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Abstract

We consider max coloring on hereditary graph classes. The problem is defined as follows. Given a
graphG = (V, E) and positive node weightsw : V → (0,∞), the goal is to find a proper node coloring

of G whose color classesC1, C2, . . . , Ck minimize
k∑

i=1

maxv∈Ci
w(v). We design a general framework

which allows to convert approximation algorithms for standard node coloring into algorithms for max
coloring. The approximation ratio increases by a multiplicative factor of at moste for deterministic
offline algorithms and for randomized online algorithms, and by a multiplicative factor of at most4 for
deterministic online algorithms.

We consider two specific hereditary classes which are interval graphs and perfect graphs. For interval
graphs, we study the problem in several online environments. In the List Model, intervals arrive one by
one, in some order. In the Time Model, intervals arrive one by one, sorted by their left endpoint. For
the List Model we design a deterministic 12-competitive algorithm, and a randomized3e-competitive
algorithm. In addition, we prove a lower bound of 4 on the competitive ratio of any deterministic or
randomized algorithm. For the Time Model, we use simplified versions of the algorithm and the lower
bound of the List Model, to develop a deterministic 4-competitive algorithm, a randomizede-competitive
algorithm, and to design a lower bounds ofφ ≈ 1.618 on the deterministic competitive ratio and a lower
bound of43 on the randomized competitive ratio. The former lower bounds hold even for unit intervals.
For unit intervals in the List Model, we obtain a deterministic8-competitive algorithm, a randomized
2e-competitive algorithm and lower bounds of2 on the deterministic competitive ratio and11

6 ≈ 1.8333
on the randomized competitive ratio.

Finally, we employ our framework to obtain an offlinee-approximation algorithm for max coloring
of perfect graphs, improving and simplifying a recent result of Pemmaraju and Raman.

1 Introduction

The (offline) max coloring problem is defined as follows: Given a graphG = (V,E) and positive node
weightsw : V → (0,∞), the goal is to find a proper node coloring ofG (i.e., each pair of adjacent nodes
are assigned distinct colors) whose color classesC1, C2, . . . , Ck minimize

∑k
i=1 maxv∈Ci w(v).

An interval graph has the property that its nodes can be represented as closed intervals on the real line
so that two nodes are adjacent if and only if their respective intervals intersect. Motivated by a design
of dedicated memory managers problem, Pemmaraju, Raman and Varadarajan introduced the max coloring
problem [17]. In that paper it is mentioned that the problem is actually interesting in the online environment,
but it is not studied in that context.

In the online max coloring problem the nodes arrive one by one, and each time a nodev arrives the set
of edges connectingv to the earlier nodes is revealed. In this paper we consider the online max coloring
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problem whereG is an interval graph. In this case we assume the graph is given via its intervals represen-
tation. The intervals are presented to the algorithm one by one clairvoyantly, i.e., all information regarding
the interval is revealed upon arrival. That is, we assume that each time an interval arrives its two endpoints
are revealed. Each interval is to be colored before the next one is presented and this color assignment can
not be changed afterwards. We are interested in two online versions of the problem. In the List Model, the
intervals are given in an arbitrary order. In the Time Model, the intervals arrive sorted by their left endpoints.
The study of the Time Model is motivated by the application of the design of memory managers in which
each interval corresponds to a memory request that arrives along time (so the requests are ordered according
to their left endpoints).

For an algorithmA, we denote its cost byA as well. An optimal offline algorithm that knows the
complete sequence of intervals, as well as its cost, are denoted byOPT. Since the problem is scalable, we
consider the absolute competitive ratio and the absolute approximation ratio criteria. For an online algorithm
we use the term competitive ratio whereas for an offline algorithm we use the term approximation ratio. The
competitive ratio ofA is the infimumR such that for any input,A ≤ R · OPT. If A is randomized, the
last inequality is replaced byE(A) ≤ R · OPT. If the competitive ratio of an online algorithm is at most
R, then we say that it isR-competitive. If an algorithm has an unbounded competitive ratio, we say that it
is not competitive. The approximation ratio of a polynomial time offline algorithm is defined similarly to
be the infimumR such that for any input,A ≤ R · OPT. If the approximation ratio of a polynomial time
offline algorithm is at mostR, then we say that it is anR-approximation.

In [17], Pemmaraju, Raman and Varadarajan designed a 2-approximation algorithm for the max color-
ing problem on interval graphs. Further, they showed that the First-Fit algorithm, which colors a node using
the first available color (in an order in which the colors are given), when the intervals are considered in a
monotone non-increasing order of their weights, is a 10-approximation algorithm for the max coloring prob-
lem on interval graphs. In [15], Pemmaraju, Raman and Varadarajan designed anO(log n)-approximation
algorithm for the (offline) max coloring of chordal graphs. They also analyzed empirically several heuris-
tics. In [16], Pemmaraju and Raman presented a 4-approximation algorithm for the (offline) max coloring of
perfect graphs. Since every chordal graph is also a perfect graph, this result improves the earlierO(log n)-
approximation algorithm of [15] for chordal graphs. We recall that a perfect graph can be colored usingω
colors, whereω is the size of the largest clique in the graph. Note thatω is a clear lower bound on the chro-
matic number of the graph. An algorithm that finds such a coloring is implied using the ellipsoid algorithm
[6] (see also chapter 67 in [19]).

Coloring interval graphs has been intensively studied, Kierstead and Trotter [11] constructed an online
algorithm which uses at most3ω− 2 colors whereω is the maximum clique size of the interval graph. They
also presented a matching lower bound of3ω − 2 on the number of colors in a coloring of an arbitrary
online algorithm. Note that the chromatic number of interval graphs equals to the size of a maximum clique,
which is equivalent in the case of interval graphs to the largest number of intervals that intersect any point
(see [8, 5]). This means that the optimal offline algorithm can color every interval graph withω colors.
This can be actually done by applying First-Fit to the intervals sorted by their left end points. Therefore, a
1-competitive algorithm exists for this problem in the Time Model. Many papers studied the performance
of First-Fit for this problem in the List Model [9, 10, 17, 3]. The last paper shows that the performance of
First-Fit is strictly worse than the one of the algorithm of [11].

Interval coloring received much attention recently. In [17], a simple reduction from offline max interval
coloring to online interval coloring was shown. The upper bounds in this paper were shown by exploiting
the algorithm of [11] (which becomes a 2-approximation instead of the 3-competitive algorithm, since a
part of the computation can be done offline), and First-Fit (this paper first improved the known bound on
First-Fit and then used it). The reduction simply applies the online algorithm to the set of intervals, sorted
by non-increasing order of weight. Adamy and Erlebach [1] introduced the interval coloring with bandwidth
problem. In this problem each interval has a bandwidth requirement in(0, 1]. The intervals are to be colored

2



so that at each point, the sum of bandwidths of intervals colored by a certain color which intersect this point,
does not exceed 1. This problem was studied also in [2, 4].

