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Abstract

Let T = (V,E) be a tree graph with non-negative costs defined on the vertices. A vertex

τ is called a separating vertex for u and v if the distances of τ to u and v are not equal. A

set of vertices L ⊆ V is a feasible solution for the non-landmarks model (NL), if for every pair

of distinct vertices, u, v ∈ V \ L, there are at least two vertices of L separating them. Such a

feasible solution is called a landmark set. We analyze the structure of landmark sets for trees

and design a linear time algorithm for finding a minimum cost landmark set for a given tree

graph.

1 Introduction

In this paper we study a generalization of the metric dimension problem, which is a problem of

finding a simple landmark set or a resolving set of a graph [21, 14, 2, 7, 18, 17, 5, 20, 19, 16, 9, 15].

A simple landmark set is a subset of vertices L ⊆ V of an undirected graph G = (V,E), such that

for any u, v ∈ V (u ̸= v), there exists τ ∈ L with d(u, τ) ̸= d(v, τ), where d(x, y) denotes the

number of edges in a shortest path between x and y. In this case, τ is called a separating vertex

for u and v. Alternatively, it is equivalent to require for L to have a separating vertex for every

pair u, v ∈ V \ L.
This problem was introduced by Harary and Melter [14] and by Slater [21]. The problem was

studied in the combinatorics literature [2, 4, 5, 6], with respect to complexity [17, 3, 16, 15, 8, 9], and

with respect to design of polynomial time algorithms for certain graph classes (sometimes even for

the weighted version - see definition below), and in particular for paths and trees [21, 14, 17, 5, 20, 9].

The k-metric dimension problem (for an integer k ≥ 2) [11, 1, 12, 22, 10, 13] is the problem of

finding a subset L that has at least k separating vertices for every pair of distinct vertices u and

v. If this is required for every u, v ∈ V , the model is called AP (all-pairs model) (introduced in

[11] and independently in [1]), and if this is required for every u, v ∈ V \ L, the model is called

NL (non-landmarks model), which was introduced in [1]. In all cases, a valid solution is called a

landmark set (for the suitable value of k, where a simple landmark set is a landmark set for k = 1).

In the weighted case, a non-negative rational cost is given for each vertex by a function c : V → Q+.
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For a set U ⊆ V , c(U) =
∑

v∈Uw(v) is the total cost of vertices in U , and the goal is to find a

landmark set L with the minimum value w(L). For a given graph, the minimum cardinality of

any landmark set is called the k-metric dimension, while the minimum cost of any set is called the

weighted k-metric dimension. Yero, Estrada-Moreno, and Rodŕıguez-Velázquez [22] showed that

computing the k-metric dimension of an arbitrary graph is NP-hard.

In this paper we study the case of trees for k = 2, in the non-landmarks model (NL). For this

model, a landmark set always exists for any graph, and k ≥ 2 as V is a landmark set (in fact, any

subset of |V | − 1 vertices is a landmark set). Let T = (V,E) be a tree graph. Let n = |V | be the

order of T . The case of a path graph was completely analyzed in [1] (for all values of k and the

two models, see also [10] for the all-pairs model), and therefore we will assume that T has at least

one vertex of degree greater than 2. It was shown in [1] that a minimal cost landmark set for a

path graph and k = 2 consists of two or three vertices. Note that (by definition) every solution for

AP is a solution for NL. Any subset of three vertices of a path form a landmark set (for each of

the models), the two endpoints of the path also form a landmark set for both models. However,

a solution consisting of the first two vertices of the path or the last two vertices of the path are

landmark sets for NL but not for AP. For the case k = 1 (simple landmark sets), trees were studied

in [5, 14, 17, 21, 9].

Next, we define various concepts use in this paper. See Figure 1 for illustrations of the different

concepts defined here.

Given a tree, a vertex of degree at least 3 is called a core vertex or a core. A vertex of degree

2 is called a path vertex, and a vertex of degree 1 is called a leaf. Recall that here we consider

trees that have at least one core. For a core v, we often consider the subtrees created by removing

v from the tree, and call them the subtrees of its neighbors (one subtree for each neighbor). We

sometimes consider the BFS tree that is created by rooting the tree at v. A subtree of a neighbor

of a core v that is a path (without any cores) is called a leg (or a standard leg) of v. If a leg consists

of a single vertex (that is, v is connected to a leaf), we call it a short leg, and otherwise it is called

a long leg. For a leg ℓ of v that consists of j ≥ 1 vertices, the vertex of position i, also denoted by

ℓi (for 1 ≤ i ≤ j), is the vertex of the leg ℓ whose distance from v is i. Khuller et al. [17] showed

that a simple landmark set can be created by selecting all leaves except for the leaf of one leg of

each core. In [9], it was shown that a minimum cost simple landmark set is created by selecting one

vertex of each leg of a core except for one leg, such that the selected vertices have total minimal

cost.

Given a tree, we define a small core to be a core vertex that satisfies all the following conditions;

The core has a degree of exactly 3, it has at least two legs, one of which is a short leg. The second

leg of a small core may be either short or long, and the third subtree of a neighbor of v can be a

(short or long) leg or it can contain one or more cores. Other cores are called regular cores. If

the third subtree of a neighbor of v contains a core, the closest core to v, x, is connected to v by a

path consisting of path vertices. For a small core v, if the closest core, x, is a small core too, then

since x also has two legs (in addition to the subtree of a neighbor of x that contains v), the tree
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has exactly two (small) cores and no regular cores (while in any other case, x is a regular core).

