On the Max Coloring Problem

Leah Epsteih Asaf Levini
May 22, 2010

Abstract

We consider max coloring on hereditary graph classes. The problem is defined as follows. Given a
graphG = (V, E) and positive node weights : V' — (0, c0), the goal is to find a proper node coloring

k
of G whose color classes;, Cs, . .., C, minimize Y max,cc, w(v). We design a general framework

which allows to convert approximation aIgorithr%slfor standard node coloring into algorithms for max
coloring. The approximation ratio increases by a multiplicative factor of at mdst deterministic
offline algorithms and for randomized online algorithms, and by a multiplicative factor of atsiost
deterministic online algorithms.

We consider two specific hereditary classes which are interval graphs and perfect graphs. For interval
graphs, we study the problem in several online environments. In the List Model, intervals arrive one by
one, in some order. In the Time Model, intervals arrive one by one, sorted by their left endpoint. For
the List Model we design a deterministic 12-competitive algorithm, and a randoréizedmpetitive
algorithm. In addition, we prove a lower bound of 4 on the competitive ratio of any deterministic or
randomized algorithm. For the Time Model, we use simplified versions of the algorithm and the lower
bound of the List Model, to develop a deterministic 4-competitive algorithm, a randomvizeahpetitive
algorithm, and to design a lower boundsjofz 1.618 on the deterministic competitive ratio and a lower
bound of% on the randomized competitive ratio. The former lower bounds hold even for unit intervals.
For unit intervals in the List Model, we obtain a deterministicompetitive algorithm, a randomized
2e-competitive algorithm and lower boundsbn the deterministic competitive ratio aﬁgél ~ 1.8333
on the randomized competitive ratio.

Finally, we employ our framework to obtain an offlineapproximation algorithm for max coloring
of perfect graphs, improving and simplifying a recent result of Pemmaraju and Raman.

1 Introduction

The (offline) max coloring problem is defined as follows: Given a gra&ph- (V, E) and positive node
weightsw : V' — (0, 00), the goal is to find a proper node coloring@f(i.e., each pair of adjacent nodes
are assigned distinct colors) whose color clagge<s, ..., Ck minimizezf":1 maxyec, w(v).

An interval graph has the property that its nodes can be represented as closed intervals on the real line
so that two nodes are adjacent if and only if their respective intervals intersect. Motivated by a design
of dedicated memory managers problem, Pemmaraju, Raman and Varadarajan introduced the max coloring
problem [17]. In that paper it is mentioned that the problem is actually interesting in the online environment,
but it is not studied in that context.

In the online max coloring problem the nodes arrive one by one, and each time a aodess the set
of edges connecting to the earlier nodes is revealed. In this paper we consider the online max coloring

*An extended abstract of this paper appeared irPtioeeedings of the 5th Workshop on Approximation and Online Algorithms
(WAOA 2007).

TDepartment of Mathematics, University of Haifa, 31905 Haifa, Isheal@math.haifa.ac.il

fChaya fellow. Faculty of Industrial Engineering and Management, The Technion, 32000 Haifa, Israel.
levinas@ie.technion.ac.il.



problem wheré> is an interval graph. In this case we assume the graph is given via its intervals represen-
tation. The intervals are presented to the algorithm one by one clairvoyantly, i.e., all information regarding
the interval is revealed upon arrival. That is, we assume that each time an interval arrives its two endpoints
are revealed. Each interval is to be colored before the next one is presented and this color assignment can
not be changed afterwards. We are interested in two online versions of the problem. In the List Model, the
intervals are given in an arbitrary order. In the Time Model, the intervals arrive sorted by their left endpoints.
The study of the Time Model is motivated by the application of the design of memory managers in which
each interval corresponds to a memory request that arrives along time (so the requests are ordered according
to their left endpoints).

For an algorithmA, we denote its cost byl as well. An optimal offline algorithm that knows the
complete sequence of intervals, as well as its cost, are denot@iPby Since the problem is scalable, we
consider the absolute competitive ratio and the absolute approximation ratio criteria. For an online algorithm
we use the term competitive ratio whereas for an offline algorithm we use the term approximation ratio. The
competitive ratio of4 is the infimumR such that for any inputd < R - OPT. If A is randomized, the
last inequality is replaced b (A) < R - OPT. If the competitive ratio of an online algorithm is at most
R, then we say that it iR-competitive. If an algorithm has an unbounded competitive ratio, we say that it
is not competitive. The approximation ratio of a polynomial time offline algorithm is defined similarly to
be the infimumR such that for any inputd < R - OPT. If the approximation ratio of a polynomial time
offline algorithm is at mosR, then we say that it is aR-approximation.

In [17], Pemmaraju, Raman and Varadarajan designed a 2-approximation algorithm for the max color-
ing problem on interval graphs. Further, they showed that the First-Fit algorithm, which colors a node using
the first available color (in an order in which the colors are given), when the intervals are considered in a
monotone non-increasing order of their weights, is a 10-approximation algorithm for the max coloring prob-
lem on interval graphs. In [15], Pemmaraju, Raman and Varadarajan desigagdbam )-approximation
algorithm for the (offline) max coloring of chordal graphs. They also analyzed empirically several heuris-
tics. In [16], Pemmaraju and Raman presented a 4-approximation algorithm for the (offline) max coloring of
perfect graphs. Since every chordal graph is also a perfect graph, this result improves thééagie)-
approximation algorithm of [15] for chordal graphs. We recall that a perfect graph can be colored using
colors, wherev is the size of the largest clique in the graph. Note thét a clear lower bound on the chro-
matic number of the graph. An algorithm that finds such a coloring is implied using the ellipsoid algorithm
[6] (see also chapter 67 in [19]).

Coloring interval graphs has been intensively studied, Kierstead and Trotter [11] constructed an online

algorithm which uses at mo3t — 2 colors wherev is the maximum clique size of the interval graph. They
also presented a matching lower bound3ef— 2 on the number of colors in a coloring of an arbitrary
online algorithm. Note that the chromatic number of interval graphs equals to the size of a maximum clique,
which is equivalent in the case of interval graphs to the largest number of intervals that intersect any point
(see [8, 5]). This means that the optimal offline algorithm can color every interval graphovatitors.
This can be actually done by applying First-Fit to the intervals sorted by their left end points. Therefore, a
1-competitive algorithm exists for this problem in the Time Model. Many papers studied the performance
of First-Fit for this problem in the List Model [9, 10, 17, 3]. The last paper shows that the performance of
First-Fit is strictly worse than the one of the algorithm of [11].

Interval coloring received much attention recently. In [17], a simple reduction from offline max interval
coloring to online interval coloring was shown. The upper bounds in this paper were shown by exploiting
the algorithm of [11] (which becomes a 2-approximation instead of the 3-competitive algorithm, since a
part of the computation can be done offline), and First-Fit (this paper first improved the known bound on
First-Fit and then used it). The reduction simply applies the online algorithm to the set of intervals, sorted
by non-increasing order of weight. Adamy and Erlebach [1] introduced the interval coloring with bandwidth
problem. In this problem each interval has a bandwidth requireméft . The intervals are to be colored

2



so that at each point, the sum of bandwidths of intervals colored by a certain color which intersect this point,
does not exceed 1. This problem was studied also in [2, 4].