Our results: We first present the positive results of this paper. That is, we present a randomized online
algorithm that uses as a sub-routine an online node coloring algorithm. This sub-routine is applied to color
graphs that are induced subgraphs of the original graph. We then show how to choose the parameters of
our algorithm to obtain a deterministic online algorithm though with an inferior competitive ratio. Note that
though we reduce the max coloring problem of interval graphs to an interval coloring problem, which is
also done in [17], our reduction does not require pre-sorting of the intervals, and therefore our algorithms
for interval graphs are online. Using known results for online minimum coloring of interval graphs we
obtain the following results. For the List Model we design a deterministic 12-competitive algorithm, a
randomized3e-competitive algorithm, and prove a lower bound of 4 on the deterministic or randomized
competitive ratio. For the Time Model, we use simplified versions of the algorithm and lower bound of the
List Model, to achieve a deterministic 4-competitive algorithm, a randomizede-competitive algorithm, a
lower bound ofφ ≈ 1.618 on the deterministic competitive ratio, and a lower bound of4

3 on the randomized
competitive ratio. The lower bound holds even for unit intervals. For unit intervals and the List Model,
we obtain a deterministic8-competitive algorithm, a randomized2e-competitive algorithm and improved
lower bounds of 2 and11

6 ≈ 1.8333 on the deterministic and randomized competitive ratios, respectively.
Our upper bounds for online algorithms are based on using a general reduction which we introduce in this
paper, that allows to convert anr-competitive algorithm for standard node coloring into a4r-competitive
(e · r-competitive) deterministic (randomized) algorithm for max coloring. Finally, we use our randomized
algorithm with a derandomization procedure to obtain an offline (deterministic)e-approximation algorithm
for max coloring of perfect graphs or any other hereditary graph classes for which the node coloring problem
can be solved in polynomial time. We present the algorithms in Section 2, and the lower bounds in Section
3.

2 Algorithms

Before we define our algorithms, we would like to discuss the performance of First-Fit, which is clearly a
natural algorithm for coloring. As shown in a sequence of papers [9, 10, 17], applying First-Fit to interval
graphs for the standard node coloring problem results in a constant competitive algorithm, though First-Fit
is worse than the algorithm of Kierstead and Trotter [11, 3]. However, we can show that First-Fit is not
competitive for the max coloring problem.

Proposition 1 First-Fit is not competitive for max coloring of interval graphs even in the Time Model and
the case of unit intervals.

Proof. Let M be a large constant fixed later. We introduce the input in blocks, where all intervals are of
length2. Block i (i ≥ 0) consists ofi copies of the interval[4i, 4i+2], with weight1 each, and one interval
[4i + 1, 4i + 3] of weightM . Clearly, the firsti intervals of a block are colored using colors1, . . . , i, since
they arrive first, and they do not overlap with any previously presented intervals. The next interval which
has larger weight is colored with colori + 1. Denote byj the number of blocks in the input. Then, the cost
of the algorithm is at leastM · j. An optimal offline algorithm would use one color for all intervals having
the larger weight, andj − 1 colors for all other intervals (note that the unit weight intervals can be colored
usingj−1 colors). This results in the costM +j−1. TakingM = j2 we get a competitive ratio of j3

j2+j−1
.

Whenj grows to infinity, this competitive ratio becomes arbitrarily large.
We design a framework for converting a deterministicC-competitive algorithm for online coloring of

a given class of graphs into a randomizede · C-competitive algorithm for max coloring on the same class
of graphs. Our framework applies to hereditary classes of graphs (i.e., if a graph belongs to this class, then
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every induced subgraph belongs to this class). We apply the scheme using only deterministic algorithms for
coloring. This results in deterministic algorithms, using a deterministic reduction scheme, and in random-
ized algorithms, using a randomized reduction scheme. Clearly, the randomized scheme can be used for
converting a randomized algorithm to a randomized one.

Our algorithm has a positive integer parameterk and another real parameterα > 1. Our algorithm
chooses an integer value0 ≤ ` < k uniformly at random. Upon arrival of a new node we round down its
weight as follows. We find the largest integer valuet such thatαkt+` is no larger than the weight of the
new node. The rounded weight of the node becomesαkt+`. In what follows, we always refer to the original
weight by the termweight, and to the rounded weight byrounded weight.

Recall thatOPTdenotes the total weight (i.e., cost) of an optimal offline solutionOPTfor the original
sequence (where the weights are not rounded). For a given color, theweight of this coloris defined to be
the largest weight of any node which is colored byOPTwith this color. That is, the weight of the color is
the exact cost whichOPT is charged for this color. Consider the subset of colors, used byOPT, having a
weight in the interval

[
αi−1, αi

)
. Let OPTi denote the number of the such colors.

Denote byp the largest integer, such thatOPTuses at least one color of weight in the interval
[
αk(p−1), αkp

)
.

Note thatp is unknown to the algorithm and is used only for the analysis.

Lemma 2 OPTsatisfiesOPT≥ ∑kp
i=−∞ αi−1 · OPTi.

Proof. The maximum weight of each of theOPTi colors of weight in the interval
[
αi−1, αi

)
is at leastαi−1.

The input is partitioned online into subsequences (also called classes), such that each class is colored
independently, using its own set of colors. The subsequenceSi for an integer value ofi, contains all nodes
whose weight is in the interval

[
α`+(i−1)k, α`+ik

)
, that is, nodes of a rounded weight ofα`+(i−1)k.

Once we are coloring such a classSi, the rounded weights of all intervals are identical, so weights are
not taken into account and the problem is reduced to the classical online node coloring problem. We use a
C-competitive algorithm to color such a class.

Lemma 3 The number of colors that are used to colorSi is at mostC ·∑kp
j=`+(i−1)k+1 OPTj , for all i.

Proof. OPT can use the colors of weight at leastα`+(i−1)k to color the nodes ofSi. Therefore, there
are at most

∑kp
j=`+(i−1)k+1 OPTj colors that are used byOPT to colorSi. Since we use aC-competitive

algorithm to colorSi, the claim follows.
It remains to analyze the resulting (randomized) algorithm.

Lemma 4 Assuming the existence of aC-competitive algorithm for online coloring, the randomized online
algorithm has a competitive ratio of at mostC·αk+1

k(α−1) .

Proof. Since each color, that our algorithm uses to colorSi, has a weight of at mostα`+ik, by Lemma
3, we conclude that for a given value of` the cost of the solution returned by the algorithm is at most
C · ∑p

i=−∞ α`+ik
∑kp

j=`+(i−1)k+1 OPTj . We now consider the expected cost of the returned solution
(the expectation is over the randomized value of`). Since` is drawn uniformly at random from the set
{0, 1, . . . , k − 1}, the expected cost is at most the following:

∑k−1
`=0

(
C ·∑p

i=−∞ α`+ik
∑kp

j=`+(i−1)k+1 OPTj

)

k
=

C
∑kp

j=−∞ OPTj ·
∑j+k−1

t=−∞ αt

k

=
C

∑kp
j=−∞ OPTj · αj+k−1 ·∑∞

t=0

(
1
α

)t

k
=

C
∑kp

j=−∞ OPTj · αj+k · 1
α−1

k
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where the first equation holds by changing the order of summation, and the second equation holds by taking
αj+k−1 outside the summation. Recall that by Lemma 2,OPT≥ ∑kp

j=−∞ αj−1 · OPTj . We next note that

the coefficient ofOPTj in the lower bound ofOPT times C·αk+1

k(α−1) is the coefficient ofOPTj in the upper
bound on the expected cost of the solution returned by the algorithm, and thus the claim follows.

Theorem 5 Assuming the existence of aC-competitive deterministic algorithm for online coloring in one
of the models, and a given hereditary graph class, there is a (randomized) online algorithm for max coloring
(in the same model) with competitive ratio of at moste · C for the same graph class.

Proof. By settingα = 1 + 1
k andk being a large integer number, we can set` = u · k whereu is uniformly

random real number in the interval[0, 1], and in this caseα` ≈ eu andαk ≈ e. Then, by Lemma 4, the
claim follows.

Theorem 6 Assuming the existence of aC-competitive algorithm for online coloring in one of the models,
and a given hereditary graph class, there is a deterministic online algorithm for max coloring (in the same
model) with competitive ratio at most4 · C for the same graph class.

Proof. By Lemma 4, and settingα = 2 andk = 1. We note that fork = 1 our algorithm is deterministic as
` has a unique possible value of0.