We will have two special cases. One special case is where the tree contains exactly two small cores

(and no regular cores). The other special case is where the tree has exactly one small core (and

no regular cores, that is, the tree consists of a core with three legs, at least one of which is short).

The two special cases will be considered separately after some properties will be discussed, while

all cases where the tree has at least one regular core will be treated together (including the case of

a tree with just one core that is regular).

Next, we define a modified leg. For a core vertex v, a subtree of a neighbor of v that has exactly

one core, and this core is a small core, is called a modified leg (in this case v is the closest regular

core to at least one small core). That is, a modified leg of v consists of a path to a small core, a

small core, and the standard legs of the small core (where the small core has one short leg and one

leg that is short or long). A g-leg of a core v is a subtree of a neighbor of v that is either a standard

leg (short or long) or a modified leg (the terms short leg and long leg will refer only to standard

legs). A position on a modified leg ℓ is defined exactly as it is defined for a standard leg, but if the

small core (which is part of ℓ) is in position i ≥ 1, then there are two vertices with position i + 1

on ℓ, denoted by ℓa and ℓb, where ℓb is the unique vertex of a short leg of the small core (if both its

standard legs are short, the choice of which vertex of a short leg is ℓa and which one is ℓb is done

arbitrarily). As explained above, except for the special case treated later, if a small core u that is

a part of a modified leg of v, then v is a regular core.

A regular core is called minor if one of the two following conditions holds. The first condition

is that it has at most one g-leg (as its degree is at least 3, there are at least two other subtrees

of its neighbors that are neither standard legs nor modified legs, and each such subtree contains a

regular core). The second condition is that its degree is at least 4, it has no modified legs, it has

exactly two standard legs, one of which is short (the other leg is either short or long) and the other

(at least two) subtrees of its neighbors are not g-legs and contain regular cores. Thus, for a minor

core v, no matter which condition out of the two is satisfied, there are always at least two subtrees

of the neighbors of v which are not g-legs, and it either has at most one g-leg (which is standard or

modified), or it has two standard legs, at least one of which is short. If a regular core is not minor,

then we call it a main core.

In AP (all pairs model) and k = 2, two separations in a landmark set L are required for any pair

of distinct vertices and not only for the vertices of V \ L. In this case, it is sufficient to analyze

cores (without splitting them into small cores and regular cores) and standard legs. The condition

for a set L ⊆ V to be a landmark set is defined on the sets of legs of cores. For each core, if there

is a leg that does not have any vertex in L, any other leg must have at least two vertices in L. In

particular, if a core has a single leg, it will not have any vertices in L in a minimum cost landmark

set (see [11, 12, 22]). Here, we study trees with respect to NL, as trees are a basic graph class, but

solving the (weighted) 2-metric dimension problem is non-trivial, and there are additional options

of landmark sets for NL compared to those of AP (for k = 2). The case of trees is of particular
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interest as for trees the distance is between two vertices is simply the number of edges of the unique

tree path connecting them.

Figure 1: An example of a tree with seven core vertices a,b,c,d,e,f ,g. The vertices b and d are small

cores, c and e are minor cores, all other are main cores. Note that c is a core with a single g-leg (a

modified leg), while e is a minor core without any g-legs. The main core a has two standard legs

and one g-leg, while the main core f has three standard legs, one of which is short and the other

two are long.

2 Properties

In this section we analyze the structure of landmark sets. We prove a number of lemmas that

determine the requirements of minimal landmark sets (with respect to cost or to set inclusion).

We will define required solution types for g-legs. This will allow us to design a relatively simple

algorithm for computing a minimum cost landmark set for a given tree in the next section.

Lemma 1 Consider a tree and a regular core v. Every subtree of a neighbor of v that has a regular

core must have a main core. In particular, a tree that has a minor core also has at least two main

cores, and every tree with a regular core has a main core.

Proof. Root the tree at v, and consider a subtree of a neighbor of v that has a regular core. Let x

be a regular core of a largest distance to v in this subtree (that is, a regular core of largest depth

in the rooted tree). The core x must have at least two children in the rooted tree, as its degree in

the tree is at least 3. If the degree of x in the tree is at least 4, x has at least three children in the

rooted tree, and the subtrees of these children are g-legs, as these subtrees contain no regular cores

(since otherwise x is not a regular core of maximum depth). Since x has at least three g-legs, it is

not a minor core, and therefore it is a main core. Consider the case where the degree of x is 3 and
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it has exactly two children in the rooted tree, where the subtrees of these children are g-legs. A

minor core of degree 3 only has one g-leg, and therefore this case is impossible. We find that x is

a main core.

Consider a minor core y. By definition, the subtrees of at least two neighbors of y are not g-legs,

each of them has a regular core and thus it also has main core, proving that there are at least two

main cores in the tree. Finally, consider a tree that has a regular core u. If u is a main core, we

are done. Otherwise, it is a minor core, and in this case there are at least two main cores in the

tree.

We define algorithms for finding subsets of vertices for g-legs of cores. We will call these sets

local sets, and define them below. We will show that for trees with at least one regular core, a

minimum cost landmark set can be found by combining the local sets (in the two special cases

of trees without regular cores, the conditions will still be necessary but they will not always be

sufficient). In the algorithms, we will assume that a core with a set of g-legs is given. For a regular

core this is simply the set of its g-legs. The case of small cores is relevant only for the two special

cases. If the tree has a single core that is small, we consider the three standard legs of this core. In

the case of a tree with two small cores, each one of them can be seen as a core with two standard

legs (one of which is small), and one modified leg.

