µj
=

pµp−1
j

sp
j

− p(Wm − µ1 − · · · − µm−1)p−1

sp
m

= 0 , 1 ≤ j ≤ m− 1 ,

or

µj =
(

sj

sm

)p/(p−1)

· (Wm − µ1 − · · · − µm−1) , 1 ≤ j ≤ m− 1 . (49)

The solution of this set of equations is

µj = s
p/(p−1)
j · Wm

Sp[1 : m]
, 1 ≤ j ≤ m , (50)

where hereinafter

Sp[a : b] =
b∑

j=a

s
p/(p−1)
j . (51)

The minimal point (50) may occur outside of Ω′. In that case, the minimum in Ω′ is obtained
at some point on the boundary ∂Ω′. ∂Ω′ is composed of 2(m− 1) faces. m− 1 of those faces
are characterized by

k∑

j=1

µj = Wk , 1 ≤ k ≤ m− 1 . (52)

The other m − 1 faces are characterized by µj = 0, 2 ≤ j ≤ m, where µm = Wm −∑m−1
j=1 µj .

From the convexity of the `p-norm for 1 < p ≤ ∞ we may ignore the latter m − 1 faces and
restrict our attention to the first m − 1 faces. Along the kth face µk = Wk −

∑k−1
j=1 µj and,

consequently, the function g, (47), reduces to a function of m− 2 variables. Repeating the same
computations as before, we find that the minimum along the kth face is obtained at

µj = s
p/(p−1)
j ·

Wk/Sp[1 : k] 1 ≤ j ≤ k

(Wm −Wk)/Sp[k + 1 : m] k + 1 ≤ j ≤ m

. (53)

In general, the minimum of g along the intersection of t faces, say, 1 ≤ k1 < · · · < kt ≤ m− 1,
namely, the minimum of g when (8) holds with equality for all k ∈ {k1, . . . , kt} and with a strict
inequality for all other values of 1 ≤ k ≤ m− 1, is given by

µj = s
p/(p−1)
j · (Wki+1 −Wki)/Sp[ki + 1 : ki+1] , ki + 1 ≤ j ≤ ki+1 , (54)

where k0 = 0, kt+1 = m, W0 = 0 and 0 ≤ i ≤ t. Note that (54) agrees with (50) when the
global minimum is obtained at the interior Ω \ ∂Ω (i.e., when t = 0) and with (53) when it is
obtained at the interior of one of the faces of ∂Ω (t = 1). Formula (54) may be used to find
the global minimum in Ω using a naive algorithm by scanning all 2m−1 values of 0 ≤ t ≤ m− 1
and {ki}1≤i≤t, computing the corresponding minimum by (54), checking if that minimum is in
Ω and, among those that are, selecting the minimal one.

19

4.2.2 A polynomial time algorithm for finding an optimal solution

Here we present a polynomial time algorithm that yields an optimal solution µ = (µ1, . . . , µm)
for MP where the target function is the `p-norm. The run time of the algorithm is O(m2). After
presenting the algorithm, we prove that its output, µ, is in Ω and that it is a minimal point in
Ω.

Algorithm 4.1

1. Set t = 0 and kt = 0 (at each stage kt equals the number of values µj that were already
determined).

2. For every kt + 1 ≤ k ≤ m, compute

qk = (Wk −Wkt)/Sp[kt + 1 : k] . (55)

and set kt+1 to be the (minimal) value of k for which qk is maximal.

3. For all kt + 1 ≤ j ≤ kt+1, set

µj = s
p/(p−1)
j · (Wkt+1 −Wkt)/Sp[kt + 1 : kt+1] . (56)

4. If kt+1 < m set t = t + 1 and go to Step 2.

Comment. We note that the algorithm solves also the extremal cases p = 1 and p = ∞. When
p = ∞, the powers p/(p− 1) need to be understood as 1. As for p = 1, let b denote the number
of machines of maximal speed, i.e., sj = 1 for 1 ≤ j ≤ b and sj < 1 for b < j ≤ m. When p ↓ 1,
the powers p/(p − 1) ↑ ∞. Hence, s

p/(p−1)
j = 1 for 1 ≤ j ≤ b and zero for b < j ≤ m. As a

consequence, by (56), the machines which are not among the fastest, Mj , b < j ≤ m, will be
assigned nothing, µj = 0, and the entire weight will be spread among the b fastest machines.
The manner in which the total weight will be spread among those machines depends on the data
but is insignificant because the `1-norm does not distinguish between such assignments. Such
schedules are of-course optimal.