For max coloring of interval graphs we can use the following results: For the List Model, we use the
3-competitive algorithm of Kierstead and Trotter [11]. For the List Model with unit intervals, we use the
2-competitive algorithm of Epstein and Levy [4]. For the Time Model, we color each class optimally using
First-Fit [8]. Therefore, we establish the following:

Corollary 7 For online max coloring of interval graphs there is a randomized algorithm whose competitive
ratio is 3e in the List Model,2e in the List Model with unit intervals ande in the Time Model.
For online max coloring of interval graphs there is a deterministic algorithm whose competitive ratio is12
in the List Model,8 in the List Model with unit intervals, and 4 in the Time Model.

We next note that for an offline algorithm, we can use a derandomization procedure to transform the
(online) randomized algorithm into a deterministic approximation algorithm without increasing the approx-
imation ratio. To obtain the derandomization note that for each nodev, v belongs to at most two adjacent
classesSi andSi+1 for the different values of̀. Therefore, there are at mostn threshold valuesS that can
be found in advance. In such a threshold valueτ there exists at least one nodev such thatv belongs to
different classes for̀ = τ and` = τ +1. Recall that in the randomized algorithm we chooseα = 1+ 1

k and
k is a huge integer number. Using these threshold values, we have to calculate onlyn solutions (the ones
that correspond to the threshold valuesS), and pick the best solution. Therefore, we establish the following
theorem.

Theorem 8 Given an hereditary class of graphs that has aρ-approximation algorithm for the (offline)
minimum node coloring problem, there is a deterministic(e ·ρ)-approximation algorithm for the offline max
coloring problem of the same graph class.

Note that for perfect graphs (which are known to be hereditary class of graphs) there exists such an opti-
mal algorithm for the minimum node coloring (see [6]). Therefore, we obtain ane-approximation algorithm
for perfect graphs improving the 4-approximation algorithm of [16].

Corollary 9 There is a deterministice-approximation algorithm for (offline) max coloring of perfect graphs.

5



It was brought to our attention that in parallel to our work, Raman had developed the following results for
hereditary graph classes in his Ph.D. thesis [18]. LetC be the known approximation ratio of a deterministic
algorithm for graph coloring for a given graph class. In Theorem 3.5.3, a deterministic4C-approximation
algorithm is given. An improved deterministic3C-approximation algorithm is given in Theorem 3.5.14. In
addition, a randomizede · C-approximation is given in Theorem 3.5.5.

3 Lower bounds

In this section we provide lower bounds on the competitive ratio of online algorithms for max coloring of
interval graphs. We prove deterministic and randomized lower bounds for three models. The first lower
bound is for the Time Model, and only unit intervals are used in the construction. For the List Model, we
prove two separate lower bounds for unit intervals, and for intervals of arbitrary length.

All the lower bounds that we present have the same flavor. The idea is to present blocks of intervals,
where in such a block, some of the intervals may overlap. The concepts used below are abase block, which
is the first part of the block, and a notion of anextended block, which is a base block, together with an
extension. The notion ofa blockcan refer to either a base block or an extended block.

Blocks are very different in the three constructions, but in all cases, there is no overlap between intervals
of different blocks. In the Time Model, all the intervals of one block clearly must arrive sorted by their left
endpoint, while in the List Model, they arrive in an order specified in the construction. A block consists
of two parts, which are sets of intervals presented to the algorithm, where the second part is optional and
is calledthe extension. The first part is called a base block, and it has an indexi which is related to the
largest cardinality clique in it. A base block of indexi is called a basei block. In the last proof, we use an
additional parameterk, so that the maximum cardinality clique is a function ofi andk. In this case, a base
block with indexi and parameterk is called a base(k, i) block. The entire construction (that is, the two
parts) is called an extended block. If only an indexi is used, then an extended block of indexi is called an
extendedi block. If both a parameterk and an indexi are used, then it is called an extended(k, i) block.
Thus, an extendedi block is simply a basei block followed by a suitable extension, and an extended(k, i)
block is a base(k, i) block, followed by a suitable extension for the parameterk and the indexi.

An input is constructed in the following way. After the first base block is built, the cost of the algorithm
(or its expected cost, in the case of randomized algorithms) is checked. If it is sufficiently large, compared
to the optimal cost for the instance, then the input is stopped. Otherwise, the extension is added to the base
block, making it an extended block, and a new disjoint base block is presented. Weights are defined so that
all the intervals of one base block have a common weight ofα which is smaller than the common weight (of
1) of intervals in the extension (so there are only two weights in each extended block). These two weights of
α, 1 are the same in all blocks of one lower bound construction, and therefore each lower bound construction
involves only two weights. The numerical value ofα (0 < α < 1) is different in the different proofs.

Unless the input is stopped after some base block, the construction continues in this way until we have
presented sufficiently many (at leastM , for a large integerM ) extended blocks. That is, in this last case,
the construction stops after theM -th extended block is completed. The details of the different constructions
vary, and will be described in this section. We start with a lower bound for the Time Model, which has a
simple structure of blocks. The blocks of the two other lower bounds have more complicated structures.

Theorem 10 The competitive ratio of any deterministic online max coloring algorithm of interval graphs
in the Time Model is at leastφ ≈ 1.618, which holds even if the input is restricted to unit intervals. For
randomized algorithms, the competitive ratio is at least4

3 , which holds even if the input is restricted to unit
intervals.

Proof. As explained above, we need to define base blocks and extended blocks. In addition, we need
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Figure 1: An example of the construction in Theorem 10; an instance with four extended blocks (an extended
i block for i = 1, 2, 3, 4) and one additional base block (a base5 block).

to define a stopping condition, under which a base block is not extended. LetN be a large integer. The
sequence contains at mostN blocks. Let0 < α < 1 be a parameter (fixed to beα =

√
5−1
2 = φ−1 ≈ 0.618

in the deterministic case, andα = 1
2 in the randomized case).

Definition 11 A basei block is a clique (for somei ≥ 1) consists ofi−1 identical intervals. These intervals
are copies of the interval[4i, 4i + 2], and have the weightα. The intervals of base blocks are called regular
intervals.

Definition 12 An extendedi block consists of a basei block and one additional interval of weight1 (the
expensive interval) which is adjacent to all the intervals of basei block, and it is located slightly shifted to
the right (by half the length of an interval) from the intervals of the base block. That is, the extension is a
single interval located at[4i + 1, 4i + 3].

Note that a base1 block is an empty set of intervals. An extendedi block consists ofi intervals, while a
basei block has onlyi− 1 intervals. For each value ofi, we first present the regular intervals, since a basei
block consists of exactly those intervals. Afterwards we may present the expensive interval of the extended
i block (in case the stopping condition is not met), since that interval is the extension. The first situation to
be considered is the case where the sequence is either processed till the end, i.e., until the extendedN block
is presented. The second situation is the case where for some number1 ≤ i ≤ N − 1 there are extended
j blocks forj = 1, 2, . . . , i and in addition, there is a basei + 1 block. See Figure 1 for an example of an
instance. The input cannot be stopped after a base1 block, since in this case the input is empty.

Note that the regular intervals of a block are located to the left of the expensive interval. Therefore, pre-
senting the base block first and the extension later does not contradict the Time Model. By the construction,
intervals of different blocks do not intersect. Clearly, all intervals in one block must receive distinct colors,
but any pair of intervals from different blocks may receive the same color.

Note that we defined a set of instances, such that a deterministic online algorithm needs to be competitive
for each instance of this set, and a randomized algorithm needs to be competitive against a probability
measure over this set of instances. To complete the definition of the instance, we still need to define the
stopping condition which will depend on the behavior of the online algorithm which we consider (in the
randomized case, we make sure that the stopping condition does not depend on the realization of the random
bits, but only on the prior probability of each event). We postpone this until we compute the cost of an
optimal solution in each possible input sequence (defined by the above rules).
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We now compute the optimal offline cost. If the input sequence consists of a number of extended blocks
and no base block (which is not a part of an extended block), then by our construction, the sequence ends
with an extended block only afterN extended blocks were presented (otherwise, if it is stopped, then it is
stopped immediately after a base block was presented). The optimal solution colors all expensive intervals
from all extended blocks using one color, and at most one regular interval per base block with each one of
N −1 additional colors. This gives a total cost of1+α(N −1). If there arei ≥ 1 extended blocks, and one
additional base block, then there are at mosti intervals in each block. ThereforeOPTneeds onlyi colors,
where one of these colors is used for all expensive intervals and in the basei + 1 block it uses this color for
one regular interval. The otheri − 1 colors thatOPT uses are used for regular intervals (at most one such
interval per base block). Therefore, in this caseOPT= 1 + α(i− 1).

