
Preemptive scheduling on a small number of hierarchical machines

György Dósa∗ Leah Epstein†

Abstract

We consider preemptive offline and online scheduling on identical machines and uniformly
related machines in the hierarchical model, with the goal of minimizing the makespan. In this
model, each job can be assigned to a subset of the machines which is a prefix of the machine set.
We design optimal offline and online algorithms for two uniformly related machines, both when
the machine of higher hierarchy is faster and when it is slower, as well as for the case of three
identical machines. Specifically, for each one of the three variants, we give a simple formula
to compute the makespan of an optimal schedule, provide a linear time offline algorithm which
computes an optimal schedule and design an online algorithm of the best possible competitive
ratio.

1 Introduction

In this paper we study preemptive online scheduling for cases where distinct processors or machines
do not have the same capabilities.

The most general non-preemptive online scheduling model assumes m machines 1, . . . , m and
n jobs, arriving one by one, where the information of a job j is a vector pj = (p1

j , p
2
j , . . . , p

m
j ) of

length m, where pi
j is the processing time or size of job j if it is assigned to machine i. Each job is

to be assigned to a machine before the arrival of the next job. The load of a machine i is the sum
of the processing times on machine i of jobs assigned to this machine. The goal is to minimize the
maximum load of any machine. This model is known as unrelated machines [1]. Many simplified
models were defined, both in order to allow the design of algorithms with good performance (which
is often difficult, or even impossible, for unrelated machines), and to make the studied model more
similar to reality. In the sequel we describe a few models which are relevant to our study.

We consider online algorithms. For an algorithm A, we denote its cost by A as well. The cost
of an optimal offline algorithm that knows the complete sequence of jobs is denoted by opt. In
this paper we consider the (absolute) competitive ratio. The competitive ratio of A is the infimum
R such that for any input, A ≤ R · opt. If the competitive ratio of an online algorithm is at most
C, then we say that it is C-competitive. For randomized algorithms, we replace the cost of the
algorithm A by its expected cost E(A), and in this case, the competitive ratio of A is the infimum
R such that for any input, E(A) ≤ R · opt.

Uniformly related machines [1, 4] are machines having speeds associated with them, where
machine i has speed si and the information that a job j needs to provide upon its arrival is just its
size, or processing time on a unit speed machine, which is denoted by pj . Then we have pi

j = pj/si.
If all speeds are equal, then we get identical machines [12].

∗Department of Mathematics, University of Pannonia, Veszprem, Hungary, dosagy@almos.vein.hu.
†Department of Mathematics, University of Haifa, 31905 Haifa, Israel. lea@math.haifa.ac.il.

1



Restricted assignment [2] is a model where each job may be run only on a subset of the machines.
A job j has a running time associated it, which is the time to run it on any of its permitted
machines, which are denoted by Mj . Thus if i ∈ Mj , then we have pi

j = pj and otherwise pi
j = ∞.

The hierarchical model represents a situation where there is a clear order between the strength of
machines, in terms of the jobs they are capable of performing. In the hierarchical model, we get
that the set Mj is a prefix of the machines for any j.

In this paper we consider the restricted related hierarchical model, where machine i has speed si,
job j has size pj on a unit speed machine, and may run on a prefix of the machines 1, . . . , mj , i.e.,
Mj = {1, . . . , mj}. Therefore, pi

j = pj

si
if i ≤ mj and otherwise pi

j = ∞. Thus, in this model, there
are at most m distinct possible subsets of permitted machines. For a job j whose set of permitted
machines is 1, . . . , mj , we say that the job is in the set Pmj , or a Pmj job. That is, the set of jobs
for which the set of permitted machines is 1, . . . , i is called Pi. We slightly abuse notation and for
every value of i denote by Pi also the sum of all Pi jobs.

Possible applications of this model can be computer systems, where the computers differ not
only in speed but also in the capacity of their memories. Each job has a memory threshold, which
is the minimum memory that a computer must have in order to run it. This creates a hierarchy of
the computers. Note that the speeds of computers are not necessarily related to their memories,
and thus a computer that is higher in the hierarchy that is based on sizes of memories, is not
necessarily faster than a computer that is lower in the hierarchy.

In this paper, we focus on small numbers of machines. We first study the case of two machines.
In this case, it is reasonable to assume that the machine that is capable of running any job is faster,
since this is a stronger machine. However, the opposite case can occur in real life as well, when the
machine that cannot run every job, is more specialized, and works faster when it is running the
jobs that it is capable of running. We further consider the case of three identical speed machines
in the hierarchical model.

We study preemptive scheduling, where the processing of a job can be shared between several
machines. Thus upon the arrival of job j, it may be cut into pieces to be packed as independent jobs,
under the restriction that no two parts of the same job can run in parallel on different machines.
The processing times of the different parts of a job are calculated accordingly (i.e., as if these are
indeed independent jobs). The notion of preemptive scheduling is relevant only to models where
the role of time is clear, and therefore it is irrelevant to the general case of unrelated machines.
Note that in this model, idle time may be useful. Thus the load of a machine is the completion
time of any part of job assigned to it. Alternatively, the load of a machine is the sum of processing
times of parts of jobs assigned to this machine (as they are defined to be on this machine) plus the
total duration during which the machine is idle (but did not complete all the parts of jobs it needs
to run). The makespan is again the maximum load of any machine.
Previous results. The hierarchical model for general m was studied by Bar-Noy, Freund and
Naor [3] (see also [7]). They designed a non-preemptive e + 1 ≈ 3.718-competitive algorithm.

Jiang, He and Tang [13], and independently, Park, Chang and Lee [14] studied the problem
on two identical speed hierarchical machines. They both designed non-preemptive 5

3 -competitive
algorithms and showed that this is best possible. The paper [13] considered a preemptive model
in which idle time is not allowed. This is a restricted type of preemptive scheduling, where all
machines need to be occupied starting from time zero and until they complete to run the parts of
jobs assigned to them. They designed a 3

2 -competitive algorithm and showed this is best possible.
It is known that in the restricted assignment model, preemption and even scheduling jobs

2



fractionally, i.e., possibly scheduling several parts of the same job in parallel, does not change
the order of growth of the best possible competitive ratio, which is Θ(log n) [2]. Preemptive
scheduling on identical machines and uniformly related machines was widely studied. For many
problems tight bounds on the competitive ratio are known. Chen, Van Vliet and Woeginger gave
a preemptive optimal algorithm and a matching lower bound for identical machines [6] (see also
[15]). The competitive ratio of the algorithm is mm/(mm − (m − 1)m). A lower bound of the
same value was given independently by Sgall [16]. For two uniformly related machines, with speed
ratio s ≥ 1 between the speeds of the two machines, the tight competitive ratio is known to
be (s + 1)2/(s2 + s + 1), given by Epstein et al. [10] and independently by Wen and Du [17].
Those results were extended for a class of m uniformly related machines with non-decreasing speed
ratios [9]. The tight bound in that case is a closed formula, which is a function of all the speeds.
An optimal (in terms of competitive ratio) online algorithm for any set of speeds was given by
Ebenlendr, Jawor and Sgall [8]. Given a combination of speeds, the competitive ratio is a solution
of a linear program, and never exceeds e ≈ 2.718. The paper shows that the result of Epstein [9]
actually holds for a wider class of speed sets, and gives a closed formula for three machines and
any combination of speeds.

A lower bound of 2 on the overall (maximum over all speed combinations) competitive ratio
was given by Epstein and Sgall [11], and improved to 2.054 by Ebenlendr et al. [8].
Our results. We provide a complete solution for several problems. We consider the model of
two hierarchical machines with all speed combinations as well as the model of three hierarchical
machines of identical speeds. This gives three variants of the problem, two machines, where the first
machine is faster, two machines, where the first machine is slower, and three identical machines.

In each of these three variants that we study, we construct a formula to compute the makepsan
of an optimal schedule, and design a linear time offline algorithm which constructs such a schedule.

We design an online algorithm of best possible competitive ratio for each one of the three cases.
The algorithms are deterministic but the lower bounds hold for randomized algorithms as well. All
algorithms use idle time, and we show that deterministic algorithms which do not use idle time
cannot achieve the same competitive ratios. The competitive ratios are as follows: s(s+1)2

s3+s2+1
for two

machines, where s is the speed ratio between the machines, and the first machine is faster, (s+1)2

s2+s+1
for two machines, where s is the speed ratio between the machines, and the second machine is
faster, and 3

2 for three machines.