Our results: We first present the positive results of this paper. That is, we present a randomized online
algorithm that uses as a sub-routine an online node coloring algorithm. This sub-routine is applied to color
graphs that are induced subgraphs of the original graph. We then show how to choose the parameters of
our algorithm to obtain a deterministic online algorithm though with an inferior competitive ratio. Note that
though we reduce the max coloring problem of interval graphs to an interval coloring problem, which is
also done in [17], our reduction does not require pre-sorting of the intervals, and therefore our algorithms
for interval graphs are online. Using known results for online minimum coloring of interval graphs we
obtain the following results. For the List Model we design a deterministic 12-competitive algorithm, a
randomizede-competitive algorithm, and prove a lower bound of 4 on the deterministic or randomized
competitive ratio. For the Time Model, we use simplified versions of the algorithm and lower bound of the
List Model, to achieve a deterministic 4-competitive algorithm, a randomizegimpetitive algorithm, a
lower bound ofp ~ 1.618 on the deterministic competitive ratio, and a lower bouné ofi the randomized
competitive ratio. The lower bound holds even for unit intervals. For unit intervals and the List Model,
we obtain a deterministi8-competitive algorithm, a randomizes-competitive algorithm and improved
lower bounds of 2 anég1 ~ 1.8333 on the deterministic and randomized competitive ratios, respectively.
Our upper bounds for online algorithms are based on using a general reduction which we introduce in this
paper, that allows to convert ancompetitive algorithm for standard node coloring intdracompetitive
(e - r-competitive) deterministic (randomized) algorithm for max coloring. Finally, we use our randomized
algorithm with a derandomization procedure to obtain an offline (determiniséipproximation algorithm
for max coloring of perfect graphs or any other hereditary graph classes for which the node coloring problem
can be solved in polynomial time. We present the algorithms in Section 2, and the lower bounds in Section
3.

2 Algorithms

Before we define our algorithms, we would like to discuss the performance of First-Fit, which is clearly a
natural algorithm for coloring. As shown in a sequence of papers [9, 10, 17], applying First-Fit to interval
graphs for the standard node coloring problem results in a constant competitive algorithm, though First-Fit
is worse than the algorithm of Kierstead and Trotter [11, 3]. However, we can show that First-Fit is not
competitive for the max coloring problem.

Proposition 1 First-Fit is not competitive for max coloring of interval graphs even in the Time Model and
the case of unit intervals.

Proof. Let M be a large constant fixed later. We introduce the input in blocks, where all intervals are of
length2. Block:i (i > 0) consists of copies of the intervgli, 4i + 2], with weight1 each, and one interval
[4i + 1,4i + 3] of weight M. Clearly, the first intervals of a block are colored using coldrs . . , 4, since
they arrive first, and they do not overlap with any previously presented intervals. The next interval which
has larger weight is colored with color 1. Denote by;j the number of blocks in the input. Then, the cost
of the algorithm is at leas¥/ - j. An optimal offline algorithm would use one color for all intervals having
the larger weight, ang — 1 colors for all other intervals (note that the unit weight intervals can be colored
usingj — 1 colors). This results in the cost + j — 1. TakingM = j2 we get a competitive ratio G}fzjj—_l
Whenj grows to infinity, this competitive ratio becomes arbitrarily larae.

We design a framework for converting a deterministiccompetitive algorithm for online coloring of
a given class of graphs into a randomizedC-competitive algorithm for max coloring on the same class
of graphs. Our framework applies to hereditary classes of graphs (i.e., if a graph belongs to this class, then

3



every induced subgraph belongs to this class). We apply the scheme using only deterministic algorithms for
coloring. This results in deterministic algorithms, using a deterministic reduction scheme, and in random-
ized algorithms, using a randomized reduction scheme. Clearly, the randomized scheme can be used for
converting a randomized algorithm to a randomized one.

Our algorithm has a positive integer parameteand another real parameter> 1. Our algorithm
chooses an integer valle< ¢ < k uniformly at random. Upon arrival of a new node we round down its
weight as follows. We find the largest integer vatusuch thain**+¢ is no larger than the weight of the
new node. The rounded weight of the node becontés’. In what follows, we always refer to the original
weight by the ternweight and to the rounded weight bgunded weight

Recall thatOP T denotes the total weight (i.e., cost) of an optimal offline solu@dT for the original
sequence (where the weights are not rounded). For a given colaweibbt of this coloiis defined to be
the largest weight of any node which is colored®# T with this color. That is, the weight of the color is
the exact cost whiclOPT is charged for this color. Consider the subset of colors, used®y, having a
weight in the intervala’~!, o’). Let OPT; denote the number of the such colors.

Denote byp the largest integer, such tHaP Tuses at least one color of weight in the interﬁtdf(pfl), o/ﬂ’).

Note thatp is unknown to the algorithm and is used only for the analysis.

Lemma 2 OPTsatisfiesOPT> 2 __ oi~!. OPT,.
Proof. The maximum weight of each of tf@PT; colors of weight in the intervdla’ !, o*) is at least' .
]
The input is partitioned online into subsequences (also called classes), such that each class is colored
independently, using its own set of colors. The subsequént@ an integer value of, contains all nodes
whose weight is in the intervdh/T =Dk of+i%) ‘that is, nodes of a rounded weightefft =1k
Once we are coloring such a claSs the rounded weights of all intervals are identical, so weights are
not taken into account and the problem is reduced to the classical online node coloring problem. We use a
C-competitive algorithm to color such a class.

Lemma 3 The number of colors that are used to coris at most_' - Zk” OPT;, for all <.

L+ (i—1)k+1
Proof. OPT can use the colors of weight at least™ (‘1% to color the nodes of;. Therefore, there
are at mosE i 1 11 OPT; colors that are used b®PTto color S;. Since we use &'-competitive
algorithm to color e claim follows.m

It remains to analyze the resulting (randomized) algorithm.

Lemma 4 Assuming the existence oﬁacompketttive algorithm for online coloring, the randomized online
algorithm has a competitive ratio of at mo%%.

Proof. Since each color, that our algorithm uses to cdarhas a weight of at most’***, by Lemma

3, we conclude that for a given value bthe cost of the solution returned by the algorithm is at most
C->P otk Skp imt+(i—1k+1 OPTj. We now consider the expected cost of the returned solution
(the expectatlon is over the randomlzed valug)of Since/ is drawn uniformly at random from the set

{0,1,...,k — 1}, the expected cost is at most the following:
o (O a1 OPT) o OPT, ol
k N k
. _ 00 t .
O GOPT o™ 570, (3)  CXL OPT;-adth. oy
k B k



where the first equation holds by changing the order of summation, and the second equation holds by taking

ad*k=1 outside the summation. Recall that by Lemm®BT > 257 ai~1. OPT;. We next note that

the coefficient ofOPT; in the lower bound oDPTtimesC'”H} is the coefficient oOPT; in the upper

k(a—1
bound on the expected cost of the solution returned by the algorithm, and thus the claim fallows.

Theorem 5 Assuming the existence off&competitive deterministic algorithm for online coloring in one
of the models, and a given hereditary graph class, there is a (randomized) online algorithm for max coloring
(in the same model) with competitive ratio of at mostC for the same graph class.

Proof. By settinga = 1 + % andk being a large integer number, we can&et u - k wherew is uniformly
random real number in the intervi, 1], and in this case! ~ e* anda® ~ e. Then, by Lemma 4, the
claim follows. m

Theorem 6 Assuming the existence of’acompetitive algorithm for online coloring in one of the models,
and a given hereditary graph class, there is a deterministic online algorithm for max coloring (in the same
model) with competitive ratio at mos$t C' for the same graph class.

Proof. By Lemma 4, and setting = 2 andk = 1. We note that fok = 1 our algorithm is deterministic as
£ has a unique possible value@f m

For max coloring of interval graphs we can use the following results: For the List Model, we use the
3-competitive algorithm of Kierstead and Trotter [11]. For the List Model with unit intervals, we use the
2-competitive algorithm of Epstein and Levy [4]. For the Time Model, we color each class optimally using
First-Fit [8]. Therefore, we establish the following:

Corollary 7 For online max coloring of interval graphs there is a randomized algorithm whose competitive
ratio is 3e in the List Model2e in the List Model with unit intervals anein the Time Model.

For online max coloring of interval graphs there is a deterministic algorithm whose competitive rafo is

in the List Modelg in the List Model with unit intervals, and 4 in the Time Model.