Example. Assume n = 5 jobs of weights (w1, . . . , w5) = (5, 5, 3, 1, 1), m = 4 machines of
speeds (s1, . . . , s4) = (1, 1

2 , 1
2 , 1

2) and p = ∞. Then in the first round, the quotients qk that are
evaluated in Step 2 are q1 = 5

1 , q2 = 10
3/2 , q3 = 13

2 and q4 = 15
5/2 . The maximum 20/3 is achieved

at k1 = 2. So we set in Step 3 µ1 = 20/3 and µ2 = 10/3. In the second round, the fractions are
q3 = 3

1/2 and q4 = 5
1 . The maximum 6 is obtained at k2 = 3, whence we set in Step 3 µ3 = 3.

The third round is the last. Here we have q4 = 2
1/2 so that k3 = 4 and, consequently, µ4 = 2.

The algorithm thus outputs (µ1, . . . , µ4) = (20/3, 10/3, 3, 2).

Lemma 4.2 Let µ = (µ1, . . . , µm) be the solution that Algorithm 4.1 returned and let {ki}0≤i≤t+1

be the corresponding sequence of indices that were identified during the execution of the algo-
rithm. Then µ ∈ Ω. Namely, it satisfies (8)+(9). Moreover, the set of indices for which (8)
holds with equality is exactly {ki}1≤i≤t.

20

Proof. We show that for every 0 ≤ i ≤ t,

k∑

j=ki+1

µj > Wk −Wki
, ki + 1 ≤ k < ki+1 , (57)

and
ki+1∑

j=ki+1

µj = Wki+1 −Wki
. (58)

Obviously, (57)+(58) prove all claims of the lemma. Let us fix i in the range 0 ≤ i ≤ t and
prove (57) for that value of i. ki+1 was the first index that maximized the quotient (Wk −
Wki

)/Sp[ki + 1 : k] among all ki + 1 ≤ k ≤ m. Hence,

(Wki+1 −Wki
)/Sp[ki + 1 : ki+1] > (Wk −Wki

)/Sp[ki + 1 : k] , ki + 1 ≤ k < ki+1 . (59)

Consequently, by (56),

k∑

j=ki+1

µj =

k∑

j=ki+1

s
p/(p−1)
j

 · (Wki+1 −Wki)/Sp[ki + 1 : ki+1] >

>

k∑

j=ki+1

s
p/(p−1)
j

 · (Wk−Wki)/Sp[ki +1 : k] = Wk−Wki , ki +1 ≤ k < ki+1 .

This proves (57). The proof of (58) is similar. ¤

Next, we claim that µ is optimal for 1 < p < ∞ (the case p = ∞ is referred to later on).

Lemma 4.3 Let µ′ = {µ′j}1≤j≤m be an optimal solution of MP for 1 < p < ∞. Then µ′ = µ.

Proof. Let {k′i}1≤i≤t′ be the indices for which the optimal solution µ′ satisfies (8) with equality.
Then µ′ is given by (54) with k′i and t′ instead of ki and t. We continue to show that µ′ coincides
with µ along the first run in µ, i.e.,

µ′j = µj , 1 ≤ j ≤ k1 . (60)

The proof for subsequent runs is similar. Our first observation is that, by (54) and (56),

µ′1 = s
p/(p−1)
1 ·Wk′1/Sp[1 : k′1] ≤ s

p/(p−1)
1 ·Wk1/Sp[1 : k1] = µ1 (61)

(the inequality in (61) stems from the fact that k1 was chosen by the algorithm in the first round
so as to maximize the quotients qk = Wk/Sp[1 : k]). Moreover, as µ′ satisfies conditions (8)+
(9),

k1∑

j=1

µ′j ≥ Wk1 =
k1∑

j=1

µj . (62)

