
Optimal On-line Flow Time

with Resource Augmentation∗

Leah Epstein† Rob van Stee‡

November 14, 2003

keywords: flow time, algorithms, scheduling, competitive, resource augmentation.

Abstract

We study the problem of scheduling n jobs that arrive over time. We consider a non-

preemptive setting on a single machine. The goal is to minimize the total flow time. We

use extra resource competitive analysis: an optimal off-line algorithm which schedules

jobs on a single machine is compared to a more powerful on-line algorithm that has `

machines. We design an algorithm of competitive ratio O(min(∆1/`, n1/`)), where ∆ is

the maximum ratio between two job sizes, and provide a lower bound which shows that

the algorithm is optimal up to a constant factor for any constant `. The algorithm works

for a hard version of the problem where the sizes of the smallest and the largest jobs

are not known in advance, only ∆ and n are known. This gives a trade-off between the

resource augmentation and the competitive ratio.

We also consider scheduling on parallel identical machines. In this case the optimal

off-line algorithm has m machines and the on-line algorithm has `m machines. We give

a lower bound for this case. Next, we give lower bounds for algorithms using resource

augmentation on the speed. Finally, we consider scheduling with hard deadlines, and

scheduling so as to minimize the total completion time.

∗A preliminary version of this paper appeared in Proc. 13th Fundamentals of Computation Theory (2001),

Lecture Notes in Computer Science 2138, p.472-482. It was presented at the WEA workshop.
†School of Computer Science, The Interdisciplinary Center, Herzliya, Israel. Epstein.Leah@idc.ac.il.

Work carried out while the author was at Tel-Aviv University.
‡Centre for Mathematics and Computer Science (CWI), Kruislaan 413, NL-1098 SJ Amsterdam, The

Netherlands. Rob.van.Stee@cwi.nl. Work supported by the Netherlands Organization for Scientific Research

(NWO), project number SION 612-30-002, and partially by project number 612-061-000.

1

1 Introduction

Minimizing the total flow time is a well-known and hard problem, which has been studied

widely both in on-line and in off-line environments [1, 7, 8]. The flow time f(J) of a job J

is defined as its completion time, C(J), minus the time at which it arrived, r(J) (the release

time of J). This measure is applicable to systems where the load is proportional to the total

number of bits that exist in the system over time (both of running jobs and of waiting jobs).

In this paper, we consider on-line algorithms using resource augmentation, and we examine

the effects on the performance of an algorithm if it has more or faster machines than the

off-line algorithm (see [6, 9]).

We consider the following on-line scheduling problem. The algorithm has parallel identical

machines, on which it must schedule jobs that arrive over time. A job J (which arrives at

time r(J)) with processing requirement P (J) (also called running time or size) that becomes

known upon arrival, has to be assigned to one of the machines and run there continuously for

P (J) units of time. The objective is to minimize the sum of flow times of all jobs. The total

number of jobs is n.

We compare on-line algorithms that are running on `m machines (` ≥ 1) to an optimal

off-line algorithm, denoted by opt, that is running on m machines but knows all the jobs in

advance. Such on-line algorithms are also called `-machine algorithms, since they use ` times

as much machines as the optimal off-line algorithm. An algorithm that uses the same number

of machines as the off-line algorithm, but uses machines which are s > 1 times faster, is called

an s-speed algorithm.

For a job sequence σ and an on-line algorithm A, we denote the total flow time of σ in

the schedule of A on `m machines by A`m(σ). We denote the optimal total flow time for σ on

m machines by optm(σ). The competitive ratio using resource augmentation is defined by

rm,`m(A) = sup
σ

A`m(σ)

optm(σ)
,

where the supremum is taken over all possible job sequences σ. The goal of an on-line

algorithm is to minimize this ratio.