Each solution for the set of g-legs of one core v will consist of finding a solution for each g-leg

and combining such solutions, but the g-legs cannot be dealt with independently (and v will never

be selected as a part of a local set). We now define several types of solutions for standard legs and

for modified legs. For standard legs, the solution types are as follows.

• A type (s, 0) solution is an empty set (that is, no vertices of the leg are selected).

• A type (s, 1) solution consists of one vertex of the leg whose position on the leg is at least 2.

• A type (s, 2) solution consists of at least two vertices of the leg.

• A type (s, 3) solution consists of the vertex with position 1 in the leg.

Notice that solutions of types (s, 1) and (s, 2) can exist only for long legs.

For a modified leg ℓ, whose small core is at position i, the solution types are as follows.

• A type (m, 1) solution contains exactly one vertex out of ℓa and ℓb, that is, the solution is

either {ℓa} or it is {ℓb}.

• A type (m, 2) solution does not have any of the vertices ℓa and ℓb, it consists of at least two

vertices with positions i + 2 or larger, and possibly other vertices (whose positions are not

i+ 1).

• A type (m, 3) solution contains at least two vertices, one of which is either ℓa or ℓb (it is

possible that it contains both these vertices).

Notice that ℓb is a leaf, and a solution of type (m, 2) can exist only if ℓa is not a leaf.
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Definition 2 A subset S of vertices of the g-legs of a core v, inducing solutions for the g-legs, is

called a local set if it satisfies the following conditions.

1. There is at most one standard leg whose solution is of type (s, 0), and the other standard legs

have solutions of types (s, 1), (s, 2), and (s, 3).

2. All modified legs have solutions of types (m, 1), (m, 2), and (m, 3).

3. If there is a standard leg whose solution is of type (s, 0), then no modified leg has a solution

of type (m, 1).

4. If there is a long leg ℓ whose solution is of type (s, 0), then every long leg except for ℓ has a

solution of type (s, 2).

5. If there is a short leg whose solution is of type (s, 0), then every long leg has a solution of type

(s, 2) or (s, 3).

As mentioned above, a short leg cannot have a solution of type (s, 1) or (s, 2). Thus, if some

standard leg ℓ has a solution of type (s, 0), then all short legs (except for ℓ, if it is short) have

solutions of type (s, 3), i.e., every vertex of a short leg (except for ℓ) is in S.

Lemma 3 Consider a landmark set L, and a core v. The set L contains a local set S of v as a

subset.

Proof. First, we show the simple property that if the vertices of a modified leg that are in L do

not form any of the types of solutions defined above, then L is not a landmark set. (For standard

legs, the four solution types cover all possible solutions, thus to show that the only solution types

are the seven solution types which we defined, it is sufficient to consider modified legs.) Consider

a modified leg ℓ of a regular core v, let u be its small core, and let i be the position of u on ℓ.

Any solution that contains at least one of ℓa and ℓb is either of type (m, 1) or of type (m, 3). If the

solution does not contain any of the vertices ℓa and ℓb, then these two vertices cannot be separated

by any vertex that is not on the legs of u, as their paths to such vertices traverse u (or end at

u), and their distances to u are equal. To obtain two separations between ℓa and ℓb (if none of ℓa

and ℓb is in L), L must contain at least two vertices whose positions on ℓ are at least i+ 2 (these

vertices are on the same standard leg of u as ℓa, since the standard leg of u containing ℓb is short).

Thus, in this case the solution is of type (m, 2). This also proves the second condition of local sets.

Consider two standard legs of v, ℓ1 and ℓ2. If none of the vertices ℓ11 and ℓ12 is in L, then these

two vertices can only be separated by vertices of ℓ1 ∪ ℓ2, as they have equal distances to v, and all

paths from ℓ11 and ℓ12 to vertices not in ℓ1 ∪ ℓ2 traverse v (or end at v). Thus, the case where both

legs have type (s, 0) solutions is impossible. This proves the first condition of local sets (and that

except for at most one short leg with an (s, 0) type solution, the solutions of every short leg are of

type (s, 3)). Consider a standard leg without any landmarks, ℓ1, and a leg ℓ2 that is either long

or modified. We will show that ℓ2 has at least two landmarks unless ℓ1 is short and ℓ2 is long, in

which case ℓ2 may have a type (s, 3) solution, and in all other cases the possible types of solutions

are those having at least two vertices, that is, (s, 2), (m, 2), and (m, 3) type solutions. Assume by
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contradiction that ℓ2 has exactly one landmark (in a situation that is not the one where ℓ1 is short,

and ℓ2 is long, and their solutions are of types (s, 0) and (s, 3), respectively). The landmark of ℓ2
must be in the first position of ℓ2, as otherwise none of ℓ11 and ℓ12 is in L, and there is just one

separation between them (because only vertices of ℓ1 ∪ ℓ2 can separate them). If ℓ2 is a modified

leg, then as the positions of ℓa2 and ℓb2 on ℓ2 are at least 2, its solution type is not (m, 1), and since

it has a single vertex, it is not a solution of type (m, 2) or (m, 3), and we reach a contradiction. We

are left with the case that ℓ2 is long, and its solution is of type (s, 3). However, if ℓ1 is long as well,

since ℓ21, ℓ
2
2 /∈ L (and ℓ1 has no vertices in L while ℓ2 only has ℓ12 in L), these two vertices will only

have one separation, showing that the solution is not valid. This proves the last three conditions.

Lemma 4 Consider a set L ⊆ V . If for every core v, the subset of L that is restricted to the

vertices of the g-legs of v is a local set, then every pair of vertices x, y /∈ L with equal positions on

the g-legs of v has at least two separations in L.

