
Load balancing of temporary tasks in the `p

norm

Yossi Azar a,1 , Amir Epstein a,2 , Leah Epstein b,3

aSchool of Computer Science, Tel Aviv University, Tel Aviv, Israel.
bSchool of Computer Science, The Interdisciplinary Center, Herzliya, Israel.

Abstract

We consider the on-line load balancing problem where there are m identical ma-
chines (servers). Jobs arrive at arbitrary times, where each job has a weight and a
duration. A job has to be assigned upon its arrival to exactly one of the machines.
The duration of each job becomes known only upon its termination (this is called
temporary tasks of unknown durations). Once a job has been assigned to a machine
it cannot be reassigned to another machine. The goal is to minimize the maximum
over time of the sum (over all machines) of the squares of the loads, instead of the
traditional maximum load.

Minimizing the sum of the squares is equivalent to minimizing the load vector
with respect to the `2 norm. We show that for the `2 norm the greedy algorithm
performs within at most 1.493 of the optimum. We show (an asymptotic) lower
bound of 1.33 on the competitive ratio of the greedy algorithm. We also show a
lower bound of 1.20 on the competitive ratio of any algorithm.

We extend our techniques and analyze the competitive ratio of the greedy al-
gorithm with respect to the `p norm. We show that the greedy algorithm per-
forms within at most 2 − Ω(1/p) of the optimum. We also show a lower bound of
2−O(ln p/p) on the competitive ratio of any on-line algorithm.

Email addresses: azar@tau.ac.il (Yossi Azar), amirep@tau.ac.il (Amir
Epstein), lea@idc.ac.il (Leah Epstein).
1 Research supported in part by the Israel Science Foundation and by the IST
program of the EU.
2 Research supported in part by the Israel Science Foundation and by the Deutsch
Institute.
3 Research supported in part by the Israel Science Foundation.

Preprint submitted to Elsevier Science 15 July 2005

1 Introduction

We are given m parallel identical machines and a number of independent jobs
(tasks) arriving at arbitrary times; each job has a weight and a duration. A
job should be assigned upon its arrival to exactly one of the machines based
only on the previous jobs and without any knowledge on the future jobs, thus
increasing the load on this machine by its weight for the duration of the job.
The duration of each job becomes known only upon its termination (this is
called temporary tasks of unknown durations). The load of a machine is the
sum of the weights of the jobs assigned to it. For any `p norm we define the
cost of an assignment for an input sequence of jobs as the maximum over time
of the `p norm of the load vector. Specifically, the `∞ norm is the makespan (or
maximum load) and the `2 norm is the Euclidean norm, which is equivalent
to the sum of the squares of the loads. The goal of an assignment algorithm
is to assign all the jobs so as to minimize the cost.

Consider for example the case where the weight of a job corresponds to the
frequency with which it accesses a disk. Each job may see a delay that is
proportional to the load on the machine it is assigned to. Then the average
delay is proportional to the sum of squares of the machines loads (namely the
`2 norm of the corresponding machines load vector) whereas the maximum
delay is proportional to the maximum load.

We measure the performance of an on-line algorithm by its competitive ratio.
An on-line algorithm is c-competitive if for each input the cost of the assign-
ment produced by the algorithm is at most c times larger than the cost of the
optimal assignment.

We first summarize our results.

• For the `2 norm, we show that the greedy algorithm is at most 1.493-
competitive for any number of machines. In fact, for m = 2 the greedy
algorithm is optimal and its competitive ratio is 1.145 and for m = 3 we
can improve the competitive ratio to 1.453.• For the `2 norm, we show that there is no on-line algorithm that for all m
is 1.202-competitive.• For the `2 norm and for any given m, we show a lower bound of 2/

√
3−O(1

m
)

on the competitive ratio of any on-line algorithm and a lower bound of 2/
√

3
for m divisible by 3.• For the `2 norm, we show (an asymptotic) lower bound of 1.338 on the
competitive ratio of the greedy algorithm.• For the general `p norm (for any p > 1), we show that the greedy algorithm
is at most 2− Ω(1/p)-competitive for any number of machines.• For the general `p norm (for any p > 1), we show (an asymptotic) lower
bound of 2−O(ln p/p) on the competitive ratio of any on-line algorithm.• For the general `p norm (for any p > 1), we show that for m = 2 the greedy
algorithm is an optimal on-line algorithm.

2

Temporary tasks, `∞ norm: For the problem of on-line load balancing
of temporary tasks an algorithm with competitive ratio 2 − 1

m
was proved

for permanent tasks (tasks that never depart) by Graham (12); nevertheless,
Graham’s analysis holds also for temporary tasks. The results in (4) show
that his algorithm is optimal by constructing a lower bound of 2 − 1

m
on the

competitive ratio of any on-line algorithm.

Permanent tasks, `∞ norm: This is the classic ancient problem of schedul-
ing jobs on identical machines minimizing the makespan (or maximum load).
Graham (12) showed that the greedy load balancing algorithm is 2− 1

m
-

competitive in this case. The greedy algorithm is an optimal on-line algorithm
only for m ≤ 3 (9).

Bartal et al. (6) were the first to show an algorithm whose competitive ratio is
strictly below c < 2 (for all m). More precisely, their algorithm achieves a com-
petitive ratio of 2− 1

70
. Later, the algorithm was generalized by Karger, Phillips

and Torng (16) to yield an upper bound of 1.945. Subsequently, Albers (1)
designed 1.923-competitive algorithm. Fleischer and Wahl (10) improved this
result to a ratio of 1.9201.

