Asymptotic fully polynomial approximation schemes
for variants of open-end bin packing

Leah Epstein Asaf Levint

Abstract

We consider three variants of the open-end bin packing problem. Such variants of bin packing allow
the total size of items packed into a bin to exceed the capacity of a bin, provided that a removal of the
last item assigned to a bin would bring the contents of the bin below the capacity. In the first variant,
this last item is the minimum sized item in the bin, that is, each bin must satisfy the property that the
removal of any item should bring the total size of items in the bin below 1. The next variant (which is
also known agazy bin coverings similar to the first one, but in addition to the first condition, all bins
(expect for possibly one bin) must contain a total size of items of at least 1. We show that these two
problems admit asymptotic fully polynomial time approximation schemes (AFPTAS). Moreover, they
turn out to be equivalent. We briefly discuss a third variant, where the input items are totally ordered,
and the removal of the maximum indexed item should bring the total size of items in the bin below 1,
and show that this variant is strongly NP-hard.

1 Introduction

In bin packing problems, the input is a set of items that are to be partitioned into subsetsbaadjed

with the goal of minimizing the number of subsets, according to some restriction on the contents of one
subset. Specifically, the input consists of a sehdfems! = {1,2,...,n}, where the size of item is

s; € [0,1]. The goal of theSTRONG OPENEND BIN PACKING PROBLEM (SOBB is to partition the items

into a minimum number of subsets, such that for any such sshsel s; — mig} s; < 1. Thatis, removing
icS =

any item fromsS results in a total sum of less than 1. The goal of #RERED OPENEND BIN PACKING
PROBLEM (OOBDP is to partition the items into a minimum number of subsets, such that for any such
subsetS = {iy,i2,...,it}, Wherei; < iy < ... <ig, . s; —s;, < 1. Thatis, removing the item with the

i€S
maximum index fromS (also called théast iten) results in a total sum of less than 1. The goal ofithey
BIN COVERING (LBC) problem is to partition the items into a minimum number of subsets, such that for

any such subsef, > s; — migl s; < 1,asinSOBPR, and in addition, all subsets (except at most one) must
icS e
satisfy > s; > 1. That is, the goal is to minimize the number of covered bins, where a bin needs to contain
i€S
a minimum set of items (with respect to containment) that has a total size of at least 1. One bin may remain
uncovered.

*Department of Mathematics, University of Haifa, 31905 Haifa, Isfea@math.haifa.ac.il
TDepartment of Statistics, The Hebrew University, Jerusalem, Idméhas@mscc.huji.ac.il.

Consider the following situation. A group of workers needs to be hired to complete a set of tasks of
given durations. The employees start working at 8 a.m. and can leave starting from 4 p.m. (but may possibly
need to stay later). Each worker needs to process the tasks assigned to him continuously, one by one during
the day, without breaks. The worker can go home no earlier than 4 p.m. and only after he completed all
tasks that he started (so if there is a task that the worker did not start by 4 p.m., then he can leave it undone).
The goal of the boss is to partition the tasks in a way such that the number of workers required to complete
all tasks in one day is minimized. If the worker is free to decide on the order in which he processes the
tasks, we geSOBP If a total order is given on the tasks, and each worker must process the tasks according
to this order, then we g&d OBP. If the employer tries to assign the tasks so that at most one worker can be
ever idle for some time (after finishing the tasks and before going home), then WB getApplications of
open-end packing problems were presented in previous work [12, 8, 13].

For an algorithmA, we denote its cost on an inpt by A(X), and if X is clear from the context,
we simply useAd. An optimal algorithm is denoted bgpPT. For minimization problems, the asymptotic
approximation ratio of an algorithmd is the infimummR > 1 such that for any inpuf, A(X) < R -

OPT(X) + ¢, wherec is a constant independent of the input. If we enfarece 0, R is called the absolute
approximation ratio.

An asymptotic polynomial time approximation scheme is a family of approximation algorithms, such
that for everys > 0 the family contains a polynomial time algorithm with an asymptotic approximation
ratio of 1 + . We abbreviat@asymptotic polynomial time approximation schesgeAPTAS (also called an
asymptotic PTAS). An asymptotic fully polynomial time approximation scheme (AFPTAS) is an APTAS
whose time complexity is polynomial not only in the input size but alsg). iMhe constant in the definition
above may depend oiq If the scheme satisfies the definition with= 0, stronger results are obtained,
namely, polynomial time approximation schemes and fully polynomial approximation schemes, which are
abbreviated as PTAS and FPTAS. It is known that the standard bin packing problem admits an APTAS [4]
and an AFPTAS [7].