Next, we consider the behavior of a fixed online algorithm. In thedeterministiccase, we make sure that
the algorithm uses exactlyi colors immediately afteri extended blocks have arrived (if they indeed arrive).
Note that the regular intervals in each block arrive first. If the algorithm uses at least onenew color(which
has not been used for coloring intervals of the firsti − 1 extended blocks) to color a regular interval of the
basei block, then we stop the sequence after the intervals of basei block. That is, the stopping condition for
stopping immediately after the basei block is that the (deterministic) online algorithm, which we consider,
has used a new color, which has not been used in the previous extended blocks, for coloring a regular interval
of the basei block. Otherwise, that is, if the stopping condition has not been met, the online algorithm is
forced to use exactly one new color for coloring the expensive interval of extendedi block, and therefore it
uses exactlyi colors.

We now compute the cost of the online algorithm in each case. Consider first the case in whichN ex-
tended blocks arrive. This means that the algorithm used a new color for each expensive interval. Therefore,
the total cost of the online algorithm in this case is exactlyN . Now consider the other case, and leti + 1
be the index of the base block which is not extended to an extendedi + 1 block, that is, the algorithm has
used a new color to color a regular interval of the basei + 1 block and so the stopping condition is met. The
algorithm usedi distinct colors for the expensive intervals of the extendedj blocks forj = 1, . . . , i. It also
uses a new additional color for one regular interval of basei + 1 block. Therefore, the cost of the solution
returned by the algorithm isi + α.

To complete the proof for deterministic algorithms, we compute the competitive ratio in each case.
Consider the competitive ratio if there areN extended blocks. This ratio is N

1+αN−α . For a sufficiently large

value ofN , the ratio tends to1α =
√

5+1
2 = φ ≈ 1.618. If the sequence stopped immediately after basei+1

block, the ratio is i+α
1+iα−α = φ (for any value ofi).

Next, we extend the proof forrandomizedalgorithms. Let0 < p < 1 be a threshold probability (later
fixed to bep = 2

3 ). The construction is the same as above, however the stopping condition which we
defined above is meaningful only for deterministic algorithms and not for randomized algorithms (since we
do not know if the algorithm has actually used a new color to color the regular intervals of the base block).
Therefore, we need to define a new stopping condition for the randomized case.

The sequence is stopped after the basei + 1 block, if the probability that at leasti + 1 colors were used
so far by the algorithm, is at leastp, and otherwise the sequence continues. Note that for a fixed randomized
online algorithm, we can compute these probabilities without the knowledge of the realization of the random
bits operations of the algorithm. Hence, our stopping condition is allowed to depend on these probabilities.
Clearly, the optimal cost does not change. We compute the cost of the sequence for a fixed randomized
algorithm.

Let pi be the probability that at leasti + 1 colors are used by the algorithm for the instance up to (and
including) the basei + 1 block. First consider the expected cost of the first two blocks. If the sequence is
stopped at the earliest possible time, that is, if the second block is a base block, then the expected cost is at
least1+p1 ·α. If the second block is an extended block, then the expected cost incurred by the algorithm so
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far is at least1 + p1 · α + (1− p1). Since the extended block needs at least two colors, and if the interval of
the base block has the same color as the block of the first extended block, then the cost of the second color
of the second extended block is1.

Similarly, colori + 1 is charged a cost ofα with probabilitypi and of1 with probability1 − pi. In the
last case we know that this color is used the first time for an interval of weight1. We get that if the sequence

is stopped right after the basei + 1 block, the expected cost so far is at least1 + α
i∑

j=1
pj +

i−1∑
j=1

(1− pj) =

i + (α− 1)
i−1∑
j=1

pj + αpi ≥ i + (α− 1)(i− 1)p + αp, sinceα < 1, pj < p for j < i andpi ≥ p.

On the other hand, the cost after the extendedN block is at least1 + α
N∑

j=1
pj +

N∑
j=1

(1− pj) = N + 1 +

(α− 1)
N∑

j=1
pj ≥ N + 1 + (α− 1)Np.

We letα = 1
2 andp = 2

3 . We get the ratio of at leastN+1−(1−α)Np
1+α(N−1) in the case whereN extended blocks

are built. In this case the competitive ratio tends to1−p+pα
α = 4

3 for large enoughN . Otherwise, that is,

if the sequence stops before we reach the extendedN block, then the ratio is at leasti−(1−α)(i−1)p+αp
1+α(i−1) =

2i
3

+ 2
3

i
2
+ 1

2

= 4
3 . This completes the proof for the randomized case.

In the List Model, the previous lower bounds can be improved. This is done using blocks where intervals
do not necessarily arrive from left to right. We first consider the case of unit intervals. This time the
construction of blocks is similar to the32 lower bound of [4] for online coloring of unit interval graphs.
Blocks are no longer simple cliques, and the construction of a base block depends on the behavior of the
online algorithm on the previous intervals of this base block. However, blocks still have a relatively simple
final structure.

Theorem 13 The competitive ratio of any deterministic online max coloring algorithm of unit interval
graphs in the List Model is at least2. For randomized algorithms, the competitive ratio is at least11

6 ≈
1.8333.

Proof. We start with definitions of blocks, let0 < α < 1 and consider the deterministic case first.

Definition 14 A basei block, fori ≥ 1, is a set of intervals of weightα, contained in the range[4i, 4i + 3)
(so there is no overlap between intervals of different base blocks). Each interval has a weight ofα. The set
of intervals has the following properties.

• The largest clique cardinality is2i.

• The online algorithm uses exactly3i colors for the base block.

• There exists a range of length1, [x, x + 1] ⊆ [4i, 4i + 3), which we call the central range of the base
i block, which has the following properties.

– In the set of intervals having an overlap with[x, x + 1], the largest clique size is2i.

– The number of colors using by the algorithm for this last set of intervals is3i, that is, every color
used by the online algorithm for this block is used for some interval overlapping with[x, x + 1].

Definition 15 For i ≥ 1, an extendedi block is a basei block with the central range[x, x+1] concatenated
with two requests of weight1 for [x, x + 1]. The online algorithm is therefore forced to use at least3i + 2
colors to color this block. Out of those3i + 2 colors, at least two must have a weight of1.
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Figure 2: A single basei block of the construction in Theorem 13, wherei = 8.

An extended0 block is similar to a base1 block. It is contained in the range[0, 3). The largest clique
size is2, while the online algorithm is forced to use three colors. However, the weight of every interval is1
(rather thanα, which is the weight of intervals in the base1 block).

The construction of such a basei block is similar to the lower bound of32 , shown in [4] for online
coloring of unit intervals and is described next. The construction is partitioned into three phases. In the
initial phase we presenti identical requests for an interval[4i, 4i + 1]. The online algorithm has to color
these intervals with exactlyi colors. We denote those colors byc1, . . . , ci and the set of those colors by
C = {c1, . . . , ci}.