We next note that for an offline algorithm, we can use a derandomization procedure to transform the
(online) randomized algorithm into a deterministic approximation algorithm without increasing the approx-
imation ratio. To obtain the derandomization note that for each mpdébelongs to at most two adjacent
classesS; and.S;.; for the different values of. Therefore, there are at mosthreshold valuess that can
be found in advance. In such a threshold vatuinere exists at least one nodesuch thatv belongs to
different classes fof = 7 and/ = 7+ 1. Recall that in the randomized algorithm we choase 1+ % and
k is a huge integer number. Using these threshold values, we have to calculatesmilfions (the ones
that correspond to the threshold vald®s and pick the best solution. Therefore, we establish the following
theorem.

Theorem 8 Given an hereditary class of graphs that hag-@pproximation algorithm for the (offline)
minimum node coloring problem, there is a determiniticp)-approximation algorithm for the offline max
coloring problem of the same graph class.

Note that for perfect graphs (which are known to be hereditary class of graphs) there exists such an opti-
mal algorithm for the minimum node coloring (see [6]). Therefore, we obtamapproximation algorithm
for perfect graphs improving the 4-approximation algorithm of [16].

Corollary 9 There is a deterministie-approximation algorithm for (offline) max coloring of perfect graphs.



It was brought to our attention that in parallel to our work, Raman had developed the following results for
hereditary graph classes in his Ph.D. thesis [18].d.&k the known approximation ratio of a deterministic
algorithm for graph coloring for a given graph class. In Theorem 3.5.3, a determitiSt&pproximation
algorithm is given. An improved determinisB¢’-approximation algorithm is given in Theorem 3.5.14. In
addition, a randomized- C-approximation is given in Theorem 3.5.5.

3 Lower bounds

In this section we provide lower bounds on the competitive ratio of online algorithms for max coloring of
interval graphs. We prove deterministic and randomized lower bounds for three models. The first lower
bound is for the Time Model, and only unit intervals are used in the construction. For the List Model, we
prove two separate lower bounds for unit intervals, and for intervals of arbitrary length.

All the lower bounds that we present have the same flavor. The idea is to present blocks of intervals,
where in such a block, some of the intervals may overlap. The concepts used beldvaaegtdockwhich
is the first part of the block, and a notion of artended blockwhich is a base block, together with an
extension. The notion & blockcan refer to either a base block or an extended block.

Blocks are very different in the three constructions, but in all cases, there is no overlap between intervals
of different blocks. In the Time Model, all the intervals of one block clearly must arrive sorted by their left
endpoint, while in the List Model, they arrive in an order specified in the construction. A block consists
of two parts, which are sets of intervals presented to the algorithm, where the second part is optional and
is calledthe extension The first part is called a base block, and it has an indekich is related to the
largest cardinality clique in it. A base block of indéis called a baséblock. In the last proof, we use an
additional paramete¥, so that the maximum cardinality clique is a function@nd. In this case, a base
block with index: and parametek is called a basék,:) block. The entire construction (that is, the two
parts) is called an extended block. If only an indéx used, then an extended block of indes called an
extended: block. If both a parameter and an index are used, then it is called an extendéd:) block.

Thus, an extendedblock is simply a baséblock followed by a suitable extension, and an extengded)
block is a basék, i) block, followed by a suitable extension for the paramétand the index.

An input is constructed in the following way. After the first base block is built, the cost of the algorithm
(or its expected cost, in the case of randomized algorithms) is checked. If it is sufficiently large, compared
to the optimal cost for the instance, then the input is stopped. Otherwise, the extension is added to the base
block, making it an extended block, and a new disjoint base block is presented. Weights are defined so that
all the intervals of one base block have a common weightwhich is smaller than the common weight (of
1) of intervals in the extension (so there are only two weights in each extended block). These two weights of
a, 1 are the same in all blocks of one lower bound construction, and therefore each lower bound construction
involves only two weights. The numerical value®{0 < o < 1) is different in the different proofs.

Unless the input is stopped after some base block, the construction continues in this way until we have
presented sufficiently many (at leagt, for a large intege\/) extended blocks. That is, in this last case,
the construction stops after tiié-th extended block is completed. The details of the different constructions
vary, and will be described in this section. We start with a lower bound for the Time Model, which has a
simple structure of blocks. The blocks of the two other lower bounds have more complicated structures.

Theorem 10 The competitive ratio of any deterministic online max coloring algorithm of interval graphs
in the Time Model is at least ~ 1.618, which holds even if the input is restricted to unit intervals. For
randomized algorithms, the competitive ratio is at Ie%,swhich holds even if the input is restricted to unit
intervals.

Proof. As explained above, we need to define base blocks and extended blocks. In addition, we need

6



a<l

Figure 1: An example of the construction in Theorem 10; an instance with four extended blocks (an extended
1 block fori = 1, 2, 3, 4) and one additional base block (a badaock).

to define a stopping condition, under which a base block is not extendedV lbet a large integer. The

sequence contains at mdstblocks. Let) < o < 1 be a parameter (fixed to be= @ =¢—1=0.618
in the deterministic case, and= % in the randomized case).

Definition 11 A basei block is a clique (for somé> 1) consists of — 1 identical intervals. These intervals
are copies of the intervalli, 4i + 2], and have the weight. The intervals of base blocks are called regular
intervals.

Definition 12 An extended block consists of a baseblock and one additional interval of weigit(the
expensive interval) which is adjacent to all the intervals of hiasieck, and it is located slightly shifted to

the right (by half the length of an interval) from the intervals of the base block. That is, the extension is a
single interval located adi + 1,4i + 3].

Note that a basg block is an empty set of intervals. An extenddalock consists of intervals, while a
basei block has onlyi — 1 intervals. For each value ofwe first present the regular intervals, since a hase
block consists of exactly those intervals. Afterwards we may present the expensive interval of the extended
1 block (in case the stopping condition is not met), since that interval is the extension. The first situation to
be considered is the case where the sequence is either processed till the end, i.e., until the Axtdocled
is presented. The second situation is the case where for some nuirbér< N — 1 there are extended
j blocks forj = 1,2,...,4 and in addition, there is a base- 1 block. See Figure 1 for an example of an
instance. The input cannot be stopped after a bddeck, since in this case the input is empty.

Note that the regular intervals of a block are located to the left of the expensive interval. Therefore, pre-
senting the base block first and the extension later does not contradict the Time Model. By the construction,
intervals of different blocks do not intersect. Clearly, all intervals in one block must receive distinct colors,
but any pair of intervals from different blocks may receive the same color.

Note that we defined a set of instances, such that a deterministic online algorithm needs to be competitive
for each instance of this set, and a randomized algorithm needs to be competitive against a probability
measure over this set of instances. To complete the definition of the instance, we still need to define the
stopping condition which will depend on the behavior of the online algorithm which we consider (in the
randomized case, we make sure that the stopping condition does not depend on the realization of the random
bits, but only on the prior probability of each event). We postpone this until we compute the cost of an
optimal solution in each possible input sequence (defined by the above rules).



We now compute the optimal offline cost. If the input sequence consists of a number of extended blocks
and no base block (which is not a part of an extended block), then by our construction, the sequence ends
with an extended block only aftéy extended blocks were presented (otherwise, if it is stopped, then it is
stopped immediately after a base block was presented). The optimal solution colors all expensive intervals
from all extended blocks using one color, and at most one regular interval per base block with each one of
N — 1 additional colors. This gives a total costiof «(INV — 1). If there arel > 1 extended blocks, and one
additional base block, then there are at mdstervals in each block. Therefo@PT needs onlyi colors,
where one of these colors is used for all expensive intervals and in the basblock it uses this color for
one regular interval. The othér 1 colors thatOPT uses are used for regular intervals (at most one such
interval per base block). Therefore, in this c&RT= 1+ a(i — 1).