Several variants of open-end packing problems were introduced and studied in [12, 8, 13, 10, 9, 5].
Leung, Dror and Young [8] and Zhang [13] studied a fourth variant of open-end bin packing, in which the
removal of the last item brings the bin to a level of less than 1, but the items can be packed into the bin in an
order which is chosen by the algorithm, that is, the goal is to partition the items into the minimum number

of subsets, such that for any such subsed " s; — max s; < 1. It was shown by [12] that this fourth
= 1<
variant is NP-hard and admits an AFPTAS. The AFPTAS uses the AFPTAS for standard bin packing as a

subroutine. Specifically, the largest items in the sequence are packed as last items, and the remaining items
form an instance of standard bin packing. The application above in the fare payment system is relevant for
this variant as well, if the passenger can decide on an order in which the trips are done.

Yang and Leung studie@ OBPin an online scenario [12]. Theazy BIN COVERING was studied by
Lin, Yang and Xu [10, 9]. In [10], they claimed that the problem is NP-hard and that it admits an APTAS.
Their proof of NP-hardness is via reduction framRrTITION where the total size of the items@&(b) and
the number of items created as an instancé B is ©(b) and hence this proof is inaccurate. We note that
if the input toLBC can be given as a set of pairs, n;) wheren, is the multiplicity of the items of size
s;, then their proof can be corrected. A corrected proof of the NP-hardness and APX-hardbB€>whs
recently given by Gai and Zhang [5] (in their terminology &BC is calledRESTRICTED OPENEND BIN
PACKING). Note that the same paper provides NP-hardness and APX-hardness for an additional variant, in
which a non-full bin does not count towards the goal function.

The claimed result of the APTAS of [10] is given without details on the scheme, however this result
is improved by our results. They further study fast heuristics for the problem. SpecifiealyT FIT
DECREASING(FFD) is defined as follows. The items are sorted by non-increasing size. At each time, the
next bin receives a minimum prefix of items of a total size of at least 1. If the remaining items have a

total size of less than 1, they are packed into one last bin. Due to the sorting, the last item in each bin is
the minimum sized item, and therefore every created bin is valid. This algorithm can beNakadFIT
DECREASING(NFD) as well, since the algorithm never returns to pack additional items in previously created
bins. It was shown in [10] that the asymptotic approximation ratio of this algorith% Fy 1.18333. In

[9], an improved algorithm of an asymptotic approximation rati(s}—g)f:z 1.13333 was designedrFD was

shown to be also a best possible absolute approximation algorithoBfGrby [5].

Another packing problem in which bins can have a total contents of more than 1 B&NHEOVERING
problem [1, 3, 2, 6], which is a maximization problem. In this problem, the goal is to maximize the number
of bins which have a total size of items of at leasBIN COVERING admits an APTAS [2] and an AFPTAS
[6]. Note that the problem is a maximization problem and it is therefore different in nature from the problems
studied here.

Ourresults. In Section 2, we show th&OBPandLBC are equivalent, that is, given a solution to one of
the problems, which usdsbins, a solution to the other problem, which uses at madsihs, can be created
in polynomial time. We further show th@OBPIis strongly NP-hard. In Section 3, we design an AFPTAS
for SOBP This immediately results in an AFPTAS faBC, due to the reduction of Section 2.

2 Preliminaries

We start by showing an equivalence betw&DBPandLBC. The algorithmic approach allows to convert
a solution for one problem to the other problem.

Theorem 1 The problemsSOBPandLBC are polynomially equivalent.

Proof. By definition, any solution foL BC is a valid solution foiSOBP. Therefore, we show how to convert
a solution forSOBP, which uses: bins, into a solution ta. BC, which uses at modt bins. This shows that
given a set of items, the costs of an optimal solutions for the two problems are equal.

Given a solution t&6O B P, bins which contain a total size of items which is at least 1, are unchanged.
Consider the set of bins containing items of a total size smaller than 1j hethe number of such bins.
If j < 1 then the solution is a valid solution f&wBC. Otherwise, remove these items and repack them
usingFFD. The resulting packing is clearly a valid solution 10BC, since at most one bin would contain a
total size of items of less than 1. Moreover, the number of bins used it atjim@stshow this, assume by
contradiction that at leagt+ 1 bins are created. The firgtins receive a total size of items of at leggin
all j bins together). However, we assumed that these items were packdihisy where each one of these
bins had a total size of items which was smaller than 1. This gives a total which is smallgrahdiryields
a contradiction.m

We next conside© OBPand show the following.