Bartal et al. (7) showed a lower bound of 1.8370 for the problem. This result
was improved by Albers (1) to 1.852 and then by Gormley et al. (11) to 1.853.
The best lower bound currently known is due to Rudin (15), who showed a
lower bound of 1.88.

Permanent tasks, `p norm: Chandra and Wong (8) were the first to con-
sider the problem of minimizing the the `2 norm of the machine loads. They
showed that if the jobs arrive in non-increasing weight order then the greedy al-

gorithm yields a schedule whose cost is within
√

25/24 of the optimal cost. This

result was slightly improved by Leung and Wei (17). Chandra and Wong (8)
also considered the general `p norm (for any p > 1) and showed that the
greedy algorithm on the sorted items achieves a constant performance bound.
The constant depends on p and grows to 3

2
when p grows to ∞. The problem

of on-line load balancing in the general `p norm (for any p > 1) for permanent
tasks was considered in (3). The results in (3) show that for the `2 norm, the
greedy algorithm performs within 2/

√
3 of the optimum, and no on-line algo-

rithm achieves a better competitive ratio. For the `2 norm (3) also provided
an on-line algorithm with competitive ratio 2/

√
3 − δ, for some fixed δ, for

any sufficiently large number of machines. For the general `p norm the results
show that the competitive ratio of the greedy algorithm is 2−Θ((ln p)/p).

Off-line results: Azar et al. (5) presented a polynomial time approximation
scheme for the problem of off-line load balancing of temporary tasks (in the
`∞ norm) in the case where the number of machines is fixed. For the case

3

in which the number of machines is given as part of the input (i.e, not fixed)
they showed that no polynomial algorithm can achieve a better approximation
ratio than 3

2
unless P = NP .

For the problem of off-line load balancing of permanent tasks (in the `∞ norm),
there is a polynomial time approximation scheme for any fixed number of
machines (13; 18) and also for arbitrary number of machines by Hochbaum
and Shmoys (14).

Off-line scheduling and load balancing of permanent tasks with respect to
the `p norm has been considered in (2). The off-line minimization problem is
known to be NP-hard in the strong sense. Alon et al. (2) provided a polynomial
approximation scheme for scheduling jobs with respect to the `p norm for any
p > 1. An example in which the optimal assignment for the sum of the squares
is different from the optimal assignment in the `∞ norm is also given in (2).

2 Definitions and preliminaries

In the load balancing problem we are given m identical machines (servers)
and a finite sequence of events. We denote the input sequence by σ = σ1, . . . , σr.
Each event σi is an arrival or departure of a job (task). We view σ as a se-
quence of times, the time σi is the moment after the ith event happened. We
denote the weight of a job j by wj, its arrival time by aj and its departure
time (which is unknown until it departs) by dj. An on-line algorithm has to
assign a job upon its arrival without knowing the future jobs and the du-
rations of jobs that have not departed yet. We compare the performance of
on-line algorithms and an optimal off-line algorithm that knows the sequence
of jobs and their durations in advance. Let Ji = {j | aj ≤ σi < dj} be the
active jobs at time σi. A schedule S assigns each job j to a single machine k,
1 ≤ k ≤ m. For every schedule S, the load of machine k at time σi, denoted
Li

k(S), is the sum of weights of all jobs assigned to machine k in S, and active
at this time. The vector of loads at time σi is Li(S) = (Li

1(S), . . . , Li
m(S)).

Our cost measure is the `p norm. Hence the cost of a schedule S at time σi is

defined as ‖Li(S)‖p = (
∑m

k=1(L
i
k(S))p)

1
p . The cost of a schedule S is defined

as ‖L(S)‖p = maxi ‖Li(S)‖p. We denote the load vector with the maximum
cost, by L(S) = (L1(S), . . . , Lm(S)).

The optimal cost, denoted OPT(S), is the minimal cost over all possible
schedules for the given sequence of events.

We measure the performance of our algorithms by the competitive ratio. For
a fixed p > 1, the competitive ratio of a schedule S is defined as C(S) =
‖L(S)‖p/OPT(S). Let A be an on-line assignment algorithm. The competitive

4

ratio of A for a fixed number m ≥ 1 of machines is defined as

CA,m = sup{C(S) | S is a schedule produced by A on m machines}.

The competitive ratio of A for an arbitrary number of machines is defined as
CA = sup{CA,m | m ≥ 1}.

The previous definitions cover also the case where we measure the sum of
squares of loads, since then the cost is (‖L(S)‖2)

2. Consequently, the compet-
itive ratios for the sum of the squares of loads are equal to (C(S))2, (CA,m)2

and (CA)2 w.r.t. the `2 norm.

Now we define the notion of the shape of a schedule, which is an abstraction
of a schedule where for every machine all jobs assigned to it except for one
are replaced by very small identical jobs with the same total load. In general
it may be the case that the schedule we analyze cannot be produced by the
original algorithm which we study. Nevertheless, it upper bounds the cost of
the original algorithm. Moreover, the concept of a shape is very useful for
proving upper bounds on the competitive ratio, since the optimal assignment
may improve (by partitioning the jobs) while the cost of the assignment does
not change. Hence a shape is a pessimistic estimate of a schedule. A shape
characterizes each machine by two numbers: ai the total load of the small jobs,
and ui (a lower bound on) the weight of one large job. We denote a shape
by a pair R = (a, u), where a and u are vectors of m nonnegative reals. The
vector of loads of a shape is defined as L(R) = a + u. The competitive ratio
of a shape R is C(R) = ‖L(R)‖p/OPT(R).