Next, we consider the behavior of a fixed online algorithm. Indé&rministiccase, we make sure that
the algorithm uses exactiycolors immediately after extended blocks have arrived (if they indeed arrive).
Note that the regular intervals in each block arrive first. If the algorithm uses at leaseanelor(which
has not been used for coloring intervals of the first 1 extended blocks) to color a regular interval of the
basei block, then we stop the sequence after the intervals of balsek. That is, the stopping condition for
stopping immediately after the basblock is that the (deterministic) online algorithm, which we consider,
has used a new color, which has not been used in the previous extended blocks, for coloring a regular interval
of the base block. Otherwise, that is, if the stopping condition has not been met, the online algorithm is
forced to use exactly one new color for coloring the expensive interval of extéridedk, and therefore it
uses exactly colors.

We now compute the cost of the online algorithm in each case. Consider first the case imVimkeh
tended blocks arrive. This means that the algorithm used a new color for each expensive interval. Therefore,
the total cost of the online algorithm in this case is exadflyNow consider the other case, anddet 1
be the index of the base block which is not extended to an extengedblock, that is, the algorithm has
used a new color to color a regular interval of the biasd block and so the stopping condition is met. The
algorithm used distinct colors for the expensive intervals of the extenglbtbcks forj = 1,... 4. It also
uses a new additional color for one regular interval of basel block. Therefore, the cost of the solution
returned by the algorithm is+ «.

To complete the proof for deterministic algorithms, we compute the competitive ratio in each case.
Consider the competitive ratio if there akeextended blocks. This ratio @a]}’\,ﬁ For a sufficiently large

value of NV, the ratio tends t% = @ = ¢ ~ 1.618. If the sequence stopped immediately after basé
block, the ratio |s% = ¢ (for any value of).

Next, we extend the proof faandomizedalgorithms. Let) < p < 1 be a threshold probability (later
fixed to bep = %). The construction is the same as above, however the stopping condition which we
defined above is meaningful only for deterministic algorithms and not for randomized algorithms (since we
do not know if the algorithm has actually used a new color to color the regular intervals of the base block).
Therefore, we need to define a new stopping condition for the randomized case.

The sequence is stopped after the basd block, if the probability that at least- 1 colors were used
so far by the algorithm, is at legstand otherwise the sequence continues. Note that for a fixed randomized
online algorithm, we can compute these probabilities without the knowledge of the realization of the random
bits operations of the algorithm. Hence, our stopping condition is allowed to depend on these probabilities.
Clearly, the optimal cost does not change. We compute the cost of the sequence for a fixed randomized
algorithm.

Let p; be the probability that at least+ 1 colors are used by the algorithm for the instance up to (and
including) the base + 1 block. First consider the expected cost of the first two blocks. If the sequence is
stopped at the earliest possible time, that is, if the second block is a base block, then the expected cost is at
leastl + p; - «. If the second block is an extended block, then the expected cost incurred by the algorithm so



faris at leastl + p; - « + (1 — p1). Since the extended block needs at least two colors, and if the interval of
the base block has the same color as the block of the first extended block, then the cost of the second color
of the second extended blocklis

Similarly, colori + 1 is charged a cost af with probabilityp; and of1 with probability 1 — p;. In the
last case we know that this color is used the first time for an interval of weight get that if the sequence

7

i—1
is stopped right after the base- 1 block, the expected costso faris atleast a > p; + > (1 —p;) =
j=1 j=1
i—1
i+ (a—1)> pj+ap;>i+ (a—1)(i—1)p+ ap, sincea < 1, p; < pfor j < iandp; > p.
j=1
N N
On the other hand, the cost after the extentelolock is atleast +« >~ p;+ > (1 —p;) = N +1+
j=1 j=1
N
(a=1)> pj>N+1+ (a—1)Np.
j=1

We leta = § andp = 2. We get the ratio of at Ieaw in the case wher&/ extended blocks
are built. In this case the competitive ratio tendéféjﬂ = % for large enoughV. Otherwise, that is,

if the sequence stops before we reach the exteidéxdbck, then the ratio is at Ieaéf(lzilf(i:l)fmp =
21, 2
33 _ 4

i.1 = 3- This completes the proof for the randomized case.

* Inthe List Model, the previous lower bounds can be improved. This is done using blocks where intervals
do not necessarily arrive from left to right. We first consider the case of unit intervals. This time the
construction of blocks is similar to th% lower bound of [4] for online coloring of unit interval graphs.
Blocks are no longer simple cliques, and the construction of a base block depends on the behavior of the
online algorithm on the previous intervals of this base block. However, blocks still have a relatively simple

final structure.

Theorem 13 The competitive ratio of any deterministic online max coloring algorithm of unit interval
graphs in the List Model is at leagt For randomized algorithms, the competitive ratio is at Ie%%istz
1.8333.

Proof. We start with definitions of blocks, |€t< o < 1 and consider the deterministic case first.

Definition 14 A basei block, fori > 1, is a set of intervals of weiglt, contained in the ranggli, 4i + 3)
(so there is no overlap between intervals of different base blocks). Each interval has a weigfithef set
of intervals has the following properties.

e The largest clique cardinality i8:.
e The online algorithm uses exacy colors for the base block.

e There exists a range of length [z, z + 1] C [44,4i + 3), which we call the central range of the base
i block, which has the following properties.
— In the set of intervals having an overlap with = + 1], the largest clique size &.

— The number of colors using by the algorithm for this last set of intervals ibat is, every color
used by the online algorithm for this block is used for some interval overlappindayitht- 1].

Definition 15 Fori > 1, an extendedblock is a baseé block with the central rangg:, = + 1] concatenated
with two requests of weightfor [z, z + 1]. The online algorithm is therefore forced to use at least 2
colors to color this block. Out of thos¥ + 2 colors, at least two must have a weightlof

9



Colorsiin C

N
Colors notin C
5 (

N

Second phase

I

Initial phase
Colors: C

< | ast phase

New colors

Figure 2: A single baséblock of the construction in Theorem 13, whére 8.

An extended block is similar to a basé block. It is contained in the rang®, 3). The largest clique
size is2, while the online algorithm is forced to use three colors. However, the weight of every intetval is
(rather thanc, which is the weight of intervals in the basélock).

The construction of such a basédlock is similar to the lower bound G} shown in [4] for online
coloring of unit intervals and is described next. The construction is partitioned into three phases. In the
initial phase we preseritidentical requests for an intervgli, 4; 4+ 1]. The online algorithm has to color
these intervals with exactly colors. We denote those colors by, . .., ¢; and the set of those colors by
C= {Cl,...,Ci}.

In the second phase, we present at n¥shtersecting intervals, which do not have any overlap with
the intervals of the first phase. Since the presented intervals are all intersecting, each one must be colored
using a different color. The intervals of the second phase are given one by one. An invariant is kept, that
all intervals colored using a color i are slightly shifted to the right with respect to any interval that is
colored by a color which is not i@'. That is, the intervals of the second phase satisfy the condition that all
left endpoints of intervals colored with a color notGhare located strictly to the left of the left endpoints of
intervals which are colored with a color . The intervals of the second phase are presented until exactly
i of them are colored by colors that are not(in Since|C| = i, any set o2 intersecting intervals must
be colored using at leastcolors which are not ir’. If already after some number- j of intervals have
been presented in the second phase, whete;j < ¢ — 1, there are intervals colored with colors not in
C, no additional intervals are presented in this phase. We next show the details of this second phase in the
construction.

At any time during the presentation of intervals of the second phase, in order to present an additional
interval, we use the following definitions. Lét = [a,a + 1] be the rightmost interval colored by some
colore¢ ¢ C (if such an interval exists) and lét = [d, d + 1] be the leftmost interval colored by some color
c € C (if such an interval exists). These two intervals are selected only among intervals introduced so far
in the current phase (intervals presented in the initial phase and other blocks are not taken into account). If
there is no interval colored then we say that; is empty. If there is no interval coloregthen we say that

10



I> is empty. Lets = @. A new interval,l, is presented as follows. If both andl, are non-empty, by
the invariant, we assume < d. A new interval is presented with a left endpoint betweeamdd, so this
invariant will hold in the next step as well.