Theorem 2 The problemDOBPis NP-hard in the strong sense.

Proof. We consider a reduction from ti&PARTITION problem. In this problem, the input consists of
a numberm, a number, and3m numbers of sizeg; (for 1 < i < 3m), such thatg < a; < g for

3
1 <i<3m,and)_ ma; = mb. The goal is to partition them inta: subsets, witt3 items each, such that

=1
the sum of the three items in each subsét is
We create the following input t& OBP. The first3m items have sizeg%. The nextm items all have
size 1.
We claim that it is possible to partition tl3en numbers as required, if and only if the cost of an optimal
solution for the input oD OBPis at mostm.

If it is possible to partition th&m numbers intan subsets, we define a triple of items to be the three
items resulting from a triple of numbers of the input of B«®ARTITION problem. Then it is possible to
pack every triple of items in a bin together with one item of size 1. The item of size 1 appears in the sequence
later than all smaller items, therefore, since the sum of the trip%@}’ri@ the packing is valid, and uses
bins.

If a solution forOOBP, which uses at most bins exists, we first note that every bin contains exactly
one item of size 1. This holds since two such items cannot be packed in one bin. The sum of other items
in each such bin must be below 1, and therefore, their sum is atfﬁgstThe sum of the firsdm items

in the sequence ig2, and therefore we get that every bin contains a subset of items ofg4mwhich
implies a subset of three numbers of total suritherefore, we get a valid 3-partition of the numbems.

3 An AFPTAS for SOBP

Lete < 1. We design an asymptotic fully polynomial time approximation scheme, that is an algorithm of
asymptotic approximation ratid 4+ ¢, whose running time is polynomial in the input size andslinWe
assume that all items have a strictly positive size, $,&> 0 for all 7. If the original input contains any zero
sized items, these items can be packed in a dedicated bin, adding 1 to the cost of the resulting solution.
We apply linear grouping as in [4]. We defismallitems as items of size at mastand all other items
(each of which has a size strictly larger thgrarelarge. These sets are denotedByand L, respectively.
We partition the set of large itendsinto 6% classed.;, Ly, ..., L such that'|L|e?] = |L1| > |Lo| >

sl > \L%| = ||L|e?| (note that this condition uniquely identifies the cardinality of each class), and such

that if there are two items, j with sizess; > s; and: € L, andj € L, theng < p (so L, receives the
subset of largest items, and oK p < E% L, receives the largest items from\ (L1 U--- U Ly_1)). The
two conditions uniquely define the allocation of items into classes up to the allocation of equal sized items.
Then, we round up the sizes of the itemdiin. . ., L, .- as follows: Forall values gf, p = 2,3, . . ., 6%
and for each item € L,, we defines; = max;cy, s; to be therounded-up size of ite For anyi € T'we
let s, = s;. The rounded-up instandé consists of the set of iteni8U L \ L;, where for every, the size
of itemi is s.
We define a process eéductionon a valid bin, in which every item may be replaced by a smaller item
or removed completely. We claim that such a process results in a valid bin as well. To see this note that an
alternative definition of the problem is that a set of items is a valid bin if every proper subset of this set has
a total size of at most 1. Clearly, this property does not change by a reduction process.

Claim 3 opT(I’) < OPT

Proof. Given an optimal solution td, oPT, we transform it into a solution t& using a reduction process
on bins. We define a bijection froifi to I, so that every item of’ is mapped to an item aof which is no
smaller, and can take its place in the packing. SiHa@oes not contaiii.,, and sinceL;| < |L;_1| (in both
I andI’, since the cardinality of sets is not influenced by the rounding), we map every itém(fafr all
i > 2)in I’ to some item of_;_; in I. By our rounding, every item af; in I’ is no larger than any item of
L;,_4 inl. m