2 Two machines, where machine 1 is faster

In this section we assume without loss of generality that the speed of machine 1 is s ≥ 1, and the
speed of the other machine is 1. Recall that P1 is the set of jobs that must be assigned to machine
1, and P2 is the set of jobs that can be assigned to any machine. Let Pmax be the size of the largest
job in the set P2.

We start with some bounds that are valid for any solution and in particular, for an optimal
offline algorithm.

Lemma 1 lb = max
{

P1
s , P1+P2

s+1 , Pmax
s + P1

s−1
s2

}
is a lower bound on the cost of any solution.

Moreover, P2 ≤ P1
s holds if and only if lb = P1

s .

3



Proof. The first bound holds since all jobs in P1 must be scheduled on the first machine. The second
bound is valid due to the fact that the sum of all processing times is P1 +P2 and s+1 is the sum of

machine speeds. In the third bound, if Pmax ≤ P1
s , then we get Pmax

s +P1
s−1
s2 = P1

s + Pmax−P1
s

s ≤ P1
s .

Thus, we only need to consider the case Pmax > P1
s . Consider an assignment, and a job j of size

Pmax. Let µ be the part of this job assigned to machine 1 and Pmax−µ the part assigned to machine
2. Clearly, we have that the first machine cannot complete all jobs assigned to it earlier than the
time P1+µ

s . Thus, if µ ≥ Pmax− P1
s , then we get the required lower bound on the makespan. On the

other hand, in order for j to be completed, it has to run on machine 2 for a time of Pmax − µ and
on machine 1 for time of µ

s . These times do not necessarily need to be in this order or continuous,
but there can be no overlap and thus we get that this job is completed no earlier than the time
Pmax − (s− 1)µ

s . Now, if µ ≤ Pmax − P1
s , then we get the required bound on the makespan.

For the second part, P2 ≤ P1
s holds if and only if P1+P2

s+1 ≤ P1
s holds. Thus we got that if

lb = P1
s , then P2 ≤ P1

s . To complete the other direction, we note that if P2 ≤ P1
s is true, then

Pmax ≤ P2 ≤ P1
s holds, and so Pmax

s + P1
s−1
s2 ≤ P1

s .
We use the value lb for our online algorithm. It is possible to show that the value lb is not

only a lower bound on the makespan of an optimal solution, but is actually equal to this value.

Theorem 2 Given a set of jobs J , the value lb is equal to the makespan of an optimal schedule,
and a schedule of this cost can be constructed by a linear time algorithm.

Proof. In order to prove the theorem, we need to consider the three cases, case by case, and
show a linear time algorithm for each one of the cases. Clearly, the value lb can be computed
in linear time. Let k be an index of a job of size Pmax. If lb = P1

s , then due to Lemma 1, we
have P2 ≤ P1

s . Thus we schedule all P1-jobs on the first machine, exactly during the time slot
[0, lb]. All other jobs are scheduled on the second machine during the time slot [0, P2] ⊆ [0, lb].
Next, if lb = Pmax

s + P1
s−1
s2 , then we divide job k into two parts of sizes P1

s and Pmax − P1
s .

During the time slot [0, P1
s ], we run the P1-jobs on the first machine, and the first part of job

k on the second machine. Note that given the value of lb we have lb ≥ P1
s , and Pmax ≥ P1

s .
During the time slot [P1

s , Pmax
s − P1

s2 + P1
s ], the first machine runs the remainder of job k, and

the second machine runs all remaining P2-jobs, which have a total size of P2 − Pmax, until time
P1
s + P2 − Pmax. We need to show that P1

s + P2 − Pmax ≤ lb = Pmax
s + P1

s−1
s2 . Using P1+P2

s+1 ≤ lb,
we have P1

s + P2 − Pmax = P1 + P2 − Pmax − P1 + P1
s ≤ (s + 1)lb− slb = lb.

It is left to consider the case P1+P2
s+1 = lb. If lb ≥ Pmax, then we assign all jobs of P1 to the

first machine until time P1
s ≤ lb. Afterwards, we keep assigning jobs to this machine until time lb.

The rest of the jobs are assigned to the second machine, starting from time zero. There is enough
space for them since (s + 1)lb ≥ (P1 + P2). If some job was split between the two machines, then
let a be the part assigned to the first machine, and b to the second machine. We have a+ b ≤ Pmax.
The starting time on the first machine is lb − a

s and the completion time on the second machine
is b. We have b ≤ lb− a

s since a
s + b ≤ a + b ≤ lb. Thus there is no overlap.

Otherwise, we define µ = s Pmax−lb
Pmax(s−1) . We assign a part of size µPmax of job k on the first

machine from time lb− µPmax

s until time lb, and the rest on the second machine from time zero till
time lb− µPmax

s = (1− µ)Pmax, by definition of µ. The remaining slots on the machines are non-
overlapping. We next assign all P1-jobs to the first machine starting from time zero, and afterwards,
the remaining P2-jobs, to empty slots. Since lb ≥ P1+P2

s+1 , there is enough space for all jobs. We need

4



to show that the space on the first machine is enough for the P1-jobs, i.e., that P1
s + µPmax

s ≤ lb.
By the definition of µ, this is equivalent to, P1

s + Pmax−lb
s−1 ≤ lb, or lb ≥ Pmax

s + P1(s−1)
s2 , which

holds by the definition of lb.
We replace the notation lb with the notation opt since we have shown that lb is exactly the

cost of an optimal schedule. We continue with a lower bound on the competitive ratio.

Lemma 3 Any randomized algorithm A has competitive ratio of at least α(s), where α(s) =
s(s+1)2

s2(s+1)+1
.

Proof. We specify a sequence which proves the statement. We use an adaptation of Yao’s principle
[18] for proving lower bounds for randomized algorithms. It states that a lower bound for the
competitive ratio of deterministic algorithms on a fixed distribution on the input is also a lower
bound for randomized algorithms and is given by E(A)

E(opt) .
Let X ≥ 1 be a real number. The list of jobs is as follows. The first job is a P1-job, where p1 = s.

The following two jobs are P2-jobs, p2 = X+s
s+1 and p3 = s(X−1)

s+1 . Note that we have p2 +p3 = X, and
p3 = s (p2 − 1). The fourth job is a P2-job, p4 = sX + 1. The fifth job is a P1-job, p5 = sX + s2X.
According to Yao’s result, we consider a deterministic algorithm A.

Denote by optk, Ak the cost of an optimal solution and of algorithm A for the input which
consists of the first k jobs. We have opt3 = p2 = s+X

s+1 (by assigning job 2 to the second machine,
and the other jobs to the first machine), opt4 = X + 1 (by assigning job 1 to machine 1 in parallel
with a part of job 4 on machine 2, and the other jobs to machine 2, in parallel with the other part
of job 4 on machine 1), and opt5 = sX + X + 1 (by assigning the P1-jobs, and only these jobs, to
machine 1).

Suppose that algorithm A is r-competitive, for some r ≥ 1. Let c be the sum of parts of the
second and third jobs which are assigned to the first machine, let d1 be the sum of parts of these
jobs assigned to the second machine when the first machine is idle (after the first three jobs are
assigned), and d2 the sum of parts of these jobs assigned to the second machine when the first
machine is busy. Then d1 +d2 + c = X. Let b be the part of the fourth job which is assigned to the
first machine, then a part of size sX + 1 − b of this job is assigned to the second machine. Then
the next inequalities hold.

A3 ≥ 1 +
c

s
+ d1

A5 ≥ 1 +
c

s
+

b

s
+ (X + sX)

A4 ≥ d2 + (sX + 1− b) +
b

s

All inequalities are lower bounds on the makespan at various times. In the first inequality, the
total size assigned to run on the first machine after the first three jobs have arrived is s + c, and
an additional size of d1 is assigned to run on the other machine when the first machine is idle.
The second inequality holds due to the total size assigned to the first machine after all jobs have
arrived. The third inequality holds due to the time after four jobs have arrived. There are d2 units
of time busy on both machine before the fourth job is scheduled. The time to run this job due to
the way it is split between machines is b

s + p4 − b.