1. If both I; and I, are empty (this holds exactly once, when we introduce the first interval of the second
phase) thed = [4i + %,41’ + g]. In this case, in the next step, exactly onel/pfand I; would be empty.
Specifically, if the algorithm colorg using a color inC' then; will be empty in the next step, and otherwise
1> will be empty.

2. 1fonly I; isempty,] = [d —e,d + 1 — ¢]|. As aresult, if] receives a color i’ as well, then/; would

still be empty in the next step. Otherwiggof the next step would b&, while /> would not change. In this
last case, in the next stef, is to the left of/, as required.

3.1fonly Iy isempty,] = [a +¢,a + 1 4 €]. As aresult, ifl receives a color not i, thenI, would still

be empty in the next step. Otherwigeof the next step would bé, while I; would not change. In this last
case, in the next step; is to the left ofl; as required.

4. If none of I; andl, is empty then] = [‘%a, % + 1]. Thatis, the unit length interval is located halfway
betweenl; andIs. If I receives a color frond”, then in the next step, would bel, andI; would remain
unchanged. Otherwisé; of the next step would bé and /> would remain unchanged . In both cases, the
new; would be to the left of the nev.

The stopping condition is the existenceiafitervals of the second phase, not colored using a color from
C. Recall that this means that the construction is stopped after introducing a2niatstrvals.

The distance between the leftmost left endpoint of any interval of the second phase, and the rightmost
left endpoint is smaller thag}i, thus all the intervals of the second phase are intersecting. We deduce that
these intervals are contained in the rafge+ %,42‘ + %}. There is therefore no overlap between the
intervals of the second phase and the intervals of the first phase. On the other hand, the left endpoints of all
the intervals in the second phase are located within a distance of less than 1 from the right endpoints of the
intervals of the initial phase.

Assume now thalty; + 1, y; + 2] is the rightmost interval with colar ¢ C after all intervals from phase
2 were presented. From the construction we have % <yi+1<4i+ g We next define the last phase
of the construction of the base block, where we preseatuests for the intervéd;, y; + 1]. This interval
intersects all the intervals with color not @ from the second phase, and no intervals with a colaf'in
from the second phase. However, thesedastervals intersect all the intervals from the initial phase. This
concludes the construction of a baddock (see Figure 2). The central range of this bdseck is defined
to be[y;, v; + 1].

In the base block, all the intervals presented in the last phase have an overlap with eXaictlgrvals
of the first two phases, all having distinct colors, that is they intersect with intervals of exadifferent
colors. Theseé colors are all colors of', which are the colors of intervals of the initial phase, and additional
1 colors, which are not i, resulting from the second phase. The intervals of the second phase, which have
a color inC, intersect with all intervals of the second phase, but not with intervals of the last phase. In this
way, an algorithm is forced to usk colors, while the largest clique of the basblock has a cardinality
of 2i. Moreover, it is possible to defifg;, y; + 1] to be the central range of the baselock, since it has
non-empty overlap witl3i intervals, each colored using a different color, as needed. This completes the
proof that such a baseblock exists, and can be constructed so that all its intervals lie within the range
[4i, 47 + 3).

We next define the construction of artended block An extended block contains a baseblock (in
which all weights of intervals are equal 9 followed by two additional requests for the interyal, y; + 1]

(which is the the central range of this bad#ock). The two last requests are of weidhthus the cardinality
of largest cliqgue of an extendedlock is2i + 2. However, in every clique in the extendédblock, all
intervals have a weight af, except for the last two intervals which have a larger weight.of his forces

11



any algorithm to use two additional colors, so the algorithm is clearly forced to use a t8tal-df colors
to color the extendetlblock, out of which, two colors must have weight

Once again, the sequence either consists of some numiber,l of extended blocks (an extended
block for0 < i < N), or of some numbej (1 < j < N) of extended blocks (an extendédblock for
0 <i < j—1), followed by one basg¢ block. Recall that bas@ block is empty, and the extendédlock
consists of three or four intervals, for which the algorithm uses exactly three colors.

The further blocks are introduced one by one, by increasing index. After thé blsxk is constructed,
the extension is possibly added afterwards, after examining the set of colors which was used for this base
block. Throughout the construction, the following invariant is kept. Just before a lémek is presented,
the number of colors which the algorithm must be using is at l&ast1 (the only exception is foi = 1
where the algorithm was already forced to use exactly three colors). This holds due to the properties of
extended blocks. Due to the stopping rules defined below, it will always be the case that out of these colors,
there are at least+ 1 colors of weightl, since otherwise, the extension is not constructed and the block
remains a base black, and the sequence stops.

For everyi, for which an extended — 1 block is constructed, we define a set of colors which we call
basic colorsfor the indexi. This is a subset of the colors which are used in the preceding extended blocks.
We define this set recursively. Fbe= 1, these are the three colors used in the extefidaddck. Fori = 2,
these are the basic colorsiof 1, together with the first two colors used in the extentlédock, which are
not basic fori = 1. Fori > 2, these are the basic colors for the index 1, together with the three first
colors which are not basic, which are used in the exterdiock. In total, ifi > 1, there are3: — 1 basic
colors fori, and there are three basic colorsfct 1.

In the extended block, after the base block was constructed, if at least three colors which are not
basic colors for were used, we stop the constructioni(i 1, we stop the construction if the basélock
contains two colors which are not basic fo= 1). Otherwise the extension is added, and the hasd
block is built (unless = N, in which case the input stops after the extension). The earliest time that the
construction can be stopped is after the exterideldck and the basé block were constructed.

We compute the optimal cost of the sequence up to a bbkeck fori > 0. The largest cardinality
of any clique is2i, where the baseé block and the extended— 1 block both have such cliques. Every
constructed block has two intervals of weighéind its other intervals are of weight The two exceptions
are the extendetblock, and the baseblock. Clearly, the extendetblock can be colored using two colors
of weight1. Therefore, to color the sequence, two colors of weighhd2i — 2 colors of weightx are
sufficient. This gives a cost &f+ 2(i — 1)a. If the sequence terminates at phagevith an extendedV
block, then the cost is the same as if a bASe- 1 block were presented, i.e., it2s+ 2N a.

After the extended block is presented, the algorithm uses three colors of weight the sequence
terminates after the badeblock, then two colors which are not basic colors fet 1 were used. That is,
there are three basic colors of weighdand two colors of weight. If the sequence terminates after the base
1 block for: > 1, three colors of weight, which are not basic colors fér— 1 were used in this phase. We
next calculate the cost of basic colors in previous blocks. For the extendiedk with j > 1, there are
three colors which are not basic farwhich become basic fgr+ 1. If 5 = 1 then there are two such colors.
Consider an earlier extendgdlock, wherel < j < i. There are three colors that become basic for the
next block. Since the extension was constructed, at most two of those colors used for intervals ofiyweight
since otherwise the bageblock does not become an extendellock. Therefore, at least one color has a
weight of 1. In the extended block, three colors of weight were used, and in the extendedlock, there
are two colors which become basic in the next block, out of which, at most one color has a weight of

Therefore, if the sequence terminates after the bakeck fori > 1, the cost of the algorithm is at least
3+a+1+2a+1)(i—2)+3a=2+ (2a+ 1)i, whereas the optimal cost2st 2(i — 1)a. Fori =1,
if the sequence terminates after the badsock, the cost of the algorithm is at least+ 2«, whereas the
optimal cost i, thus this case does not need to be considered separately.

12



The cost of the algorithm if the sequence is completed (i.e., all blocks are extended bldcks)is-
1+ 2a+1)(N—-2)+2a+1=3—-a+ (2a + 1)N, whereas the optimal cost 2+ 2Na. We get

the ratio3+2°§i(22(‘.‘f11)(”l) in the first case, and=%-2+UN i the second case. We choose a value of
i—1)a 2+2Na

such that?4t3 = 422 The valuea = 3 = 0.5 satisfies this requirement. The ratio in the first case is

% = 2. The ratio in the second case tends to the same value for large enough vaNiesha claim
for deterministic algorithms follows.