It is possible to compute the optimal cost of the shape R = (a, u) explicitly.
It is the cost of a schedule in which some big jobs are scheduled each on a
separate machine and the rest of the jobs are balanced evenly on the rest of
the machines. Let the machines be ordered so that ui are nondecreasing. For
1 ≤ l ≤ m let hl = (

∑m
i=1 ai +

∑l
i=1 ui)/l. Let k be the largest l such that

hl ≥ ul (k is always defined, since h1 ≥ u1). We define the height of the
shape to be h(R) = hk.

It is easy to see that a good candidate for an optimal schedule for the shape
R is to put on each machine one job of size exactly ui and partition ai into
a few jobs so that they can be balanced exactly on the k machines; then the
load vector is (hk, . . . , hk, uk+1, . . . , um). See the Figures 1 and 2 for examples
where ai = 1 for all i.

Note that any shape of a schedule has the same cost as the cost of the schedule.
In addition the optimal cost of the shape is not greater than the optimal cost
of the schedule.

5

1

123......m

Fig. 1. A shape R.

h

k

...... 3 2 1m

Fig. 2. Optimal assignment of R

Now we extend the notion of shape and define continuous shapes, which are
defined similarly to shapes. This extension treats the machines as points in
the interval [0,m]. The load vector is a function defined on that interval, and
it is the sum of two functions. One function gives the total load of the small
jobs on each machine. The other one gives the load of one big job on each
machine. Formally, a continuous shape is a pair R = (a, u), where a and u
are functions (not necessarily continuous), defined in the interval [0,m]. The
function of loads of a shape is defined as L(R) = a+u. Where a(t) represents
the total load of small jobs of equal size at point t in the interval [0,m] and
u(t) represents the load of one big job at point t in the interval [0,m]. From the
convexity of the function xp it follows that the optimal cost of a continuous
shape R is obtained by selecting some big jobs and assigning each one to a
separate machine, and the remaining jobs are balanced evenly on the rest of
the machines. Formally w.l.o.g let u(t) be a non-decreasing function. There
exist functions u′(t) and a′(t) such that R′ = (a′, u′) gives the optimal load
L(R′) for the shape R. These functions are as follows: u′(t) = u(t) and

a′(t) =

0 t ≤ t′

1
m−t′ (

∫ m
0 a(t)dt +

∫ m
t′ u(t)dt)− u(t) t′ < t

for some value t′, s.t for t1 ≤ t′ and t2 > t′, it holds that u′(t1) ≥ a′(t2)+u′(t2).

The Transition from a shape to a continuous shape is defined as follows. Let
R = (a, u) be a shape, then its continuous shape R′ = (a′, u′) is

a′(t) = ai i− 1 < t ≤ i ,

u′(t) = ui i− 1 < t ≤ i .

Note that in the above transition from a shape to a continuous shape the cost
of the assignment does not change while the cost of the optimal assignment
can only decrease.

6

3 The greedy algorithm

In this section we analyze the competitive ratio of the greedy algorithm defined
below.

Algorithm Greedy: Upon arrival of a job j assign it to the machine with
the current minimum load (ties are broken arbitrarily).

Note that a job departs from a machine it was assigned to.

To obtain a constant upper bound for the performance ratio of Greedy, we
show that each schedule can be replaced by a very special continuous shape
so that the competitive ratio does not decrease. Computing the competitive
ratio is then shown to be equivalent to computing the maximum of a certain
function with equality constraints over the reals. A shape R = (h, x) is called
partially flat if there exists an integer 1 ≤ k ≤ m, and a real c > 0 such that
the following conditions hold:

hi = c for i = 1, . . . , k

xi ≥ 0 for i = 1, . . . , k

hi = xi = 0 for i = k + 1, . . . , m.

When k = m the shape is called flat. A shape R = (h, x) is called separate
if there exists an integer 1 ≤ k ≤ m and a real c > 0, such that the following
conditions hold:

hi = 0 for i = 1, . . . , k

xi ≥ c for i = 1, . . . , k

hi = c for i = k + 1, . . . , m

xi = 0 for i = k + 1, . . . , m.

Let S be a schedule obtained by Greedy and let L(S) be the load when Greedy
reaches the maximum cost. Let h be the load vector of all jobs except the last
job assigned to each machine, we treat these jobs as very small jobs and call
them sand jobs. Let x be the weight vector of the last job assigned to each
machine. The shape R = (h, x) is a shape of the schedule S, we call it the
Greedy shape. Recall that when moving from a schedule to a shape and from
a shape to a continuous shape the cost of the assignment does not change
while the cost of the optimal assignment can only decrease.

7

Lemma 1 Let R = (h, x) be the Greedy shape of a Greedy schedule S, nor-
malized by multiplying the weight of all the jobs by the same number such that
(OPT(S))p = m 4 . Then there exists a partially flat shape R′ = (h′, x′) such
that ‖L(R)‖p ≤ ‖L(R′)‖p and OPT(R) ≥ OPT(R′) with the non-zero com-
ponents of h′ equal to 1, and the off-line shape of the shape R′ is a separate
shape.

Proof: It is easy to see that hi ≤ 1 (otherwise when the last job was assigned
to machine i before Greedy reached the maximum cost, (OPT(S))p > m,
which is a contradiction).