5



We use the sequence of the first three jobs with probability 1
s+1 , the sequence of four first jobs

with probability 1
s+1 , and the sequence of all five jobs with probability s−1

s+1 . Thus the expected cost
of an optimal offline algorithm is

1
s + 1

(opt3 + (s− 1)opt5 + opt4) =
1

s + 1

(
s + X

s + 1
+ (s− 1) (sX + X + 1) + X + 1

)
.

On the other hand, the expected cost of A is at least

1
s + 1

(A3 + (s− 1)A5 +A4)

≥ 1
s + 1

((
1 +

c

s
+ d1

)
+

(
s− 1 + c− c

s
+ b− b

s
+ X (s− 1) (s + 1)

)
+

(
d2 + (sX + 1− b) +

b

s

))

=
s + s2X + sX + 1

s + 1
,

where the last equality follows from c + d1 + d2 = X.
Since the algorithm is r-competitive, we get,

s + s2X + sX + 1 ≤ r

(
s + X

s + 1
+ (s− 1) (sX + X + 1) + X + 1

)
,

from which follows that

r ≥ (s + 1)2 (sX + 1)
s + X + s (s + 1) (sX + 1)

=
(s + 1)2

s+X
sX+1 + s (s + 1)

.

Letting X tend to ∞, the right hand side can get arbitrarily close to (s+1)2

s(s+1)+1/s and therefore the
next inequality holds for every s ≥ 1:

r ≥ (s + 1)2

s (s + 1) + 1
s

.

Now we turn to show that there exists an algorithm which achieves the previous lower bound. In
the sequel we use α = α(s) = (s+1)2

s2+s+1/s
, and introduce an α-competitive (thus optimal) algorithm.

We define t(s) = t = s2+s−1
s2+s+1/s

and 1 − t = 1+1/s
s2+s+1/s

; both are positive and smaller than 1 for any
speed s.

Lemma 4 The next properties hold for any s ≥ 1 for t and α defined above.

1. 1 + t
s = α.

2. s (1− t) (s + 1) = α and thus (1− t) (s + 1) ≤ α.

3. (1− t + t/s) (s+1)2

s+2 = α

Proof.

6



1. 1 + t
s = s2+s+1/s+s+1−1/s

s2+s+1/s
= s2+s+s+1

s2+s+1/s
= (s+1)2

s2+s+1/s
= α.

2. s (1− t) (s + 1) = s (1+1/s)(s+1)
s2+s+1/s

= s (s+1)2

s(s2+s+1/s)
= α.

3. (1− t + t/s) (s+1)2

s+2 = 1+s+1
s2+s+1/s

(s+1)2

s+2 = (s+1)2

s2+s+1/s
= α.

Let J be a given prefix of the input. We use the following definitions for the algorithm. We
partition the time slot [0, C] into sub-intervals according to the subset of the machines that are busy
during the various intervals. There are three types of intervals that can be used to assign a new
job, which are intervals where at least one machine is not busy. An interval is called “left hole”, if
the second machine is busy and the first machine is not, and “right hole”, if the roles of machines
are opposite. If both machines are not busy, then we call the interval “super hole”. We use the
same terms to denote the union of intervals of the same status, thus e.g., we refer by “super hole”
to the union of intervals where both machines are not busy. The fourth type of interval where both
machines are busy is called “dense”, and the union of dense intervals is called “the dense part”.
The lengths of the left hole, right hole, super hole, and dense part be denoted by L(J), R(J), S(J),
and D(J), respectively. These values refer to the situation before the last job in J is scheduled.

The algorithm will follow the next conditions.

a. All P1-jobs are assigned to the first machine. P2-jobs are always split into two parts of ratio
t : (1 − t) between the sizes of these part. The assignment is done as follows. First, the t
fraction of the job is assigned to the first machine, next the remaining part, which is a (1− t)
fraction of the job, is assigned to the second machine.

b. We denote by C(J) = αopt(J), where opt(J) is the current value of the bound opt (which
is computed given the jobs of J). Every job is assigned to a set of time intervals which are
fully contained in the interval [0, C(J)]. We prove later that such an assignment is always
possible.

c. When a new job is assigned, we try to occupy as much as possible of the super hole. If
necessary, the left or right hole are used as well. Consider the assignment of job j of size pj ,
which is a P2-job. We define y(J) = max{(1− t) pj − R(J), 0}, where J = {1, 2, . . . , j}. If
y(J) is positive, then since we would like to assign a part of size (1− t)pj of j to the second
machine, at least a part of size y(J) must use the super hole on this machine. This means
that we may use at most an interval of length S(J) − y(J) of the super hole on the first
machine, to schedule the part of size tpj , which should run on the the first machine.

We are now ready to define our algorithm.

Algorithm 1.
Denote the next job by pj . Let C(J) be defined as C(J) = αopt(J) (where J = {1, 2, . . . , j}).

Job j is scheduled within the interval [0, C(J)] as follows.

1. pj ∈ P1. Schedule a part of j which is as large as possible into the super hole, if necessary,
schedule the remainder of j into the left hole.

7



2. pj ∈ P2. First a part of size tpj is assigned to the first machine, a maximum amount of it
is assigned to the super hole, but no more than S(J) − y(J). The remainder, if it exists, is
assigned into the left hole. Next, the part of size (1− t) pj of the job is assigned to the second
machine. First, a maximum amount is assigned to the super hole, and then the remaining
part is assigned into the right hole.

We illustrate the action of the algorithm using the followings example. Consider a sequence of
three jobs, where the first two are in P2, and the third one is in P1. Their sizes are 13, 26 and 13.
Let s = 2, then we get α = 18

13 , t = 10
13 and 1− t = 3

13 . The values of C(J) for the three jobs are 9,
18 and 24. Before the assignment of the first job, we have J = {1} and there is only a super hole
of size 9 (the lengths of the left hole, the right hole and the dense part are all zero). Therefore the
value of y(J) is 3, so only a part of length 6 of the super hole may be used on the first machine.
According to the algorithm, a part of size 10 should be assigned to the first machine, to occupy a
slot of size 5. The part of size 3 is assigned to the second machine. Since there is no right hole, it
is assigned to the super hole (see Figure 1).

Figure 1: The assignment of the first job in the example for Algorithm 1

Next, before the second job is assigned, we have J = {1, 2} and there is a super hole of length
10, a left hole of length 3, and a right hole of length 5. There is no dense part at this time (i.e., it has
a length of zero). Therefore at this time y(J) = 1. The part of the job of size 20 should be assigned
into time slots of total length 10 on the first machine. However, we have S(J) − y(J) = 10 − 1
and thus one unit of time is reserved for the second job in the left hole (the additional unit of time
in the super hole is reserved to be used on the second machine). The part of the job of size 6 is
assigned to the second machine, one unit of size into the super hole, and the rest into the right hole
(see Figure 2).

Finally, before the last job is assigned, we have J = {1, 2, 3} and there is a super hole of length
6, a left hole of length 3, a right hole of length 9, and a dense part of length 6. Since this job
is in P1, a part of the job of size 12 is assigned to the super hole (on the first machine) and the
remainder into the left hole (see Figure 3).

We need to show that the algorithm can assign all the jobs, that is, that the designated intervals
are large enough to contain each job.

8



Figure 2: The assignment of the second job in the example for Algorithm 1

Theorem 5 The algorithm is correct, i.e., it can assign all the jobs for any input.

Proof. First we prove that the P1-jobs and t part of the P2-jobs always fit into the time-interval
[0, C(J)] on the first machine, and the (1− t) part of the P2-jobs always fit into the time-interval
[0, C(J)] on the second machine, where C(J) = αopt(J). We first show that there is enough space,
and later we show that no overlap is created. The key property of the algorithm is to schedule
parts of jobs on the first machine ensuring that there is enough available space left on the second
machine in this process.
Case a, P2 ≤ P1/s. By Lemma 1, opt = P1/s. Then we have,

P1 + tP2

s
≤ P1 + tP1

s

s
=

(
1 +

t

s

)
P1

s
≤ αopt ,

and
(1− t) P2 ≤ (1− t)

P1

s
≤ α

P1

s
= αopt ,

where the first inequality holds due to Lemma 4, and the second one trivially holds since 1− t <
1 < α.
Case b, P2 > P1/s, then,

9



Figure 3: The assignment of the third job in the example for Algorithm 1

P1 + tP2

s
=

P1

s
+

s + 1− 1/s

s2 + s + 1/s
P2 =

s + 1
s2 + s + 1/s

P1 +
1/s2

s2 + s + 1/s
P1 +

s + 1− 1/s

s2 + s + 1/s
P2

≤ s + 1
s2 + s + 1/s

P1 +
1/s

s2 + s + 1/s
P2 +

s + 1− 1/s

s2 + s + 1/s
P2 =

s + 1
s2 + s + 1/s

(P1 + P2)

=
(s + 1)2

s2 + s + 1/s

P1 + P2

s + 1
≤ αopt

and

(1− t)P2 =
1 + 1/s

s2 + s + 1/s
P2 ≤ (s + 1)2

s (s2 + s + 1/s)
P1 + P2

s + 1
≤ αopt.