Let H be the set of distinct sizes of items Iri. By definition, we haveéH| < E% For a sizev € H,
we define a partiat-configuration as a multi-set of sizesif, that contains only sizes which are no smaller
thanv, and has a total size strictly smaller than 1. The set of such partial configurations is denoted by
P(v). A completev-configuration results from a partiatconfiguration, which is augmented with one
additional item of size. The set of such complete configurations is denoted(by. Let C'(()) be an empty

configuration. We le€ = |J C(v) U{C(0)}. For a configuratior” € C, we define the number of items
veH
of sizewv in it by n(v,C), for all v € H. We partitionC into overloaded configuration& and regular
configurationg’s. C; is the set of all configurations for which the sum of sizes is at least 1¢argdthe set
of all configurations where the sum of sizes is smaller than 1, thatsCisinC; if > v-n(v,C) > 1
veH
andC € CisinCyif > v-n(v,C) < 1. The setg,C; andC, are not computed explicitly, and typically
veH
have exponential sizes.
ForC' € Cq, let A(C) be an upper bound on the space in this configuration that can be used by small
items,i.e., A(C)=14¢e— > v-n(v,C). Thisis indeed an upper bound on the total size of small items
veEH
since the presence of a small item implies that the total size of all items in the bin is at mast
For everyv € H, we letn(v) be the number of items id/, with sizev. We letA = " s/ be the
€T
total size of the small items. The following linear program is solved approximately. For each configuration
C € C, there is a variable ¢ indicating the number of bins packed using configuratibn

min > zo
ceC
st. > nw,C)xc >n(v) Yve H (1)
ceC
> A(Clzg = A (2)
CeCa
zo >0 vC e C.

We consider the relation of the linear program to feasible solutions. Specifically, we show that for any
feasible packing which usésbins, there exists a feasible solution to the linear program, for which the
value of the objective function & This implies that the same holds for an optimal solution to the packing
problem. Consider a solution to the rounded-up instance, whichhises, and the packing df’. We letz ¢
be the number of bins packed by configuratiore C. Constraint (1) is therefore satisfied. Consider all bins
in the packing that contain at least one small item. Clearly, every such bin is packed using a configuration
from C,. Moreover, such bins may contain a total size of items of at mest. Therefore, the space used by
small items satisfies Constraint (2). Hence, the resulting veéda feasible solution to the linear program,
and its cost i9.

We letz be an approximate (within a factor #f+) solution to this linear program. Later, we show
how to obtainz. In order to define a packing which is based on this solution, we define: [Z], for
every configuratiorC' € C. It can be seen that the vectgris a feasible solution to the linear program
(sinceyc > ¢ for all C, it satisfies all the constraints). Our scheme returns a solution that packs
bins with configuratiorC, in this solution, there are at leastv) slots for everyv € H. Note that some
of these slots may remain empty, which happens in the case that the number of slots is strictly larger than
n(v). As for the small items, they are sorted in non-increasing order according to size, and are packed
usingNEXT FIT (NF) into the bins that are packed using configuration&sinin order to keep the packing
feasible,NF moves on to the next bin just after a total size of 1 is reached or exceeded. The smallest item
packed in each bin is the last item. Therefore, the removal of the smallest item brings the bin to a total
size of less than 1. When this process is completed, the total space that small items occupy is at least

Y (A(C)—¢e)ye = > (A(C)—e)ze, since these bins are occupied by a total size of at least 1 (and not
CeCy CeCy
exactlyl + €). The remaining items are packed usinginto new bins. The total size of these items is at

moste > yc, and every new bin would contain a total size of at least 1, therefore the cost of the solution
CeCa

increases by a multiplicative factor of at mdst- ¢ as a result. One additional bin may result from this
process since the last new bin (used for small items only) may be packed to a level smaller than 1.
To get a solution fol. \ L, each item of the rounded-up instance is replaced by the corresponding item

of I. We clearly use at most + ¢) > yc + 1 bins in this way. The items aof; are packed into dedicated
Cec
bins, one item per bin. We later analyze the cost of this packing.

To solve the above linear program approximately, we invoke the column generation technique of Kar-
markar and Karp [7]. We next elaborate on this technique. The above linear program has an exponential
number of variables and a polynomial number of constraints (neglecting the non-negativity constraints). In-
stead of solving the linear program, we solve its dual program (that has a polynomial number of variables
and an exponential number of constraints). The variahlesrrespond to the item sizes i, their intuitive
meaning can be seen as weights of these items. An additional vafiatgeesponds to the small items.

max Yonz,+A-Z
veH
s.t. >on(v,C)zy <1 VC e Cy (3)
veH
Y n(v,C)zy + A(C)-Z <1 VC €y 4)
veH
zp >0 Vve H
Z > 0.

