The Maximum Resource Bin Packing Problem

Joan Boyat Leah Epsteir Lene M. Favrholdt Jens S. Kohrt
Kim S. Larsen' Morten M. Pederseh Sanne Wghlk

! Department of Mathematics and Computer Science
University of Southern Denmark, Odense, Denmark
{joan,lenem,svalle kslarsen,mortenm }@imada.sdu.dk

2 Department of Mathematics
University of Haifa, 31905 Haifa, Israel
lea@math.haifa.ac.il

3 Department of Organization and Management
University of Southern Denmark, Odense, Denmark
swo@sam.sdu.dk

Abstract

Usually, for bin packing problems, we try to minimize the number of bins used or in the
case of the dual bin packing problem, maximize the number or total size of accepted items.
This paper presents results for the opposite problems, where we would like to maximize the
number of bins used or minimize the number or total size of accepted items. We consider
off-line and on-line variants of the problems.

For the off-line variant, we require that there be an ordering of the bins, so that no item in
a later bin fits in an earlier bin. We find the approximation ratios of two natural approximation
algorithms, First-Fit-Increasing and First-Fit-Decreasing for the maximum resource variant of
classical bin packing.

For the on-line variant, we define maximum resource variants of classical and dual bin
packing. For dual bin packing, no on-line algorithm is competitive. For classical bin packing,
we find the competitive ratio of various natural algorithms.

We study the general versions of the problems as well as the parameterized versions where
there is an upper bound %fon the item sizes, for some intedger

*The work of Boyar, Favrholdt, Kohrt, and Larsen was supported in part by the Danish Natural Science Research
Council (SNF). The work of Epstein was supported in part by the Israel Science Foundation (ISF). A preliminary
version of this paper appeared in the proceedings of the Fifteenth International Symposium on Fundamentals of Com-
putation Theory, 2005.

1 INTRODUCTION 2

1 Introduction

Many optimization problems involve some resource, and the task for algorithm designers is typi-
cally to get the job done using the minimum amount of resources. Below, we give some examples.

Bin packing is the problem of packing items of sizes between zero and one in the smallest possible
number of bins of unit size. Here, the bins are the resources. The traveling salesperson problem is
the problem of finding a tour which visits each vertex in a weighted graph while minimizing the
total weight of visited edges. Here the weight is the resource. Scheduling jobs on a fixed number
of machines is the problem of minimizing the completion time of the last job. Here time is the
resource.

Each of these problems come in many variations and there are many more entirely different op-
timization problems. Since these problems are computationally hard, the optimal solution can
usually not be computed in reasonable time for large instances, so polynomial time approximation
algorithms are devised. For many of these problems, there are interesting variants where the entire
instance is not known when the computation must commence. The area of on-line algorithms deals
with this problem scenario.

For detailed descriptions of many of these problems and their solutions in terms of approximation
or on-line algorithms, see [4, 10, 13], for instance.

For all of these problems, minimizing the resources used seems to be the obvious goal. However,
if the resource is not owned by the problem solver, but is owned by another party who profits
from selling the resource, there is no longer agreement about the objective, since the owner of the
resource wants to maximize the resources used, presumably under some constraints which could be
outlined in a contract. Thus, many of the classical problems are interesting also when considered
from the reverse perspective of trying to maximize the amount of resources that are used.

In [1], the Lazy Bureaucrat Scheduling Problem is considered. Here, tasks must be scheduled and
processed by an office worker. The authors consider various constraints and objective functions.
The flavor of the constraints is that the office worker cannot sit idle if there is work that can be done,
and the office worker’s objective is to schedule tasks under these constraints so as to minimize the
work carried out; either total work, arranging to leave work as early as possible, or a similar goal.
Though it is presented as a toy problem, it is an important view on some optimization problems,
and many other problems are interesting in this perspective, provided that the constraints imposed
on the problem are natural.

Also other problems have been investigated in this reverse perspective, e.g., longest path [16],
maximum traveling salesperson problem [12] and lazy online interval coloring [9].

Maximum Resource Bin Packing

In this paper, we consider bin packing from the maximum resource perspective. We consider it
as an approximation problem, but we also investigate two on-line variants of the problem. To our
knowledge, this is the first time one of these reverse problems has been considered in an on-line
setting. Note that the complexity status of the off-line problems studied in this paper is open.

1 INTRODUCTION 3

The abstract problem of packing items of a given size into bins has numerous concrete applica-
tions, and for many of these, when the resource must be purchased, the reverse problem becomes
interesting for one of the parties involved. We use the following concrete problem for motivation.

Assume that we hire a company to move some items by truck from one site, the origin, to another,
the destination. Say that the price we must pay is proportional to the number of trucks used. Some
companies may try to maximize the number of trucks used instead of trying to get the items packed
in few trucks. To prevent the company from cheating us, the following constraint has been placed
on the packing procedure:

Constraint 1: When a truck leaves the origin, none of the unpacked items remaining at the origin
should fit into that truck.

In the off-line variantOff-Line Maximum Resource Bin Packjwge are given an unlimited number

of unit sized bins and a sequence of items with sizefin]|, and the goal is to maximize the
number of bins used to pack all the items subject to Constraint 1. A set of items fits in a bin if
the sum of the sizes of the items is at most one. In the off-line variant, there must be an ordering
of the bins such that no item in a later bin fits in an earlier bin. Explained using the motivating
example, Constraint 1 can be illustrated as follows: Trucks arrive at the origin one at a time. A
truck is loaded, and may leave for its destination when none of the remaining items can fit into the
truck. At this time, the next truck may arrive.

On-Line Maximum Resource Bin Packisgimilar to the off-line version. However, the problem is
on-line, meaning that items are revealed one at a time, and each item must be processed before the
next item becomes available. Because of the on-line nature of the problem, instead of Constraint 1,
the following modified constraint is used:

Constraint 2: The company is not allowed to begin using a new truck if the current item fits in a
truck already being used.