Proof. If x and y are on the same g-leg of v, then this must be a modified leg ℓ of v, and

{x, y} = {ℓa, ℓb}, as this is the unique pair of vertices of equal positions on this g-leg. Since

x, y /∈ L, the solution for ℓ must be of type (m, 2). In this case (as ℓb is a leaf) there are two

vertices of L on the standard leg that contains ℓa, the distance of each such vertex to ℓa is smaller

than its distance to ℓb, and there are at least two separations between x and y.

Consider the case where x and y are on different g-legs of v. We claim that any vertex z on

the g-leg of x is closer to x than it is to y. Let ℓ̃ be the g-leg of x. The path from y to z traverses

ℓ̃1, and so does the path from x to v, thus d(y, z) = d(y, v) + 1 + d(ℓ̃1, z) = d(x, v) + 1 + d(ℓ̃1, z) =

d(x, ℓ̃1) + 2 + d(ℓ̃1, z). However, d(x, z) ≤ d(x, ℓ̃1) + d(ℓ̃1, z), proving d(x, z) < d(y, z). Thus, if

the two g-legs (of x and y) have at least two vertices of L in total, then there are at least two

separations between x and y. Any modified leg has at least one vertex in any local set, and if there

is a standard leg with a (s, 0) type solution, then any modified leg has at least two vertices in any

local set. We find that the only case where the two g-legs have at most one vertex of L (together)

is where both these g-legs are standard legs, one leg has a type (s, 0) solution, and the other leg

has a type (s, 3) solution. We show such a solution is not possible. If at least one of the legs of x

and y is short, then by definition of short legs, this leg only has a vertex in position 1. Thus, the

positions of x and y are equal to 1. This last case is impossible as x, y /∈ L implies that none of

these two legs has a type (s, 3) solution if the positions of x and y are 1. We find that both these

legs are long, but then the leg that does not have a type (s, 0) solution must have a type (s, 2)

solution, and the two legs have at least two vertices of L in total, so this case is impossible too.

Lemma 5 A local set of a main core has at least two vertices.

Proof. Assume by contradiction that there exists a main core v where the local set of its g-legs

has at most one vertex, while v is a main core. Any local set of v contains at least one vertex on

every g-leg except for possibly one g-leg, and it has at least one vertex of every modified leg. Thus,

v has at most two g-legs. If v has at most one g-leg, then it is a minor core. If it has exactly two

g-legs, then one of them has no vertices in the local set, while the other one has one vertex in this
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set. The g-leg with one vertex in the local set cannot be a modified leg, as in this case (where there

is a standard leg with a (s, 0) type solution), it would have at least two vertices in the local set,

by property 3 of local sets. Thus, v has two standard legs. If one them is short, then v is a minor

core again. Otherwise, as a long leg has a type (s, 0) solution, the other long leg has a type (s, 2)

solution, and the local set has at least two vertices, contradicting the assumption.

Lemma 6 Consider a tree, a core v in this tree, and a set L ⊆ V that contains a local set for v. If

x ̸= y are vertices of the subtree consisting of v and its g-legs such that x, y /∈ L and d(x, v) < d(y, v),

then any vertex of L except, possibly, for the vertices on the g-leg of v that contains y separates

them.

Proof. Consider a vertex z ∈ L that is not on any g-leg of v that contains at least one of x and y

(note that y ̸= v, as d(y, v) > 0, so y is on a g-leg of v). The vertex z separates x and y as their

paths to z traverse v (a path can start at v if x = v, or the paths can end at v if z = v), while x

and y have different distances to v. If x is on a g-leg that is not the g-leg of y, consider a vertex

z′ on this g-leg. Since d(x, z′) ≤ d(x, v) + d(v, z′) < d(y, v) + d(v, z′) = d(y, z′), z′ also separates x

and y.

Lemma 7 Consider a tree that has at least two regular cores, and a set L ⊆ V . If for every regular

core v, the subset of L that is restricted to the vertices of the g-legs of v is a local set, then for

every pair of vertices x, y /∈ L in the subtree consisting of v and its g-legs, there are two separations

between x and y.

Proof. By Lemma 1, a tree with a minor core also has at least two main cores. Thus, the tree has

at least two main cores in any case. If d(x, v) = d(y, v), then there are two separations between x

and y in the subset of L restricted to the g-legs of v, as it is a local set by Lemma 4. Otherwise

(if d(x, v) ̸= d(y, v)), the tree has at least one additional main core u except for v, such that the

vertices of L on the g-legs of u form a local set for u, and therefore there are at least two such

vertices, by Lemma 5. By Lemma 6, x and y are separated by the vertices of L in the local set

that is the subset of L restricted to the g-legs of u.

Lemma 8 Consider a tree with at least two regular cores, and a set L ⊆ V . If for every regular

core v, the subset of L that is restricted to the vertices of the g-legs of v is a local set, then L is a

landmark set.