To be able to apply the ellipsoid algorithm, in order to solve the above dual problem within a fatterof

it suffices to show that there exists a polynomial time algorithm (polynomiabind%) such that for a given
solution(¢*) = (z*, Z*) (which is a vector of length | + 1 < 6% + 1, thatis,z* is a vector of lengthH |
andZ* is a scalar), decides whethgris a feasible dual solution (approximately). Thatis, it has one of two
outputs. For the first possible output, it provides a configuration C that has the following properties. If

C € Cy,then > n(v,C)z} > 1,andifC € Cq, then > n(v,C)z} + A(C)Z* > 1. The second possible
veEH veEH
output is that an approximate infeasibility evidence does not exist, that is, for all configur&tiené§,

> n(v,C)z} <1+ ¢ holds, and for all configuratiors € Ca, > n(v,C)z} + A(C)Z* <1+ ¢ holds.
veH veH

In this last case% is a feasible dual solution that can be used. If a configuration whose constraint in the
dual linear program is violated, is found, we can continue with the application of the ellipsoid algorithm.
Such a configuratiod' can be found using an approximated solution for the knapsack problem. The
knapsack problem [11] is known to admit an FPTAS. In the standard knapsack problem, a set of items with
sizes and weights are given, and the goal is to find a maximum weight subset of a total size latliriest
not difficult to adapt the solution so that the goal is to find a maximum weight subset with a total size strictly
smaller than 1.
We employ this FPTAS for different inputs stated below. The goal is to distinguish between two cases.
The first case is that there exists a configuratibfor which its constraint, which is either from the family
(3) or from the family (4) is not satisfied. Otherwise, all these constraints are satisfied approximately, that
is, the inequality is satisfied with+ ¢ rather than with 1.

We first search for a configuratiai € C; which maximizes)_ n(v,C)z}. C1 can be partitioned into
veH
subsets according to the size of the minimum item in it. For ea€h, we search for a partial configuration

C’ € P(v) that maximizes)_ n(u,C")z%. The corresponding knapsack problem consists of the following
ueH
input. The multi-set of items consists of the items of siZB3) = {u € H|u > v}, where the number

of items of sizew € H(v) is n(u). The weight of an item of size € H(u) is 2. The goal is to find a
subset of items of total size less than 1 with maximum total weight.M.ét) be the weight of the output

of the FPTAS. The total weight of the items in the complete configuration (i.e., including an additional item
of sizev) is M (v) + z;. If M(v) + 2} > 1, then there exists a complete configuratiorCifv) which does
not satisfy the constraint.

We next search for a configuratiéh € C, which maximizes)_ n(u,C)z; + A(C)Z*, or
ueH

> n(u,C)z + (1 +e— > n(u, 0)u> 75 = n(u,C)(z; —uZ*) + (1+¢)2".

ueH ueH ueH

Which is equivalent to maximizing_ n(u,C)(z} —uZ*).
ueH
The knapsack problem here consists of all iteméiofwhereuw € H appears:(u) times in the input,

and the weight of such an item 1§ — uZ*. The goal is to find a subset of items of total size less than 1
with maximum total weight. Led/ be the output of the FPTAS. That is, the total weight of the items in the
complete configuration (i.e., including an additional item of siges M. If M + (1 +¢)Z* > 1, then there
exists a complete configurationda which does not satisfy the constraint.

We show that if no such configuration was found, th@f@ satisfies all constraints. Since the FPTAS
for the knapsack problem is a+ ¢ approximation, we can prove the following in the two cases. For a

configurationC' € C(v), we have > n(u,C)z} — zi < (1 4+¢)(1 — 2}) < 1+ e — 2z} which implies
ueH

> n(u, C)f—fa < 1. For a configuratiorC' € Cy, we have > n(u,C)z; + A(C)Z* — (1 +e)Z* =
ueH ueH

> n(u,O) (25 —uZ*) < (1+e)(1 - (1+¢)Z*) < 1+¢e— (1+¢)Z* which implies 3 n(u, C) {2 +
ueH ueH

A(C)E: <1

Since the approximated separation oracle that we described above runs in time which is polynemial in
and%, we conclude that the approximated solution of the (primal) linear prograrabtained in polynomial
time (again polynomial im and %). Sincez is a solution of a linear program with an exponential number
of variablesz is given in a compact representation, which is a list of non-zero components of the solution,
together with their values.