21

Next, assume that (60) does not hold. Then, in view of (62),

µ′k > µk for some 1 < k ≤ k1 . (63)

We continue to show that (63)+(61) imply that the solution µ′ may be improved by moving
some weight from µ′k to µ′1, in contradiction to the optimality of µ′. To that end, define

M = µ1 + µk , M ′ = µ′1 + µ′k , (64)

and

µ′′i = αiM
′ where αi =

s
p/(p−1)
i

s
p/(p−1)
1 + s

p/(p−1)
k

, i = 1, k . (65)

We show below that

µ′′1 > µ′1 , µ′′k < µ′k and µ′′1 + µ′′k = µ′1 + µ′k . (66)

This will establish the required contradiction: by replacing in µ′ the weights on the first and
kth machine, µ′1 and µ′k, with the newly defined weights, µ′′1 and µ′′k , we get a different solution
that is still legal and it has a smaller `p-norm since

(
µ′′1
s1

)p

+
(

µ′′k
sk

)p

<

(
µ′1
s1

)p

+
(

µ′k
sk

)p

(µ′′ is still legal because, by (66), we increase the weight on the first machine by some constant
and decrease the weight on the kth machine by the same constant, hence, we keep respecting
all conditions in (8)+(9)). It thus remains only to prove (66). The equality in (66) is obvious.
Regarding the two inequalities, it suffices to prove only one of them. If M ≥ M ′ then, by (65),
µ′′k = αkM ′ ≤ αkM . But αkM = µk as implied by our definition of µj in the algorithm, (56),
along the first run 1 ≤ j ≤ k1. Hence, by (63), we conclude that in this case

µ′′k = µk < µ′k . (67)

If, on the other hand, M < M ′ then, by (65) and (61),

µ′′1 = α1M
′ > α1M = µ1 ≥ µ′1 . (68)

(66) now follows from (67) and (68). ¤

Before concluding this section we comment on the optimality for p = ∞. We observe that
the solution µ that Algorithm 4.1 outputs satisfies

max
1≤k≤m

Wk

Sp[1 : k]
=

µ1

s
1+ 1

p−1
1

≥ µ2

s
1+ 1

p−1
2

≥ · · · ≥ µm

s
1+ 1

p−1
m

. (69)

When p = ∞, (69) translates into

max
1≤k≤m

Wk

S∞[1 : k]
= max

1≤k≤m

Wk

Sk
=

µ1

s1
≥ µ2

s2
≥ · · · ≥ µm

sm
;

22

here, as in (12), Sk =
∑k

j=1 sj . Therefore,

max
(

µ1

s1
, . . . ,

µm

sm

)
= max

1≤k≤m

Wk

Sk
,

which, in view of (46)+(45), shows the optimality of this solution.
In addition, we note in passing that (69) strengthens Proposition 2.2 for p < ∞ because it

implies that
λ1

s
1

p−1
1

≥ · · · ≥ λm

s
1

p−1
m

.

4.3 Threshold cost functions

Here we study the target function

f(µ1, . . . , µm) =
m∑

j=1

max
(

µj

sj
, c

)
. (70)

This case, also known as extensible bin packing [2, 3, 4], describes a scenario in which a fixed
payment is due up-front for c time units in each machine, whether they have been used or not,
and, in addition, to any excessive time that was used beyond the fixed threshold in any of the
machines.

We begin with an algorithm to compute an optimal solution µ ∈ Ω to MP when the target
function f is as above. Here Wk and Sk are as in (7) and (12).

Algorithm 4.4

1. Set µk = 0 for all 1 ≤ k ≤ m.

2. Set W = Wm =
∑n

j=1 wj.

3. If W ≤ c · s1 set µ1 = W and stop.

4. Set

µ1 = max
{

c · s1, max
1≤k≤m

(Wk − c · Sk + c · s1)
}

, W = W − µ1 . (71)

5. For k = 2 to k = m do:

(a) If W > c · sk then µk = c · sk and W = W − c · sk.

(b) Else µk = W and W = 0.

Lemma 4.5 The solution that Algorithm 4.4 produces is in Ω.