W.l.o.g we assume that the machines are ordered so that hi + xi are non
increasing. We perform the following transformation. Note that in each step
of the transformation the cost of Greedy can only increase and the cost of the
off-line algorithm can only decrease. This is in particular due to the convexity
of the function xp. Figure 3 shows the shape resulting after each transformation
step. In this figure the black area represents regular jobs and the white area
represents sand jobs.

(1) In this step we move to a continuous shape R = (h(t), x(t)) , where h(t)
and x(t) are functions in the interval [0,m]. We treat each point t in
that interval as a machine and the value h(t) + x(t) as its load. Now
we transform regular jobs (jobs or parts of jobs) that are placed below
height 1 (where height represents machine load) into sand jobs. Next we
push the sand jobs to the left such that the height of the sand jobs will
be equal to 1 from point 0 to point V0, where V0 is the total volume of
the sand jobs. See Step 1 in Figure 3 for the resulting shape of this step.
Formally, let R = (h(t), x(t)) be the current shape and let t0 be maximal
value of t, such that h(t)+x(t) ≥ 1 than the new shape R′ = (h′(t), x′(t))
is obtained as follows. Denote

V0 = t0 +
∫ m

t0
(h(t) + x(t))dt

then

h′(t) =

1 t ≤ V0

0 V0 < t

x′(t) =

h(t) + x(t)− 1 t ≤ t0

0 t0 < t

(2) We would like to separate the machines of the off-line algorithm that
have sand and possibly regular jobs into those having sand jobs only,
and machines having regular jobs only. These are machines which all

4 The number is m1/p divided by the original optimal cost of the schedule S.

8

of them have the same height. Consider regular jobs that are scheduled
(by the off-line algorithm) on such machines together with sand jobs.
Take the total area of these jobs and push it to the left. In this way, some
machines will have only regular jobs of the same height as these machines
had before this transformation. The machines on the right hand side will
have the same height, but will contain only sand jobs, with the area of
sand jobs just before this transformation. See Step 2 in Figure 3 for the
resulting shape of this step. Formally, let R = (h(t), x(t)) be the current
shape then the new shape R′ = (h′(t), x′(t)) is obtained as follows. Let
t1 be a minimal point such that machine t1 has sand jobs in the off-line
algorithm, let w be its total load in the off-line algorithm and let V1 be
the volume of the regular jobs on machines [t1,m]. Denote

V1 =
∫ m

t1
x(t)dt

then

h′(t) = h(t)

x′(t) =

x(t) t ≤ t1

w t1 < t ≤ t1 + V1

w

0 otherwise

(3) Part of the sand jobs on machines with no regular jobs are transformed
into regular jobs of height equal to w (as defined in the previous step).
These jobs are assigned to the remaining machines that have only sand
jobs. This is done such that all non empty machines in the Greedy shape
have sand jobs and a regular job. See Step 3 in Figure 3 for the resulting
shape of this step. Formally, let R = (h(t), x(t)) be the current shape
then the new shape R′ = (h′(t), x′(t)) is obtained as follows. Let t1 be
maximal such that machine t1 has sand jobs and a regular job. Let t2 be
maximal such that machine t2 has jobs (any jobs). Let s = t1·w+t2

w+1
, then

h′(t) =

1 t ≤ s

0 otherwise

x′(t) =

x(t) t ≤ t1

w t1 < t ≤ s

0 otherwise

It is easy to see that in each of the transformation steps the cost of Greedy
can only increase and the cost of the off-line algorithm can only decrease due

9

to the convexity of the function xp. We denote the shape obtained by the
transformation by R′ = (h′, x′). This shape has jobs on machines [0, s] for
some real number 0 < s < m. Each machine t ∈ [0, s] has sand jobs of height
1 and a regular job of height x′(t) > 0, other machines have no jobs assigned to
them, hence this is a partially flat shape. The off-line shape has jobs of height
x′(t) on machines t ∈ [0, s] and sand jobs of total volume s evenly assigned
to machines (s,m]. In addition min

t∈[0,s]
x′(t) ≥ w = s/(m− s), hence the off-line

shape is a separate shape.

Fig. 3. The transformation steps

Lemma 2 Let R = (h, x) be a partially flat shape such that h(t) = 1 for
0 ≤ t ≤ s. Assume that the off-line shape of R is a separate shape. Then
there is a shape R’=(h,x’), such that for 0 ≤ t ≤ s, x′(t) = y for some value
y > 0 and x′(t) = 0 for t > s, and it holds that ‖L(R)‖p ≤ ‖L(R′)‖p and
OPT(R) = OPT(R′) .

10

Proof: Let δ ·m = s. Define

y = (
1

δ ·m
∫ δ·m

0
xp(t)dt)

1
p .

Clearly OPT(R) = OPT(R′). Now

‖L(R)‖p = (
∫ δ·m

0
(1 + x(t))pdt)

1
p

≤ (
∫ δ·m

0
1dt)

1
p + (

∫ δ·m

0
xp(t)dt)

1
p

= (δ ·m)
1
p + (δ ·m)

1
p · y

= (δ ·m)
1
p · (1 + y)

= ‖L(R′)‖p

where the inequality follows from the triangle inequality for the `p norm.

Define the function f(δ, x) with the constraint g(δ, x).

f(δ, x) = δ · (1 + x)p, (1)

g(δ, x) = δ · xp +
δp

(1− δ)p−1
= 1. (2)

Theorem 3 The competitive ratio of the greedy algorithm satisfies

CGreedy ≤ (fmax)
1
p

where fmax is the maximum of f with constraint (2), in the domain 0 ≤ x, 0 ≤
δ ≤ 1

2
.

