
Asymptotic fully polynomial approximation schemes

for variants of open-end bin packing

Leah Epstein∗ Asaf Levin†

Abstract

We consider three variants of the open-end bin packing problem. Such variants of bin packing allow

the total size of items packed into a bin to exceed the capacity of a bin, provided that a removal of the

last item assigned to a bin would bring the contents of the bin below the capacity. In the first variant,

this last item is the minimum sized item in the bin, that is, each bin must satisfy the property that the

removal of any item should bring the total size of items in the bin below 1. The next variant (which is

also known aslazy bin coveringis similar to the first one, but in addition to the first condition, all bins

(expect for possibly one bin) must contain a total size of items of at least 1. We show that these two

problems admit asymptotic fully polynomial time approximation schemes (AFPTAS). Moreover, they

turn out to be equivalent. We briefly discuss a third variant, where the input items are totally ordered,

and the removal of the maximum indexed item should bring the total size of items in the bin below 1,

and show that this variant is strongly NP-hard.

1 Introduction

In bin packing problems, the input is a set of items that are to be partitioned into subsets calledbins,
with the goal of minimizing the number of subsets, according to some restriction on the contents of one
subset. Specifically, the input consists of a set ofn itemsI = {1, 2, . . . , n}, where the size of itemi is
si ∈ [0, 1]. The goal of theSTRONG OPEN-END BIN PACKING PROBLEM (SOBP) is to partition the items
into a minimum number of subsets, such that for any such subsetS,

∑
i∈S

si −min
i∈S

si < 1. That is, removing

any item fromS results in a total sum of less than 1. The goal of theORDERED OPEN-END BIN PACKING

PROBLEM (OOBP) is to partition the items into a minimum number of subsets, such that for any such
subsetS = {i1, i2, . . . , ik}, wherei1 < i2 < . . . < ik,

∑
i∈S

si− sik < 1. That is, removing the item with the

maximum index fromS (also called thelast item) results in a total sum of less than 1. The goal of theLAZY

BIN COVERING (LBC) problem is to partition the items into a minimum number of subsets, such that for
any such subsetS,

∑
i∈S

si −min
i∈S

si < 1, as inSOBP, and in addition, all subsets (except at most one) must

satisfy
∑
i∈S

si ≥ 1. That is, the goal is to minimize the number of covered bins, where a bin needs to contain

a minimum set of items (with respect to containment) that has a total size of at least 1. One bin may remain
uncovered.

∗Department of Mathematics, University of Haifa, 31905 Haifa, Israel.lea@math.haifa.ac.il .
†Department of Statistics, The Hebrew University, Jerusalem, Israel.levinas@mscc.huji.ac.il.

1

Consider the following situation. A group of workers needs to be hired to complete a set of tasks of
given durations. The employees start working at 8 a.m. and can leave starting from 4 p.m. (but may possibly
need to stay later). Each worker needs to process the tasks assigned to him continuously, one by one during
the day, without breaks. The worker can go home no earlier than 4 p.m. and only after he completed all
tasks that he started (so if there is a task that the worker did not start by 4 p.m., then he can leave it undone).
The goal of the boss is to partition the tasks in a way such that the number of workers required to complete
all tasks in one day is minimized. If the worker is free to decide on the order in which he processes the
tasks, we getSOBP. If a total order is given on the tasks, and each worker must process the tasks according
to this order, then we getOOBP. If the employer tries to assign the tasks so that at most one worker can be
ever idle for some time (after finishing the tasks and before going home), then we getLBC. Applications of
open-end packing problems were presented in previous work [12, 8, 13].

For an algorithmA, we denote its cost on an inputX by A(X), and if X is clear from the context,
we simply useA. An optimal algorithm is denoted byOPT. For minimization problems, the asymptotic
approximation ratio of an algorithmA is the infimumR ≥ 1 such that for any inputX, A(X) ≤ R ·
OPT(X) + c, wherec is a constant independent of the input. If we enforcec = 0, R is called the absolute
approximation ratio.