It therefore follows, that job parts that are assigned to the two machines always fit into the time
interval [0, C(J)]. It remains to show that the assignment can be done properly, avoiding overlap.

All P1-jobs are assigned to one machine, thus they cannot create overlap and it remains to deal
with P2-jobs. Let X be the first P2-job for which the algorithm is not correct (we use X to denote
its size as well). We define J to be the sequence of jobs up to X (including X). If y(J) = 0, then
we get that R(J) ≥ (1− t)pj , and thus the part of X of size (1− t) X can be assigned. Moreover,
it is allowed to use all the empty space on the first machine for the part of X of size tX, we already
showed that it is enough to assign this job. On the other hand, if y(J) > 0, then this means that
a part of size y(J) of the super hole was reserved for this part, unless the super hole is not large
enough. However, we know that there is enough space for each job, thus S(J) + R(J) ≥ (1− t) X,
and the second part can always be assigned.

10



In the case opt(J) = P1
s , we have P2 ≤ P1

s by Lemma 3, thus, not only the parts of size
(1− t) P2, but even the entire amount P2 fits into the right hole, which is of size at least P1

s . Thus
y(J) = 0 in this case. Since we proved that on the first machine there is enough space for all parts
of jobs, if we are allowed to use the entire space on that machine, then it is left to consider the
other two options of the value of opt and the case y(J) > 0.

We need to show that the amount of space allocated on the first machine is large enough to
accommodate the part of size tX. This space includes the complete left hole plus a part of the
super hole. We require that,

s (S(J)− [(1− t) X −R(J)]) + sL(J) ≥ tX ⇐⇒ s (S(J) + R(J) + L(J)) ≥ s (1− t) X + tX

⇐⇒ s (C(J)−D(J)) ≥ (s + t− st) X ⇐⇒ C(J)−D(J) ≥ (1− t + t/s)X

⇐⇒ D(J) ≤ C(J)− (1− t + t/s) X (1)

As it turned out, the exact sizes of the left hole, right hole and super hole do not matter, but
only their total size, which needs to be large enough. That is, the dense part of the schedule must
be small enough. Thus now we compute this dense part of the schedule as follows. First suppose
the job that precedes X does not cause an increase of the dense part of the schedule. Note that
the functions opt(J) and C(J) are non-decreasing in the variables P1, P2, and Pmax, thus, if (1)
does not hold, then we can omit this job from the instance and get a counterexample. Clearly, if
D(J) = 0, then (1) holds. This process must terminate before all jobs are removed since at least
two jobs need to be assigned in order to create a non-empty dense part. Thus it can be supposed
that the job right before X increases the dense part of the schedule. From this it follows that just
before X arrives, (before the value of C is updated), there is no super hole. The dense part can
increase only if the super hole is fully used, since if the super hole is not fully used on the first
machine, then the space which is reserved within the super hole is filled on the second machine.
Consider the moment of the execution of the algorithm just before assigning X, i.e. right after the
last job before X was assigned.

The total size of parts of jobs assigned to the first machine is P1 + t (P2 −X), and they occupy
a total time which is P1+t(P2−X)

s . The total size of parts of jobs assigned to the second machine
is (1 − t) (P2 −X). Both machines may use the interval up to time C(J\X). Since there is
(temporarily) no super hole, the second machine is busy during the time periods where the first
machine is not busy, and thus the overlap when both machines are busy is,

D(J) = (1− t) (P2 −X) +
P1 + t (P2 −X)

s
− C(J\X) =

P1

s
+ (1− t + t/s) (P2 −X)− C(J\X)

Substituting this value into (1), it remained to show that

P1

s
+ (1− t + t/s) (P2 −X)− C(J\X) ≤ C(J)− (1− t + t/s)X, i.e.

P1

s
+ (1− t + t/s) P2 ≤ α (opt(J) + opt(J\X)) . (2)

Case a, opt(J) = P1+P2
s+1 . Let Z ≥ 0 be a value such that P1+P2

s+1 = P1
s + Z. Then P2 =

P1
s + (s + 1)Z, and since Pmax

s + P1
s−1
s2 ≤ P1+P2

s+1 = P1
s + Z, the maximum size of any P2-job is at

most P1
s + sZ. In particular, it follows that X ≤ P1

s + sZ. Therefore, opt(J\X) ≥ P1+(P2−X)
s+1 ≥

11



P1+
�

P1
s

+(s+1)Z−P1
s
−sZ

�
s+1 = P1+Z

s+1 . We get,

P1

s
+ (1− t + t/s) P2 =

P1

s
+

s + 2
s2 + s + 1/s

(
P1

s
+ (s + 1)Z

)

=
(

1 +
s + 2

s2 + s + 1/s

)
P1

s
+

(s + 2) (s + 1)
s2 + s + 1/s

Z =
s2 + 2s + 2 + 1/s

s2 + s + 1/s

P1

s
+

(s + 2) (s + 1)
s2 + s + 1/s

Z

≤ (s + 1) (2s + 1)
s2 + s + 1/s

P1

s
+

(s + 1) (s + 2)
s2 + s + 1/s

Z = α

(
2s + 1
s + 1

P1

s
+

s + 2
s + 1

Z

)
=

α

((
1 +

s

s + 1

)
P1

s
+

(
1 +

1
s + 1

)
Z

)
= α

(
P1

s
+ Z +

P1 + Z

s + 1

)
≤ α (opt(J) + opt(J\X))

Case b, opt = Pmax
s + P1

s−1
s2 = P1+Y

s , where Y = Pmax − P1
s ≥ 0. We define P ′

2 = P2 − Pmax.
Using P1+P2

s+1 ≤ P1+Y
s we get P2 − Pmax = P2 − Y + P1

s ≤ Y
s , and thus P ′

2 ≤ Y
s . Clearly, X ≤ Pmax,

and thus opt(J\X) ≥ P1+P ′2
s+1 . Let 0 ≤ γ ≤ 1 be a value for which P ′

2 = γ Y
s . Then we get,

P1

s
+ (1− t + t/s) P2 =

P1

s
+

s + 2
s2 + s + 1/s

(
Pmax + P ′

2

)
=

P1

s
+

s + 2
s2 + s + 1/s

(
Y +

P1

s
+ γ

Y

s

)

=
(

1 +
s + 2

s2 + s + 1/s

)
P1

s
+

s + 2
s2 + s + 1/s

(
1 +

γ

s

)
Y =

s2 + 2s + 2 + 1/s

s (s2 + s + 1/s)
P1 +

(s + 2) (s + γ)
s (s2 + s + 1/s)

Y

≤ (s + 1)2

s2 + s + 1/s

2s + 1
s + 1

P1

s
+

(s + 1)2

s2 + s + 1/s

s + 1 + γ

s (s + 1)
Y = α

(
2s + 1
s + 1

P1

s
+

(
1
s

+
γ/s

s + 1

)
Y

)

= α

(
P1 + Y

s
+

P1 + γ Y
s

s + 1

)
= α

(
P1 + Y

s
+

P1 + P ′
2

s + 1

)
≤ α (opt(J) + opt(J\X))

where the first inequality follows from the fact that (s + 2) (s + γ) ≤ (s + 1) (s + 1 + γ) holds for
any possible value of γ, and s2+2s+2+1/s ≤ (s + 1) (2s + 1) holds for any s ≥ 1, which completes
the proof.

We have seen that for any speed s ≥ 1, Algorithm 1 is α-competitive. Comparing this ratio
with Lemma 3, we conclude that Algorithm 1 has an optimal competitive ratio.