Proof: Let R0 be the Greedy shape of a schedule S obtained by Greedy. For
simplicity we transform it to a new shape R1 by normalizing all job weights
such that

(OPT(R1))
p = m. (3)

If all the h components of R1 are equal to zero then the Greedy schedule is
optimal. Otherwise by Lemma 4 and Lemma 2 we obtain from R1 a partially
flat shape R2 = (h, x), in which all the non zero components of x are the same
and its off-line shape is a separate shape such that ‖L(R1)‖p ≤ ‖L(R2)‖p and
OPT(R1) ≥ OPT(R2). We have

11

(‖L(R2)‖p)
p = δ ·m · (1 + x)p, (4)

(OPT(R2))
p =

∫ δ·m

0
xp(t)dt + (1− δ)m(

δ ·m
(1− δ) ·m)p = δ ·m · xp +

δp ·m
(1− δ)p−1

,(5)

x≥ δ ·m
(1− δ) ·m =

δ

1− δ
. (6)

The last inequality restricts the weight of a regular job to be greater than the
total weight of sand jobs on machines with sand jobs in the off-line shape. For
simplicity we divide equalities (4) and (5) by m, this does not change the ratio
between the cost and the off-line cost of shape R2, which gives the following

f(δ, x) = δ · (1 + x)p, (7)

1≥ δ · xp +
δp

(1− δ)p−1
, (8)

x≥ δ

1− δ
. (9)

The first inequality results from (5), since (OPT(R2))
p ≤ (OPT(R1))

p = m
and the division by m.

Substituting (9) in (8) gives

1≥ δp+1

(1− δ)p
+

δp

(1− δ)p−1
=

δp

(1− δ)p

which yields δ ≤ 1
2
. We obtain the following relation for f

f(δ, x) =
1
m

(‖L(R2)‖p)
p

1
m
·m ≥ (‖L(R1)‖p)

p

(OPT(R1))p
≥ (‖L(S)‖p)

p

(OPT(S))p

where the first inequality follows from (3) and the fact that ‖L(R1)‖p ≤
‖L(R2)‖p. Hence to bound the competitive ratio of Greedy we need to solve
the following maximization problem in the domain 0 ≤ δ ≤ 1

2
and 0 ≤ x. We

need to find the maximum of f(δ, x) under the constraint (8). It is easy to see
that the maximum of f is obtained when (8) is an equality.

The next theorem follows from Theorem 3.

Theorem 4 For the `2 norm the competitive ratio of the greedy algorithm is
CGreedy ≤ 1.493.

Proof: By Theorem 3 the competitive ratio of Greedy is obtained by solving
the following maximization problem for f , which is obtained by substituting
p = 2 in (1) and (2).

12

maximize f(δ, x) = δ · (1 + x)2, (10)

subject to 1 = δ · x2 +
δ2

1− δ
. (11)

We solve this maximization problem. (11) gives

x =

√√√√1− δ2

1−δ

δ
. (12)

Substituting equation (12) in equation (10) gives

f(δ) = δ ·

1 +

√√√√1− δ2

1−δ

δ

2

. (13)

Using Maple we found that the maximum of f is achieved at δ ≈ 0.3642, (x ≈
1.474), and (CGreedy)

2 ≤ f(δ) ≈ 2.2293.

We note that for `2 norm and 3 machines the upper bound can be improved
to 1.453 using a more detailed computation.

Now we turn to the case of the general `p norm.

Theorem 5 For any p > 1, CGreedy ≤ 2− Ω
(

1
p

)
.

Proof: By Theorem 3 we have

1 = g(δ, x) ≥ δ · xp.

Hence

δ ≤ 1

xp
.

Substituting δ in (1) gives

f(δ, x) ≤ (1 + x)p

xp
= f1(x). (14)

Substituting δ ≤ 1
2

in (1) gives

f(δ, x) ≤ 1

2
(1 + x)p = f2(x).

Since f1(x) is a monotonically decreasing function of x and f2(x) is a mono-
tonically increasing function of x we obtain

f(δ, x) ≤ fmax ≤ f2(x0 = 2
1
p) =

1

2

(
1 + 2

1
p

)p
,

13

where x0 = 2
1
p is a solution of the equation

f1(x) = f2(x).

Hence

CGreedy ≤ (fmax)
1
p ≤ 1 + 2

1
p

2
1
p

= 1 +
(

1

2

) 1
p

= 1 + e−
1
p

ln 2 = 2− Ω

(
1

p

)
.

Next we consider the case of 2 machines. We use the following notation

D(p) = sup
x≥0

(
1 + (1 + x)p

2p + xp

) 1
p

. (15)

It is proved in (3) that the supremum is achieved as a maximum at the unique
solution x ∈ (0,∞) of the equation

xp−1(1 + (1 + x)1−p) = 2p.

Theorem 6 For m = 2 and for any p > 1 the greedy algorithm is optimal
and its competitive ratio is

CGreedy,2 = D(p) (16)

Proof: The lower bound follows immediately from the case of permanent
tasks (see (3)). Next we prove the upper bound. The proof requires the fol-
lowing Lemma.

Lemma 7 For m = 2 let S be a schedule obtained by Greedy. Then there
exists a flat shape R = (a, u) which is a shape of S.