An asymptotic polynomial time approximation scheme is a family of approximation algorithms, such
that for everyε > 0 the family contains a polynomial time algorithm with an asymptotic approximation
ratio of1 + ε. We abbreviateasymptotic polynomial time approximation schemeby APTAS (also called an
asymptotic PTAS). An asymptotic fully polynomial time approximation scheme (AFPTAS) is an APTAS
whose time complexity is polynomial not only in the input size but also in1

ε . The constantc in the definition
above may depend on1ε . If the scheme satisfies the definition withc = 0, stronger results are obtained,
namely, polynomial time approximation schemes and fully polynomial approximation schemes, which are
abbreviated as PTAS and FPTAS. It is known that the standard bin packing problem admits an APTAS [4]
and an AFPTAS [7].

Several variants of open-end packing problems were introduced and studied in [12, 8, 13, 10, 9, 5].
Leung, Dror and Young [8] and Zhang [13] studied a fourth variant of open-end bin packing, in which the
removal of the last item brings the bin to a level of less than 1, but the items can be packed into the bin in an
order which is chosen by the algorithm, that is, the goal is to partition the items into the minimum number
of subsets, such that for any such subsetS,

∑
i∈S

si − max
i∈S

si < 1. It was shown by [12] that this fourth

variant is NP-hard and admits an AFPTAS. The AFPTAS uses the AFPTAS for standard bin packing as a
subroutine. Specifically, the largest items in the sequence are packed as last items, and the remaining items
form an instance of standard bin packing. The application above in the fare payment system is relevant for
this variant as well, if the passenger can decide on an order in which the trips are done.

Yang and Leung studiedOOBPin an online scenario [12]. TheLAZY BIN COVERING was studied by
Lin, Yang and Xu [10, 9]. In [10], they claimed that the problem is NP-hard and that it admits an APTAS.
Their proof of NP-hardness is via reduction fromPARTITION where the total size of the items isΘ(b) and
the number of items created as an instance forLBC is Θ(b) and hence this proof is inaccurate. We note that
if the input toLBC can be given as a set of pairs(si, ni) whereni is the multiplicity of the items of size
si, then their proof can be corrected. A corrected proof of the NP-hardness and APX-hardness ofLBC was
recently given by Gai and Zhang [5] (in their terminology ourLBC is calledRESTRICTED OPEN-END BIN

PACKING). Note that the same paper provides NP-hardness and APX-hardness for an additional variant, in
which a non-full bin does not count towards the goal function.

The claimed result of the APTAS of [10] is given without details on the scheme, however this result
is improved by our results. They further study fast heuristics for the problem. Specifically,FIRST FIT

DECREASING (FFD) is defined as follows. The items are sorted by non-increasing size. At each time, the
next bin receives a minimum prefix of items of a total size of at least 1. If the remaining items have a

2

total size of less than 1, they are packed into one last bin. Due to the sorting, the last item in each bin is
the minimum sized item, and therefore every created bin is valid. This algorithm can be calledNEXT FIT

DECREASING(NFD) as well, since the algorithm never returns to pack additional items in previously created
bins. It was shown in [10] that the asymptotic approximation ratio of this algorithm is71

60 ≈ 1.18333. In
[9], an improved algorithm of an asymptotic approximation ratio of17

15 ≈ 1.13333 was designed.FFD was
shown to be also a best possible absolute approximation algorithm forLBC by [5].

Another packing problem in which bins can have a total contents of more than 1, is theBIN COVERING

problem [1, 3, 2, 6], which is a maximization problem. In this problem, the goal is to maximize the number
of bins which have a total size of items of at least 1.BIN COVERING admits an APTAS [2] and an AFPTAS
[6]. Note that the problem is a maximization problem and it is therefore different in nature from the problems
studied here.
Our results. In Section 2, we show thatSOBPandLBC are equivalent, that is, given a solution to one of
the problems, which usesk bins, a solution to the other problem, which uses at mostk bins, can be created
in polynomial time. We further show thatOOBPis strongly NP-hard. In Section 3, we design an AFPTAS
for SOBP. This immediately results in an AFPTAS forLBC, due to the reduction of Section 2.

2 Preliminaries

We start by showing an equivalence betweenSOBPandLBC. The algorithmic approach allows to convert
a solution for one problem to the other problem.