Proof. In order to prove completeness, condition (9), we show that if we reach Step 4 then W

must be zero at the end of the loop in Step 5 (in fact, it may become zero earlier, and then all
µk from the next step will be zero). The initialization of µ1, (71), implies that

µ1 ≥ Wm − c · Sm + c · s1 .

23

Consequently, at the beginning of the loop in Step 5,

W ≤ c · (Sm − s1) = c ·
m∑

j=2

sj .

Hence, if in all m− 1 rounds of the loop we execute Step 5a, the value of W at the end of the
loop is zero. If, on the other hand, we execute in one of the rounds Step 5b instead, then W

becomes zero at that point.
As for the legality conditions, (8), we proceed to show that

∑k
j=1 µj ≥ Wk for an arbitrary

1 ≤ k ≤ m− 1. The statement is clear for k = 1, in view of (71). As for higher values of k, we
separate the discussion into two cases:

¦ Case 1. In round k in the loop 5 we executed Step 5a. This implies that we executed Step 5a
for all the preceding values of k as well. Consequently, µj = c · sj for all 2 ≤ j ≤ k. Hence,

k∑

j=1

µj = µ1 + c · (Sk − s1) ≥ Wk − c · (Sk − s1) + c · (Sk − s1) = Wk .

¦ Case 1. In round k in the loop 5 we executed Step 5b. Here, it is clear that
∑k

j=1 µj = Wm ≥
Wk. ¤

Lemma 4.6 The solution µ that Algorithm 4.4 produces gives a minimum to f , (70), in Ω.

Proof. Our first observation is that we may concentrate on solutions µ′ ∈ Ω where
µj

sj
≤ c , 2 ≤ j ≤ m . (72)

Indeed, if µj

sj
> c for some j ≥ 2, then µj = csj +d where d > 0. In that case, if we decrease µj by

d and increase µ1 by d, we get another solution µ′′ where µ′′ ∈ Ω and f(µ′′) ≤ f(µ′)− d
sj

+ d
s1
≤

f(µ′). We note that the solution that Algorithm 4.4 outputs is consistent with (72).
Next, assume that µ′ = (µ′1, . . . , µ

′
m) ∈ Ω is a solution that satisfies (72) and f(µ′) < f(µ),

i.e., by (70),
m∑

j=1

max
(

µ′j
sj

, c

)
<

m∑

j=1

max
(

µj

sj
, c

)
. (73)

Since both µ′ and µ satisfy (72), we conclude by (73) that

max
(

µ′1
s1

, c

)
< max

(
µ1

s1
, c

)
. (74)

This may happen only if µ′1 < µ1 and µ1 > c · s1. Hence, by (71),

µ1 = Wk − c · Sk + c · s1 for some 1 ≤ k ≤ m . (75)

Concentrating on that k, we invoke (8) and (72) to conclude that

Wk ≤
k∑

j=1

µ′j ≤ µ′1 + c · (Sk − s1) .

Therefore, µ′1 ≥ Wk− c · (Sk− s1). Hence, by (75), µ′1 ≥ µ1, in contradiction to our assumption.
¤

24

4.4 Separable functions

Here we consider the case where the target function is separable, namely,

f(λ1, . . . , λm) =
m∑

j=1

g(λj) , (76)

where g is convex and monotonic. In order to solve the corresponding mathematical program
MP, we may apply the polynomial time algorithm of Hochbaum and Shanthikumar [7]. That
algorithm is designed to solve minimization problems of the form

min
x∈D

f(x) , D = {x ∈ Rm : Ax ≥ b} , (77)

where f is as in (76), A is an integer matrix and D is a bounded polyhedron. The algorithm is
polynomial in the size of the input, in the logarithm of the required accuracy and in

∆ = ∆(A) := max{|det AM | : AM is a square sub-matrix of A} . (78)

It should be noted that when f is the `p-norm, p < ∞, or the threshold cost function, (70),
Algorithms 4.1 and 4.4 are simpler and more efficient than the general algorithm in [7].