Thus, the on-line algorithm is allowed to open a new bin every time the next item to be processed
does not fit in any of the previous bins. The objective is still to use as many bins as possible. Thus,
all partly loaded trucks are available all the time, and whenever an item does not fit, a new truck
may pull up to join the others.

We also consider another on-line probledn-Line Dual Maximum Resource Bin Packirgere,

the number of available bins is fixed. For each item, an algorithm has to accept it and place it in
one of its bins, if it is possible to do so. Thus, here a fixed number of trucks have been ordered. In
this case, neither Constraint 1 nor Constraint 2 is used; the objective is not to maximize the number
of trucks used, since this number is fixed. There are two possible objective functions: the number
of accepted items or the total size of the accepted items. In both cases, the objective is to minimize
this value. Thus, the truck company wants to pack as few items or as little total size as possible
into the trucks, minimizing the fuel needed for each truck, or maybe hoping to get a new order of
trucks for the items which do not fit into the fixed number of trucks which have been ordered.

For all three problems, we study the general version as well as the parameterized version where
there is an upper bound %fon the item sizes, for some integer

2 NOTATION AND ALGORITHMS 4

A closely related problem is the Bin Covering Problem. In this problem, the algorithm is given a
sequence of items and has to place them in bins, while trying to maximize the number of bins that
contain items with a total size of at least one. This is quite similar to Off-Line Maximum Resource
Bin Packing with bins twice as large and Constraint 1 replaced by the following weaker constraint:

Constraint 3: No pair of trucks leaving the origin may have a total load of items that could have
been packed in one truck.

The problem is NP-complete but has an asymptotic fully polynomial time approximation scheme
(AFPTAS) [14]. Further results on that problem can be found in [2, 7, 8].

Our Results

For Off-Line Maximum Resource Bin Packing, we show that no algorithm has an approximation
ratio of more than}—g. For the parameterized version, the upper bouans% for k > 2. The
algorithm First-Fit-Decreasing is worst possible in the sense that it meets this upper bound. First-
Fit-Increasing is better; it has a competitive ratiogoand a parameterized competitive ratio of

14 :2—111 for k > 2. See Section 2 for a definition of the algorithms.

For On-Line Maximum Resource Bin Packing, we prove a general lower bougmbnﬂhe para-
meterized competitive ratio fdr < 3 and1 + ﬁ for £ > 3. We prove a general upper bound of
2fork < 2andl + ﬁ for k > 2. Hence, fork > 3, all algorithms have the same parameterized
competitive ratio. We prove that First-Fit, Best-Fit, and Last-Fit all meet the general upper bound.

For On-Line Maximum Resource Dual Bin Packing, we prove that if the objective function is the
total numberof items packed, no deterministic algorithm is competitive; this also holds for any
value ofk for the parameterized problem. If the objective function is the tiof the packed
items, no algorithm for the general problem is competitive. For the parameterized version, we

prove general lower and upper bounds of m andl + 1, respectively.

The proof of Theorem 3, below, showing that for Off-Line Maximum Resource Bin Packing,
the approximation ratio of First-Fit-Increasinggs uses a new variant of the standard weighting
argument. That result also gives a connection between Off-Line Maximum Resource Bin Packing
and the relative worst order ratio for on-line algorithms for the classical bin packing problem. The
relative worst order ratio [5] is a new measure for the quality of on-line algorithms. Theorem 3
has been used to prove the upper bound on a result comparing First-Fit to Hahosiog the
relative worst order ratio [6]. Perhaps other “reverse” problems will have similar connections to
the relative worst order ratio.

2 Notation and Algorithms

The input is a sequence of items= (s1, s, ..., $,). FOr convenience, we identify an item with
its size and require that item) has size) < s; < 1 (0or0 < s; < % for some integek, for the
parameterized problem). The items have to be placed in bins of size one.

2 NOTATION AND ALGORITHMS 5

For any input sequenck let ALG(I) be both the packing produced when runnilgG on this
input sequence and the number of bins used for this packing. In particul@RTebe an algorithm
which produces an optimal packing, and@®T(/) be both this packing and the number of bins
used.

For the off-line variant, leBMALL(7) be a packing using the minimum number of bins that the
items from/ can be packed in without putting items with sizes totaling more than one in any bin,
and letSMALLDbe an algorithm that creates this packing. Note 8/ALLis an optimal algorithm
from the classical bin packing problem, but for Maximum Resource Bin Packing, it is a worst
possible algorithm.

An approximation algorithnALG is a c-approximation algorithme > 1, if there is a constant
such that for all possible input sequende®©PT(I) < ¢ ALG(I) + b. The infimum of all such

c is called theapproximation ratioof the algorithm,Ra . For the parameterized problem, we
consider theparameterized approximation rati® a.c(k), which is the approximation ratio in the
case where all items have size at m@%r some integek.

An important algorithm in this context is First-FiEl), which places an item in the first bin in
which it fits.

In this paper, we investigate two well known off-line variant$6éf in detail:

¢ First-Fit-Increasing(FFI) handles items in non-decreasing order with respect to their sizes,
placing them using First-Fit.

e First-Fit-DecreasingFFD) handles items in non-increasing order with respect to their sizes,
also placing them using First-Fit.

In the on-line variants of the problem, the algorithms receive the input, i.e., the items, one at a time
and have to decide where to pack the item before the next item (if any) is revealed.

Similarly to the approximation ratio for approximation algorithms, the performance of determin-
istic on-line algorithms is measured in comparison with the optimal off-line algor@m [11,

17, 18]. An on-line algorithmALG is c-competitive ¢ > 1, if there is a constarit such that for

all possible input sequencésOPT(I) < ¢ ALG(I) + b. The infimum of all sucle is called the
competitive ratioof the algorithm{, . For the parameterized problem, we considempgheame-
terized competitive ratiacCa (%), which is the competitive ratio in the case where all items have
size at mos% for some integek.