Proof. Consider two vertices x ̸= y, such that x, y /∈ L. If x and y are in the subtree consisting of

a regular core and its g-legs, then there are two separations between them due to Lemma 7. Next,

assume that x is a vertex of a subtree consisting of a main core v and its g-legs (that is, x = v or x is

on a g-leg of v), while y is not in this subtree. Let v′ be the neighbor of v on the tree path from v to

y. As the subtree of v′ is not a g-leg of v (since y does not belong to the subtree of v and its g-legs),

it has at least one regular core and therefore it has a main core, by Lemma 1. Let z denote such a

core, let z1, z2 ∈ L be vertices of the g-legs of z, and let v1, v2 ∈ L be vertices of the g-legs of v (all of

which must exist by Lemma 5, where it is possible that there exist additional vertices of such g-legs
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in L). Consider the case d(y, v) ≤ d(x, v). As d(y, zi) ≤ d(y, v′) + d(v′, zi) = d(y, v)− 1 + d(v′, zi),

while d(x, zi) = d(x, v) + 1 + d(v′, zi) ≥ d(y, v) + 1 + d(v′, zi), for i ∈ {1,2}, z1 and z2 separate

x and y. In the case d(y, v) > d(x, v), we find d(y, vi) = d(y, v) + d(v, vi), for i ∈ {1,2}, while
d(x, vi) ≤ d(x, v) + d(v, vi) < d(y, v) + d(v, vi), so v1 and v2 separate x and y.

If x is a minor core or on a g-leg of a minor core a, root the tree at a (we let a = x, if x is a

minor core). There are at least two subtrees of a with main cores (by Lemma 1) and therefore, with

at least two vertices of L (in each). Since we assume that y is not a or on a g-leg of a, it is in one

of these subtrees. Let a′ be the neighbor of a that is the root of this subtree. If d(y, a) ≤ d(x, a),

then for every vertex u in the subtree of a′, d(x, u) = d(x, a) + 1 + d(a′, u) > d(y, a) + d(a′, u) and

d(y, u) ≤ d(y, a′) + d(a′, u) = d(y, a)− 1+ d(a′, u), thus every such vertex u separates x and y, and

there are two separations for this pair of vertices. Otherwise, d(y, a) > d(x, a), and for every vertex

u′ in the subtree of a different neighbor of a that has a main core (and thus at least two vertices of

L) in its subtree, d(x, u′) = d(x, a)+d(a, u′) and d(y, u′) = d(y, a)+d(a, u′), giving two separations

for x and y.

Finally, assume that none of x and y is a regular core or on a g-leg of a regular core (as all cases

where one of the two vertices satisfies this condition were considered). Root the tree at x. There

are at least two subtrees (since a leaf must be a part of a g-leg), and each one must have a regular

core (otherwise x is a part of a g-leg). For any vertex b in the subtree that does not contain y,

d(y, b) = d(y, x) + d(x, b) > d(x, b), giving two separations between x and y again.

In the next lemma we consider a tree that can be seen as a tree with exactly one core. It can

be a tree with a single regular core (but it may have one or more modified legs, which have small

cores), or a tree with no regular cores (with one or two small cores, where in the case of two small

cores, in the lemma one of them is considered, and the other one is seen as a part of its modified

leg).

Lemma 9 Consider a tree with one core v that has at least three g-legs, where v can be a regular

core or a small core (it is possible that v has a modified leg, that is, that its leg has a small core),

and a set L ⊆ V that contains a local set for v. In all the following cases L is a landmark set of

the tree.

1. The set L contains at least one vertex of each g-leg of v.

2. The core v has at least four g-legs.

3. The core v has at least two g-legs that are modified legs.

4. The set L contains v.

Note the lemma states sufficient conditions, but it does not discuss necessary conditions.

Proof. In each one of the cases we consider two vertices x, y /∈ L. If d(x, v) = d(y, v), then x and

y have the same position in their g-legs and there are two separations between x and y since L is

a local set, by Lemma 4. Otherwise, assume without loss of generality that d(x, v) < d(y, v) (and

thus y ̸= v).
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In the first two conditions, v has at least two additional g-legs except for the g-leg of y, each

having at least one vertex of L. In the first case this holds as there are two additional g-legs, and

every g-leg has a vertex of L. In the second case, L contains a local set and every g-leg, except for

at most one, has a vertex of L. There are at least four g-legs in total, there are at least two g-legs

except for the g-leg of y and a g-leg with no vertices of L (if such a standard leg exists). Thus,

there are at least two separations between x and y as by Lemma 6, any vertex of L separates x

and y possibly except for vertices on the g-leg of y.

In the third condition, if every g-leg has a vertex of L, then the property follows from the first

case. Otherwise, there is a standard leg without any vertex of L, and therefore every g-leg, except

for the leg which has no vertices of L, has at least two vertices of L, by property 3 of local sets.

Since at least two g-legs of v are modified legs, there is a modified leg that is not the g-leg of y,

and its vertices that belong to L separate x and y.

In the fourth condition, it is sufficient to consider a tree and a set L that do not satisfy any of

the conditions of the first three cases. Thus, v has three g-legs. As d(x, v) < d(y, v), v separates x

and y. At least one of the g-legs that are not the g-leg of y has at least one vertex in L, and this

vertex separates x and y as well by Lemma 6.

Lemma 10 Consider a tree that has at least one regular core, and a set L ⊆ V . If for every regular

core v, the subset of L that is restricted to the vertices of the g-legs of v is a local set, then L is a

landmark set.

Proof. If the tree has at least two regular cores, this claim was proved in Lemma 8. Assume that

the tree has one regular core u. If u has at least four g-legs, or it has three g-legs, out of which

at least two g-legs are modified legs, then the claim was proved in Lemma 9 (the second and third

conditions). Next, assume that u has three g-legs, out of which at most one is modified. If u has

three g-legs, such that all of them are standard, and at least one leg is short, then u is a small core

(and not a regular core). If u has one modified leg, and two standard legs, out of which at least

one leg is short, then u is a small core (in this case u is not a regular core either, the tree has two

small cores and no regular cores). Thus, we find that u has two long legs, and the third g-leg is

either modified, or it is standard and long. If every leg of u contains a vertex of L, then the claim

was proved in Lemma 9 (the first condition). Otherwise, u has a standard leg with no vertices

of L. By the properties of local sets, there are two g-legs with at least two vertices of L on each

g-leg. In this case, for any pair x, y /∈ L (assuming d(x, u) ≤ d(y, u) without loss of generality), if

d(x, u) = d(y, u), then there are two separations between x and y as L contains a local set for the

g-legs of u and by Lemma 4, and if d(x, u) < d(y, u), then the two vertices of L that are on a g-leg

that does not contain y separate x and y.