Theorem 1 The problems,SOBPandLBC are polynomially equivalent.

Proof. By definition, any solution forLBC is a valid solution forSOBP. Therefore, we show how to convert
a solution forSOBP, which usesk bins, into a solution toLBC, which uses at mostk bins. This shows that
given a set of items, the costs of an optimal solutions for the two problems are equal.

Given a solution toSOBP , bins which contain a total size of items which is at least 1, are unchanged.
Consider the set of bins containing items of a total size smaller than 1. Letj be the number of such bins.
If j ≤ 1 then the solution is a valid solution forLBC. Otherwise, remove these items and repack them
usingFFD. The resulting packing is clearly a valid solution forLBC, since at most one bin would contain a
total size of items of less than 1. Moreover, the number of bins used it at mostj. To show this, assume by
contradiction that at leastj + 1 bins are created. The firstj bins receive a total size of items of at leastj (in
all j bins together). However, we assumed that these items were packed inj bins, where each one of these
bins had a total size of items which was smaller than 1. This gives a total which is smaller thanj and yields
a contradiction.

We next considerOOBPand show the following.

Theorem 2 The problemOOBPis NP-hard in the strong sense.

Proof. We consider a reduction from the3-PARTITION problem. In this problem, the input consists of
a numberm, a numberb, and3m numbers of sizesai (for 1 ≤ i ≤ 3m), such thatb4 < ai < b

2 for

1 ≤ i ≤ 3m, and
3∑

i=1
mai = mb. The goal is to partition them intom subsets, with3 items each, such that

the sum of the three items in each subset isb.
We create the following input toOOBP. The first3m items have sizes2ai

2b+1 . The nextm items all have
size 1.

We claim that it is possible to partition the3m numbers as required, if and only if the cost of an optimal
solution for the input ofOOBPis at mostm.

3

If it is possible to partition the3m numbers intom subsets, we define a triple of items to be the three
items resulting from a triple of numbers of the input of the3-PARTITION problem. Then it is possible to
pack every triple of items in a bin together with one item of size 1. The item of size 1 appears in the sequence
later than all smaller items, therefore, since the sum of the triple is2b

2b+1 , the packing is valid, and usesm
bins.

If a solution forOOBP, which uses at mostm bins exists, we first note that every bin contains exactly
one item of size 1. This holds since two such items cannot be packed in one bin. The sum of other items
in each such bin must be below 1, and therefore, their sum is at most2b

2b+1 . The sum of the first3m items

in the sequence is2bm
2b+1 , and therefore we get that every bin contains a subset of items of sum2b

2b+1 , which
implies a subset of three numbers of total sumb. Therefore, we get a valid 3-partition of the numbers.

3 An AFPTAS for SOBP

Let ε ≤ 1. We design an asymptotic fully polynomial time approximation scheme, that is an algorithm of
asymptotic approximation ratio1 + ε, whose running time is polynomial in the input size and in1

ε . We
assume that all items have a strictly positive size, i.e.,si > 0 for all i. If the original input contains any zero
sized items, these items can be packed in a dedicated bin, adding 1 to the cost of the resulting solution.

We apply linear grouping as in [4]. We definesmall items as items of size at mostε, and all other items
(each of which has a size strictly larger thanε) arelarge. These sets are denoted byT andL, respectively.

We partition the set of large itemsL into 1
ε2 classesL1, L2, . . . , L 1

ε2
such thatd|L|ε2e = |L1| ≥ |L2| ≥

· · · ≥ |L 1
ε2
| = b|L|ε2c (note that this condition uniquely identifies the cardinality of each class), and such

that if there are two itemsi, j with sizessi > sj andi ∈ Lq andj ∈ Lp thenq ≤ p (soL1 receives the
subset of largest items, and for2 ≤ p ≤ 1

ε2 , Lp receives the largest items fromL \ (L1 ∪ · · · ∪ Lp−1)). The
two conditions uniquely define the allocation of items into classes up to the allocation of equal sized items.