For the on-line variants, we consider the following natural algorithms, all of which, except for
Last-Fit, have been well studied in other contexts:

e First-Fit (FF) as defined previously.

e Last-Fit (LF) is the opposite oFF, i.e., it places a new item in the last opened bin in which
it fits.

e Best-Fit(BF) places the item in a feasible bin which is as full as possible, i.e., a feasible bin
with least free space.

3 OFF-LINE MAXIMUM RESOURCE BIN PACKING 6

e Worst-Fit (WF) is the opposite oBF, i.e., it places an item in a feasible bin with most free
space.

3 Off-Line Maximum Resource Bin Packing

For Off-Line Maximum Resource Bin Packing, the goal is to maximize the number of bins used,
subject to Constraint 1, so there must be an ordering of the bins such that no item placed in a later
bin fits in an earlier bin. We show that no algorithm for the problem has an approximation ratio
worse thanil. Then, we use the proof that for classical Bin Packing, First-Fit's approximation
ratio is% [15] to prove that-FD has this worst possible approximation ratio. After that we show
thatFFI has a better ratio df.

Theorem 1 (General upper boundyor the Off-Line Maximum Resource Bin Packing Problem,
any algorithm ALG has a parameterized approximation ratio of

1

1—(7), k=1
Rac(k) < 1

Lo, k22

Proof. Consider any multiset of requesfs, The minimum number of bingy, ALG could use on
I is no less than the number of bins usedIMALL

ConsiderOPT's packing of/, and create an ordered liBtcontaining the items id, starting with
the itemsOPT packed in the first bin, followed by those in the second bin, etc., until all items have
been included.

By the restrictions on what an algorithm may do, First-Fit packs the itenis éxactly asOPT
packed the items of. By [15], the number of binsy, used by First-Fit is at mos}[%m + 2, if
k=1, and at mostl + +)m + 2, if k > 2. Thus,OPT uses at mosfim + 2 bins, ifk = 1, and at
most(1 + 1)m + 2 bins, ifk > 2, giving the stated ratio. O

This result is tight since First-Fit-Decreasing has this approximation ratio.

Theorem 2. For the Off-Line Maximum Resource Bin Packing Problem, the parameterized ap-
proximation ratio of FFD is

o k=
Rerp(k) = 1
1+E’ k> 2.

Proof. The upper bounds follow from the previous theorem. To prove the lower bounds, we use the
sequences and proofs from [15]. The contribution we make is to show that with those sequences,
FFD produces essentially the same packinG®ALL(OPT in the proofs in [15]). The remainder

of the proof is included only for completeness.

3 OFF-LINE MAXIMUM RESOURCE BIN PACKING 7

We start with the cask = 1. Let K be a positive integer, and defiidéo be a multiset that can be
divided into three setd, B, andC, each containing0 K items, which are described below. Let
be a constant with < ¢ < 187X, and lety; = ¢ - 185X~ for1 < i < K.

SetA consists of items of the following sizes, for< ¢ < K

ag; = é -+ 335Z

ay = % — 30;

Q2i = A3 = é — 79
ay = 3 — 130;

as; = & + 99;

1
agi = a7 = ag; = ag; = g — 20;

SetB consists of items of the following sizes, for< i < K

by = bs; = 5 + 66
by = 3 + 120;

bs; = 1 — 100,

b = bri = bsi = bg; = § + 0

SetC consists ofl0K items of sizel + ¢.

We first consider the packinGMALL(!), given in [15], which use$0K + 1 bins, and then show
thatFFD uses the same number of bins in its packing. After that we show how a legal packing of
the multiset usind 7K bins can be constructed.

In the packing made bMALL each of the first0 K — 1 bins contains one item from, one from
B, and one fronCC, with the items fromA and B paired up as follows:

(Z) A andbji for 2 S] <9 andl1 <i<K
(ZZ) ag; andbli for 1 <1< K
(ZZZ) ai; andbo(i_H) for 1 <1< K-1

The remaining three items are one of s;}ze g, bpy anda;x. These three items are packed into
two bins bySMALL, giving a total ofl0K + 1 bins.

FFD packs the items frond' first, one per bin, and the items froBon top of them, one per bin
in non-increasing order. After this, the empty space in thidd€ bins occurs in non-decreasing
order. When the items from are packed byFD, they are each put in the bin with the smallest
empty space in which they fit.

SinceFFD packs one item from each of, B, andC in each bin (except three of them) just as
SMALLdoes, and it places the items frafnin the bins that leave the smallest possible space free,

3 OFF-LINE MAXIMUM RESOURCE BIN PACKING 8

it is clear thatFFD does not use more bins th&WVALL Therefore, we conclude thBED uses at
most10K + 1 bins.

Now we consider how many bins these items can be packed in without violating Constraint 1. To
do this, we look at howirF packs the items. In [15FF’s packing is found, and for completeness,
we include it here.

FF starts by packing the items from sétwith five items in each bin in the order
<a01,a11, ..., Q91,002y - -, A92, . o ., AOKy - - - ,a9K>.
For a bin containing,, . . . , a4;, the empty space i§— 36;, which is less than any of the remaining
items. For a bin containings,, . . . , ay;, the free space i§— 0;, which is again less than any of the
remaining items. This wayF uses2K bins to pack the items of set. For setB, FF packs five
bins for each as follows:

boi + by; total of 2 + 126;

by + b5,’ total Of% + 251

bei + br; total of 2 + 24,

bs; + bo; total Ofg + 2(51
None of the remaining items can fit into any of these bins, arfédFsasess K to pack setB.

None of the items in sef’ can fit together in a bin. Thu&F packs these in separate bins using
10K bins. In total FF usesl 7K bins and sinc&FD uses at mostOK + 1 bins, the ratio follows.