Lemma 11 Consider a tree with no regular cores and a single small core v, such that v has three

standard legs. If L ⊆ V contains a local set for v and |L| ≥ 3, then L is a landmark set. If L ⊆ V

contains a local set for v and |L| ≤ 2, then L is a landmark set if and only if L consists of the two

vertices of two short legs of v.
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Proof. Assume that |L| ≥ 3. By Lemma 9, if v ∈ L, or if every leg has a vertex of L, we are

done. Otherwise, consider a pair x, y /∈ L. If d(x, v) = d(y, v), then by Lemma 4 there are two

separations between x and y as L contains a local set for the g-legs of v. If d(x, v) < d(y, v), and

the two legs that are not the leg of y have at least two vertices of L, we are done too (by Lemma

6). As |L| ≥ 3, the remaining case is that the leg of y has at least two vertices in L, while one of

the other legs of u has one vertex of L, and it separates x and y. At most one vertex of the leg of

y can have equal distances to x and y, and therefore, any other vertex of the leg of y which is in L

separates them as well, and we assumed there is at least one such vertex for this case (as there are

at least two vertices of L on the leg of y).

A local set cannot contain less than two vertices by its properties, and in the case |L| = 2, there

are two legs with one vertex of L each, one standard leg without any vertices of L, and v /∈ L.

Every vertex of L separates every pair x, y /∈ L, as |L| = 2. For every leg ℓ, if ℓi ∈ L for i ≥ 1 then

ℓ has i vertices, as otherwise (if it has at least i+ 1 vertices), ℓi does not separate ℓi−1 and ℓi+1 if

i ≥ 2, and it does not separate v and ℓ2 if i = 1. As there is a leg with a type (s, 0) solution, the

solution of ℓ is of type (s, 2) or (s, 3), and since it has one vertex of L, the solution must be of type

(s, 3). Thus, i = 1, and ℓ is short. On the other hand, if L consists of two vertices of short legs,

the remaining vertices are v and the vertices of one leg ℓ̃, each having a different distance to the

two vertices of L (this distance is 1 for v, and i+ 1 for ℓ̃i).

Consider a tree with two small cores v and u, and no regular cores. The tree consists of a path

between u and v, and each of them has two standard legs, a short leg and another standard leg

which can be short or long. For each small core, the path to the other small core and its legs can

be seen as its modified leg.

Lemma 12 Consider a tree with no regular cores and two small cores v and u. A set L ⊆ V is a

landmark set if and only if it contains a local set for the three g-legs of v and it contains a local set

for the three g-legs of u.

A minimal landmark set with respect to set inclusion will contain at most one vertex on the

path between u and v (excluding u and v), and at most two vertices of each long leg of u and v.

Proof. Since the tree can be seen as a core and its three g-legs in two ways, L must contain a local

set for the g-legs of u and for the g-legs of v.

Next, we show that the condition that L contains locals sets for the g-legs of each of the small

cores is sufficient. Assume now that L contains local sets for the two sets of g-legs. If for at least

one of u and v, each of its g-legs has a vertex of L, we are done by the first part of Lemma 9.

Moreover, if u ∈ L or v ∈ L, we are done by the fourth part of Lemma 9. Since a modified leg has

at least one vertex of a local set (by property 2 of local sets) we find that in the remaining case,

each of u and v has one standard leg without any vertex of L, while every modified leg has at least

two vertices of L.

If L contains a vertex z on the path between u and v (excluding u and v), for the sake of the

proof we see z as having two g-legs (one containing u as a small core, and the other one containing

v as a small core). As each of u and v has a standard leg with at least one vertex in L, each g-leg

of z has at least one vertex of L. Consider two vertices x, y /∈ L. As z ∈ L, each of x and y is on
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a g-leg of z. If x and y are on the same g-leg, assume (without loss of generality) that this is the

g-leg containing u. As the solution of one of the standard legs of u is of type (s, 0), its other leg has

either a type (s, 2) solution or a type (s, 3) solution. If d(x, z) = d(y, z), then d(x, u) = d(y, u) (as

the paths of x and y to z traverse u), x and y must be the vertices in position 1 on the standard

legs of u, and in this case the solution type of the standard leg of u with at least one vertex of L

cannot be (s, 3) (as x, y /∈ L). The two vertices of L of the long standard leg of u are closer to

the vertex of position 1 of that leg than to the vertex of position 1 of the short leg of u, and thus

they both separate u and v. If d(x, z) ̸= d(y, z), then one of x and y is closer to z than the other

vertex, and it is also closer to any vertex of L on the other g-leg of z. This results in at least two

separations between x and y. If x is on the g-leg of z containing u while y is on the g-leg of z

containing v, let u′ ∈ L be on the former g-leg of z and let v′ ∈ L be on the latter g-leg of z. We

consider the two cases again. Assume that d(x, z) ≤ d(y, z). We get d(x, u′) ≤ d(x, u) + d(u, u′)

while d(y, u′) = d(y, u) + d(u, u′), and d(x, u) < d(x, z) ≤ d(y, z) < d(y, u), showing that u′

separates x and y. If d(x, z) < d(y, z), z also separates x and y, and if d(x, z) = d(y, z), then

d(y, v′) ≤ d(y, v)+d(v, v′) while d(x, v′) = d(x, v)+d(v, v′), and d(y, v) < d(y, z) = d(x, z) < d(x, v),

showing that v′ also separates x and y.