Then, we round up the sizes of the items inL2, . . . , L1/ε2 as follows: For all values ofp, p = 2, 3, . . . , 1
ε2 ,

and for each itemi ∈ Lp, we defines′i = maxj∈Lp sj to be therounded-up size of itemi. For anyi ∈ T we
let s′i = si. The rounded-up instanceI ′ consists of the set of itemsT ∪ L \ L1, where for everyi, the size
of item i is s′i.

We define a process ofreductionon a valid bin, in which every item may be replaced by a smaller item
or removed completely. We claim that such a process results in a valid bin as well. To see this note that an
alternative definition of the problem is that a set of items is a valid bin if every proper subset of this set has
a total size of at most 1. Clearly, this property does not change by a reduction process.

Claim 3 OPT(I ′) ≤ OPT

Proof. Given an optimal solution toI, OPT, we transform it into a solution toI ′ using a reduction process
on bins. We define a bijection fromI ′ to I, so that every item ofI ′ is mapped to an item ofI which is no
smaller, and can take its place in the packing. SinceI ′ does not containL1, and since|Li| ≤ |Li−1| (in both
I andI ′, since the cardinality of sets is not influenced by the rounding), we map every item ofLi (for all
i ≥ 2) in I ′ to some item ofLi−1 in I. By our rounding, every item ofLi in I ′ is no larger than any item of
Li−1 in I.

Let H be the set of distinct sizes of items inL′. By definition, we have|H| ≤ 1
ε2 . For a sizev ∈ H,

we define a partialv-configuration as a multi-set of sizes inH, that contains only sizes which are no smaller
thanv, and has a total size strictly smaller than 1. The set of such partial configurations is denoted by
P (v). A completev-configuration results from a partialv-configuration, which is augmented with one
additional item of sizev. The set of such complete configurations is denoted byC(v). LetC(∅) be an empty

4

configuration. We letC =
⋃

v∈H

C(v) ∪ {C(∅)}. For a configurationC ∈ C, we define the number of items

of sizev in it by n(v, C), for all v ∈ H. We partitionC into overloaded configurationsC1 and regular
configurationsC2. C1 is the set of all configurations for which the sum of sizes is at least 1, andC2 is the set
of all configurations where the sum of sizes is smaller than 1, that is,C ∈ C is in C1 if

∑
v∈H

v · n(v, C) ≥ 1

andC ∈ C is in C2 if
∑

v∈H

v · n(v, C) < 1. The setsC,C1 andC2 are not computed explicitly, and typically

have exponential sizes.
For C ∈ C2, let ∆(C) be an upper bound on the space in this configuration that can be used by small

items , i.e.,∆(C) = 1 + ε− ∑
v∈H

v · n(v, C). This is indeed an upper bound on the total size of small items

since the presence of a small item implies that the total size of all items in the bin is at most1 + ε.
For everyv ∈ H, we letn(v) be the number of items inL′, with sizev. We let∆ =

∑
i∈T

s′i be the

total size of the small items. The following linear program is solved approximately. For each configuration
C ∈ C, there is a variablexC indicating the number of bins packed using configurationC.

min
∑

C∈C
xC

s.t.
∑

C∈C
n(v, C)xC ≥ n(v) ∀v ∈ H (1)

∑
C∈C2

∆(C)xC ≥ ∆ (2)

xC ≥ 0 ∀C ∈ C.

We consider the relation of the linear program to feasible solutions. Specifically, we show that for any
feasible packing which usesb bins, there exists a feasible solution to the linear program, for which the
value of the objective function isb. This implies that the same holds for an optimal solution to the packing
problem. Consider a solution to the rounded-up instance, which usesb bins, and the packing ofL′. We letx̃C

be the number of bins packed by configurationC ∈ C. Constraint (1) is therefore satisfied. Consider all bins
in the packing that contain at least one small item. Clearly, every such bin is packed using a configuration
from C2. Moreover, such bins may contain a total size of items of at most1+ε. Therefore, the space used by
small items satisfies Constraint (2). Hence, the resulting vectorx̃ is a feasible solution to the linear program,
and its cost isb.