In the second phase, we present at most2i intersecting intervals, which do not have any overlap with
the intervals of the first phase. Since the presented intervals are all intersecting, each one must be colored
using a different color. The intervals of the second phase are given one by one. An invariant is kept, that
all intervals colored using a color inC are slightly shifted to the right with respect to any interval that is
colored by a color which is not inC. That is, the intervals of the second phase satisfy the condition that all
left endpoints of intervals colored with a color not inC are located strictly to the left of the left endpoints of
intervals which are colored with a color inC. The intervals of the second phase are presented until exactly
i of them are colored by colors that are not inC. Since|C| = i, any set of2i intersecting intervals must
be colored using at leasti colors which are not inC. If already after some numberi + j of intervals have
been presented in the second phase, where0 ≤ j ≤ i − 1, there arei intervals colored with colors not in
C, no additional intervals are presented in this phase. We next show the details of this second phase in the
construction.

At any time during the presentation of intervals of the second phase, in order to present an additional
interval, we use the following definitions. LetI1 = [a, a + 1] be the rightmost interval colored by some
color c̄ /∈ C (if such an interval exists) and letI2 = [d, d + 1] be the leftmost interval colored by some color
c ∈ C (if such an interval exists). These two intervals are selected only among intervals introduced so far
in the current phase (intervals presented in the initial phase and other blocks are not taken into account). If
there is no interval colored̄c, then we say thatI1 is empty. If there is no interval coloredc, then we say that
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I2 is empty. Letε = 1
64i . A new interval,I, is presented as follows. If bothI1 andI2 are non-empty, by

the invariant, we assumea < d. A new interval is presented with a left endpoint betweena andd, so this
invariant will hold in the next step as well.
1. If both I1 andI2 are empty (this holds exactly once, when we introduce the first interval of the second
phase) thenI = [4i + 3

2 , 4i + 5
2 ]. In this case, in the next step, exactly one ofI1 andI2 would be empty.

Specifically, if the algorithm colorsI using a color inC thenI1 will be empty in the next step, and otherwise
I2 will be empty.
2. If only I1 is empty,I = [d− ε, d + 1 − ε]. As a result, ifI receives a color inC as well, thenI1 would
still be empty in the next step. OtherwiseI1 of the next step would beI, while I2 would not change. In this
last case, in the next step,I1 is to the left ofI2 as required.
3. If only I2 is empty,I = [a + ε, a + 1 + ε]. As a result, ifI receives a color not inC, thenI2 would still
be empty in the next step. OtherwiseI2 of the next step would beI, while I1 would not change. In this last
case, in the next step,I1 is to the left ofI2 as required.
4. If none ofI1 andI2 is empty then,I = [d+a

2 , d+a
2 +1]. That is, the unit length interval is located halfway

betweenI1 andI2. If I receives a color fromC, then in the next stepI2 would beI, andI1 would remain
unchanged. Otherwise,I1 of the next step would beI andI2 would remain unchanged . In both cases, the
newI1 would be to the left of the newI2.

The stopping condition is the existence ofi intervals of the second phase, not colored using a color from
C. Recall that this means that the construction is stopped after introducing at most2i intervals.

The distance between the leftmost left endpoint of any interval of the second phase, and the rightmost
left endpoint is smaller than132 , thus all the intervals of the second phase are intersecting. We deduce that
these intervals are contained in the range[4i + 47

32 , 4i + 81
32 ]. There is therefore no overlap between the

intervals of the second phase and the intervals of the first phase. On the other hand, the left endpoints of all
the intervals in the second phase are located within a distance of less than 1 from the right endpoints of the
intervals of the initial phase.

Assume now that[yi + 1, yi + 2] is the rightmost interval with color̄c /∈ C after all intervals from phase
2 were presented. From the construction we have4i + 47

32 < yi + 1 < 4i + 49
32 . We next define the last phase

of the construction of the base block, where we presenti requests for the interval[yi, yi + 1]. This interval
intersects all the intervals with color not inC from the second phase, and no intervals with a color inC
from the second phase. However, these lasti intervals intersect all the intervals from the initial phase. This
concludes the construction of a basei block (see Figure 2). The central range of this basei block is defined
to be[yi, yi + 1].

In the basei block, all the intervals presented in the last phase have an overlap with exactly2i intervals
of the first two phases, all having distinct colors, that is they intersect with intervals of exactly2i different
colors. Thesei colors are all colors ofC, which are the colors of intervals of the initial phase, and additional
i colors, which are not inC, resulting from the second phase. The intervals of the second phase, which have
a color inC, intersect with all intervals of the second phase, but not with intervals of the last phase. In this
way, an algorithm is forced to use3i colors, while the largest clique of the basei block has a cardinality
of 2i. Moreover, it is possible to define[yi, yi + 1] to be the central range of the basei block, since it has
non-empty overlap with3i intervals, each colored using a different color, as needed. This completes the
proof that such a basei block exists, and can be constructed so that all its intervals lie within the range
[4i, 4i + 3).

We next define the construction of anextendedi block. An extendedi block contains a basei block (in
which all weights of intervals are equal toα) followed by two additional requests for the interval[yi, yi + 1]
(which is the the central range of this basei block). The two last requests are of weight1, thus the cardinality
of largest clique of an extendedi block is 2i + 2. However, in every clique in the extendedi block, all
intervals have a weight ofα, except for the last two intervals which have a larger weight of1. This forces
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any algorithm to use two additional colors, so the algorithm is clearly forced to use a total of3i + 2 colors
to color the extendedi block, out of which, two colors must have weight1.

Once again, the sequence either consists of some number,N + 1 of extended blocks (an extendedi
block for 0 ≤ i ≤ N ), or of some numberj (1 ≤ j ≤ N ) of extended blocks (an extendedi block for
0 ≤ i ≤ j − 1), followed by one basej block. Recall that base0 block is empty, and the extended0 block
consists of three or four intervals, for which the algorithm uses exactly three colors.

The further blocks are introduced one by one, by increasing index. After the basei block is constructed,
the extension is possibly added afterwards, after examining the set of colors which was used for this basei
block. Throughout the construction, the following invariant is kept. Just before a basei block is presented,
the number of colors which the algorithm must be using is at least3i − 1 (the only exception is fori = 1
where the algorithm was already forced to use exactly three colors). This holds due to the properties of
extended blocks. Due to the stopping rules defined below, it will always be the case that out of these colors,
there are at leasti + 1 colors of weight1, since otherwise, the extension is not constructed and the block
remains a base black, and the sequence stops.

For everyi, for which an extendedi − 1 block is constructed, we define a set of colors which we call
basic colorsfor the indexi. This is a subset of the colors which are used in the preceding extended blocks.
We define this set recursively. Fori = 1, these are the three colors used in the extended0 block. Fori = 2,
these are the basic colors ofi = 1, together with the first two colors used in the extended1 block, which are
not basic fori = 1. For i > 2, these are the basic colors for the indexi − 1, together with the three first
colors which are not basic, which are used in the extendedi block. In total, ifi > 1, there are3i − 1 basic
colors fori, and there are three basic colors fori = 1.

In the extendedi block, after the basei block was constructed, if at least three colors which are not
basic colors fori were used, we stop the construction (ifi = 1, we stop the construction if the base1 block
contains two colors which are not basic fori = 1). Otherwise the extension is added, and the basei + 1
block is built (unlessi = N , in which case the input stops after the extension). The earliest time that the
construction can be stopped is after the extended0 block and the base1 block were constructed.

We compute the optimal cost of the sequence up to a basei block for i > 0. The largest cardinality
of any clique is2i, where the basei block and the extendedi − 1 block both have such cliques. Every
constructed block has two intervals of weight1 and its other intervals are of weightα. The two exceptions
are the extended0 block, and the basei block. Clearly, the extended0 block can be colored using two colors
of weight 1. Therefore, to color the sequence, two colors of weight1 and2i − 2 colors of weightα are
sufficient. This gives a cost of2 + 2(i − 1)α. If the sequence terminates at phaseN with an extendedN
block, then the cost is the same as if a baseN + 1 block were presented, i.e., it is2 + 2Nα.