Proof: Consider time T , when Greedy reaches the maximum cost. Let L =
L(S) be the vector of loads of S at time T . W.l.o.g we assume that L1 is the
smallest component of L. We claim that the shape R = (a, u) where a = L1

and ui = Li − a, is a flat shape of L(S). Clearly L(R) = L(S). Consider
machine 2 with u2 > 0. Let j be the last job assigned to the machine 2 until
time T . At the time of its assignment, the load of machine 1 must have been
at most a, as otherwise the Greedy cost at that time would be greater than
‖L(S)‖p, which is a contradiction. Hence wj ≥ L2 − a = u2, and the shape
R = (a, u) is a flat shape.

We also need the following Lemma which is implicit in (3).

14

Lemma 8 Let R = (a, u) be a flat shape for m = 2. Then for any p > 1,
C(R) = D(p).

To complete the proof of Theorem 6 we first apply Lemma 7 to obtain a flat
shape R of S, which satisfies C(S) ≤ C(R). Next we apply Lemma 8 to obtain
C(R) = D(p).

From the above theorem it follows that for m = 2 and for the `2 norm Greedy

is optimal and its competitive ratio is D(2) =
√

(
√

5 + 3)/4 ≈ 1.145, where
the value of D(2) is obtained from (3).

4 Lower bounds

4.1 Lower bounds for `2 norm

In this section we give lower bounds for the `2 norm. We prove a lower bound
for any algorithm (the proof is for m = 3). Then we prove a weaker lower
bound for any m ≥ 3. Finally we prove a lower bound for Greedy for a large
number of machines (m →∞).

Theorem 9 For any on-line assignment algorithm A, it holds that CA ≥
CA,3 ≥ 1.202.

Proof: Consider the following sequence for three machines. First three unit
jobs and one job of weight x ≥ 1 arrive. Then two unit jobs depart. At last one
job of weight 2 arrive. Consider the first three unit jobs. If algorithm A assigns
two or more jobs to the same machine, it does not get any other job. Its cost
is at least 5, the optimal cost is 3, and we are done. Otherwise, algorithm A
assigns one unit job to every machine (the off-line algorithm assigns two unit
jobs to machine 1 and one unit job to machine 2). Now the next job of weight
x arrives. Algorithm A assigns it to one of the machines say 1 (the off-line
algorithm assigns it to machine 3). Then two unit jobs depart, which are the
jobs on machines 2,3 (the jobs on machine 1 in the off-line algorithm). At last
a job of weight 2 arrive. The best algorithm A can do is to assign it to one of
the empty machines 2 or 3 (the off-line algorithm assigns it to machine 1). Its

cost is at least
√

(1 + x)2 + 22 , whereas the optimum cost is
√

22 + 1 + x2.

The maximal ratio ≈ 1.202 is achieved for x =
√

5.

15

Theorem 10 For any number of machines m ≥ 3 and any on-line assignment
algorithm A, it holds that CA,m ≥ 2/

√
3−O(1

m
). For m divisible by 3, it holds

that CA,m ≥ 2/
√

3.

Proof: Let m = 3k. We consider the following sequence. First 4k unit jobs
arrive. Then 2k unit jobs depart. Finally k jobs of weight 2 arrive. Consider
the arrival of the first 4k unit jobs. Algorithm A assigns these jobs. W.l.o.g
we assume that machines 1, . . . ,m are sorted in nondecreasing order of load
(the off-line algorithm assigns two jobs to each machine 1, . . . , k and one job
to each machine k + 1, . . . , 3k). Then 2k jobs depart. There exists a minimal
t ≥ 2k, such that machines 1, . . . , t are assigned at least 2k jobs. Then 2k jobs
from machines 1, . . . , t depart as follows, all jobs from machines 1, . . . , t − 1
and some jobs from machine t (in the off-line algorithm the jobs on machines
1, . . . , k depart). At the end of this step machines 1, . . . , 2k are empty. Next k
jobs of weight 2 arrive. The best algorithm A can do is to assign each job to an
empty machine (In the off-line algorithm these jobs are assigned to machines
1, . . . , k). Finally there are jobs of total weight 4k assigned to no more than
2k machines. Due to the convexity of the function xp, the minimum cost is
obtained when all machines have the same load, therefore its cost is at least√

2k · (2)2. The optimum cost is
√

k · 22 + 2k · 12, which yields a ratio of 2/
√

3.

For m not divisible by 3 a similar proof gives a ratio of 2/
√

3−O(1
m

).

Theorem 11 For the greedy algorithm, CGreedy ≥ 1.338.

Proof: First we prove a weaker lower bound of 1.314 for the greedy algorithm,
by solving an ordinary differential equation analytically. Then by a similar
proof we obtain a more complex ordinary differential equation, which has no
simple solution. Hence we use a computer program to compute the competitive
ratio in this case, which gives a lower bound of 1.338.

We start with the first proof. We see the m machines as m points in the
interval (0, 1], machine i as the point i

m
∈ (0, 1], and the load of the machines

as a function f(t), f(t) = li for (i−1)
m

< t ≤ i
m

, where li is the load of machine
i. For each machine i the total load is the value of f in the interval (i−1

m
, i

m
]

and the total load of all machines is the total volume of f in the interval (0, 1]
multiplied by m. Let f(k/m) be the load of machine k at the end of step k and
let F (k/m) be the volume of the jobs assigned to machines k, . . . , m at the
beginning of step k in the following process. For convenience we number the
steps from m to 1 in decreasing order. In this process we keep the volume of
jobs fixed and equal to 1 at the end of each step. We start with the arrival of
infinitesimally small jobs of total volume 1, we call jobs of this type sand jobs.
Both the off-line and the greedy algorithms assign these jobs evenly on all the
machines (total height 1 on each machine). At step k a job of height x (x ≥ 1)