We are left with the case that each modified leg has at least two vertices, and these vertices

are not on the path between u and v (and they are not u or v), and as one standard leg of each

small core has no vertices of L, each small core has one long leg with two vertices of L. In this case

consider two vertices x, y /∈ L. Each core has two g-legs with at least two vertices of L on each. If

d(x, u) = d(y, u), then there are two separations between x and y as L contains a local set for u

(by Lemma 4). Otherwise, if d(x, u) < d(y, u), there is a g-leg of u that is not the g-leg of y and

has two vertices of L, and these vertices separate x and y, by Lemma 6.

To prove the second part, consider a minimal landmark set L. If L has at least two vertices

on the path between u and v excluding the endpoints, then the modified legs of u and v (both

containing this path) have at least three vertices of L each (as each of u and v has at least one

vertex of L on a standard leg). Removing one vertex of the path between u and v does not change

the type of solutions of modified legs (a solution of type (m, 2) remains of type (m, 2) and a solution

of type (m, 3) remains of type (m, 3)). Next, assume that a leg of one small core has at least three

vertices. Removing the vertex of maximum distance to the small core of its standard leg does not

change the type of solution of this leg (the solution was of type (s, 2) and remains of this type).

We say that a local set is thrifty if solutions of types (s, 2), (m, 2) and (m, 3) consist of exactly

two vertices.

Lemma 13 1. Consider a landmark set L, such that the subset of vertices of L on the g-legs of

a regular core v is not a thrifty local set. Then, L is not minimal with respect to set inclusion.

2. Consider a landmark set L′ for a tree with a single core u that is small, such that the subset

of vertices of L′ on the standard legs of u is not a thrifty local set. Then, L′ is not minimal

with respect to set inclusion.

Proof. To prove (ii), let S′ = L′ \ {u}. If S′ is not thrifty, we find |S′| ≥ 4, as there is a leg ℓ′ with

a type (s, 2) solution consisting of at least three vertices, and at least one of the other two legs has
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at least one vertex in S′. Removing an arbitrary vertex of ℓ′ from S′ to obtain S′′ still results in a

local set with at least three vertices, and by Lemma 11, S′′ is a landmark set for the tree, showing

that L′ is not minimal.

To prove (i), let S be the subset of L restricted to the g-legs of v. By Lemma 3, S is a local

set. Since S is not thrifty, there is a g-leg ℓ that contains at least three vertices. If ℓ has a type

(s, 2) solution, remove an arbitrary vertex of ℓ from L to obtain L̃. If ℓ has a type (m, 2) or type

(m, 3) solution, remove a vertex of ℓ from L to obtain L̃, where the removed vertex is such that

the solution remains of the same type (if the small core has position i on ℓ, then for a type (m, 2)

solution, remove a vertex such that at least two vertices of positions i + 2 or larger on ℓ are not

removed. For a type (m, 3) solution, remove a vertex whose position on ℓ is not i+1). In all cases,

the modification does not change the local sets of other regular cores, and the subset of L̃ restricted

to the g-legs of v remains a local set, thus by Lemma 10, L̃ is a landmark set for the tree, showing

that L is not minimal.

The case of a tree with two cores that are small was not considered in the lemma as in this case

there can be a minimal landmark set L that is not thrifty. One such example is a tree where one

small core v has two short legs and the other one u has one short leg and one leg of three vertices.

The two cores u and v are connected by a path of three edges. Let the neighbor of u on this last

path be denoted by au and let the neighbor of v be denoted by av. Let xv and yv be the vertices

of the short legs of v, let t1 be the vertex of the short leg of u, and let t2 and t3 be the other

vertices of the long leg of u. Consider the set {t2, t3, yv, av}. We claim that this is a landmark set,

and it is minimal with respect to set inclusion. The distances from yv, av, t2, and t3, to u, v, xu,

xv, t1, and z, are given by the vectors (4, 1, 5, 2, 5, 3), (2, 1, 3, 2, 3, 1), (2, 5, 3, 6, 1, 3), (3, 6, 4, 7, 2, 4),

respectively. This set is a local set for v but it is not thrifty.

3 The algorithm

The algorithm consists of two parts. In the first part, we detect the cores, and partition them into

regular cores and small cores. Every regular core will have a list of its neighbors whose subtrees

are g-legs. Finding such a list can be done by running DFS on the tree. In the second part (which

we describe in more detail below), if the tree has at least one regular core, the algorithm simply

finds a thrifty local set for each regular core. If the tree does not have any regular cores, then a

landmark set is computed by considering all possible solution types. The resulting running times

are linear. The correctness of the algorithm follows from the previous section, in particular, using

Lemma 3, for every core, a local set of its g-legs has to be selected (Lemma 3 defined a necessary

condition, and we mention below the lemmas proving that each selected set is indeed a landmark

set).