As can be seen above, Algorithm 1 uses idle time. An interesting question is whether this is
done for convenience. The result of Jiang et al. [13] implies that for s = 1, an algorithm which
does not use idle time has competitive ratio of at least 3

2 . Substituting s = 1 into our bound we see
that using idle time reduces the competitive ratio. Therefore, for s = 1, an algorithm of optimal
competitive ratio (among such that do or do not use idle time) must use idle time. We show that
this is true for all values of s, thus motivating the usage of idle time in our algorithm.

Claim 6 For any s ≥ 1, a deterministic algorithm which does not use idle time has competitive
ratio which is strictly larger than α(s) = s(s+1)2

s2(s+1)+1
.

Proof. Consider the following sequence and an algorithm A that does not use idle time. The first
job is a P2-job, where p1 = s2. The second job is a P1-job where p2 = s3. The only way to avoid
idle time is to assign the first job completely to one of the two machines. If the first job is assigned
to the second machine, then the only possible schedule is that both machines run jobs from time
zero till time s2. If this job is assigned to the first machine, then we have that this machine is

12



running both jobs, and completes them at time s2 + s. For this input, the first option is optimal
and so in the second case, the competitive ratio is 1 + 1

s > α(s) for s ≥ 1. In the first case, if
s >

√
2, then the sequence which consists of the first job only gives the competitive ratio s. For

s >
√

2 we have s > α(s) and we are done. Otherwise (for s ≤ √
2), the sequence continues with

a P2-job, p3 = s2 + s. Since before the arrival of this job, the machines are balanced, it has to
be assigned completely to one of the machines, to avoid idle time. If it is assigned to the second
machine, then we get A = 2s2 + s, whereas opt ≤ s2 + s (by running only the third job on the
second machine), which gives the competitive ratio 2s+1

s+1 > α(s) for all s ≥ 1. Otherwise, the last
job is a P1-job, p4 = s3 + s2. This job must be assigned to the first machine and thus we get
A = s3+s2+s+s3+s2

s = 2s2 + 2s + 1, and opt = 2s2 + s, which gives the competitive ratio 2s2+2s+1
2s2+s

.
This value is strictly larger than α(s) for all s ≤ √

2.

3 Two machines, where machine 2 is faster

Assume that speed of the first machine is 1, and of the second machine is s ≥ 1. Note that without
hierarchy levels there exists a (s+1)2

s2+s+1
-competitive optimal algorithm for the problem [10, 17]. We

will see that this case is simpler than the previous one, since we will get this competitive ratio.
We again start with some bounds that are valid for any solution and in particular, for an optimal

offline algorithm.

Lemma 7 lb = max
{

P1,
P1+P2

s+1 , Pmax
s

}
is a lower bound on the cost of any solution. Moreover,

lb = P1 if and only if P1 ≥ P2
s .

Proof. The first bound holds since all jobs in P1 must be scheduled on the first machine, which
has speed 1. The second bound is valid due to the fact that the sum of all processing times is
P1 + P2 and s + 1 is the sum of machine speeds. The third bound holds since the job of size Pmax

must be completed.
To prove the second part, we have P1 ≥ P1+P2

s+1 if and only if P1 ≥ P2
s , thus it remains to show

that if P1 ≥ P2
s , then we have Pmax

s ≤ P1. This holds since Pmax ≤ P2.
We use the value lb for our online algorithm. It is again possible to show that the value lb is

not only a lower bound on the makespan of an optimal solution, but is actually equal to this value.

Theorem 8 Given a set of jobs J , the value lb is equal to the makespan of an optimal schedule,
and a schedule of this cost can be constructed by a linear time algorithm.

Proof. Let k be an index of a job of size Pmax. If Pmax
s + P1 ≥ lb, then we use the following

schedule. All P1-jobs are assigned on machine 1, from time zero until time P1 and job k is assigned
on machine 2, starting from time lb− Pmax

s until time lb. The unused slots on the two machines
are non-overlapping, thus we use them to assign the other jobs. There is enough room since
(s + 1)lb ≥ P1 + P2.

Otherwise, let µ be defined as µ = s·lb−s·P1−Pmax
(s−1)Pmax

≥ 0. We assign a part of job k of size
µPmax to the first machine, during the time interval [P1, P1 + µPmax], and the rest of the job
to the second machine during the time interval [P1 + µPmax, lb], which due to the definition of
µ can accommodate exactly the part of size (1 − µ)Pmax of job k. The rest of the P2-jobs are

13



scheduled within the remaining time slots, which are non-overlapping. There is enough room since
(s + 1)lb ≥ P1 + P2.

Once again, we replace the notation lb with the notation opt since we have shown that lb is
exactly the cost of an optimal schedule. We continue with a lower bound on the competitive ratio.

In this section we prove that the best possible competitive ratio is β(s) = β = (s+1)2

s2+s+1
=

1 + s
s2+s+1

. We start with the lower bound.

Lemma 9 Any randomized algorithm A has competitive ratio of at least β(s), where β(s) =
(s+1)2

s2+s+1
= 1 + s

s2+s+1
.

Proof. Any instance of the problem on uniformly related machines (with no hierarchy) is an
instance of our problem where all jobs are P2-jobs. Therefore, any lower bound for that case
is valid for our problem. Therefore, since a lower bound of β(s) = (s+1)2

s2+s+1
= 1 + s

s2+s+1
on the

competitive ratio of any algorithm for the problem on uniformly related machines with no hierarchy
is given in references [10, 17], this implies the lower bound the more general problem with hierarchy.

We introduce a new, (s+1)2

s2+s+1
-competitive algorithm. We use notations similar to those in the

definition of Algorithm 1. We define C(J) = βopt(J), and each job is scheduled fully within the
time interval [0, C]. We use the same definitions of left hole, right hole, super hole, and dense
part, as in the previous section. In this case, a greedy approach that uses the second machine as
much as possible, and prefers the super hole to the right hole, gives an algorithm of best possible
competitive ratio.

Algorithm 2.
Let pj be the next job, and define C = βopt(J) (where J = {1, 2, . . . , j}). Job j is scheduled

within the interval [0, C] as follows.

1. pj ∈ P1. Schedule a part of j which is as large as possible into the super hole, if necessary,
schedule the remainder of j into the left hole.

2. pj ∈ P2. Schedule a maximum part of the job into the super hole on the second machine,
if necessary continue and assign a maximum part of the remainder into the right hole, the
remaining part (if exists) is assigned into the left hole.

We show a simple example of the action of the algorithm. Consider a sequence of three jobs of
sizes 7, 14 and 42, where the first job is in P1 and the other two are in P2. Assume that s = 2.
We have β = 9

7 . The three values of C(J) are 9, 9 and 27. The first job can only be assigned to
the first machine. The second job can fit completely on the second machine. It is assigned so that
the super hole (of size 2) is filled first, and the remainder is assigned to the right hole. The third
job occupies the entire super hole and right hole, and a remainder of size 2 still remains, and is
assigned to the left hole, to occupy the left hole completely as well (see Figure 4).

Theorem 10 The algorithm is correct, i.e. it can always assign all the jobs.

Proof. Assume by contradiction that some job cannot be assigned. Suppose that J is a minimal
counterexample in terms of number of jobs, let n be the last job and and denote its size by X (we
use X to denote the job n as well). Clearly, X cannot be assigned and every job before X can

14



Figure 4: An example for Algorithm 2

be assigned. Note that X is not the only job in the counterexample. This is true since by the
definition of the formula that computes the value opt, in both cases (job 1 is a P1-job or a P2-job),
it can always be assigned into the super hole.

First suppose that X ∈ P1. If the job before the last job is a P1-job as well, then by replacing
the two last jobs with one with size pn−1 + pn, the value of the opt remains the same, therefore
this modified job also does not fit into the relevant holes (the super hole and the left hole), and we
get a counterexample with fewer jobs, which is a contradiction. Therefore, if X is a P1-job, then it
follows that its predecessor is a P2-job; we denote job n− 1 and its size by Y .