We need to show that our mathematical program MP falls under the framework for which
that algorithm applies. First, we think of the function f in MP as a function of the weights, µj ,
rather than a function of the loads, λj = µj/sj . Namely,

f(µ1, . . . , µm) =
m∑

j=1

g(µj/sj) . (79)

This simple step is necessary so that the m restrictions on µ = (µ1, . . . , µm), (8)+(9), have
integral coefficients and may be written in the form

Ãµ ≥ b̃ where Ãi,j =

0 1 ≤ i < j ≤ m

1 1 ≤ j ≤ i ≤ m

−1 i = m + 1, 1 ≤ j ≤ m

and b̃ =

W1

...
Wm

−Wm

. (80)

Note that the mth restriction, (9), is an equality and it is represented in (80) in the last two
inequalities. Relying on (9), we may restrict the variables µj from above as well,

µj ≤ Wm , 1 ≤ j ≤ m . (81)

On the other hand, as we are interested in nonnegative solutions only, we add the set of restric-
tions

µj ≥ 0 , 1 ≤ j ≤ m . (82)

Putting (80),(81) and (82) together we get a system of requirements of the form (77) where A

is a (3m + 1)×m matrix of integer entries,

A =

Ã

−I

I

 (83)

25

and

b =

b̃
w
0

 where w =

−Wm

...
−Wm

 and 0 =

0
...
0

 . (84)

The corresponding polyhedron D, (77), is bounded. It remains only to evaluate ∆(A) and to
verify that it may not become too large as a function of m.

Claim 4.7 For A in (83), ∆(A) = 1.

Proof. Let AM be any square sub-matrix of A. We shall show that

detAM ∈ {−1, 0, 1} . (85)

Assume that AM corresponds to the selection of rows 1 ≤ i1 < · · · < it ≤ 3m + 1 and columns
1 ≤ j1 < · · · < jt ≤ m. Let us assume first that AM has entries from the last 2m rows of A.
Namely, there exists 0 ≤ s ≤ t − 1 so that m + 1 < is+1. If one of these rows is identically
zero in AM or two of these rows are dependent, then det AM = 0. Otherwise, the last t − s

rows in AM are of the form (0, . . . , 0,±1, 0, . . . , 0) where the non-zero entries, ±1, appear in
different positions. Developing the determinant of AM according to those rows, we get that
detAM = ±det A′M where A′M is a sub-matrix of dimension s× s that is contained in the first
m + 1 rows of A (namely, in Ã).

Hence, we may concentrate on sub-matrices of A that are contained in Ã. We keep denoting
the row and column selections by ik and jk where 1 ≤ k ≤ t, and prove our claim by induction
on t. Since (85) clearly holds when t = 1, we proceed to describe the reduction step. If j1 > i1,
it is easy to see that the first row in AM is identically zero so that det AM = 0. If, on the other
hand, j1 ≤ i1 there are two possibilities. If j2 ≤ i1 then the first two columns in AM are equal
whence det AM = 0. Otherwise, if j2 > i1, then the first row in AM is (1, 0, . . . , 0). Hence,
detAM = det A′M where A′M is the sub-matrix of dimension (t−1)×(t−1) that is obtained from
AM by removing its first row and first column. That sub-matrix, by the induction hypothesis,
satisfies (85). ¤

Acknowledgement. We would like thank Asaf Levin for referring us to [7].

26

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 1: Γ1(x)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

Figure 2: Ψ1(x)

0 5 10 15 20 25 30
0

2

4

6

8

10

12

Figure 3: Θ1(x)

27

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 4: Γ2(x)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

Figure 5: Ψ2(x)

0 5 10 15 20 25 30
0

2

4

6

8

10

12

Figure 6: Θ2(x)

28

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 7: Γ3(x)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

Figure 8: Ψ3(x)

0 5 10 15 20 25 30
0

2

4

6

8

10

12

Figure 9: Θ3(x)

29

References

[1] N. Alon, Y. Azar, G. Woeginger, and T. Yadid. Approximation schemes for scheduling on
parallel machines. Journal of Scheduling, 1:1:55–66, 1998.

[2] E. G. Coffman, Jr. and George S. Lueker. Approximation algorithms for extensible bin
packing. In Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA-01), pages 586–588, 2001.