We next provide the extension of this proof for randomized algorithms (which is similar to the proof for
deterministic algorithms). As a first step, we explain how to extend the construction of blocks to randomized
algorithms (a similar extension can be applied for online unit interval coloring [13]).

In the deterministic proof, we construct one extendédbck for each value of before moving on to
the next block. In the randomized case, we introduce multiple non overlapping blas&s for each value
of ¢ (and possibly extend them into extendeblocks). Consider the deterministic construction of a base
i block. In this case, we decide on the locations of intervals of its second phase, to the left or to the right
of the current interval, based on previous decisions of the algorithm. Specifically, we check whether a new
interval is colored using a color which was used in the first phase of this block. However, if we apply this for
a randomized algorithm, then we do not know which colors were assigned. Therefore, instead of checking
the behavior of the algorithm, we try to guess it using the probability for each outcome. Building & base
block, we need to guess a binary property®bintervals. The probability to achieve a correct guess for all
27 intervals isﬁ. Clearly, for anye > 0, there exists a numbéy; ), such that if we repeat the construction
independently5; .y times, then with high probability of — (1 — ﬁ)s which is at least — ¢, at least one
base block uses at leastcolors.

We do not know which base block actually receidgdolors. However, if an extension (two additional
intervals per block) is to be constructed, then we can add the extension to each one of theltelse If
there exists a bageblock for which the guess was correct, then is has exacttjifferent colors. This base
block has at least one new color compared to the st ef 1 basic colors of an extendéd- 1 block for
which the guess was correct. ilf= 1, then it can be the case that there are no new colors. We define a
thresholdh > 0 and the decision of whether to extend the bidskecks is performed as follows. Denote the
conditional probability that among the colors used for this hdseck, there are at least three new colors
(which are not basic in the extendéd- 1 blocks) byg;. The conditional probability is conditioned on the
event that we guessed correctly. Recall that in such a case, only the first three such colors would become
basic for blocks of the next index, if they are constructed. Denote the conditional probability that among
these colors there are exactly two new basic colorg; by herefore the conditional probability for a single
new color isl — p; — ¢;. Fori = 1, then only the two first new colors would later become basic colors. We
let ¢; denote the probability that there are at least two new colorspargithe probability that there is one
new color.

For: > 1, if p; + 2¢; > h, then we stop the sequence after the intervals of the bamcks, and
otherwise, ifi < N, we extend these basélocks, and afterwards we construct the basel blocks.

Consider first the cost of the sequence up to the a bédecks, in the case that the construction stops
after these blocks. Since with high probability, there are three colors in some extebtrk, we get an
additional expected cost of at leastp; + 2¢;1) (in addition to the cos$ of the basic colors of base block
1). Therefore, with high probability, the cost for the bdsblocks, if the sequence is stopped is at least
3+ a(p1 +2¢1) >3+ ah =3 —a+ a(l + h). Consider the case that the sequence is not stopped after
the base blocks. The expected cost for the two new basic colors used in the extébtks (with high
probability) is(1 —p1 —q1)2+p1(1+ @) +2a¢1 =2 —p1(1 —a) —2q1(1 —a) > 2 — h(1l — «).

If the sequence is not stopped after the bdslecks, for some > 1, then the expected cost for the three
new basic colors used in the extenddaocks (with high probability) i1 —p; — ¢;) (2 +a) + p; (1 +2a) +
3agi=2+a—(pi+2¢)(1—a)>24+a—h(l+a).

13



If basei + 1 blocks are built, but not extendeéd- 1 blocks, this adds (with high probability) a cost of at
leasta((1 — p1 — q1) + 2p1 + 3¢q1) = a(1 + p1 + 2¢1) > a(1 + h) to the cost of the extendedlocks.
Therefore, with high probability, if the sequence is stopped after balseks (for somé > 1), then the
i—1
expected cost of the algorithm is atledsta+ >~ (2+a—h(1—a))+a(l+h) =3—a+(i—1)(2—h)+
j=1
N
ia(h+1). Otherwise the costis atleast o+ > (2+a—h(l—a)) =3—a+2N+aN —hN +ahN.
j=1
The optimal costs do not change. We get a competitive ratig &t (D2 h+ialhtl) i, the first case and

2+2a(i—1)
of 3=at2N o X-hNtohl in the second case. Using the values- § andh = § we get the lower bound

——6 = 4 in the first case and in the second case, the ratio tends for large N, which gives the same
lower bound in that case as wel

The general lower bound for the List Model is based on blocks as well, however the construction of
blocks is more complicated than in the previous proofs. The exact set of intervals of which a block consists
depends on the behaviour of the online algorithm, and the structure of a block is involved. In fact, the
construction of each block is similar to the construction of the lower bousdafonline interval coloring,
in [11]. We prove the following theorem.

11 11
' te

Theorem 16 The competitive ratio of any deterministic or randomized online max coloring algorithm of
interval graphs in the List Model is at least

Proof. We start with a proof of the deterministic lower bound and later show how to extend it for randomized
algorithms. To prove the theorem, we use again base blocks and extended blocks but their structure is now
different. Recall that intervals of different blocks cannot intersect.

We first describe the properties of blocks, and afterwards we show how to construct such blocks. Let
0 < a < 1 be a constant (later chosen to 15))9 Once again, all the intervals of every base block have a
common weight ofy, while the additional intervals of the extensions have a common weight of

Setk to be a large constant and et 1 be an integer.

Definition 17 A base(k, i) block is a construction of intervals, all contained in the rarige- 1, ) (which
implies the property that intervals of different blocks cannot have any overlap). The intervals are defined
dynamically, based on the behavior of the online algorithm. The construction is such that the online algo-
rithm is forced to use at leag8k — 2)(i — 1) colors for this base block. A bagg, i) block must satisfy the
condition that the largest cardinality clique in it has a size of at mi@st— 1).

Definition 18 An extendedk, i) block is a construction of intervals, all contained in the rarige- 1, i),
which consists of a bagé;, ¢) block and an extension. The intervals are defined dynamically, based on the
behavior of the online algorithm. The construction is such that the online algorithm is forced to use exactly
(3k — 2): colors for this extended block.

An extendedk, i) block must satisfy the following conditions for an offline coloring of all intervals of
the extended block, which uses a minimum number of colors.

e The number of colors needed in the coloring is at niast
e There are at most(: — 1) colors of weightv in the coloring.

e There are at most colors of weightl in the coloring.

14



We call a set of colors, used by the online algorithm to color a set of intervals: “the colors of the set”.
This set of intervals can be a subset of a block or a block (in which case we use “the colors of the block”).
The set of colors does not necessarily include all colors actually used in the block, but it is assigned to sets
of intervals, to be able to maintain a lower bound on the number of colors used, and on the cost of the
algorithm.

When a(k, i) block is presented to an online algorithm, the numlieasid: are assumed to be known
in advance to the algorithm (that is, already at the time of presentation of the first interval of the block).
The specific construction is explained later. As usual, the construction of an extgndetlock consists
of two parts. In the first part we present a békgei) block, and in the second optional part, additional unit
weight intervals are presented.

The construction of a bagé, i) block for the deterministic case is such that if a sef3&f — 2)i colors
is used at some point during the construction, then we stop the construction of the lower bound immediately.
In the randomized version of the lower bound, the construction is not stopped in such a case, but the charge
for the additional colors is performed later, in the sense that it is assumed in the cost calculation that these
colors are new in later blocks. It is therefore assumed the algorithm uses at3host2)i colors in an
extendedk, i) block.

It is left to describe how to obtain a bagk i) block and an extendeg, ;) block, for any: > 1 and
a sufficiently large value ok. We use a construction which is similar to the lower bound of [11]. A
difference with [11], already used in [4] is the knowledgée:aindi that the algorithm is assumed to have.