After the extended0 block is presented, the algorithm uses three colors of weight1. If the sequence
terminates after the base1 block, then two colors which are not basic colors fori = 1 were used. That is,
there are three basic colors of weight1 and two colors of weightα. If the sequence terminates after the base
i block for i > 1, three colors of weightα, which are not basic colors fori− 1 were used in this phase. We
next calculate the cost of basic colors in previous blocks. For the extendedj block with j > 1, there are
three colors which are not basic forj, which become basic forj +1. If j = 1 then there are two such colors.
Consider an earlier extendedj block, where1 < j < i. There are three colors that become basic for the
next block. Since the extension was constructed, at most two of those colors used for intervals of weightα,
since otherwise the basej block does not become an extendedj block. Therefore, at least one color has a
weight of1. In the extended0 block, three colors of weight1 were used, and in the extended1 block, there
are two colors which become basic in the next block, out of which, at most one color has a weight ofα.

Therefore, if the sequence terminates after the basei block for i > 1, the cost of the algorithm is at least
3 + α + 1 + (2α + 1)(i− 2) + 3α = 2 + (2α + 1)i, whereas the optimal cost is2 + 2(i− 1)α. For i = 1,
if the sequence terminates after the base1 block, the cost of the algorithm is at least3 + 2α, whereas the
optimal cost is2, thus this case does not need to be considered separately.
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The cost of the algorithm if the sequence is completed (i.e., all blocks are extended blocks) is3 + α +
1 + (2α + 1)(N − 2) + 2α + 1 = 3 − α + (2α + 1)N , whereas the optimal cost is2 + 2Nα. We get
the ratio 3+2α+(2α+1)(i−1)

2+2(i−1)α in the first case, and3−α+(2α+1)N
2+2Nα in the second case. We choose a value ofα

such that2α+3
2 = 1+2α

2α . The valueα = 1
2 = 0.5 satisfies this requirement. The ratio in the first case is

4+2(i−1)
i+1 = 2. The ratio in the second case tends to the same value for large enough values ofN . The claim

for deterministic algorithms follows.

We next provide the extension of this proof for randomized algorithms (which is similar to the proof for
deterministic algorithms). As a first step, we explain how to extend the construction of blocks to randomized
algorithms (a similar extension can be applied for online unit interval coloring [13]).

In the deterministic proof, we construct one extendedi block for each value ofi before moving on to
the next block. In the randomized case, we introduce multiple non overlapping basei blocks for each value
of i (and possibly extend them into extendedi blocks). Consider the deterministic construction of a base
i block. In this case, we decide on the locations of intervals of its second phase, to the left or to the right
of the current interval, based on previous decisions of the algorithm. Specifically, we check whether a new
interval is colored using a color which was used in the first phase of this block. However, if we apply this for
a randomized algorithm, then we do not know which colors were assigned. Therefore, instead of checking
the behavior of the algorithm, we try to guess it using the probability for each outcome. Building a basei
block, we need to guess a binary property of2i intervals. The probability to achieve a correct guess for all
2i intervals is 1

22i . Clearly, for anyε > 0, there exists a numberS(i,ε), such that if we repeat the construction
independentlyS(i,ε) times, then with high probability of1− (1− 1

22i )S which is at least1− ε, at least one
base block uses at least3i colors.

We do not know which base block actually received3i colors. However, if an extension (two additional
intervals per block) is to be constructed, then we can add the extension to each one of the basei blocks. If
there exists a basei block for which the guess was correct, then is has exactly3i different colors. This base
block has at least one new color compared to the set of3i − 1 basic colors of an extendedi − 1 block for
which the guess was correct. Ifi = 1, then it can be the case that there are no new colors. We define a
thresholdh > 0 and the decision of whether to extend the basei blocks is performed as follows. Denote the
conditional probability that among the colors used for this basei block, there are at least three new colors
(which are not basic in the extendedi − 1 blocks) byqi. The conditional probability is conditioned on the
event that we guessed correctly. Recall that in such a case, only the first three such colors would become
basic for blocks of the next index, if they are constructed. Denote the conditional probability that among
these colors there are exactly two new basic colors bypi. Therefore the conditional probability for a single
new color is1− pi − qi. For i = 1, then only the two first new colors would later become basic colors. We
let q1 denote the probability that there are at least two new colors, andp1 is the probability that there is one
new color.

For i ≥ 1, if pi + 2qi ≥ h, then we stop the sequence after the intervals of the basei blocks, and
otherwise, ifi < N , we extend these basei blocks, and afterwards we construct the basei + 1 blocks.

Consider first the cost of the sequence up to the a base1 blocks, in the case that the construction stops
after these blocks. Since with high probability, there are three colors in some extended0 block, we get an
additional expected cost of at leastα(p1 + 2q1) (in addition to the cost3 of the basic colors of base block
1). Therefore, with high probability, the cost for the base1 blocks, if the sequence is stopped is at least
3 + α(p1 + 2q1) ≥ 3 + αh = 3 − α + α(1 + h). Consider the case that the sequence is not stopped after
the base1 blocks. The expected cost for the two new basic colors used in the extendedi blocks (with high
probability) is(1− p1 − q1)2 + p1(1 + α) + 2αq1 = 2− p1(1− α)− 2q1(1− α) ≥ 2− h(1− α).

If the sequence is not stopped after the basei blocks, for somei > 1, then the expected cost for the three
new basic colors used in the extendedi blocks (with high probability) is(1−pi− qi)(2+α)+pi(1+2α)+
3αqi = 2 + α− (pi + 2qi)(1− α) ≥ 2 + α− h(1 + α).
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If basei + 1 blocks are built, but not extendedi + 1 blocks, this adds (with high probability) a cost of at
leastα((1− p1 − q1) + 2p1 + 3q1) = α(1 + p1 + 2q1) ≥ α(1 + h) to the cost of the extendedi blocks.

Therefore, with high probability, if the sequence is stopped after basei blocks (for somei ≥ 1), then the

expected cost of the algorithm is at least3−α+
i−1∑
j=1

(2+α−h(1−α))+α(1+h) = 3−α+(i−1)(2−h)+

iα(h+1). Otherwise the cost is at least3−α+
N∑

j=1
(2+α−h(1−α)) = 3−α+2N +αN −hN +αhN .

The optimal costs do not change. We get a competitive ratio of3−α+(i−1)(2−h)+iα(h+1)
2+2α(i−1) in the first case and

of 3−α+2N+αN−hN+αhN
2+2Nα in the second case. Using the valuesα = 1

2 andh = 4
3 we get the lower bound

11
6

i+ 11
6

i+1 = 11
6 in the first case and in the second case, the ratio tends to11

6 , for largeN , which gives the same
lower bound in that case as well.

The general lower bound for the List Model is based on blocks as well, however the construction of
blocks is more complicated than in the previous proofs. The exact set of intervals of which a block consists
depends on the behaviour of the online algorithm, and the structure of a block is involved. In fact, the
construction of each block is similar to the construction of the lower bound of3 for online interval coloring,
in [11]. We prove the following theorem.

Theorem 16 The competitive ratio of any deterministic or randomized online max coloring algorithm of
interval graphs in the List Model is at least4.

Proof. We start with a proof of the deterministic lower bound and later show how to extend it for randomized
algorithms. To prove the theorem, we use again base blocks and extended blocks but their structure is now
different. Recall that intervals of different blocks cannot intersect.

We first describe the properties of blocks, and afterwards we show how to construct such blocks. Let
0 < α < 1 be a constant (later chosen to be1

2 ). Once again, all the intervals of every base block have a
common weight ofα, while the additional intervals of the extensions have a common weight of1.

Setk to be a large constant and leti ≥ 1 be an integer.