If job Y does not use any part from the left hole, then omitting it we get a smaller counterex-
ample, which leads to a contradiction. Thus it uses a non-zero part of the left hole. Due to the
definition of the algorithm, it follows that it totally uses the super hole and the right hole, i.e. the
total running time assigned to the second machine, just after Y is assigned, is C(J\X) and there
is no idle time on the second machine. Since opt(J\X) = max

{
P1 −X, P1+P2−X

s+1 , Pmax
s

}
, it holds

that C(J\X) ≥ (s+1)2

s2+s+1
P1+P2−X

s+1 . It follows that the total size of jobs assigned to the first machine
(denoted by C1) is at most the total size of all P1-jobs, plus the total size of P2-jobs that do not fit

15



on the other machine.

C1 ≤ P1 + P2 − s
(s + 1)2

s2 + s + 1
P1 + P2 −X

s + 1
= P1 + P2 − s (s + 1)

s2 + s + 1
(P1 + P2 −X)

=
1

s2 + s + 1
(P1 + P2) +

s (s + 1)
s2 + s + 1

X =
s + 1

s2 + s + 1
P1 + P2

s + 1
+

s (s + 1)
s2 + s + 1

X

≤ (s + 1)2

s2 + s + 1
max

{
P1 + P2

s + 1
, X

}
≤ β max

{
P1 + P2

s + 1
, P1

}
≤ βopt.

Since X can be assigned to any slot on the first machine, without any risk of overlap, it follows
that X can be assigned within the dedicated interval, which is a contradiction.

Next, we consider the case X ∈ P2. Let U be the last job before X which does not only use
the super hole (i.e. if it is a P1-job, then it uses some non-empty part of the left hole, and if it is a
P2-job, then it uses the some non-empty part of the right hole, and possibly a part of the left hole
as well). If U does not exist, then we add a dummy job of size zero as a first job in the sequence.

This means that after job U is assigned, all further P1-jobs are assigned into the super hole,
onto the first machine. We denote these jobs and their total size by Z ≥ 0. All further P2-jobs
after U and before X are assigned into the super hole onto the second machine. We denote these
jobs and their total size by Y ≥ 0. Since we are interested in the union of jobs of each type, and
not in the specific jobs, we may assume that Y and Z are single jobs (possibly of size zero). The
behavior of the algorithm on these jobs would be the same not matter how Y and Z are partitioned
into jobs.

Consider the moment just after assigning U , and let J0 be defined as J0 = J\{X, Y, Z}. Ac-
cording to the definition of the algorithm, C(J0) ≥ (s+1)2

s2+s+1
P1+P2−X−Y−Z

s+1 . After assigning U the
whole super hole is used. If U ∈ P1, then U fills the complete super hole on the first machine, and
if U ∈ P2, then it completes this super hole on the second machine. Let the left and right hole at
this moment (after assigning U) be denoted simply as L and R (i.e., if T is the job arriving right
after U , then L = L(J0 ∪ T ) and R = R(J0 ∪ T )). Then the total processing time assigned to the
first machine is C(J0) − L, and thus the processing time assigned to the second machine at this
time is exactly P1 + P2 −X − Y − Z − (C(J0)− L). The jobs which arrive between U is assigned
and X arrives are assigned to the super hole at each time. Specifically, the jobs with total size Y
are assigned totally to the second machine, and the total processing time assigned to the second
machine will become P1 + P2 −X − Y − Z − (C(J0)− L) + Y = P1 + P2 −X − Z − C(J0) + L.

The left hole increases only when jobs are assigned into the super hole on the second machine,
and does not change if jobs are assigned to the first machine. Therefore, the left hole just before
X arrives has size L + Y

s . This is the space available for X on the first machine. We need to show
that the size of the super hole and right hole on the second machine is at least X −L− Y

s and the
remainder of X actually fits into the right hole and the super hole. It suffices to show that if the
remained part of X is assigned to the second machine, then the total load of the second machine
(not including idle time) is bounded from above by (s+1)2

s2+s+1
-times opt. We denote this value by C2

and get:

16



C2 ≤ P1 + P2 −X − Z − C(J0) + L

s
+

X − L− Y/s

s
=

P1 + P2 − Z − C(J0)− Y/s

s

≤ P1 + P2

s
− (s + 1)2

s (s2 + s + 1)
P1 + P2 −X − Y − Z

s + 1
− Z

s2
− Y

s2

=
s2 + s + 1− s− 1

s (s2 + s + 1)
(P1 + P2) +

s + 1
s (s2 + s + 1)

X +
(

s + 1
s2 + s + 1

− 1
s

)
Y + Z

s

≤ s (s + 1)
s2 + s + 1

P1 + P2

s + 1
+

s + 1
s2 + s + 1

X

s
≤ (s + 1)2

s2 + s + 1
max

{
P1 + P2

s + 1
,
X

s

}

≤ β max
{

P1 + P2

s + 1
,
Pmax

s

}
≤ βopt = C ,

where the second inequality follows from s ≥ 1 and the bound on C(J0), and the third inequality
follows from s+1

s2+s+1
< 1

s . Since no idle time is enforced on the second machine, we get that X can
be completely assigned by the algorithm.

As in the previous section, we show that idle time is necessary in order to obtain an optimal
competitive ratio.

Claim 11 A deterministic algorithm which does not use idle time has competitive ratio which is
strictly larger than β(s) = 1 + s

s2+s+1
.

Proof. Consider an algorithm A which does not use idle time. The sequence starts with the jobs
p1 = s and p2 = 1, where job 1 is a P2-job and job 2 is a P1 job. As in the previous section, there
are exactly two possible assignments given that idle time cannot be used at any step. Either both
machines run the two jobs until time 1, or machine 1 is running both jobs until time s + 1. In
the second case opt = 1, which clearly gives competitive ratio which is much higher than β(s).
Otherwise, a third job, which is a P2-job, of size p3 = s2 + s arrives. We now have opt = s + 1.
The machines are balanced, thus the best that can be done now without introducing idle time, is
to run it on the faster machine. We get A = s + 2. Since s+2

s+1 > β(s) for any s ≥ 1, the claim is
proved.

Note that the algorithm in this section as well as the algorithm of the previous section are two
algorithms of optimal competitive ratio if s = 1.

4 Three identical speed machines

In this section, we investigate the case of three hierarchical machines with identical speeds. In this
case we can give an optimal algorithm, which is a simple generalization of Algorithm 2.

We again start with lower bounds on the cost of any solution, and in particular on the optimal
makespan. In this section Pmax denotes the largest size of any job. Recall that P1, P2 and P3 are
the subsets of jobs that can be assigned to machines in the sets {1}, {1, 2} and {1, 2, 3}, respectively.

We state and prove the next lower bound for general m. Thus suppose that there are m machines
of identical speed.

Lemma 12 For a given input, we define lb = max
{
P1,

P1+P2
2 , ..., P1+P2+...+Pm

m , Pmax

}
. Then lb

is a lower bound on the makespan for any solution for this input.

17



Proof. The first m bounds hold since all machines have speed 1. Moreover, we can get similar
bounds for subsets of the machines set. P1-jobs are run only on machine 1, the union of P1-jobs
and P2-jobs is run on the first two machines, and similarly, the union of P1-jobs, P2-jobs,..., Pi-jobs
is run on the first i machines. The last bound holds since the largest job must be completed.

We use the value lb with m = 3 for our online algorithm. It is possible to show here as well,
that the value lb is not only a lower bound on the makespan of an optimal solution, but is actually
equal to this value. We again state and prove this result for any m.

Theorem 13 Given a set of jobs J , the value lb is equal to the makespan of an optimal schedule,
and a schedule of this cost can be constructed by a linear time algorithm.

Proof. We assign jobs to the intervals [0, lb] of the machines as follows. On each machine, we
assign jobs starting from earlier times until later times. We start with machine 1, then machine 2,
then machine 3, and so on. We first assign P1-jobs, then P2-jobs,..., and finally Pm-jobs. We have
at most m − 1 jobs that were split between machines. If a job is split, then it is scheduled until
time lb on one machine, and starting time zero on the next machine. Since lb ≥ Pmax, there is no
overlap caused. Since lb ≥ P1, all P1-jobs are assigned to the first machine. Since lb ≥ P1+P2

2 , all
P2 jobs are assigned to one of the first two machines, and so on, finally, since lb ≥ P1+P2+...+Pm

m ,
there is enough space for all jobs to be assigned.

Similarly to before, we replace the notation lb with the notation opt since we have shown that
lb is exactly the cost of an optimal schedule. We continue with a lower bound on the competitive
ratio.