Given a fixed value ok which is sufficiently large, an8k — 2 is divisible by4 (that is,k is even but not
divisible by4). We prove the following claim.

Claim 19 For a given online algorithm, it is possible to construct an extended) block and a basék, 7)
block, for anyi > 1, according to the properties defined above.

Proof. The construction of an extendéd, i) block consists ofci phases, where in the firét(i — 1)
phases, all intervals are of weight whereas the last phases consist of intervals of weight That is,
the construction of a bagé, i) block consists of the first(i — 1) phases. To satisfy the conditions on an
optimal coloring, we keep the invariant that each phase increases the cardinality of a maximum clique by
In addition, we will make sure that the extensiomisolorable. This is sufficient to maintain the conditions
regarding optimal colorings, both of the bagei) block and the extended:, i) block. Below, it is stated
that the construction may be stopped if the number of colors used by the online algorithm is sufficiently
large. Clearly, the optimal coloring can only benefit from stopping the construction prematurely.

After a phase is defined, wahrink some parts of the line into single points. By shrinking an interval
[3,] into a point, we mean that we perform a mappingf the real line into itself such that(z) = =
if x < B, m(z) =x—(y—p)forz > ~,andm(x) = §for x € [3,~]. Throughout the construction
of an extendedk, i) block we perform multiple shrinking operations, and each time we make sure that all
previously presented intervals do not cross the range on which we perform the shrinking operation, that is,
they are either contained in it or have no overlap with it at all. Given a ppititat is a result of shrinking
an interval[3, 7], every interval presented in the past which is containdd,n] is also shrunk inte, and
therefore the poinp inherits a list of colors that such intervals received. These colors cannot be assigned
to any interval that contains the poimt The shrinking is done only for simplification purposes. In practice
it means that for a given point which is the result of shrinking, every future interval either contains this
point or not, i.e., it either contains all intervals that were shrunk into this point, or has no overlap with any
of them.

Let U = (3k — 2)i > 3 be the number of colors we would like to force the algorithm to use in this
extended k, ¢) block. If an algorithm ever uses more th&éncolors in the constructed block, then we stop
the construction immediately (no matter whether this happens during the construction of ttie besieck

15



or the construction of the extension. Therefore, we assume that the algorithm is initially given a palette of
U colors. As soon as all these colors are used, the proof is complete. Note that this is just one stopping
condition. As in previous proofs, there is a condition defined later to decide where the extension should be
constructed, or whether the block remains a base block.

Let S = U3* be an initial number of disjoint intervals which would be presented in the first phase. As
required, the presented intervals will be contained in the rdigel,i). Specifically, in the first phase,
we introducesS intervals which are actually the point§%, forl < t < S. The distance between two
consecutive intervals iﬁ. After the first phase was introduced, since we assume that the algorithm is

using at most/ colors, this means that there exists a set of at Iéast U3*=1 intervals that share the exact
same coloe. This color is assigned to be the set of colors used in the intervals of the first phase.

We next define the next phases. In each phase, we will show that the number of intervals which can be
used for the next phase decreases by a factor of at iiib¥he phases are constructed in a way that at the
beginning of phasg > 2 there is a set of at least***~3/+5) points that contain a given common subset of
theU colors (which clearly holds after phase 1). These points are gadlieds of interestin addition, there
may exist other points containing other subsets of colors. All these points areaitigubints Recall that
points can be the result of shrinking of intervals. We keep track of void points and make sure that future
intervals do not have these points as endpoints.

We now define phasg (for j > 2). At this time, we choose exactly?**—3/+5 points of interest and
partition these points of interest into consecutive sets of four points of interest. Additional points of interest
which were not chosen to participate become void points.

We next define the intervals of phagdncreasing the size of the largest cardinality clique (with respect
to the number of intervals, i.e., ignoring weights) by exactly one. Given a set of four consecutive points of
interest, listed from left to righii1, ao, as, a4, let z be a point between; andas which is not a void point.
Similarly, lety be a point betweens anday which is not a void point. Let be a point betweeny andas
which is not a void point. We introduce the intervd|s= [a;, 2] andI; = [y, a4].

If they both receive the same color by the online algorithm, we introduce the intersecting intervals
I3 = [z, z] andIy = [z, y]. The intervalls intersects withuy, and with7;. The second intervdl, intersects
I3, a3 andIs. Therefore, two new colors must be used foandl,. In total, three new colors were used.

If I, I receive distinct colors by the online algorithm, we introduce the inteivat [z, y]. Interval
I5 intersects withl, I, as, ag, and thus gets a new color. In total, three new colors were used. We shrink
every such intervalai, a4] into a single point. Such a shrunk point receives three new colors that are
added to its list of colors, which is initialized by the union of sets of colors of all intervals contained in it.

Note that we do not use more th&inrcolors, and each new shrunk point receives three new colors. There
are at mos’t%3 options to choose a set of three new colors from the available palefté| @olors. We

can therefore find a set W > U3ki=3i+2 points having the same set of used cold@rgF —37+2

points containing these exact sets of colors become the points of interest of the next phase, and the others
become void points of the next phase. Points that are void points of previous phases and are not contained
in shrunk intervals remain void points. Note that the points where the new intervals intersect are points with
no previous intervals, and therefore the maximum clique size increases by dxaldtly set of colors of the
intervals up to phasgis defined to be the set of phage- 1 together with the three new colors of the new
points of interest.

After the firstk(i — 1) phases, the construction of the bdge:) block is completed, and we start
presenting intervals of weight instead of the weight.. The first phase of intervals of larger weight is
different from all other phases, as we would like the set of all intervals of weight 1 kccbiorable. Thus,
the first such phase we introduce has a clique size of exactljherefore, we introduce single intervals
[a1, a4] instead of the construction above, in this phase only. In this phase the algorithm has to use a single
new color. Ifi = 1, then the basék, 1) block is empty. In this case, the points of interest for the first phase

16



of the construction of the extendék, 1) block are defined to be the poing.%, forl <t <8.

In a basgk, i) block, the number of colors of the entire inputis at leédst — 1) —2 > (3k—2)(i — 1),
since three new colors are assigned to the input in each phase except for the first one. Thus the online
algorithm uses at lea8k(i — 1) — 2 > (3k — 2)(i — 1) colors. These colors have each a weight of at least
«. In the extension, if = 1, the number of colors (all of weigh) is at leasBk — 2. Otherwise, if the base
(k, 1) block is not empty and > 2,the number of colors is at lea®t(i — 1) — 2+ 3k — 2 > (3k — 2)i.This
completes the proof of the claimm

The structure of the lower bound construction is similar to previous proofs, in particular, atNnost
blocks are used. Recall that in an extendédi) block, the online algorithm is forced to u$gk — 2)i
colors. After the construction of a baék, i) block, it is possible to count the total number of colets
that were used in it, wherey; < (3k — 2)i. Since the total number of colors in extendgdi) block
must be(3k — 2)i (since the construction is stopped where this number of colors is reached), we define
n; = (3k — 2)i — m; to be the number of new colors needed to complete extefidetblock.

We next describe the condition under which a bgse) block is extended to be an extendéd:) block.
When block: is presented, if the algorithm used at legdt — 2)(i — 1) + 2k colors for coloring the base
(k, 1) block, then the input sequence terminates. That is, the extension is not constructed. Otherwise, we
continue to create the extendgd i) block and the next additional base block. In particular, if the stopping
condition of using at leagB3k — 2)i colors is met already in the construction of the bése) block, the
part of the basék, i) block which was constructed is considered to be the blase block which meets the
condition of stopping the sequence. If it was decided to add the extension, and the condjibn-of):
colors is met already in the construction of the extension, then the block is seen as a complete extended
(k, 1) block.