16

arrives. Greedy assigns this job to the machine with minimum load w.l.o.g to
machine k which is the one with the largest index among all machines with the
minimum load 1, . . . , k (otherwise we swap indices) and the off-line algorithm
performs the same assignment. Then the sand jobs on machines 1, . . . , k − 1
depart in Greedy. In the off-line algorithm the departing jobs are composed of
all the sand jobs of machine k and equal amounts of sand jobs from machines
1, . . . , k − 1 with the appropriate volume. Next sand jobs arrive with total
volume 1 − F (k/m) − x

m
(= 1 − total volume of machines k, . . . ,m), thus

keeping the total volume equal to 1. Greedy and the off-line algorithm assign
the sand jobs to machines 1, . . . , k − 1 evenly, such that these machines have
the same load. At the end of step k

f(k/m) =
1− F (k/m)

k/m
+ x.

When m → ∞ t = k/m is a continuous variable in the interval [0, 1] and we
get the following equation

f(t) =
1− F (t)

t
+ x. (17)

We have f(t) = −dF (t)
dt

(since F (t) =
∫ 1

t
f(u)du) and we get

−dF (t)

dt
=

1− F (t)

t
+ x.

Now we have the following first order differential equation

−t · dF (t)

dt
+ F (t)− x · t− 1 = 0

F (1) = 0

It is easy to verify its solution

F (t) = −x · t · ln(t)− t + 1. (18)

Substituting equation (18) in equation (17) gives

f(t) = x · ln(t) + x + 1. (19)

The above process continues until assigning the job with weight x to the
machine represented by t0, where F (t0) = 1, i.e until the volume of all machines
of Greedy that were assigned a job of weight x approaches 1 (there are no sand
jobs that can depart from machines 0 ≤ t < t0). From (18) we get

−x · t0 · ln(t0)− t0 + 1 = 1,

17

which gives

t0 = e−
1
x .

At the end of the above process each machine in the interval [t0, 1] has sand
jobs and one big job of weight x. In the off-line algorithm each machine in the
interval [t0, 1] has one job of weight x and the other machines have sand jobs
equally distributed among them. The maximum cost of Greedy and the off-
line algorithm is obtained at the end of the above process due to the convexity
of the function xp. Let Greedy(x) and Opt(x), be the costs of greedy and the
off-line algorithms as functions of x respectively.

Greedy2(x) =
∫ 1

e−
1
x

f 2(t)dt

=
∫ 1

e−
1
x)

(x · ln(t) + x + 1)2dt

=
∫ 1

e−
1
x

[x2 · ln2(t) + 2x · (x + 1) · ln(t) + (x + 1)2]dt

=
[
x2 · (t · ln2(t)− 2t · ln(t) + 2t) + 2x · (x + 1) · (t · (ln(t)− t) + (x + 1)2 · t

]1

e−
1
x

=
[
t · (x2 · ln2(t) + 2x · ln(t) + x2 + 1)

]1

e−
1
x

= x2 · (1− e−
1
x) + 1,

Opt2(x) =
(
1− e−

1
x

)
· x2 + e−

1
x ·

1− (1− e−

1
x) · x

e−
1
x

2

=
e−

1
x · (1− e−

1
x) · x2 + [1− (1− e−

1
x) · x]2

e−
1
x

= e
1
x ·

[
(x2 − 2x) · (1− e−

1
x) + 1

]
.

Let

C(x) =
Greedy(x)

Opt(x)

and

C = max
1≤x

C(x).

For x ≥ 1 the maximum value of C(x) is obtained approximately at x ≈ 1.2612
and its value is C ≈ 1.314. Hence CGreedy ≥ C ≈ 1.314.

Now we give a similar proof to improve the lower bound. The process is similar
to the one described above with the difference that here we keep the cost
of the off-line algorithm fixed and equal to 1 instead of keeping the volume
fixed and equal to 1 at the end of each step. In this proof we use the same
notations as in the first proof. Consider the off-line algorithm at the end of

18

step t when assigning a job with weight x to machine t. According to the
invariant constraint we have.

(1− t) · x2 + t · h2 = Opt2(x) = 1,

where h is the weight of the sand jobs on machines [0, t] at the end of step t.
We define h as a function of t. The above equation gives

h(t) =

√
1− (1− t) · x2

t
.

At the end of step t

f(t) =
(1− t) · x + t · h(t)− F (t)

t
+ x. (20)

We have f(t) = −dF (t)
dt

and we get

−dF (t)

dt
=

(1− t) · x + t · h(t)− F (t)

t
+ x.

Now we have the following first order differential equation

−t · dF (t)

dt
+ F (t)− t · h(t)− x = 0

F (1) = 0.

The solution to this equation is not simple and was calculated using a computer
program, which gave the following result. For x ≥ 1 the maximum value of
C(x) is obtained approximately at x ≈ 1.3888 and its value is C ≈ 1.338.
Hence CGreedy ≥ C ≈ 1.338, which completes the proof.

4.2 Lower bound for general p > 1

In this section we construct a lower bound for general p > 1.

Theorem 12 For any p > 1 and any on-line algorithm A, it holds that CA ≥
2−O

(
ln p
p

)
.