Definition 17 A base(k, i) block is a construction of intervals, all contained in the range(i− 1, i) (which
implies the property that intervals of different blocks cannot have any overlap). The intervals are defined
dynamically, based on the behavior of the online algorithm. The construction is such that the online algo-
rithm is forced to use at least(3k − 2)(i− 1) colors for this base block. A base(k, i) block must satisfy the
condition that the largest cardinality clique in it has a size of at mostk(i− 1).

Definition 18 An extended(k, i) block is a construction of intervals, all contained in the range(i − 1, i),
which consists of a base(k, i) block and an extension. The intervals are defined dynamically, based on the
behavior of the online algorithm. The construction is such that the online algorithm is forced to use exactly
(3k − 2)i colors for this extended block.

An extended(k, i) block must satisfy the following conditions for an offline coloring of all intervals of
the extended block, which uses a minimum number of colors.

• The number of colors needed in the coloring is at mostki.

• There are at mostk(i− 1) colors of weightα in the coloring.

• There are at mostk colors of weight1 in the coloring.
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We call a set of colors, used by the online algorithm to color a set of intervals: “the colors of the set”.
This set of intervals can be a subset of a block or a block (in which case we use “the colors of the block”).
The set of colors does not necessarily include all colors actually used in the block, but it is assigned to sets
of intervals, to be able to maintain a lower bound on the number of colors used, and on the cost of the
algorithm.

When a(k, i) block is presented to an online algorithm, the numbersk andi are assumed to be known
in advance to the algorithm (that is, already at the time of presentation of the first interval of the block).
The specific construction is explained later. As usual, the construction of an extended(k, i) block consists
of two parts. In the first part we present a base(k, i) block, and in the second optional part, additional unit
weight intervals are presented.

The construction of a base(k, i) block for the deterministic case is such that if a set of(3k − 2)i colors
is used at some point during the construction, then we stop the construction of the lower bound immediately.
In the randomized version of the lower bound, the construction is not stopped in such a case, but the charge
for the additional colors is performed later, in the sense that it is assumed in the cost calculation that these
colors are new in later blocks. It is therefore assumed the algorithm uses at most(3k − 2)i colors in an
extended(k, i) block.

It is left to describe how to obtain a base(k, i) block and an extended(k, i) block, for anyi ≥ 1 and
a sufficiently large value ofk. We use a construction which is similar to the lower bound of3 in [11]. A
difference with [11], already used in [4] is the knowledge ofk andi that the algorithm is assumed to have.

Given a fixed value ofk which is sufficiently large, and3k− 2 is divisible by4 (that is,k is even but not
divisible by4). We prove the following claim.

Claim 19 For a given online algorithm, it is possible to construct an extended(k, i) block and a base(k, i)
block, for anyi ≥ 1, according to the properties defined above.

Proof. The construction of an extended(k, i) block consists ofki phases, where in the firstk(i − 1)
phases, all intervals are of weightα, whereas the lastk phases consist of intervals of weight1. That is,
the construction of a base(k, i) block consists of the firstk(i − 1) phases. To satisfy the conditions on an
optimal coloring, we keep the invariant that each phase increases the cardinality of a maximum clique by1.
In addition, we will make sure that the extension isk-colorable. This is sufficient to maintain the conditions
regarding optimal colorings, both of the base(k, i) block and the extended(k, i) block. Below, it is stated
that the construction may be stopped if the number of colors used by the online algorithm is sufficiently
large. Clearly, the optimal coloring can only benefit from stopping the construction prematurely.

After a phase is defined, weshrink some parts of the line into single points. By shrinking an interval
[β, γ] into a point, we mean that we perform a mappingm of the real line into itself such thatm(x) = x
if x ≤ β, m(x) = x − (γ − β) for x ≥ γ, andm(x) = β for x ∈ [β, γ]. Throughout the construction
of an extended(k, i) block we perform multiple shrinking operations, and each time we make sure that all
previously presented intervals do not cross the range on which we perform the shrinking operation, that is,
they are either contained in it or have no overlap with it at all. Given a pointp, that is a result of shrinking
an interval[β, γ], every interval presented in the past which is contained in[β, γ] is also shrunk intop, and
therefore the pointp inherits a list of colors that such intervals received. These colors cannot be assigned
to any interval that contains the pointp. The shrinking is done only for simplification purposes. In practice
it means that for a given pointp which is the result of shrinking, every future interval either contains this
point or not, i.e., it either contains all intervals that were shrunk into this point, or has no overlap with any
of them.

Let U = (3k − 2)i > 3 be the number of colors we would like to force the algorithm to use in this
extended(k, i) block. If an algorithm ever uses more thanU colors in the constructed block, then we stop
the construction immediately (no matter whether this happens during the construction of the base(k, i) block
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or the construction of the extension. Therefore, we assume that the algorithm is initially given a palette of
U colors. As soon as all these colors are used, the proof is complete. Note that this is just one stopping
condition. As in previous proofs, there is a condition defined later to decide where the extension should be
constructed, or whether the block remains a base block.

Let S = U3ki be an initial number of disjoint intervals which would be presented in the first phase. As
required, the presented intervals will be contained in the range(i − 1, i). Specifically, in the first phase,
we introduceS intervals which are actually the points,tS+1 , for 1 ≤ t ≤ S. The distance between two
consecutive intervals is1

S+1 . After the first phase was introduced, since we assume that the algorithm is

using at mostU colors, this means that there exists a set of at leastS
U = U3ki−1 intervals that share the exact

same colorc. This color is assigned to be the set of colors used in the intervals of the first phase.
We next define the next phases. In each phase, we will show that the number of intervals which can be

used for the next phase decreases by a factor of at mostU3.The phases are constructed in a way that at the
beginning of phasej ≥ 2 there is a set of at leastU3ki−3j+5) points that contain a given common subset of
theU colors (which clearly holds after phase 1). These points are calledpoints of interest. In addition, there
may exist other points containing other subsets of colors. All these points are calledvoid points. Recall that
points can be the result of shrinking of intervals. We keep track of void points and make sure that future
intervals do not have these points as endpoints.

We now define phasej (for j ≥ 2). At this time, we choose exactlyU3ki−3j+5 points of interest and
partition these points of interest into consecutive sets of four points of interest. Additional points of interest
which were not chosen to participate become void points.

We next define the intervals of phasej, increasing the size of the largest cardinality clique (with respect
to the number of intervals, i.e., ignoring weights) by exactly one. Given a set of four consecutive points of
interest, listed from left to righta1, a2, a3, a4, let x be a point betweena1 anda2 which is not a void point.
Similarly, lety be a point betweena3 anda4 which is not a void point. Letz be a point betweena2 anda3

which is not a void point. We introduce the intervalsI1 = [a1, x] andI2 = [y, a4].
If they both receive the same color by the online algorithm, we introduce the intersecting intervals

I3 = [x, z] andI4 = [z, y]. The intervalI3 intersects witha2, and withI1. The second intervalI4 intersects
I3, a3 andI2. Therefore, two new colors must be used forI3 andI4. In total, three new colors were used.

If I1, I2 receive distinct colors by the online algorithm, we introduce the intervalI5 = [x, y]. Interval
I5 intersects withI1, I2, a2, a3, and thus gets a new color. In total, three new colors were used. We shrink
every such interval[a1, a4] into a single point. Such a shrunk pointa1 receives three new colors that are
added to its list of colors, which is initialized by the union of sets of colors of all intervals contained in it.

Note that we do not use more thanU colors, and each new shrunk point receives three new colors. There
are at mostU

3

6 options to choose a set of three new colors from the available palette of|U | colors. We

can therefore find a set ofU
(3ki−3j+5)/4

U3/6
≥ U3ki−3j+2 points having the same set of used colors.U3ki−3j+2

points containing these exact sets of colors become the points of interest of the next phase, and the others
become void points of the next phase. Points that are void points of previous phases and are not contained
in shrunk intervals remain void points. Note that the points where the new intervals intersect are points with
no previous intervals, and therefore the maximum clique size increases by exactly1. The set of colors of the
intervals up to phasej is defined to be the set of phasej − 1 together with the three new colors of the new
points of interest.