We will show that the best competitive ratio for m = 3 is 3
2 . We start with proving a lower

bound 2m
m+1 for m machines.

Lemma 14 Any randomized algorithm A, for preemptive scheduling on m hierarchical machines
of equal speeds, has competitive ratio of at least 2m

m+1 .

Proof. We again apply Yao’s method [18]. Our input consists of m sets of jobs; the sum of each
set is 1. The jobs of the first set are Pm-jobs, the jobs of the second set are Pm−1-jobs, and so on,
and the jobs of the last set are all P1-jobs. The sizes of all jobs are 1

m . The m inputs (one set, two
sets, ..., and finally all m sets) arrive with equal probabilities. Consider a deterministic algorithm
A. Let ai,j , i = 1, ..., m, j = 1, ..., m + 1− i be the total sizes of jobs from the i-th set assigned to
the j-th machine, respectively. (The jobs from the i-th set are allowed to be assigned only to the
first m + 1− i machines).

We use Ai and opti to denote the makespan of A and an optimal algorithm for the sequence of
i sets of jobs. We have opt1 = 1

m , opt2 = 2
m ,..., opti = i

m , and finally optm = m
m = 1. Therefore,

E(opt) = 1
m

1+2+...+m
m = m+1

2m . We have A1 ≥ a1,m, A2 ≥ a1,m−1 +a2,m−1, A3 ≥ a1,m−2 +a2,m−2 +
a3,m−2, and generally Ai ≥ a1,m+1−i +a2,m+1−i + ...+ai,m+1−i. Finally, Am ≥ a1,1+a2,1+ ...+am,1.

Thus E(A) ≥ 1
m

m∑
i=1

i∑
j=1

aj,m+1−i = 1
m

m∑
i=1

m+1−i∑
j=1

ai,j = 1
m

m∑
i=1

1 = 1. Let r be the competitive ratio of

A. We have r ≥ E(A)
E(opt) ≥ 2m

m+1 .

Note that when m = 3, the value of the lower bound above is 3
2 .

Let optj be the value of opt for the sequence of the first j jobs. In the next algorithm again a
greedy approach which uses machines with higher indices first, and allocates enough space on these
machines, gives the desired result.

18



Algorithm 3.

0. Let j be the next job to be assigned. Let i ∈ {1, 2, 3} be such that j is a Pi-job and let Cj be
defined as Cj = 3

2optj .

1. Let k ≤ i be the maximum index for which there exists an available time interval for scheduling
on machine k within the time-interval [0, Cj ]. We use such available time-intervals as long
as the job requires additional running time, as follows. First assign a maximum length in
of intervals where all machine are idle (either fill these intervals or assign the complete job).
Next, use a maximum length of intervals where only one of the other two machines is busy.
Finally, use the intervals in which both other machines are busy.

2. If the complete job is scheduled, then go to 0 (and consider the next job). Otherwise go to 1.

Theorem 15 Algorithm 3 is 3/2-competitive and thus it is optimal.

Proof. We would like prove that all jobs can be scheduled. Suppose by contradiction that the
algorithm is not 3/2-competitive, and let I be a counterexample. Without loss of generality, we
can assume that all jobs in I are scheduled successfully, except for the last job which cannot be
scheduled. We denote the last job as well as its size by X, and its index by n. Then opt = optn

and we define C = Cn.
We start with proving three lemmas regarding the structure of the counterexample. Afterwards,

we examine the last job X carefully and show that it cannot exist, which proves the theorem.

Lemma 16 Without loss of generality we may assume that for the counterexample opt = P1+P2+P3
3

holds.

Proof. Otherwise we add tiny P3-jobs to the example, which arrive right before the last job, and
clearly the last job can not be scheduled in this case as well. We add a number of such jobs so that
the value of opt remains exactly the same, but the value P1+P2+P3

3 grows and reaches this value.

We scale sizes of jobs in the example so that opt = P1+P2+P3
3 = 6. Then it follows that P3 ≥ 6.

The final value of C = Cn on the complete input is C = 9. We get that if job X is assigned to in
a valid way (without overlap between its parts), then the largest load exceeds 9.

Lemma 17 Consider a time during the execution of the algorithm, before the last job has arrived.
Suppose that a total processing time of t of the P3-jobs is assigned to one of the first two machines.
Then there is at least an amount t of processing time of P3-jobs that is assigned to the third machine
at this point in time during the execution of the algorithm.

Proof. We prove this claim by induction. Clearly it is true before any jobs arrived. Assume it
is true at some time during the execution of the algorithm. The situation may change only upon
arrival of a P3 job, assume this is job j. We have either that machine M3 is occupied during the
complete interval [0, Cj ] or that only this machine received parts of the new job. In the first case,
the total sum of the jobs is at most 3optj = 2Cj , and thus the sum of P3 jobs does not exceed
twice the amount of P3 jobs on M3. Otherwise, we use the induction hypothesis. Since at least half
of the sum of P3 jobs was assigned to M3, and job j is assigned completely to P3, the percentage
of parts of P3 jobs on M3 could only increase.

19



Lemma 18 Consider a time during the execution of the algorithm, before the last job has arrived.
Suppose that a total processing time of t of the P3-jobs and the P2 jobs is assigned to the first
machine. Then there is at least an amount t of processing time of these jobs that is assigned to the
second machine at this time during the execution of the algorithm.

Proof. Consider a partition of the time axis into intervals in which both the first machines are in
the same status during the entire interval, that is each machine that is not idle, executes a part of
a single job continuously in this interval. We have the following situations.

• Both machines are idle.

• Both machines are running jobs from P2 or P3.

• The second machine is running a job from P2 or P3, or is idle, and the first machine is running
a P1 job.

• One machine is running a P2 or P3 job, and the other machine is idle.

The only situation which can lead to a contradiction to the claim is when we are in the fourth
situation, and the idle machine is the second one. However, according to the definition of the
algorithm, this is impossible, since this part of job would have been assigned to the second machine
before trying to assign it to the first machine. This is true since clearly no part of this job is running
on the third machine during this time slot.

We continue with the proof of Theorem 15, for which we use the following notations. For any
subset I ′ ⊂ I, the total size of jobs in I ′ is denoted by W (I ′), and for any job Z ∈ I, let P (Z) be
the total size of jobs up to Z (i.e., Z and all the jobs that arrive before it).

Case 1. X ∈ P3. Then the total size of the time intervals where all three machines are busy is
more than 9−X at the time just before the arrival of X. Let S be the set of that jobs which have at
least some part which is assigned into a time when all machines are busy, and let Y be the last job in
S, and j be its index. At this moment we have Cj ≥ 3

2
P (Y )

3 = P (Y )
2 . Already at this time, the total

time where all three machines are busy is more than 9−X, since no other parts of jobs are assigned
during such periods. On the other hand, at this moment there is not a super hole, i.e., there is no
time interval when all machines are idle. This means that Cj ≥ 9 − X and the total size of jobs
which have arrived so far including Y , is at least P (Y ) > (Cj−(9−X))+3(9−X) = 2 (9−X)+Cj .
Comparing the inequalities, we get,

2Cj ≥ P (Y ) > 2 (9−X) + Cj , i.e.
Cj > 2 (9−X) , and thus

P (Y ) > 4 (9−X)

and thus the total size of all jobs is W (I) = X + W (I − X) ≥ X + P (Y ) > X + 4 (9−X) =
36− 3X ≥ 18, since X ≤ 6, which leads to a contradiction.

Case 2. X ∈ P2. Then the total size of time intervals where the first two machines are busy
is more than 9 −X. Now let S be the set of jobs which have a non-empty part which is assigned
into a time when the first two machines are busy simultaneously, let Y be the last job in S, and
k be its index. Similarly to Case 1, since some part of Y is assigned to a moment when both first
two machines are busy, the total load on the first two machines (excluding idle time) is at least

20



9 − X + Cj . Suppose that at this time (when Y is assigned) the sum of the sizes of all parts of
P3-jobs which are assigned to the first two machines is t ≥ 0, and to the third machine is q ≥ 0.
Then it follows from Lemma 17 that t ≤ q. We get, that P (Y ) > 9 −X + Cj + q, and also holds
that Cj ≥ 3

2
P (Y )

3 = P (Y )
2 , from which we get,

2Cj ≥ P (Y ) ≥ 9−X + Cj + q, i.e.
Cj ≥ 9−X + q, and thus

P (Y ) > 2 (9−X) + 2q.