Approximating the flow time is hard even in an off-line environment. For a single ma-

chine, Kellerer, Tautenhahn and Woeginger [7] presented an O(
√
n)-approximation algorithm

and gave a lower bound of Ω(n
1

2
−ε) on the approximation ratio of any polynomial-time al-

2

gorithm, provided P 6= NP . For parallel machines, Leonardi and Raz [8] showed that when

preemption is allowed, the algorithm Shortest Remaining Processing Time (SRPT) is an

O(log(min{ nm , P}))-approximation and this is optimal. The solution from SRPT can be

transformed into a nonpreemptive solution at a cost of an O(
√

n
m) factor in the approxi-

mation ratio. Finally, they showed an Ω(n
1

3
−ε) lower bound on the approximability of the

nonpreemptive problem, provided P 6= NP .

In an on-line environment it is well known that the best competitive ratio of any algorithm

that uses a single machine is n (easily achieved by a greedy algorithm). The problem has been

studied introducing resource augmentation by Phillips, Stein, Torng and Wein [9]. They give

algorithms with augmentation on the number of machines. These are an O(logn)-machine

algorithm (which has a competitive ratio 1+o(1)) and an O(log ∆)-machine algorithm (which

achieves the competitive ratio 1), where ∆ is the maximum ratio between sizes of jobs. Both

algorithms are valid for every m.

We give an algorithm Levels and show r1,`(Levels) = O(min(n1/`,∆1/`)), where n is

the number of jobs that arrive. This algorithm works for a hard version of this problem where

the sizes of the smallest and the largest jobs are not known in advance; only ∆ and n are

known in advance. The algorithms above from [9] work only if the job size limits are known

in advance; particularly the size of the largest job must be known. We do not see how these

algorithms can be adapted for the harder version of the problem.

Furthermore, we show that for all on-line algorithms A and number 1 ≤ m1 ≤ ` of off-line

machines we have rm1,`(A) = Ω
(

min(n1/`,∆1/`)
(12`)`

)

. This shows that Levels is optimal up to a

constant factor for any constant ` against an adversary on one machine.

In [4], a related problem on a network of links is considered. It immediately follows from

our lower bounds, that any constant competitive algorithm has a polylogarithmic number

of machines. More precisely, if A has a constant competitive ratio and `m machines, ` ≥
Ω

(√
log(min(n,∆))

m
√

log log(min(n,∆))

)

. This result can also be deduced from Theorem 10 in [4]. However,

using their proof for the general lower bound would give only an exponent of 1
2` . Improving

the exponent to be the tight exponent 1
` is non-trivial. Our results imply that by choosing a

given amount of resource augmentation, the competitive ratio is fixed. We adapt the lower

bound for the case where the on-line algorithm has faster machines than the off-line algorithm.

This results in a lower bound of Ω(n1/(2m2)) on the speed of on-line machines, if ` = 1.

3

We also consider the following scheduling problem studied in [3, 9]. Each job J has a

deadline d(J). Instead of minimizing the flow time, we require that each job is finished by its

deadline, effectively limiting the flow time of job J to d(J) − r(J). The goal is to complete

all jobs on time. We show that a non-preemptive on-line algorithm can only succeed on any

sequence if ` = Ω(log ∆) for constant speed s, or s = Ω(∆1/`) for a constant number ` of

machines.

Finally we discuss the problem of minimizing the total completion time using resource

augmentation. We present an algorithm Wait which has an optimal competitive ratio of

1+1/s on one machine of speed s, and a competitive ratio of 1+1/
√
` on ` machines of speed

1.

Throughout the paper, for a specific schedule ζ for the jobs, we denote the starting time

of job J by Sζ(J), and its flow time by fζ(J) = Cζ(J)− r(J). We omit the subscripts if the

schedule is clear from the context.

2 Algorithms with Resource Augmentation

As stated, in this paper we consider the case where n is known and the on-line algorithm

has more machines than the offline algorithm that it is compared to. In the following two

lemmas, we show what happens if one of these conditions does not hold.

Lemma 1 Any on-line algorithm for minimizing the total flow time on ` parallel machines

has a competitive ratio of Ω(n1−ε) for any ε > 0 if it does not know n in advance, even if it

is compared to an off-line algorithm on one machine.

Proof Consider an on-line algorithm A and a constant 0 < ε < 1. Take N = max(4, 2/ε).

Define N0 = 1, N1 = N and Ni = NN
i−1 for i > 1.