We proceed with the case > 1. We again letK’ be a positive integer, which is divisible By
Define I to be a multiset that can be divided into two sdt@nd B. A containskK items and
|B| = K — 1. Both sets are described below. Lebe a suitably chosen very small positive
constant, and let, = ¢ - k' for 2 < i < 2K.

SetA consists of items of the following sizes, for< ¢ < k,1 < j < K: a;; = ﬁﬂ + 0.

SetB consists of items of the following sizes, for< j < K —1: b; = ,%H — 02541

We first consider the packin@MALL(T), given in [15], which used(bins, and then show that
FFD uses the same number of bins in its packing. After that we show how a legal packing of the
multiset using%K bins can be constructed.

In the packing made b$MALL each of the firsk' — 1 bins containg items fromA and one from

B, with the items fromA and B paired up as follows. For eagh< K, all itemsaq,; are placed
together withh; giving a total ofk—_’“H + kg + 45 — 0241 = 1+ e(k - k¥ — k¥+1) = 1. The last

bin contains the items; . This gives a total of< bins.

FFD packs the items from first, £ per bin. For each < K, all itemsa;; are placed together.
This gives the total amounts— 15 + ¢ - k¥ *'. Each item ofB, when it arrives, fits into a single
such bin. The bin which is filled td — k—il + €+ k?5*! does not receive a new item. This gives the
same packing described in the previous paragraph. We concludeRbDaises exactlys bins.

Now we consider how many bins these items can be packed in without violating Constraint 1. To
do this, we look at howrF packs the items. In [15FF’s packing is found, and for completeness,

we include it here.

3 OFF-LINE MAXIMUM RESOURCE BIN PACKING 9

The items are sorted so that all; items appear sorted by non-increasing order, andl;atems
appear in increasing order. The first item in the sequenegisthe second item is;_; and from
this point, after every: items of setA, there is one item of the sé&. The gap left in every bin after
k items are assigned to it is always smaller than any future item db seiterefore the number of
bins is at leasf*#2*t5=1] = K + £, SinceFFD usesK bins, the ratio follows. O

We now turn to the better algorithraFI.
Theorem 3. The parameterized approximation ratio of FFI is

6
— k=1
57
2
k +l<;’ S
k241 -

Reri (k) =

Note thatRer (1) = Rer (2) = Rer(3). We prove the lower bound first.
Lemma 4. The parameterized approximation ratio of FFI is

6

— k<2
57 —_—
k2 +k
k2+1’ -

Rer (k) >

Proof. Fork < 2 we use the following inputa items of size% andn items of size;;, wheren is a
large integer divisible by 6. The optimal packing is to put one item of §iaed one item of size
% in each bin. This make®PT usen bins, each with a fraction oé‘ empty space. On the other
hand,FFI packs% bins, each containing three elements of %ze’aollowed by 5 bins, each with
two items of siz%. Hence, in totalFFI uses%” bins, and the ratio follows.

For £ > 3 we use a slightly more complicated sequence. /Léte a large integer. The input
contains

e n(k* — 1) items of size—~ and

e n(k+ 1) items of size;.

FFI usesn(k — 1) bins for the smaller items ang(k + 1)/k bins for the larger ones, which is
n(k* + 1)/k in total. All the bins are completely full. An optimal packing would be to combine
one larger item withk — 1 smaller ones, using(k + 1) bins. Each bin is thus full by a fraction of

% + ﬁ—;} > kiﬂ which makes the packing valid. The approximation ratio for this sequence is thus

2
exactly j%. O

Note that in this casd;Fl’s packing is actually the same as the packing mad8MALL This is
not always the case, though.

3 OFF-LINE MAXIMUM RESOURCE BIN PACKING 10

Lemma 5. The parameterized approximation ratio of FFI is

O s
<
Rea(k) <\ g2 4
o k2
k2 +1

Proof. We first prove the caske < 3 which is slightly different from the other cases and has to be
treated separately. For this part of the proof, we do not assume an upper bound on the item sizes.

We assign weights to items in the following way. For all items in the inte(r@@] (small items),
the weight is defined to be equal to the size. An item which belongs to an in(gﬁaﬂ for some
1=1,2,3,4,5 (large items), is assigned the We@ht

The intuition for this weighting comes from considering a bin in the packing madeHbythat
contains only items from a single interv(alﬁ—l, %], i € {1,2,3,4,5}. This bin contains at most
items, and therefore each item in such a bin can be thought of as contri@tltirtge total size of

items plus empty space FFI’'s packing.

Let I/ be the total weight of the items in a given input sequence. We prové&Hat 5 > W >
2(OPT — 5), which implies the upper bound.

Consider first the optimal solutio@PT. We show that the total weight of items is at le&igt>
2(OPT — 5). To show that, we claim that all bins {BPT, except for at most five bins, have items

of weight at Ieasg. First, consider the bins containing at least one small item. Due to Constraint 1,
there is at most one such bin whose total sum of item sizes is Iesé.tlhmte that the weight of an
item is at least its size. A bin which contains items of total size of at I%aas weight at least that
amount. A bin which contains an item larger thahas weight at least Therefore, we only need

to consider bins containing only items ip, 5]. We define a pattern to be a multiset of numbers in
5.3, 3, + whose sum is at most The type of a pattern is the inverse of the smallest number in it.
A patternP of typej is a maximal pattern if adding another instance} @b P, would not result

in a pattern, i.eP U {%} is not a pattern. The pattern of a bin is the multiset of the weights of its
items.