[3] P. Dell’Olmo, H. Kellerer, M. G. Speranza, and Zs. Tuza. A 13/12 approximation algorithm
for bin packing with extendable bins. Information Processing Letters, 65(5):229–233, 1998.

[4] P. Dell’Olmo and M. G. Speranza. Approximation algorithms for partitioning small items
in unequal bins to minimize the total size. Discrete Applied Mathematics, 94:181–191, 1999.

[5] L. Epstein and J. Sgall. Approximation schemes for scheduling on uniformly related and
identical parallel machines. In 7th Annual European Symposium on Algorithms (ESA’99),
pages 151–162, 1999.

[6] T. Gonzalez and S. Sahni. Preemptive scheduling of uniform processor systems. Journal
of the ACM, 25(1):92–101, 1978.

[7] D. S. Hochbaum and J. G. Shanthikumar. Convex separable optimization is not much
harder than linear optimization. Journal of the ACM, 37(4):843–862, 1990.

[8] D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for scheduling
problems: theoretical and practical results. Journal of the ACM, 34(1):144–162, 1987.

[9] D. S. Hochbaum and D. B. Shmoys. A polynomial approximation scheme for scheduling on
uniform processors: using the dual approximation approach. SIAM Journal on Computing,
17(3):539–551, 1988.

[10] E. C. Horvath, S. Lam, and R. Sethi. A level algorithm for preemptive scheduling. Journal
of the ACM, 24(1):32–43, 1977.

[11] J. W. S. Liu and A. T. Yang. Optimal scheduling of independent tasks on heterogeneous
computing systems. In Proceedings ACM National Conference, volume 1, pages 38–45.
ACM, 1974.

[12] H. Shachnai, T. Tamir, and G. J. Woeginger. Minimizing makespan and preemption costs
on a system of uniform machines. In Proc. of the 10th Annual European Symposium on
Algorithms (ESA2002), pages 859–871, 2002.

A An example

Consider a scenario with m = 4 machines, the speeds of which are (s1, s2, s3, s4) = (1, .8, .6, .3).
Assume that the set of job weights dictates machine loads (λ1, λ2, λ3, λ4) = (10, 8, 6, 3) (when
p = 2 and the global minimum of the `2-norm in Ω coincides with the global minimum in
Rm, the machine loads indeed relate to each other like the machine speeds, see (50)). Then
the three state functions will be initially as described in Figures 1-3. There are m1 = 4 jump
discontinuities in the timing function, Θ1(x), at (Λ1

1, Λ
1
2, Λ

1
3,Λ

1
4) = (10, 18, 24, 27).

30

We proceed to describe the scheduling of the first job. Assume that w1 = 9. It is not
hard to see that the window in which it fits, Step 4, is [5, 15) (i.e., a = 5). The values of the
indicator and timing functions, Γ1 and Θ1, along this window imply that J1 will be scheduled
to run on M2 in time interval [0, 5) and on M2 in [5, 10). After scheduling J1 we remove the
occupied time slots by applying the cut-and-shift operator U[5,15). Figures 4-6 depict the three
state functions after that application. We see that Θ2(x) has m2 = 3 jump discontinuities at
(Λ2

1,Λ
2
2, Λ

2
3) = (8, 14, 17).

Next, assume that the second job is of size w2 = 7. Here, the value of a in Step 4 is a = 1
and the corresponding window is [1, 9). Therefore, the values of Γ2 and Θ2 along this interval
imply that J2 will be scheduled to run on M3 during [0, 1), on M1 during [1, 5) and on M2

during [5, 8). The resulting state functions after applying U[1,9) are illustrated in Figures 7-9.
Now, Θ3(x) has m3 = 2 jump discontinuities at (Λ3

1, Λ
3
2) = (6, 9).

We note that if w3 < 0.9, then J3 will mark the beginning of Phase 2 and the corresponding
window will be completely within the last interval of continuity of Θ3; in that case m4 = m3 = 2.
If, on the other hand, w3 ≥ 0.9, m4 = 1 and then J4 will be the first job in Phase 2.

31