To analyze the packing defined above, note that therd.afe= [|L|s?] < |L|e?4-1 bins which are used
for the items ofL;. Each feasible bin may contain upgdarge items. This is true since given a packed bin,
the removal of one large item brings the total size of items below 1, and thus ag masgtems are left after
this removal. Therefor&ypT > ¢|L|. We conclude that the number of additional bins (used to pagks at

mostsOPT+ 1, so the cost of the solution isat ma@st+c) > yo+1+|L1] < (1+4¢€) > yo +cOPT+2.
cec cec
Therefore, it suffices to bound the cost, impliedipyn terms ofoPT.
Instead of using an optimal solution to the linear program (whose value is a lower bowwrirgH),
sinceoPT(I’) is a valid solution to the linear program), we usé€lat+ ¢)-approximated solution, and this

degrades the value of the returned solution within a factar-ef (i.e., > zc < (1 +¢) - oPT(I")).
cec
We next bound) (yo —Z¢). Note that in the primal linear program there are at nfeﬂgs{ 1 constraints
cec
(not including non-negativity constraints), and hence in a basic solution (a property that we can always

assume that satisfies) there are at moeét -+ 1 positive components, and hence there are at rﬁ;os{ 1

fractional components. Therefor®, (yo — ¢) < E% + 1.
cec
Therefore, the cost of the obtained solution is at nfost ¢) > yo +c0PT+2 = > (14 ¢)2c +
cec cec
Czejc(l +e)(yc —2c) +e0PT+2 < (1+¢)2- oPT(I') + (& + 1)(14¢) +c0PT+2 < (1 +42)OPT+ &
(sinces < 1). Hence, we conclude the following theorem.

Theorem 4 The above scheme is an AFPTASS@®BP

4 Conclusion

We studied several NP-hard open-end packing problems. We have showaQis® and LBC admit
asymptotic fully polynomial approximation schemes, but the complexity of approxim@dgPremains
open. Specifically, we have shovdOBPis strongly NP-hard, but it is unknown whether an AFPTAS (or
even an APTAS) could be designed for it.

References

[1] S.F. Assmann, D.S. Johnson, D.J. Kleitman, and J.Y.-T. Leung. On a dual version of the one-
dimensional bin packing problendournal of Algorithms5:502-525, 1984.

[2] J. Csirik, D. S. Johnson, and C. Kenyon. Better approximation algorithms for bin coveriRgodrof
the 12th Annual Symposium on Discrete Algorithms (SODA2@abes 557-566, 2001.

[3] J. Csirik and V. Totik. On-line algorithms for a dual version of bin packiBiscrete Applied Mathe-
matics 21:163-167, 1988.

[4] W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved Wwithin in linear time.
Combinatorica1(4):349-355, 1981.

[5] L. Gaiand G. Zhang. Itis hard to be lazy! manuscript, 2008.

[6] K. Jansen and R. Solis-Oba. An asymptotic fully polynomial time approximation scheme for bin
covering.Theoretical Computer Sciencg06(1-3):543-551, 2003.

[7] N. Karmarkar and R. M. Karp. An efficient approximation scheme for the one-dimensional bin-
packing problem. IfProceedings of the 23rd Annual Symposium on Foundations of Computer Science
(FOCS’82) pages 312-320, 1982.

[8] J. Y.-T. Leung, M. Dror, and G. H. Young. A note on an open-end bin packing problenrnal of
Scheduling4(4):201-207, 2001.

[9] M. Lin, Y. Yang, and J. Xu. Improved approximation algorithms for maximum resource bin packing
and lazy bin covering problems. Rroc. of the 17th International Symposium on Algorithms and
Computation (ISAAC2006pages 567-577, 2006.

[10] M. Lin, Y. Yang, and J. Xu. On lazy bin covering and packing problemsPrist. of the 12th Annual
International Conference on Computing and Combinatorics (COCOON20aggs 340-349, 2006.

[11] S. Martello and P. TothKnapsack Problems: Algorithms and Computer Implementatidoisn Wiley
and Sons, 1990.

[12] J. Yang and J. Y-T. Leung. The ordered open-end bin packing probl@perations Researgh
51(5):759-770, 2003.

[13] G. Zhang. Parameterized on-line open-end bin packiagnputing 60(3):267—-274, 1998.