For eachj = 2,3,4,5, the packing has at most one bin whose pattern is of fypat is not
maximal. We show that a bin of any maximal pattern has weight at %’asﬂ'he only maximal

pattern of type2 is {3, 3}. The maximal patterns of typeare{:, z, s} and{3,3}. Consider a
maximal pattern of typed. We need to show that the sum of elements in the pattern is at least
Let a,b,c be the amounts of, , and 1 in the pattern. If the sum is less than we have

< 2424 ¢ <3 This givesd < 6a + 4b + 3c < 10. Sincea,b, c are integers, this is
impossible. Similarly, consider a maximal pattern of tgpéeta, b, ¢, d be the amounts og, %, i

and? in the pattern. If the sum is less thanwe havel < 2 + %+ ¢4 ¢ < 3 This gives

48 < 30a+ 200+ 15¢+ 12d < 50 or 30a + 20b + 15¢ + 12d = 49. Sincea, b, ¢, d are non-negative

integers, this combination is impossible.

= [y [Ot

Consider now the packing &fFI. We show that the total weight of items is at mést< FFI + 5.
Note that the algorithm actually acts as Next Fit Increasing and never assigns an item to an old bin

1The paper [3] showed a similar result on patterns for a different purpose.

3 OFF-LINE MAXIMUM RESOURCE BIN PACKING 11

once a new bin is opened. A bin BFI is called a transition bin if it has both at least one small
item and at least one other item, or it has only large items, but it contains items of distinct weights.
The last case means that the algorithm is done packing all items of v@efghsome5 >j>2

and has started packing items of weight. Therefore, there are at most five transition bins. In
any other bin, the sum of the weights of the items is at most one; this is clear if there are only small
items whose weights are equal to their sizes. For other items, thefeitaras of weightt in a

bin containing only such items. As for the transition bins, the total weight of items wﬁose size is
at most one can be at mastsolW < FFI + 5. HenceOPT < gFFI + 11,

We now prove the lemma fdr > 4. We slightly revise the definitions. Items are small if they are
in the interval(0, k—ig]. The weight of a small item is its size. An item which belongs to an interval
(717, 1] for somei = k, k + 1, k + 2, is assigned the weight

Consider the optimal solutio®PT. We show that the total weight of items is at le&Bt >

(k* + 1)(OPT — 4)/(k* + k). To show that, we claim that all bins except for at most four bins
have items of weight at leagt?® + 1)/(k* + k). First, consider the bins containing at least one
small item. Due to Constraint 1, there is at most one such bin whose total sum of items is less than

1 — = &2 > B4 (which holds for allk > 3).

Note that the weight of an item is at least its size. A bin which contains items of total size at least
’gii}g has weight at least that amount. We need to consider bins containing only itérs; jr].
We define a pattern to be a multiset of numbers-if, -1, + whose sum is at most Again, we

define the type of a pattern as the inverse of the smallest item in it.

For eachy = k,k + 1, k + 2, the packing has at most one bin whose pattern is of jypa is not
maximal. We show that a bin of any maximal pattern has weight at {éﬁ%}t The only maximal

pattern of typek is {1, ..., 7}

Consider a maximal pattern of typet 1. We need to show that the sum of elements in the pattern
. 2 . .

is at Ieast’,jzi,ﬁ. Let a andb be the amounts oi andk%rl in the pattern. If the sum is less than
,’ji—j}g_, we havety < ¢+ by < ,’jii}C . This givesk® < (k + 1)a + kb < k” + 1. Sincea andb

are integers, this is impossible. Similarly, consider a maximal pattern ofitype. Leta, b, and

¢ be the amounts of, =+, and 5 in the pattern. If the sum is less th%ﬁ{—l, we havejtl <

ap boyoe < B Thisgivest(k+1)? < (k+2)(k+1)a+k(k+2)b+k(k+1)c < (k+1)(k+2)
ora(k*+3k+2)+b(k*+2k)+c(k* + k) = k(k+1)?+ 1. We need to exclude the existence of an
integer solution for, b, andc. Assume that such a solution exists. Note thab+c < k+2, since
otherwise the left hand side is at leaék+1)(k+2) > k(k+1)*+1. Also note thati+b+c > k—1,
since otherwise the left hand side is at m@dst 1) (k+2)(k—1) < k(k+1)*>+1. If a+b+c = k+1

we get(a+b+c)(k*+k)+2a(k+1)+kb = k(k+1)*+1. Simplifying, we havea(k+1)+kb = 1,
which is clearly impossible. I + b+ ¢ = k, we need thaa(k + 1) + kb = k> + k+ 1. If a = 0,
there is no solution sincke? + k + 1 is not divisible byk. Otherwise2a — 1 must be divisible by

k. Since0 < a < k anda is an integer, the only value it can have’ii§1, but this givesh = —1

which is impossible.

Now consider the packing ¢iFl. The total weight of items is at mo8t’ < FFI + 4 since there
can be only four transition bins. This implies the upper bound on the approximation ratio.]

4 ON-LINE MAXIMUM RESOURCE BIN PACKING 12

4 On-Line Maximum Resource Bin Packing

For On-Line Maximum Resource Bin Packjrige goal is to maximize the number of bins used
subject to Constraint 2, so the algorithm is only allowed to open a new bin if the current item does
not fit in any open bin. We have matching lower and upper bounds for most algorithms, and we
conjecture that the algorithm Worst-FiV§) has an optimal competitive ratio éf

Theorem 6 (General upper boundfor the On-Line Maximum Resource Bin Packing Problem,
any algorithm ALG has a parameterized competitive ratio of

Caic(k) < k

Proof. Fork = 1, this is proven using the fact that for any algorithm, all bins, except possibly one,
are at least half full. Fok > 2, we use the fact that all bins, except possibly one, are full to at least
k—1
= O

k

Fork > 3, Theorem 6 is tight for deterministic algorithms:

Theorem 7(General lower bound)Any deterministic on-line algorithm ALG has a parameterized
competitive ratio of

: k<2

k
o1 23

3
2
Caic(k) >

The theorem follows from Lemmas 8 and 9 handling the case=2 andk > 3 respectively.