As we saw above, P3 ≥ 6. If t + q ≤ 6, then after Y is assigned, there must arrive additional
P3-jobs with total size of at least 6 − t − q. Thus the total size of all jobs is W (I) = X +
W (I − X) ≥ X + P (Y ) + (6 − t − q) > X + 2 (9−X) + 2q + 6 − t − q = 24 − X + q − t ≥ 18,
which leads to a contradiction. In the other case, if t + q > 6, then it follows that q > 3. Then
W (I) = X + W (I −X) ≥ X + P (Y ) > X + 2 (9−X) + 2q > 18−X + 6 ≥ 18, which again leads
to a contradiction.

Case 3. X ∈ P1. Then the load of the first machine before X arrives (excluding idle time) is
more than 9−X, and after X is assigned, the load of this machine is larger than 9 and there is no
idle time on it. Let S be the set of that jobs which have at least some part which is assigned to the
first machine, before X arrives, let Y be the last job in S, which is not in P1, and let j be its index.
If Y does not exist, we clearly have a load of at more P1 ≤ 6 on the first machine. We denote by
X ′ the sum of all P1 jobs arriving after Y (including X). Since after Y , the only jobs that will be
assigned to M1 are P1 jobs, we get that after Y is assigned, the load of the first machine is at least
9 − X ′ (excluding idle time), where X ′ ≤ P1 ≤ 6. By definition, Y ∈ P2 or Y ∈ P3. If Y ∈ P2,
the fact that some part of Y is not assigned to M2 means that this machine is completely full in
the time interval [0, Cj ]. Thus we get, that the total load of the first two machines (excluding idle
time) is at least 9 −X ′ + Cj . The proof for this case continues as in Case 2. If Y ∈ P3, consider
the current value of Cj . By the definition of the algorithm it holds that Cj ≥ P (Y )

2 , and since a
part of Y is assigned to the first machine, the third machine is completely full in the time interval
[0, Cj ]. Furthermore, since P1 ≤ 6, and the load of the first machine will be more than 9 at the
end of the algorithm, it follows that at this moment (right after assigning Y ) the sum of sizes of
P2 and P3 jobs being assigned to the first machine is more than 3. From this fact and Lemma 18,
it follows that at this moment the load of the second machine (excluding idle time) is also more
than 3. Therefore, P (Y ) > 6 + P (Y )

2 and so P (Y ) > 12. We get that the load (excluding idle time)
of the second machine and third machine together, at this time, is more than 9. Adding the final
load of the first machine, that is by our assumption more than 9 (and as mentioned above, this
machine does not have idle time after X is assigned) we get that the sum of all job sizes is more
than 9 + 3 + 6 = 18. Therefore this case leads to a contradiction as well.

Claim 19 An deterministic algorithm which does not use idle time has a competitive ratio which
is strictly larger than 3

2 .

Proof. Consider an online algorithm A which does not use idle time. The sequence starts with
very small jobs of total size 1 that are all P3-jobs. Then it continues with one P2-job of size 1. At
this point, since idle time is not allowed, every machine is busy for some continuous time period,
which starts at time zero. (This period may possibly be empty for some machines, but not for all
of them.) Denote this time for machine i by di. Let r be the competitive ratio. Since the P2-job

21



cannot run on machine 3, and after the first batch of jobs opt = 1
3 , we have r ≥ 3d3 = 3(2−d1−d2).

Next, if d1 ≥ 1, a last job arrives. This job is a P1-job of size 1, which must be assigned to machine
1. At this time opt = 1 and thus we have r ≥ 2. Otherwise, we have d1 < 1, but at least one
of machines 1,2 must be busy until at least time 1, due to the P2-job which cannot be completed
before time 1. Thus we have d2 > d1 and d2 ≥ 1. Next, a P1-job of size d2 − d1 arrives. After
this arrival, the first two machines are balanced. Finally, a P2-job of size 1 + d2 − d1 arrives. After
these jobs, opt = 1 + d2 − d1 > 1, and A = d2 + 1 + d2 − d1. We therefore have 1+2d2−d1

1+d2−d1
≤ r or

1 + d2
1+d2−d1

≤ r. Assume that r ≤ 1.5. Then we get d1 + d2 ≥ 1.5 (by the condition on d3) and
d1 + d2 ≤ 1, which is a contradiction.

5 Conclusion

We designed algorithms of best possible competitive ratios for several preemptive problems with
hierarchical machines. Some interesting features were revealed. The competitive ratio for two
hierarchical machines of identical speed is 4

3 , the same as the result in reference [5] for two identical
machines. This is true (i.e., matches the result in references [10, 17]) even for the case where
machines have speeds, but only if the machine of lower hierarchy is faster. However, the result
of reference [5] for three identical machines is 27

19 , whereas our tight result for three hierarchical
machines of identical speed is 3

2 . Some questions remain open. In particular, the case of m
hierarchical machines of identical speeds was not solved in this paper. We conjecture that the
competitive ratio in this case is 2m

m+1 , and that this result can be achieved using an algorithm
similar to the one in Section 4.

References

[1] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line load balancing with applica-
tions to machine scheduling and virtual circuit routing. J. ACM, 44:486–504, 1997.

[2] Y. Azar, J. Naor, and R. Rom. The competitiveness of on-line assignments. J. Algorithms,
18:221–237, 1995.

[3] A. Bar-Noy, A. Freund, and J. Naor. On-line load balancing in a hierarchical server topology.
SIAM J. Comput., 31:527–549, 2001.

[4] P. Berman, M. Charikar, and M. Karpinski. On-line load balancing for related machines. J.
Algorithms, 35:108–121, 2000.

[5] B. Chen, A. van Vliet, and G. J. Woeginger. Lower Bounds for Randomized Online Scheduling.
Information Processing Letters, 51:219–222, 1994.

[6] B. Chen, A. van Vliet, and G. J. Woeginger. An Optimal Algorithm for Preemptive On-line
Scheduling. Operations Research Letters, 18:127–131, 1995.

[7] P. Crescenzi, G. Gambosi, and P. Penna. On-line algorithms for the channel assignment
problem in cellular networks. Discrete Applied Mathematics, 137(3):237–266, 2004.

22



[8] T. Ebenlendr, W. Jawor, and J. Sgall. Preemptive online scheduling: Optimal algorithms for
all speeds. In Proc. of the 14th Annual European Symposium on Algorithms (ESA2006), pages
327–339, 2006.

[9] L. Epstein. Optimal Preemptive On-Line Scheduling on Uniform Processors with Non-
Decreasing Speed Ratios. Operations Research Letters, 29(2):93–98, 2001. Also in STACS
2001.

[10] L. Epstein, J. Noga, S. S. Seiden, J. Sgall, and G. J. Woeginger. Randomized Online Scheduling
on Two Uniform Machines. Journal of Scheduling, 4(2):71–92, 2001.

[11] L. Epstein and J. Sgall. A Lower Bound for On-Line Scheduling on Uniformly Related Ma-
chines. Operations Research Letters, 26(1):17–22, 2000.

[12] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical J.,
45:1563–1581, 1966.

[13] Y.-W. Jiang, Y. He, and C.-M. Tang. Optimal online algorithms for scheduling on two identical
machines under a grade of service. Journal of Zhejiang University SCIENCE A, 7(3):309–314,
2006.

[14] J. Park, S. Y. Chang, and K. Lee. Online and semi-online scheduling of two machines under
a grade of service provision. Operations Research Letters, 34(6):692–696, 2006.

[15] S. Seiden. Preemptive Multiprocessor Scheduling with Rejection. Theoretical Computer Sci-
ence, 262(1-2):437–458, 2001.

[16] J. Sgall. A Lower Bound for Randomized On-Line Multiprocessor Scheduling. Inf. Process.
Lett., 63(1):51–55, 1997.

[17] J. Wen and D. Du. Preemptive On-Line Scheduling for Two Uniform Processors. Operations
Research Letters, 23:113–116, 1998.

[18] A. C. C. Yao. Probabilistic computations: towards a unified measure of complexity. In Proc.
18th Symp. Foundations of Computer Science (FOCS), pages 222–227. IEEE, 1977.

23