We let x̂ be an approximate (within a factor of1 + ε) solution to this linear program. Later, we show
how to obtainx̂. In order to define a packing which is based on this solution, we defineyC = dx̂Ce, for
every configurationC ∈ C. It can be seen that the vectory is a feasible solution to the linear program
(sinceyC ≥ x̂C for all C, it satisfies all the constraints). Our scheme returns a solution that packsyC

bins with configurationC, in this solution, there are at leastn(v) slots for everyv ∈ H. Note that some
of these slots may remain empty, which happens in the case that the number of slots is strictly larger than
n(v). As for the small items, they are sorted in non-increasing order according to size, and are packed
usingNEXT FIT (NF) into the bins that are packed using configurations inC2. In order to keep the packing
feasible,NF moves on to the next bin just after a total size of 1 is reached or exceeded. The smallest item
packed in each bin is the last item. Therefore, the removal of the smallest item brings the bin to a total
size of less than 1. When this process is completed, the total space that small items occupy is at least∑
C∈C2

(∆(C)−ε)yC ≥
∑

C∈C2
(∆(C)−ε)x̂C , since these bins are occupied by a total size of at least 1 (and not

exactly1 + ε). The remaining items are packed usingNF into new bins. The total size of these items is at
mostε

∑
C∈C2

yC , and every new bin would contain a total size of at least 1, therefore the cost of the solution

5

increases by a multiplicative factor of at most1 + ε as a result. One additional bin may result from this
process since the last new bin (used for small items only) may be packed to a level smaller than 1.

To get a solution forL \L1, each item of the rounded-up instance is replaced by the corresponding item
of I. We clearly use at most(1 + ε)

∑
C∈C

yC + 1 bins in this way. The items ofL1 are packed into dedicated

bins, one item per bin. We later analyze the cost of this packing.
To solve the above linear program approximately, we invoke the column generation technique of Kar-

markar and Karp [7]. We next elaborate on this technique. The above linear program has an exponential
number of variables and a polynomial number of constraints (neglecting the non-negativity constraints). In-
stead of solving the linear program, we solve its dual program (that has a polynomial number of variables
and an exponential number of constraints). The variableszv correspond to the item sizes inH, their intuitive
meaning can be seen as weights of these items. An additional variableZ corresponds to the small items.

max
∑

v∈H

n(v)zv + ∆ · Z

s.t.
∑

v∈H

n(v, C)zv ≤ 1 ∀C ∈ C1 (3)

∑
v∈H

n(v, C)zv + ∆(C) · Z ≤ 1 ∀C ∈ C2 (4)

zv ≥ 0 ∀v ∈ H

Z ≥ 0.

To be able to apply the ellipsoid algorithm, in order to solve the above dual problem within a factor of1+ ε,
it suffices to show that there exists a polynomial time algorithm (polynomial inn and1

ε) such that for a given
solution(ζ∗) = (z∗, Z∗) (which is a vector of length|H|+ 1 ≤ 1

ε2 + 1, that is,z∗ is a vector of length|H|
andZ∗ is a scalar), decides whetherζ∗ is a feasible dual solution (approximately). That is, it has one of two
outputs. For the first possible output, it provides a configurationC ∈ C that has the following properties. If
C ∈ C1, then

∑
v∈H

n(v, C)z∗v > 1, and ifC ∈ C2, then
∑

v∈H

n(v, C)z∗v + ∆(C)Z∗ > 1. The second possible

output is that an approximate infeasibility evidence does not exist, that is, for all configurationsC ∈ C1,∑
v∈H

n(v, C)z∗v ≤ 1 + ε holds, and for all configurationsC ∈ C2,
∑

v∈H

n(v, C)z∗v + ∆(C)Z∗ ≤ 1 + ε holds.

In this last case,ζ
∗

1+ε is a feasible dual solution that can be used. If a configuration whose constraint in the
dual linear program is violated, is found, we can continue with the application of the ellipsoid algorithm.

Such a configurationC can be found using an approximated solution for the knapsack problem. The
knapsack problem [11] is known to admit an FPTAS. In the standard knapsack problem, a set of items with
sizes and weights are given, and the goal is to find a maximum weight subset of a total size at most1. It is
not difficult to adapt the solution so that the goal is to find a maximum weight subset with a total size strictly
smaller than 1.