Lemma 8. There exists a family of sequendgswith items no larger thag such that OPTZ,,) —
oo for n — oo and, for any deterministic on-line algorithm ALG,

OPT(L,) > ;ALG(In).

Proof. The sequence is given in phases. Each phase beginﬁ/yith%, e), wheree < 1—12 For
this sequence, there are two possible packings:

or

o= [0
o= (™
N[— OO
N[

If the on-line algorithm chooses the first packing, the sequence continuesmitig— £, % — 3e),

filling up the two on-line bins. An optimal off-line algorithm chooses the second packing, places
the 2¢-item in the second bin, and opens a new bin for the last two items. ORi§,uses three
bins, and has all bins filled to at leaist+ 2¢.

4 ON-LINE MAXIMUM RESOURCE BIN PACKING 13

If the on-line algorithm chooses the second packing, the sequence continué$ with4e, ¢, ¢).

In this case, an optimal off-line algorithm chooses the first packing, and thus opens a new bin for
the first two of the last four items. The last two items are placed in the first two bins. AQRin,

uses three bins and has all bins filled to at I§a$t25.

Since each on-line bin is filled completely and each off-line bin is filled to at @as?e, this can
be repeated arbitrarily many times, with the result #iaG uses two bins per phase a®®T uses
three bins per phase. O O

Lemma 9. For k& > 3, there exists a family of sequendgswith items no larger tharj; such that
OPT(I,) — oo for n — oo and, for any deterministic on-line algorithm ALG,

OPT(I,,) > k ALG(I,) !

YT k-1 Yo k—1

Proof. The sequence consists of an initial subsequence followeddhases. Let > 0 be a very
small constant. The sequence is constructed in such a way that after the initial subsequence, and
also after every phas@PT has the first bin filled td* + ke and all other open bins filled to
exactly% + 2¢. The on-line algorithm has all open bins fully occupied, except the very first bin
that is always filled to at leadt? + ke.

The sequence starts withk — 1) x %, ke). After this, any algorithm has a single open bin which
is full up to % + ke. The purpose of this initial subsequence is to let the on-line algorithm have
a bin where it puts one tiny item in each phase.

The rest of the sequence is givenriphases. Each phase starts with — 1) x 1, ¢) repeated
k — 1 times. No algorithm can open more thlar- 1 bins for these:(k — 1) items. Actually, any
algorithm uses exactly — 1 bins for the sequence, since the total size of%th'ﬂms is larger than

k— 2.

We consider two cases, according to how the on-line algorithm distributes the first items of the
current phase.

Case A: ALG assigns exactly the amoéf\% + ¢ to each new binln this case ALG assigns the
items exactly as Worst-Fit would do, for example, the packing:fer 4 looks as follows.

N L I N T)
N e L B e ()
N e E Y EEN e (O)

In this case, there is one additional item of skzdfollowed by k£ — 3 items of size=. Since there

were onlyk — 2 additional items, at least one bin openeddG in the current phase is full exactly

up to% + . Using the items of the current phase, we can make sure that, also in this phase, all
bins of OPT are filled to at Ieasﬁf;—1 + 2e. Next there is an additional item of size- ¢ andk — 2

4 ON-LINE MAXIMUM RESOURCE BIN PACKING 14

other items which are slightly smaller th%nand fit perfectly into the remaining— 2 bins opened
by ALG in the current phase. Sin@PT opens a new bin for the item of size— ¢, it can place
all the items arriving afterwards in the same bin. The total amount in that KPdfis therefore
k-l — 2(k — 1)e. The final item of this phase is of siz&=. This item is placed in the first bin
by ALG (since all its other bins are full), and in the last bin@PT, giving it a total of at least

k-1
- T 2e.

Case B: After the first part of the phase, ALG does not H@J‘@r e in each new binln this case,

OPT has exactly’“%1 + ¢ in each new bin. No matter hoALG distributes the items, it hds— 1

new bins, one of which is filled to at mo%;—l. Next there is an additional item of sizeandk — 2

other items which are of the same size or slightly smaller. The sizes are computed one by one, in
such a way that the next item at each step is the largest item o% sizée that ALG can fit into

one of the bins of the last phase, foK ¢t < k — 1.

SinceOPT opens a new bin for the item of siZe it can place all the items arriving afterwards in
the same bin. The total amount in that bin@®PT is therefore at least! — (k — 1)e. The final
items of this phase are— 1 items of sizes, and one item of siz€: + 1)c. The firstk — 1 bins of
OPT opened in this phase receive an item of size achieve a total 04‘;—1 + 2¢, and the last one
receives the item of sizg + 1)e for the same purpose. These items are placed in the first bin by
ALG (since all its other bins are full).

We getALG(I,,) = (k—1)n+1 whereaOPT(I,) = kn+1. Hence ALG(I,,) = ©-1-OPT(I,,)+1,
or OPT(1,) = %5 - ALG(I,) — 5. O O
First-Fit, Best-Fit, and Last-Fit are worst possible:

Theorem 10. For the On-Line Maximum Resource Bin Packing Problem, the parameterized com-
petitive ratio of FF and BF is

2, k=1
Cre(k) = Cge(k) =
rr(k) sr(k) k k>

kE—1
Proof. The upper bound follows from Theorem 6, and the lower bound:for 3 follows from
Theorem 7. Thus, we only need to prove the lower bound of 2 fer2. To this end, consider the
sequencé%,)", wheren is a large odd integer ard < % FF as well asBF puts all the small
items in the first bin, using + ”T‘l bins in total. OPT on the other hand distributes the small items
one per bin, using bins. This gives a ratio arbitrarily close to 2 ferarbitrarily large. O

Theorem 11. For the On-Line Maximum Resource Bin Packing Problem, the parameterized com-
petitive ratio of LF is
2, k=1
Cir(k) =< &k

k>2
k_17 -

Proof. Again, we only need to prove the lower bound of 2 foK 2. Letn be a large integer and

1 - - - - .
e < g.—- The inputis given in three phases:

5 ON-LINE MAXIMUM RESOURCE DUAL BIN PACKING 15

3. (3 —¢3)"!
Both algorithmsLF andOPT, usen bins for the firsn items, putting one item of siz?and one
item of sizes in each bin.