We compute the cost of the online algorithm, if it stops at bleek (i.e. the algorithm stops immediately
after basegk, i + 1) block). All new colors in this basék, i + 1) block have a cost oft. For evaluating
the total cost, we first charge all other colors an amourt ahd then assign an additional costlof « to
colors that have weight In an extendedk, ;) block, there is an additional cost Of — «)n; for then; new

colors used for intervals of weight Therefore, the total cost is at le&88k — 2)i + 2k)a+ (1 — ) > n;.
=1

Since previous blocks are extended blocks, we hgve k — 1 for2 < j < iandn; = 3k — 2. ]We get
a cost of at leas3k — 2)ia + 2ka+ (1 —a)(i — 1)(k — 1)+ (1 — a)(3k — 2) = k(3ia + 2a + (1 —
a)(i—1)+3(1 — a)) — 2ia — (1 — a)(i + 1). The optimal offline cost for this input 8 + (i — 1)ak.
It remains to consider the case where there are no base blocks which were not extended to an extended

(k,4) block, that is if there aréV extended blocks. In this last case, the cost of the algorithm is at least
N
(3k —2)Na + (1 — «) > n;. Since all blocks are extended blocks, we haye> k —1for2 < j < N

=1
andn; = 3k — 2. This éives acostof atlea®k —2)Na+ (1 —a)(N-1)(k—1)+ (1 —a)(3k —2) =
EBNa+(1—a)(N—-1)+3(1—«)) —2Na— (1 —a)(N +1). Inthis caseQPTpaysk + (N — 1)ak.

Choosingx = 1, in the first case we get a lower bound on the competitive ratio which teridsto- 4
for sufficiently largek. In the second case, we get a lower bound on the competitive ratio which tends to
4]1\>7j12 for sufficiently largek. Taking NV to be large enough, this ratio tendsitas well.

In order to adapt the lower bound for randomized algorithms note that the vajw=s be used as
thresholds on the expected number of colors rather than their exact number. In this case, there is no way to
ensure that the total number of colors in a (base or exter{@ed) block does not exceg@k — 2)i.

It was shown in [12] that the lower bound ®bn the competitive ratio of online algorithms for interval
coloring holds for randomized algorithms as well. They showed it using Yao’s lemma [20] which states that
a lower bound for the competitive ratio of deterministic algorithms on a fixed distribution on the input is

also a lower bound for randomized algorithms. They used a distribution over the possible inputs constructed

17



above (similarly to the construction in [11]).

Since we would like to use a direct proof, we need to show this property directly (i.e., we now present an
equivalent method to obtain the result of [12]). In the process above, each block is constructed exactly once
since it is known what the online algorithm does at every step. Instead, we apply the process of constructing
a basgk, i) block a large number of times. Distinct copies of a base block are placed in disjoints areas of
the real line. Since we do not know which colors were assigned by the algorithm while we build a block, we
try to guess the behavior of the algorithm. Clearly, there is a very large number of information bits to guess.
If this number isf, then the probability to guess correctly dlidecisions isQLf. However, for any > 0,
there exists a numbe; ., such that if we repeat the constructisyy . times, then with high probability
(€.9.1— (1~ 57){}.) Which is at least — <), at least one basi, /) block has at least3k — 2)(i — 1)
colors.

We next concentrate on this bage i) block that hag3k — 2)(i — 1) colors. If the expected maximum
of colors in a bas¢k, i) block colors is smaller than the threshold valug we need to extend the base
(k,17) block into extendedk, i) blocks. Since we do not know which ba@e i) block received the largest
number of colors, we need to do this for all bgée:) blocks. In fact, the numbeﬁ?(fﬁ) should be large
enough so that there are sufficiently many b@se) blocks with(3k — 2)(i — 1) colors, so that with high
probability, at least one of them would be extended into an exteflgd block with at least(3k — 2)i
colors.

The rest of the proof and calculations are the same as in the deterministic case, however the costs of the
algorithm mentioned above hold with high probability, and not with probability

4 Concluding remarks

We presented a framework for converting a determini§ticompetitive algorithm for online coloring of

a given hereditary class of graphs into a determinigfiecompetitive algorithm, and a randomized C-
competitive algorithm for max coloring on the same class of graphs. For example, consider bipartite graphs.
Lovasz, Saks and Trotter [14] showed a deterministic online algorithm which colors such a grapbaes
(which is 2 colorable) usin@(log n) colors. Note that Gyarfas and Lehel [7] proved a deterministic lower
bound of©2(log ) on the online coloring of bipartite graphs (this holds already for trees). This immediately
implies a deterministi© (log n)-competitive algorithm for online max coloring of bipartite graphs. Note
that the deterministic lower bound ©f(log n) holds for max coloring since node coloring is a special case
of max coloring (using a common weighfor all nodes). The best offline approximation for max coloring
of bipartite graphs has an approximation ratiéc{flG]. In the last paper it is shown that unleBs= N P,

this is best possible.

References

[1] U. Adamy and T. Erlebach. Online coloring of intervals with bandwidthPioc. of te First Interna-
tional Workshop on Approximation and Online Algorithms (WAOA'§apes 1-12, 2003.

[2] Y. Azar, A. Fiat, M. Levy and N. S. Narayanaswamy. An improved algorithm for online coloring of
intervals with bandwidthTheoretical Computer Sciencg63(1):18-27, 2006.

[3] M. Chrobak and MSlusarek. On some packing problems relating to dynamical storage allocation.
RAIRO Journal on Information Theory and Applicatip82:487-499, 1988.

[4] L. Epstein and M. Levy. Online interval coloring and variants.Phoceedings of The 32nd Interna-
tional Colloquium on Automata, Languages and Programming (ICALR10&jes 602—613, 2005.

18



[5] M. C. Golumbic.Algorithmic Graph Theory and Perfect Graph&cademic Press, 1980.

[6] M. Grotschel, L. Lovasz, and A. SchrijveiGeometric algorithms and combinatorial optimization
Springer, 1993.

[7] A. Gyarfas and J. Lehel. On-line and first-fit colorings of grapy@urnal of Graph Theoryl2:217—-
227, 1988.

[8] T.R.Jensen and B. TofGraph coloring problemsWiley, 1995.

[9] H. A. Kierstead. The linearity of first-fit coloring of interval graph$SIAM Journal on Discrete
Mathematics1(4):526-530, 1988.

[10] H. A. Kierstead and J. Qin. Coloring interval graphs with First-BitAM Journal on Discrete Mathe-
matics 8:47-57, 1995.

[11] H. A. Kierstead and W. T. Trotter. An extremal problem in recursive combinator@sngressus
Numerantium33:143-153, 1981.

[12] S. Leonardi and A. Vitaletti. Randomized lower bounds for online path coloringPrdc. of the
second International Workshop on Randomization and Approximation Techniques in Computer Science
(RANDOM’'98) pages 232-247, 1998.

[13] M. Levy. Private communication, 2005.

[14] L. Lovasz, M. Saks, and W. T. Trotter. An on-line graph coloring algorithm with sublinear performance
ratio. Discrete Math, 75:319-325, 1989.

[15] S. V. Pemmaraju, S. Penumatcha, and R. Raman. Approximating interval coloring and max-coloring
in chordal graphsACM Journal of Experimental Algorithm&0, article 2.8, 2005.

[16] S.V.Pemmaraju and R. Raman. Approximation algorithms for the max-coloring probléhrodeed-
ings of The 32nd International Colloquium on Automata, Languages and Programming (ICALP’05)
pages 1064-1075, 2005.

[17] S.V.Pemmaraju, R. Raman, and K. R. Varadarajan. Buffer minimization using max-colorigpcln
of 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODAYagjes 562-571, 2004.

[18] R. Raman. Chromatic scheduling. Ph.D. thesis. Department of Computer Science, The University of
lowa, 2007.

[19] A. Schrijver. Combinatorial Optimization Polyhedra and Efficien@§pringer-Verlag, 2003.

[20] A. C. C. Yao. Probabilistic computations: Towards a unified measure of complexiBrom of the
18th Annual Symposium on Foundations of Computer Science (FOCBages 222227, 1977.

19