One job of size 1 arrives at time 0. This is phase 0. For any phase i > 0, denote the time

that A starts the first job of phase i− 1 by ti.

In phase i = 1, . . . , `, jobs of size 1/Ni arrive starting at time ti and with intervals of

1/Ni during the next time interval of length 1/(2Ni−1) or until A starts one of them. If

ti+1 < ti + 1/(2Ni−1) and i < m, the next phase starts; otherwise, the sequence stops.

If the sequence continues until phase j, then A is using j machines at the same time.

Thus the sequence continues until at most phase `.

4

Suppose the sequence continues until phase j. Then at least Nj/(2Nj−1) jobs of size 1/Nj

have an average flow time of at least 1/(4Nj−1). This gives a total flow time of at least

Nj/(8N
2
j−1) = NN−2

j−1 /8. Moreover, the total number of jobs in this case is

n ≤
j
∑

i=0

Ni = 1 +

j−1
∑

i=0

NN i
<

Nj−1

∑

i=0

N i =
NNj−1+1 − 1

N − 1
<

N

N − 1
NNj−1

=
N

N − 1
Nj < 2Nj

and therefore
NN−2
j−1

8
=
N

1−2/N
j

8
>
(n

2

)1−2/N
/8 = Ω(n1−ε).

We now turn to the offline assignment of the jobs. The idea is to schedule each job at a

time that A does not schedule it. The very first job starts at time 0 if t1 ≥ 1 and at time

t1 +1 < 2 otherwise, and has a flow time of at most 3. In each phase i > 0, each job is started

at the time it arrives unless this would overlap with time ti+1. At time ti+1, no more jobs

from phase i will arrive and opt has completed all but one of them.

The last job in phase i is started by opt at time

ti+1 +
1

Ni
< ti +

1

2Ni−1
+

1

Ni
< ti +

1

Ni−1
− 1

Ni

and thus completes before time ti−1 + 1/Ni−1 (which is the time at which opt starts the last

job of phase i− 1). Thus the total flow time of jobs in this phase is at most 1/Ni−1, which is

the length of the interval in which all these jobs arrive and are completed.

In this way, it is possible to assign all the jobs without any overlap, thus creating a

valid offline schedule on a single machine. The total flow time of this schedule is at most

3 + 1 + 1/N1 + . . .+ 1/N`−1 < 4 +
∑∞

i=1 1/2i = 5.

Since the optimal total flow time is bounded by a constant, we find that the competitive

ratio is Ω(n1−ε). �

Lemma 2 rm,m(A) = Ω(n/m2) for all on-line algorithms A for minimizing the total flow

time on m parallel machines.

Proof A single unit job arrives at time 0. Let t be the time at which A starts this job. Let

µ = m
2(n−1) . For j = 0, . . . , n−1

m , m jobs of length µ are released at time t+ jµ. The optimal

schedule runs all these jobs immediately when they arrive, and the first job either before or

after them. Thus it has a total flow time equal to the total size of the small jobs plus 3. This

is (n− 1)µ+ 3 = Θ(m).

5

On the other hand, at each time t + jµ for j = 0, . . . , n−1
m , one small job arrives that A

cannot start immediately. In total, it must delay n−1
m such jobs until time t + 1/2. For the

total flow time, it does not matter which of the jobs A delays, since all the small jobs have

the same size. For the calculations, assume it delays one job from each step until time t+1/2.

This means it delays (n − 1)/m small jobs for at least 1/4 time on average. Thus its flow

time is Ω(n/m). Consequently, rm,m(A) = Ω(n/m2). �

Given these results, from now on we assume that n is known in advance. The number of

offline machines is m = 1, whereas the online algorithm has `m = ` machines. We define an

algorithm Levels. Levels uses ` priority queues Q1, . . . , Q` (one for each machine) and `

variables D1 ≥ . . . ≥ D`. We initialize Qi = ∅ and Di = 0. An event is either an arrival of a

new job or a completion of a job by a machine. Let γ = n1/`, where n is the number of jobs.

Algorithm Levels

• If a few events occur at the same time, the algorithm first deals with all arrivals before

it deals with job completions.