LF puts all items from phase two in the last bin. It then packs the large items of phase three in the
first n — 1 bins and the small items of phase three in the last bin, usingrobips. OPT, on the

other hand, distributes the items of phase two evenly imtbpen bins, and is able to open a new

bin for each of thex — 1 pairs of items in phase three.

This gives a ratio o~ which is arbitrarily close to 2 fon arbitrarily large. O

Investigation of Worst-Fit seems to indicate that it works very well in comparison with the other
algorithms studied here. However, the gap between the lower bou%wimxﬂ the upper bound of
2 remains. Based on our investigation, we conjecture the following:

Conjecture 12. For the On-Line Maximum Resource Bin Packing Problem, the competitive ratio
of WF is2.

5 On-Line Maximum Resource Dual Bin Packing

For this problem, there are exactlybins. An item cannot be rejected if it fits in some bin, but
there are no constraints as to which bins the algorithm may use, except that no bin may be filled to
more thanl. We have two different cases corresponding to the two different objective functions.
For both objective functions, no deterministic algorithm is competitive in the general case with no
upper bound less thanon item sizes.

Theorem 13. For the On-Line Maximum Resource Dual Bin Packing Problem with accepted total
size as cost function, no deterministic algorithm is competitive in general.

Proof. Letn > 2 be the number of available bins, and AtG be any deterministic algorithm.
The input sequence is constructed in upt@unds. In round, for 1 <i < n — 1, n items of size
¢ are given, for some smadl > 0. If, after theith round,ALG has one or more bins with fewer
thani items, then an item of size— (i — 1) is given.OPT distributes all - n e-items withi items
in each bin, and can thus reject this large item. The performance ratio is then

ALG(I) ine+(l—g(i—1)) in—i+1+1

OPT(I) ine in
For ¢ arbitrarily small, this ratio can be arbitrarily large.

If, after n — 1 rounds,ALG hasn — 1 items in each of its bins, we give an item of sizes, and
thenn — 1 items of sizel — e(n — 1). ALG has to accept all these item®PT arranges the first

5 ON-LINE MAXIMUM RESOURCE DUAL BIN PACKING 16
items, including the item of size=, such that all bins are filled te. It can then reject all the large
items. This gives a performance ratio of

ALG(I) n*e+(n—-1)(1—e(n—1)) 2n—1+(n— 1)1
OPT(I) ~ n2e = -

This can again be arbitrarily large ferarbitrarily small. O

We note that the situation for the parameterized problenkfor 1 is very different from the
situation for the general problem. For evéry- 1, it is not hard to show that any algorithm has
competitive ratio of at most/(k — 1). The reason for this is that ®PT rejected any item at all,
then its bins are full up to at least— 1/k.

The following lower bound tends tb+ for

anyn > 2.

asn tends to infinity and is at least+

(k 1) 3(k: 1)

Theorem 14.Consider the On-Line Parameterized Maximum Resource Dual Bin Packing Problem
with accepted total size as cost function. For> 2, any deterministic algorithm ALG for this

problem has
>iohe{l2) 21}

=7

m

> -
Caslh) 2 1+ -7,

wherem = max {j

Proof. Let n be the number of bins and let> 0 be a very small constant. Let be the largest
numberl < m < n such thatzyzm% > 1. Sincel/z is a monotonically decreasing function for
z > 0, we get a lower bound df2 | onm:

1 1 1
Z / dx—lnx]r[+j:lni>lnn+ 2 +1>1.

H ¢ n
For the upper boundy can be at most2 |, since

Z 1’< " ldx:[lnm]?nw:1nﬁ<ln%:1

Hence, depending on the exact valuewpfn is either| 2 | or [2].

The initial input isn! items of sizes. We first prove that, for any packing of these items, there
exists an integei, m < i < n, such that at leastbins receive strictly less tha## items.
Assume for the purpose of contradiction that this is not the case. Then, at least one bin has at least
—small |tems and foreach=n—1,n—2,...,m, thereis at least one additional bin that receives

at least—"—; items. Since the total number of itemsris we get thab 37" —— < nl, which

is equwalent to " ,, + < 1. By the definition ofm, this cannot be the case.

Now, pick ani, m <1 g n, such that at leagtbins receive strictly less thagznm items iINALG's
packing. Give

5 ON-LINE MAXIMUM RESOURCE DUAL BIN PACKING 17
’ i—m
n—+m-—1
n(k—1)
2 <1>
k

1 I—1 i
3 <_ L >
k- n+m—1
After packing the first — m of these itemsALG still has at leastn bins filled to strictly less than
an,’L_Z. e. Letr be the number oALG's bins which are completely empty. Since all bins are less

than full, there is room for exactly.(k — 1) 4 items of size} and at leasinax{m —r, 0} items
of size% — =L Thus,ALG s able to pack the remaining items as well, giving a total size of

n+m—i

| , n! n(k—1)+m n!—1
nle + (i —m) e+ - ,
n+m—1 k n+m—1

me.

Before the arrival of the sizg items,OPT can pack the items from phase one in one bin each and
distribute the initialn! items in the remaining bins to fill all bins up to exac% e. Each bin
getsk — 1 items of size,%, and no further items can be packed. The total size pack&Hiyis

n! n(k—1)

| —
nle + (1 m)n+m—i€+ ?

As ¢ decreases, the ratio converges to % O

The lowest possible value &f is % which is obtained when equals3, 6 or 9.

For the case where the objective function is the number of accepted items, the situation is even
worse.