In the case of a tree with at least one regular core u, the local sets are computed independently,

and moreover, the dependence between the g-legs is only in the sense that for a given g-leg of u,

only the types of solutions of the other g-legs are relevant, and not the specific solutions of the

other g-legs of u (see Lemmas 8,10). Thus, for each g-leg, we search for a solution of minimum

cost for a given solution type. Lemma 13 (i) shows that in most cases only thrifty locals sets

13



should be considered, and the algorithm simply searches for such sets. The case of a single small

core is similar, as the identity of the vertex in a type (s, 1) solution or the vertices in a type (s, 2)

solution does not affect the validity of the local set as a landmark set (this property only depends on

numbers of vertices). In the case of two small cores, there are several similar properties. Lemmas

11, 12, and 13 (ii) guide us in the case of no regular cores, which allows us to consider only specific

solution types as well. If there is a vertex on the path between the two cores (excluding the cores)

in a landmark set, its exact identity is not important since replacing it with another vertex of this

path keeps the types of solutions of the modified legs as they were. Similarly, for a long leg of one

of the small cores, replacing one vertex whose position is at least 2 with another such vertex does

not change the solution type (neither for the long leg nor for the modified leg of the other small

core that contains this long leg). Thus, even if the g-legs have large numbers of vertices (and in

the case of two small cores, the path connecting them may have a large number of vertices), still a

constant number of solutions is tested.

Finding a minimum cost local set for a regular core. Consider a regular core v. At most

three solutions (which are thrifty local sets for the g-legs of v) will be considered, and a solution of

minimum cost will be given as the output. The solution kinds are based on the definitions of local

sets and thrifty local sets.

First, the different kinds of solutions for each g-leg are computed. For every standard leg

compute the minimum cost solutions of types (s, 1), (s, 2), and (s, 3) (by finding the minimum cost

vertex whose position is not 1, and the two minimum cost vertices, using linear time in the length

of the leg). For short legs there a unique solution is computed, which has type (s, 3). For every

modified leg l′ compute the minimum cost solutions of types (m, 1), (m, 2), and (m, 3) (if the small

core has position i on l′, find the minimum cost vertex b out of the two vertices of positions i+1 on

l′ , the two minimum cost vertices of positions i+2 or greater on l′, and a vertex of minimum cost

excluding b (to be combined with b in an output set), using linear time in the number of vertices

of the leg).

The first solution is computed independently for each g-leg. For every standard leg, select a

solution of minimum cost, out of the solutions computed for it (of types (s, 1), (s, 2), and (s, 3)).

In the second solution, there will be a short leg whose solution is of type (s, 0) (if there is no

such leg of v, then no such solution is computed). For each modified leg, select a minimum cost

solution out of its already calculated solutions of types (m, 2) and (m, 3). For each long leg, select

a minimum cost solution out of its already calculated solutions of types (s, 2) and (s, 3). Select a

short leg whose (s, 3) type solution has maximum cost and change its solution into type (s, 0). This

completes the description of the second solution. In the third solution, there will be a long leg of

v whose solution is of type (s, 0) (if there is no such leg, then no such solution is computed). For

each modified leg, select a minimum cost solution out of its already calculated solutions of types

(m, 2) and (m, 3). For each short leg, the solution is of type (s, 3). Find a long leg whose (s, 2)

solution has the maximum cost. Define the solution of this leg to be of type (s, 0), and any other

long leg will have a type (s, 2) solution.
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Finding a minimum cost landmark set for a tree with no regular cores and one small

core. Let v denote the small core of the tree. In this case we will consider solutions of several

kinds, and as not every local set with two vertices is a valid landmark set, we will consider local sets

of two vertices separately. As in the case of a regular core, the first step is to computed minimum

cost solutions of the three types ((s, 1), (s, 2), and (s, 3)) for each leg.

The first solution is computed as for regular cores, that is, a minimum cost solution out of the

three types is selected for each leg. Next, for each of the three legs, local sets where this leg has

a type (s, 0) solution are considered. Consider a leg ℓ whose solution will be of type (s, 0). If ℓ

is long, a type (s, 2) solution is selected for any long leg except for ℓ, and a type (s, 3) solution is

selected for any short leg. This is a landmark set as it either contains at least three vertices, or L

consists of two vertices the two of short legs, by Lemma 11. If ℓ is short, then there are (at most)

four additional solutions to be considered for the case where ℓ has a type (s, 0) solution, where any

short leg except for ℓ has a type (s, 3) solution, and any long leg has either a type (s, 2) solution

or a type (s, 3) solution. The only kind of solution with two vertices of the legs is the one where

two short legs have type (s, 3) solution, resulting in two selected vertices. In this case, v is added

to the solution if there is a long leg with a type (s, 3) solution. We found at most four solutions for

each leg, giving a constant number of solutions, where the output is a minimum cost solution out

of these solutions.

Finding a minimum cost landmark set for a tree with no regular cores and two small

cores. Recall that in this case the output may contain a local set that is not thrifty. Let the two

cores be denoted by u and v. Let auv denote a vertex of minimum cost on the path between u and

v excluding the endpoints. Let u1, u2, v1, v2 denote the four neighbors of u and v on their standard

legs (the vertices of position 1). Let b1 and b2 be two vertices of minimum costs on the long leg of

v that are not neighbors of v, and let b′1 and b′2 be two vertices of minimum cost on the long leg of

u that are not neighbors of u (it is possible that some of the vertices b1, b2, b
′
1, and b′2 do not exist

if at least one of u and v does not have a long leg, or it has a long leg with two vertices). Consider

all subsets of {auv, u, v, u1, u2, v1, v2, b1, b2, b′1, b′2} . For each subset, test whether it is a local set

for u and a local set for v (or alternatively, test whether it is a landmark set, which can be done in

linear time by computing the distances from each of the eleven vertices to all vertices), and let the

sets satisfying this property be called valid solutions. As the set {u1, u2, v1, v2} contains a local set

for u and a local set for v, at least one valid solution is found. Return a subset of minimum cost

out of the valid solutions.
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