• On completion of a job on machine i, if Qi 6= ∅, a job of minimum release time among

jobs with minimum size in Qi is scheduled immediately on machine i. (The job is

dequeued from Qi.)

• On arrival of a job J , let i be a minimum index of a machine for which Di ≤ γP (J).

If there is no such index, take i = m. If machine i is idle, J is immediately scheduled

on machine i, and otherwise, J is enqueued into Qi. If P (J) > Di,Di is modified by

Di ← P (J).

We analyze the performance of Levels compared to a preemptive opt on a single machine.

Denote the schedule of Levels by π. Partition the schedule of each machine into blocks. A

block is a maximal sub-sequence of jobs of non-decreasing sizes, that run on one machine

consecutively, without any idle time.

• Let Ni be the number of blocks in the schedule of Levels on machine i.

• Let Bi,k be the kth block on machine i.

• Let bi,k,j be the jth job in block Bi,k.

6

• Let Ni,k be the number of jobs in Bi,k.

• Let Pi,k be the size of the largest job in blocks Bi,1, . . . , Bi,k i.e.

Pi,k = max
1≤r≤k

max
1≤j≤Ni,r

P (bi,r,j)

Pi,0 = 0 for all 1 ≤ i ≤ `.

• Let I =
⋃

1≤i≤`,1≤k≤Ni
Bi,k, i.e. I is the set of all jobs.

Similar to the proof in [5], we define a pseudo-schedule ψ on ` machines, in which job bi,k,j

is scheduled on machine i at time Sπ(bi,k,j) − Pi,k−1. Note that ψ is not necessarily a valid

schedule, since some jobs might be assigned in parallel, and some jobs may start before their

arrival times.

The amount that jobs are shifted backwards increases with time. Therefore, if there is no

idle time between jobs in π, there is no idle time between them in ψ either. Note that in ψ,

the flow time of a job J can be smaller than P (J), and even negative.

We introduce an extended flow problem. Each job J has two parameters r(J) and r′(J),

where r′(J) ≤ r(J). r′(J) is the pre-release time of job J . Job J may be assigned starting

from time r′(J). The flow time is still defined by the completion time minus the release time,

i.e. f(J) = C(J) − r(J). Going from an input σ for the original problem to an input σ ′ of

the extended problem, requires definition of the values of r′ for all jobs. Clearly, the optimal

total flow time for an input σ′ of the extended problem is no larger than the flow time of σ

in the original problem.

Let Ii be the set of jobs that run on machine i in π. We define an instance I ′i for the

extended problem. I ′i contains the same jobs as Ii. For each J ∈ Ii, r(J) remains the

same, Define r′(J) = min{r(J), Sψ(J)}. Clearly opt(I) ≥ ∑`
i=1 opt(Ii) ≥

∑`
i=1 opt(I ′i),

where opt(Ii) is the preemptive optimal off-line cost for the jobs that Levels scheduled on

machine i. We consider a preemptive optimal off-line schedule φi for I ′i on a single machine.

In φi, jobs of equal size are completed in the order of arrival. Ties are broken as in π. The

following lemma is similar to [5].

Lemma 3 For each job J ∈ I ′i, fφi
(J) ≥ fψ(J).

Proof Since rφi
(J) = rψ(J) for each job J , we only have to show that in φi, J does not

start earlier than it does in ψ. Assume to the contrary this is not always the case. Let J1

7

be the first job in φi for which Sφi
(J1) < Sψ(J1). Note that in this case r′(J1) < Sψ(J1) and

hence r(J1) < Sψ(J1). Let t be the end of the last idle time before Sψ(J1), and let Bi,k be

the block that contains J1.

Suppose Pi,k−1 ≤ P (J1). Then all jobs that run on machine i from time t until time

Sψ(J1) in ψ are either smaller than P (J1) or have the same size, but are released earlier.

Moreover, these jobs do not arrive earlier than time t, hence in φi they do not run before time

t. They do run before Sφi
(J1) because they have higher priority, hence Sφi

(J1) ≥ Sψ(J1), a

contradiction.