Theorem 15. For the On-Line Parameterized Maximum Resource Dual Bin Packing Problem with
the number of accepted items as cost function, no deterministic algorithm is competitive, for any
k.

Proof. Letn > 2 be the number of bins available, and AdtG be any deterministic algorithm.

The input sequence begins witkn — 2 items of sizeﬁ. ALG fills all but at most two bins
completely, and the remaining two bins are either both filled toi, or one is filled completely
and the other ta — ;.

In the first case, the sequence continues with one item of%simd Léj items of sizes. ALG
rejects the first of these and accepts all of the small o@H#3T, on the other hand, arranges the
items of sizeﬁ, so that all but one bin is full, the item of si%efits in that last bin, and all the
small items are rejected.

In the second case, the sequence continues with one item Qj,;siize, two items of size;-, and

| 37z | — 1items of sizec. ALG accepts the first of these items, rejects the next two, and accepts all

6 CONCLUDING REMARKS 18

the small itemsOPT, on the other hand, rejects the first of these items, accepts the next two, and
rejects all the small items.

By makinge arbitrarily small, the number of items acceptedAlyG can be made arbitrarily large,
while the number of items accepted OWT is either2nk — 1 or 2nk. O

6 Concluding Remarks

The most interesting open problem is to prove that the off-line maximum resource bin packing
problem is NP-hard (or to find a polynomial time algorithm for it).

For the off-line version of the problem, we have investigated First-Fit-Decreasing, which is worst
possible, and First-Fit-Increasing, which performs better and obtains an approximation ratio of
g'. It would be interesting to establish a general lower bound on the problem, and, if it is lower

thang, to determine the optimal algorithm for the problem. Does there exist a polynomial time

approximation scheme for the off-line version?

For the on-line version, we have considered the two standard bin packing problems from the lit-
erature. For dual bin packing, no algorithm is competitive in general, independent of whether the
cost measure is the total size or the total number of accepted items. With the total accepted size
as cost function, the situation is completely different for the parameterized versign>f@; any

1

algorithm has a parameterized competitive ratio betvﬂeearyi—1 and about + PR

For the classic variant of on-line bin packing, we have established general upper and lower bounds
and proved that First-Fit, Best-Fit, and Last-Fit perform worst possible. The behavior of Worst-Fit
seems very promising, but we leave it as an open problem to determine its competitive ratio.

7 Acknowledgments

First of all, we would like to thank Michael Bender for suggesting the problem and for interesting

initial discussions. We would also like to thank Morten Hegner Nielsen for interesting discussions
at the 3rd NOGAPS, where the work on the problem was initiated. In addition, we are thankful to
Gerhard Woeginger for comments on an earlier version of this paper.

References

[1] E.M. Arkin, M.A. Bender, J.S.B. Mitchell, and S. Skiena. The Lazy Bureaucrat scheduling
problem.Information and Computatiqri84(1):129-146, 2003.

[2] S.F. Assman, D.S. Johnson, D.J. Kleitman, and J.Y-T. Leung. On a dual version of the one-
dimensional bin packing problend. Alg, 5(4):502-525, 1984.

REFERENCES 19

[3] A. Bar-Noy, R. E. Ladner, and T. Tamir. Windows scheduling as a restricted version of bin
packing. InProc. 12th Annual ACM-SIAM Symposium on Discrete Algorithpages 224—
233, 2004.

[4] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysi€ambridge
University Press, 1998.

[5] J. Boyar and L.M. Favrholdt. The relative worst order ratio for on-line algorithmg#ldo-
rithms and Complexity: 5th Italian Conference, LNCS 26%8jes 58—-69, 2003.

[6] J. Boyar and L.M. Favrholdt. The relative worst order ratio for on-line bin packing algo-
rithms. Technical report PP-2003-13, Department of Mathematics and Computer Science,
University of Southern Denmark, 2003.

[7] J. Csirik, J.B.G. Frenk, M. Lalih and S. Zhang. Two simple algorithms for bin covering.
Acta Cybernetical4(1):13-25, 1999.

[8] J. Csirik, D.S. Johnson, and C. Kenyon. Better approximation algorithms for bin covering.
In Proc. 12th Annual ACM-SIAM Symposium on Discrete Algorittpages 557-566, 2001.

[9] L. Epstein and M. Levy. Online interval coloring and variants.Phoc. 32nd International
Colloquium on Automata, Languages and ProgrammgaP5. To appear.

[10] M.R. Garey and D.S. JohnsorComputers and Intractability — A Guide to the Theory of
NP-CompletenesdV. H. Freeman and Company, 1979.

[11] R.L. Graham. Bounds for certain multiprocessing anomaBed.Systems Technical Journal
45:1563-1581, 1966.

[12] R. Hassin and S. Rubinstein. An approximation algorithm for the maximum traveling sales-
man problemlInformation Processing Letter§7(3):125-130, 1998.

[13] D.S. Hochbaum, editoApproximation Algorithms for NP-Hard ProblemBWS Publishing
Company, 1997.

[14] K. Jansen and R. Solis-Oba. An asymptotic fully polynomial time approximation scheme for
bin covering.Theoretical Computer Sciencg06(1-3):543-551, 2003.

[15] D.S. Johnson, A. Demers, J.D. Ullman, M.R. Garey, and R.L. Graham. Worst-case perfor-
mance bounds for simple one-dimensional packing algoritfsh&M J. Comp.3:299-325,
1974.

[16] D.R. Karger, R. Motwani, and G.D.S. Ramkumar. On approximating the longest path in a
graph.Algorithmicag 18(1):82—-98, 1997.

[17] A.R. Karlin, M.S. Manasse, L. Rudolph, and D.D. Sleator. Competitive snoopy caching.
Algorithmicag 3(1):79-119, 1988.

[18] D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rdEsmu-
nications of the ACM28(2):202—-208, 1985.