We employ this FPTAS for different inputs stated below. The goal is to distinguish between two cases.
The first case is that there exists a configurationC for which its constraint, which is either from the family
(3) or from the family (4) is not satisfied. Otherwise, all these constraints are satisfied approximately, that
is, the inequality is satisfied with1 + ε rather than with 1.

We first search for a configurationC ∈ C1 which maximizes
∑

v∈H

n(v, C)z∗v . C1 can be partitioned into

subsets according to the size of the minimum item in it. For eachv ∈ H, we search for a partial configuration
C ′ ∈ P (v) that maximizes

∑
u∈H

n(u,C ′)z∗u. The corresponding knapsack problem consists of the following

input. The multi-set of items consists of the items of sizesH(v) = {u ∈ H|u ≥ v}, where the number
of items of sizeu ∈ H(v) is n(u). The weight of an item of sizeu ∈ H(u) is z∗u. The goal is to find a
subset of items of total size less than 1 with maximum total weight. LetM(v) be the weight of the output

6

of the FPTAS. The total weight of the items in the complete configuration (i.e., including an additional item
of sizev) is M(v) + z∗v . If M(v) + z∗v > 1, then there exists a complete configuration inC(v) which does
not satisfy the constraint.

We next search for a configurationC ∈ C2 which maximizes
∑

u∈H

n(u,C)z∗u + ∆(C)Z∗, or

∑

u∈H

n(u,C)z∗u +

(
1 + ε−

∑

u∈H

n(u, C)u

)
Z∗ =

∑

u∈H

n(u,C)(z∗u − uZ∗) + (1 + ε)Z∗.

Which is equivalent to maximizing
∑

u∈H

n(u,C)(z∗u − uZ∗).

The knapsack problem here consists of all items ofH, whereu ∈ H appearsn(u) times in the input,
and the weight of such an item isz∗u − uZ∗. The goal is to find a subset of items of total size less than 1
with maximum total weight. LetM be the output of the FPTAS. That is, the total weight of the items in the
complete configuration (i.e., including an additional item of sizev) is M . If M + (1 + ε)Z∗ > 1, then there
exists a complete configuration inC2 which does not satisfy the constraint.

We show that if no such configuration was found, thenζ∗
1+ε satisfies all constraints. Since the FPTAS

for the knapsack problem is a1 + ε approximation, we can prove the following in the two cases. For a
configurationC ∈ C(v), we have

∑
u∈H

n(u,C)z∗u − z∗v ≤ (1 + ε)(1 − z∗v) ≤ 1 + ε − z∗v which implies

∑
u∈H

n(u,C) z∗u
1+ε ≤ 1. For a configurationC ∈ C2, we have

∑
u∈H

n(u, C)z∗u + ∆(C)Z∗ − (1 + ε)Z∗ =
∑

u∈H

n(u,C)(z∗u − uZ∗) ≤ (1 + ε)(1− (1 + ε)Z∗) ≤ 1 + ε− (1 + ε)Z∗ which implies
∑

u∈H

n(u,C) z∗u
1+ε +

∆(C) Z∗
1+ε ≤ 1.

Since the approximated separation oracle that we described above runs in time which is polynomial inn
and1

ε , we conclude that the approximated solution of the (primal) linear programx̂ is obtained in polynomial
time (again polynomial inn and 1

ε). Sincex̂ is a solution of a linear program with an exponential number
of variables,̂x is given in a compact representation, which is a list of non-zero components of the solution,
together with their values.

To analyze the packing defined above, note that there are|L1| = d|L|ε2e ≤ |L|ε2+1 bins which are used
for the items ofL1. Each feasible bin may contain up to1

ε large items. This is true since given a packed bin,
the removal of one large item brings the total size of items below 1, and thus at most1

ε−1 items are left after
this removal. Therefore,OPT≥ ε|L|. We conclude that the number of additional bins (used to packL1) is at
mostεOPT+1, so the cost of the solution is at most(1+ε)

∑
C∈C

yC +1+ |L1| ≤ (1+ε)
∑

C∈C
yC +εOPT+2.