Suppose Pi,k−1 > P (J1). J1 was available to be run in ψ during the interval [r(J1), Sψ(J1)]

since r(J1) < Sψ(J1). In π, all jobs running in the interval [r(J1), Sπ(J1)] are smaller than

J1 (or arrived before, and have the same size), except for the first one, say J2. Since in ψ,

all these jobs are shifted backwards by at least the size of J2, during [r(J1), Sψ(J1)] only jobs

with higher priority than J1 are run in ψ. J1 is the first job which starts later in ψ than it

does in φi, so these jobs occupy the machine until time Sψ(J1), hence Sψ(J1) ≤ Sφi
(J1). �

Theorem 1 r1,`(Levels) = O(n1/`).

Proof Using Lemma 3 we can bound the difference between ψ and π. Since Levels(bi,k,j) =

Cψ(bi,k,j) + Pi,k−1 − r(bi,k,j), we have

Levels(I) =
∑

1≤i≤`

∑

1≤k≤Ni

∑

1≤j≤Ni,k

(Cψ(bi,k,j) + Pi,k−1 − r(bi,k,j))

≤
∑

bi,k,j∈I

(Cψ(bi,k,j)− r(bi,k,j)) +
∑

bi,k,j∈I

Pi,k−1

≤ opt(I) +
∑

bi,k,j∈I

Pi,k−1.

Let P the maximum job size. We show the following properties:

Pi,k−1 ≤ γP (bi,k,j) for each job bi,k,j , 1 ≤ i ≤ `− 1 (1)

P`,k−1 ≤ P

γ`−1
for each job b`,k,j (2)

Adding both properties together we get

Levels(I) ≤ opt(I) +
∑

bi,k,j∈I

i6=`

Pi,k−1 +
∑

b`,k,j∈I

P`,k−1

8

≤ opt(I) + γ
∑

bi,k,j∈I

P (bi,k,j) +
∑

b`,k,j∈I

P

γ`−1

≤ opt(I) + γopt(I) + n · opt(I)

n(`−1)/`
= (2γ + 1) · opt(I)

This holds since opt(I) ≥ P and opt(I) is at least the sum of all job sizes, and since |I| = n.

To prove (1) we recall that bi,k,j was assigned to machine i because it satisfied Di ≤
γP (bi,k,j). If Pi,k−1 ≤ P (bi,k,j) we are done. Otherwise the job of size Pi,k−1 arrived before

bi,k,j and hence when bi,k,j arrived, Di satisfied Di ≥ Pi,k−1, hence Pi,k−1 ≤ Di ≤ γP (bi,k,j).

To prove (2) we show by induction that every job J on machine i in Levels satisfies

P (J) ≤ P/γi−1. This is trivial for i = 1. Assume it is true for some machine i ≥ 1, then

at all times Di ≤ P/γi−1 holds. Hence, a job J ′ that was too small for machine i satisfied

P (J ′) ≤ Di/γ ≤ P/γi. This completes the proof. �

We give a variant of Levels with a competitive ratio which depends on ∆, the ratio

between the size of the largest job and the size of the smallest job.

Algorithm Revised Levels: Run Levels with γ = ∆1/`.

Theorem 2 r1,`(Revised Levels) = O(∆1/`).

Proof The proof is very similar to the proof of Theorem 1. The only difference in the proof

is that property (1) also holds for machine ` (this follows from property (2) and the definition

of ∆), hence the competitive ratio is now γ + 1. �

Taking γ = min(n1/`,∆1/`) we can get a competitive ratio of O(min(n1/`, ∆1/`)).

3 Lower Bounds for Resource Augmentation

Theorem 3 Let A be an on-line scheduling algorithm to minimize the total flow time on

` machines. Then for any 1 ≤ m1 ≤ ` and sequences consisting of O(n) jobs, rm1,`(A) =

Ω
(

n1/`

(12`)`−1

)

.

We first describe a job sequence σ and then show that it implies the theorem. Let n be

an integer. There will be at most
∑`

i=0 n
i/` jobs in σ (note

∑`
i=0 n

i/` = Θ(n)). We build σ

recursively, defining the jobs according to the behavior of the on-line algorithm A.