After the first k(i − 1) phases, the construction of the base(k, i) block is completed, and we start
presenting intervals of weight1 instead of the weightα. The first phase of intervals of larger weight is
different from all other phases, as we would like the set of all intervals of weight 1 to bek colorable. Thus,
the first such phase we introduce has a clique size of exactly1. Therefore, we introduce single intervals
[a1, a4] instead of the construction above, in this phase only. In this phase the algorithm has to use a single
new color. Ifi = 1, then the base(k, 1) block is empty. In this case, the points of interest for the first phase
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of the construction of the extended(k, 1) block are defined to be the pointstS+1 , for 1 ≤ t ≤ S.
In a base(k, i) block, the number of colors of the entire input is at least3k(i−1)−2 > (3k−2)(i−1),

since three new colors are assigned to the input in each phase except for the first one. Thus the online
algorithm uses at least3k(i− 1)− 2 > (3k − 2)(i− 1) colors. These colors have each a weight of at least
α. In the extension, ifi = 1, the number of colors (all of weight1) is at least3k − 2. Otherwise, if the base
(k, i) block is not empty andi ≥ 2,the number of colors is at least3k(i− 1)− 2 + 3k− 2 ≥ (3k− 2)i.This
completes the proof of the claim.

The structure of the lower bound construction is similar to previous proofs, in particular, at mostN
blocks are used. Recall that in an extended(k, i) block, the online algorithm is forced to use(3k − 2)i
colors. After the construction of a base(k, i) block, it is possible to count the total number of colorsmi

that were used in it, wheremi ≤ (3k − 2)i. Since the total number of colors in extended(k, i) block
must be(3k − 2)i (since the construction is stopped where this number of colors is reached), we define
ni = (3k − 2)i−mi to be the number of new colors needed to complete extended(k, i) block.

We next describe the condition under which a base(k, i) block is extended to be an extended(k, i) block.
When blocki is presented, if the algorithm used at least(3k − 2)(i − 1) + 2k colors for coloring the base
(k, i) block, then the input sequence terminates. That is, the extension is not constructed. Otherwise, we
continue to create the extended(k, i) block and the next additional base block. In particular, if the stopping
condition of using at least(3k − 2)i colors is met already in the construction of the base(k, i) block, the
part of the base(k, i) block which was constructed is considered to be the base(k, i) block which meets the
condition of stopping the sequence. If it was decided to add the extension, and the condition of(3k − 2)i
colors is met already in the construction of the extension, then the block is seen as a complete extended
(k, i) block.

We compute the cost of the online algorithm, if it stops at blocki+1 (i.e. the algorithm stops immediately
after base(k, i + 1) block). All new colors in this base(k, i + 1) block have a cost ofα. For evaluating
the total cost, we first charge all other colors an amount ofα and then assign an additional cost of1− α to
colors that have weight1. In an extended(k, j) block, there is an additional cost of(1−α)nj for thenj new

colors used for intervals of weight1. Therefore, the total cost is at least((3k− 2)i+2k)α+(1−α)
i∑

j=1
nj .

Since previous blocks are extended blocks, we havenj ≥ k − 1 for 2 ≤ j ≤ i andn1 = 3k − 2. We get
a cost of at least(3k − 2)iα + 2kα + (1 − α)(i − 1)(k − 1) + (1 − α)(3k − 2) = k(3iα + 2α + (1 −
α)(i − 1) + 3(1 − α)) − 2iα − (1 − α)(i + 1). The optimal offline cost for this input isk + (i − 1)αk.
It remains to consider the case where there are no base blocks which were not extended to an extended
(k, i) block, that is if there areN extended blocks. In this last case, the cost of the algorithm is at least

(3k − 2)Nα + (1 − α)
N∑

j=1
nj . Since all blocks are extended blocks, we havenj ≥ k − 1 for 2 ≤ j ≤ N

andn1 = 3k− 2. This gives a cost of at least(3k− 2)Nα + (1− α)(N − 1)(k− 1) + (1− α)(3k− 2) =
k(3Nα + (1−α)(N − 1) + 3(1−α))− 2Nα− (1−α)(N + 1). In this case,OPTpaysk + (N − 1)αk.

Choosingα = 1
2 , in the first case we get a lower bound on the competitive ratio which tends to4i+4

i+1 = 4
for sufficiently largek. In the second case, we get a lower bound on the competitive ratio which tends to
4N+2
N+1 for sufficiently largek. TakingN to be large enough, this ratio tends to4 as well.

In order to adapt the lower bound for randomized algorithms note that the valuesni can be used as
thresholds on the expected number of colors rather than their exact number. In this case, there is no way to
ensure that the total number of colors in a (base or extended)(k, i) block does not exceed(3k − 2)i.

It was shown in [12] that the lower bound of3 on the competitive ratio of online algorithms for interval
coloring holds for randomized algorithms as well. They showed it using Yao’s lemma [20] which states that
a lower bound for the competitive ratio of deterministic algorithms on a fixed distribution on the input is
also a lower bound for randomized algorithms. They used a distribution over the possible inputs constructed
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above (similarly to the construction in [11]).
Since we would like to use a direct proof, we need to show this property directly (i.e., we now present an

equivalent method to obtain the result of [12]). In the process above, each block is constructed exactly once
since it is known what the online algorithm does at every step. Instead, we apply the process of constructing
a base(k, i) block a large number of times. Distinct copies of a base block are placed in disjoints areas of
the real line. Since we do not know which colors were assigned by the algorithm while we build a block, we
try to guess the behavior of the algorithm. Clearly, there is a very large number of information bits to guess.
If this number isf , then the probability to guess correctly allf decisions is 1

2f . However, for anyε > 0,
there exists a numberS(f,ε), such that if we repeat the constructionS(f,ε) times, then with high probability
(e.g.,1 − (1 − 1

2f )S
(f,ε) which is at least1 − ε), at least one base(k, i) block has at least(3k − 2)(i − 1)

colors.
We next concentrate on this base(k, i) block that has(3k − 2)(i− 1) colors. If the expected maximum

of colors in a base(k, i) block colors is smaller than the threshold valuemi, we need to extend the base
(k, i) block into extended(k, i) blocks. Since we do not know which base(k, i) block received the largest
number of colors, we need to do this for all base(k, i) blocks. In fact, the numberS(f,ε) should be large
enough so that there are sufficiently many base(k, i) blocks with(3k − 2)(i − 1) colors, so that with high
probability, at least one of them would be extended into an extended(k, i) block with at least(3k − 2)i
colors.

The rest of the proof and calculations are the same as in the deterministic case, however the costs of the
algorithm mentioned above hold with high probability, and not with probability1.

4 Concluding remarks

We presented a framework for converting a deterministicC-competitive algorithm for online coloring of
a given hereditary class of graphs into a deterministic4C-competitive algorithm, and a randomizede · C-
competitive algorithm for max coloring on the same class of graphs. For example, consider bipartite graphs.
Lovász, Saks and Trotter [14] showed a deterministic online algorithm which colors such a graph onn nodes
(which is 2 colorable) usingO(log n) colors. Note that Gyárfás and Lehel [7] proved a deterministic lower
bound ofΩ(log n) on the online coloring of bipartite graphs (this holds already for trees). This immediately
implies a deterministicO(log n)-competitive algorithm for online max coloring of bipartite graphs. Note
that the deterministic lower bound ofΩ(log n) holds for max coloring since node coloring is a special case
of max coloring (using a common weight1 for all nodes). The best offline approximation for max coloring
of bipartite graphs has an approximation ratio of8

7 [16]. In the last paper it is shown that unlessP = NP ,
this is best possible.
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