Therefore, it suffices to bound the cost, implied byy, in terms ofOPT.
Instead of using an optimal solution to the linear program (whose value is a lower bound onOPT(I ′),

sinceOPT(I ′) is a valid solution to the linear program), we use a(1 + ε)-approximated solution, and this
degrades the value of the returned solution within a factor of1 + ε (i.e.,

∑
C∈C

x̂C ≤ (1 + ε) · OPT(I ′)).

We next bound
∑

C∈C
(yC− x̂C). Note that in the primal linear program there are at most1

ε2 +1 constraints

(not including non-negativity constraints), and hence in a basic solution (a property that we can always
assume that̂x satisfies) there are at most1

ε2 + 1 positive components, and hence there are at most1
ε2 + 1

fractional components. Therefore,
∑

C∈C
(yC − x̂C) ≤ 1

ε2 + 1.

Therefore, the cost of the obtained solution is at most(1 + ε)
∑

C∈C
yC + εOPT+ 2 =

∑
C∈C

(1 + ε)x̂C +
∑

C∈C
(1 + ε)(yC − x̂C) + εOPT+ 2 ≤ (1 + ε)2 · OPT(I ′) + (1

ε2 + 1)(1 + ε) + εOPT+ 2 ≤ (1 + 4ε)OPT+ 6
ε2

(sinceε ≤ 1). Hence, we conclude the following theorem.

7

Theorem 4 The above scheme is an AFPTAS forSOBP.

4 Conclusion

We studied several NP-hard open-end packing problems. We have shown thatSOBP and LBC admit
asymptotic fully polynomial approximation schemes, but the complexity of approximatingOOBPremains
open. Specifically, we have shownOOBPis strongly NP-hard, but it is unknown whether an AFPTAS (or
even an APTAS) could be designed for it.

References

[1] S.F. Assmann, D.S. Johnson, D.J. Kleitman, and J.Y.-T. Leung. On a dual version of the one-
dimensional bin packing problem.Journal of Algorithms, 5:502–525, 1984.

[2] J. Csirik, D. S. Johnson, and C. Kenyon. Better approximation algorithms for bin covering. InProc.of
the 12th Annual Symposium on Discrete Algorithms (SODA2001), pages 557–566, 2001.

[3] J. Csirik and V. Totik. On-line algorithms for a dual version of bin packing.Discrete Applied Mathe-
matics, 21:163–167, 1988.

[4] W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved within1 + ε in linear time.
Combinatorica, 1(4):349–355, 1981.

[5] L. Gai and G. Zhang. It is hard to be lazy! manuscript, 2008.

[6] K. Jansen and R. Solis-Oba. An asymptotic fully polynomial time approximation scheme for bin
covering.Theoretical Computer Science, 306(1-3):543–551, 2003.

[7] N. Karmarkar and R. M. Karp. An efficient approximation scheme for the one-dimensional bin-
packing problem. InProceedings of the 23rd Annual Symposium on Foundations of Computer Science
(FOCS’82), pages 312–320, 1982.

[8] J. Y.-T. Leung, M. Dror, and G. H. Young. A note on an open-end bin packing problem.Journal of
Scheduling, 4(4):201–207, 2001.

[9] M. Lin, Y. Yang, and J. Xu. Improved approximation algorithms for maximum resource bin packing
and lazy bin covering problems. InProc. of the 17th International Symposium on Algorithms and
Computation (ISAAC2006), pages 567–577, 2006.

[10] M. Lin, Y. Yang, and J. Xu. On lazy bin covering and packing problems. InProc. of the 12th Annual
International Conference on Computing and Combinatorics (COCOON2006), pages 340–349, 2006.

[11] S. Martello and P. Toth.Knapsack Problems: Algorithms and Computer Implementations. John Wiley
and Sons, 1990.

[12] J. Yang and J. Y-T. Leung. The ordered open-end bin packing problem.Operations Research,
51(5):759–770, 2003.

[13] G. Zhang. Parameterized on-line open-end bin packing.Computing, 60(3):267–274, 1998.

8