Proof: Let m →∞. As in the proof of Theorem 11 we consider the machines
as points in the interval (0, 1], each machine is represented by a point t ∈ (0, 1],
and the load of machine is represented as a function f(t) in that interval. Let
0 < α < 1. We consider the following sequence. First sand jobs of total
volume 1 arrive. Next, jobs of total volume (1 − α) depart. Finally unit jobs
of total volume 1 arrive. Consider the arrival of the sand jobs. Algorithm A

19

assigns these jobs, w.l.o.g we assume that machines (0, . . . , 1] are sorted non-
increasingly by load (the off-line algorithm assigns these jobs evenly on all the
machines). Let s ≤ α be maximal such that machines (s, . . . , 1] are assigned
jobs of total volume (1 − α). Then jobs of total volume (1 − α) depart from
machines (s, . . . , 1] (in the off-line algorithm these jobs depart evenly from all
the machines). We denote by x ≤ α the fraction of machines with assigned jobs
of total height greater than 1. Next the unit jobs of total volume 1 arrive. The
best policy that Greedy can have at this point is to assign jobs of total volume
(1− α) evenly to machines (α, . . . , 1] and then to assign jobs of total volume
α to the α least loaded machines. The least loaded machines are composed of
machines that have jobs of total height less than 1 (i.e. machines (x, . . . , α])
and machines that have jobs of total height 1 (w.l.o.g machines (α, α + x]).
The off-line algorithm assigns these jobs evenly to all the machines. Let A and
Opt be the costs of algorithm A and the off-line algorithms respectively.

Ap≥ x · 2p + α

[
α + (α− x)

α

]p

= x · 2p + α
(
2− x

α

)p

,

where the first term on the right hand side represents the cost of machines
(α, . . . , α + x] and the other term is a lower bound for the cost of machines
(0, . . . , α].

Optp = (1 + α)p.

Hence

Cp
A≥

(
A

Opt

)p

(21)

≥
x · 2p + α

(
2− x

α

)p

(1 + α)p
. (22)

We choose α = 1
p
. We consider two cases. In both cases we use the inequality

e−x ≥ 1− x. For x ≥ α
p

= 1
p2 we obtain

Cp
A ≥

α

p
· 2p

(1 + α)p
=

1

p2
· 2p

(1 + 1
p
)p

= 2p e−2 ln p

(1 + 1
p
)p

.

Hence

CA ≥ 2
e−2 ln p

p

1 + 1
p

≥ 2
1− 2 ln p

p

1 + 1
p

= 2−O

(
ln p

p

)
.

20

For x < α
p

= 1
p2 we obtain

Cp
A ≥ α · (2− 1

p
)p

(1 + α)p
=

1

p
· (2− 1

p
)p

(1 + 1
p
)p

= e− ln p · (2− 1
p
)p

(1 + 1
p
)p

.

Hence

CA ≥ e−
ln p
p · 2− 1

p

1 + 1
p

≥ (1− ln p

p
) · 2− 1

p

1 + 1
p

= 2−O

(
ln p

p

)
.

References

[1] S. Albers. Better bounds for online scheduling. SIAM Journal on Com-
puting, 29:459–473, 1999.

[2] N. Alon, Y. Azar, G. Woeginger, and T. Yadid. Approximation schemes
for scheduling on parallel machines. Journal of Scheduling, 1(1):55–66,
1998.

[3] A. Avidor, Y. Azar, and J. Sgall. Ancient and new algorithms for load
balancing in the `p norm. Algorithmica, 29:422–441, 2001.

[4] Y. Azar and L. Epstein. On-line load balancing of temporary tasks on
identical machines. Siam Journal on Discrete Mathematics, 18(2):347–
352, 2004.

[5] Y. Azar, O. Regev, J. Sgall, and G. Woeginger. Off-line temporary tasks
assignment. Theoretical Computer Science, 287:419–428, 2002.

[6] Y. Bartal, A. Fiat, H. Karloff, and R. Vohra. New algorithms for an
ancient scheduling problem. Journal of Computer and System Sciences,
51(3):359–366, 1995.

[7] Y. Bartal, H. Karloff, and Y. Rabani. A better lower bound for on-line
scheduling. Information Processing Letters, 50:113–116, 1994.

[8] A.K. Chandra and C.K. Wong. Worst-case analysis of a placement al-
gorithm related to storage allocation. SIAM Journal on Computing,
4(3):249–263, 1975.

[9] U. Faigle, W. Kern, and G. Turan. On the performance of online algo-
rithms for partition problems. Acta Cybernetica, 9:107–119, 1989.

[10] R. Fleischer and M. Wahl. Online scheduling revisited. Journal of
Scheduling, 3(5):343–353, 2000.

[11] T. Gormley, N. Reingold, E. Torng, and J. Westbrook. Generating adver-
saries for request-answer games. In Proceedings of the Eleventh Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 564–565,
2000.

[12] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System
Technical Journal, 45:1563–1581, 1966.

21

[13] R.L. Graham. Bounds on multiprocessing timing anomalies. SIAM J.
Appl. Math, 17:416–429, 1969.

[14] D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms
for scheduling problems: Theoretical and practical results. J. Assoc. Com-
put. Mach., 34(1):144–162, January 1987.

[15] J.F. Rudin III. Improved bounds for the on-line scheduling problem. PhD
thesis, The University of Texas at Dallas, May 2001.

[16] D. Karger, S. Phillips, and E. Torng. A better algorithm for an ancient
scheduling problem. Journal of Algorithms, 20(2):400–430, 1996.

[17] J.Y.T. Leung and W.D. Wei. Tighter bounds on a heuristic for a partition
problem. Information Processing Letters, 56:51–57, 1995.

[18] S. Sahni. Algorithms for scheduling independent tasks. Journal of the
Association for Computing Machinery, 23:116–127, 1976.

22