9

Definition A job j of size α is considered active, if the previous active job of size α is

completed by A at least α units of time before j is assigned, and j finishes before or when

the job that caused its arrival finishes.

The first job in σ has size n and arrives at time 0. We consider it to be an active job. On

an assignment of a job j of size α by A, do the following:

• If j is active, and all other machines are running larger jobs (all machines are conse-

quently busy for at least α units of time), n jobs of size 0 arrive immediately. No more

jobs will arrive.

• Otherwise, if j is active, then j causes the arrival of n1/` jobs of size 1
3 · α

n1/` . These jobs

arrive starting the time that j is assigned, every α
n1/` units of time, until they all have

arrived.

• In all other cases (j is not active), no jobs arrive till the next job that A starts.

Lemma 4 opt1(σ) ≤ 6n.

Proof We show that all jobs can be assigned on a single machine, during an interval of

length 2n, so that a job of length α has a flow time of at most 3α. The total flow time then

follows.

We show how to assign all jobs of a certain size α so that no active jobs of size α are

running at the same time on on-line machines, i. e. the intervals used by A to run active jobs

of size α, and the intervals that are used by opt to run jobs of size α, are disjoint. Smaller

jobs are assigned by opt during the intervals in which A assigned active jobs of size α. Hence,

the time slots given by the optimal off-line for different jobs are disjoint.

Finally, we show how to define those time slots. A job j of size α, that arrives at time t,

is not followed by other jobs of size α until time t+ 3α. Since an active on-line job starts at

least α units of time after the previous active job of this size (α) is completed, there is a time

slot of size at least α during the interval [t, t + 3α] where no active job of size α is running

on any of the on-line machines. The optimal off-line algorithm can assign j during that time.

This is true also for the first job. Finally, the optimal algorithm can also manage the jobs of

size 0 easily by running them immediately when they arrive. Hence, the total time that the

optimal off-line machine is not idle is at most 2n. �

10

We partition jobs into three types, according to the on-line assignment. A job that arrived

during the processing of a job of size α, and has size 1
3

α
n1/` is either active or passive (if it is

not active, but completed before the job of size α is completed). Otherwise, the job is called

late. Let P (α), T (α) and L(α) denote the number of passive, active and late jobs of size α

(respectively). Let N(α) = P (α) + T (α) + L(α).

Claim 1 T (α) ≥ d 1
2`(P (α) + T (α))e

Proof The number of jobs of size α that the on line algorithm can complete during 2α units

of time (until a job can be active again) is at most 2`. �

Now we are ready to prove Theorem 3.

Proof (Of Theorem 3.) According to the definition of the sequence, N(α) = n1/` ·T (3αn1/`).

We distinguish two cases.

Case 1. In all phases L(α) ≤ 1
2N(α). Hence T (α) ≥ 1

4`N(α) for all α. This is true for

α = (1
3)`−1n1/` (the smallest non-zero jobs) and hence there are at least n`−1/` · (1

4`)
`−1 > 0

such jobs. Therefore the zero jobs arrive and are delayed by at least (1
3)`−1 · n1/` units of

time. Since their flow time is at least n · n1/` · (1
3)`−1, and the optimal flow time is at most

6n, the competitive ratio follows.

Case 2. There is a phase where L(α) > 1
2N(α). Consider the phase with largest α in

which this happens. Since for larger sizes α′ we have L(α′) ≤ 1
2N(α′), we can bound the

number of jobs of size α (for α = (1
3)in1−i/`) by N(α) ≥ ni/`(1

4`)
i. The late jobs are delayed

by at least 1
4 ·3αn1/` on average. (This is the delay if for each job of size 3αn1/` the last 1

2n
1/`

jobs of size α that arrive are the ones that are late; in all other cases, the delay is bigger.)

The total flow time is at least

Al(σ) ≥ L(α) · 1
4
· 3αn1/` ≥ 1

2
ni/`

(

1

4`

)i 1

4

(

1

3

)i−1

n1−i/`+1/`

=
1

(4`)i
· 1
8

(

1

3

)i−1

· n1+1/` =

(

1

12`

)i 3

8
n1+1/`

≥ 1

(12`)`−1
· 3
8
· n1+1/` = Ω

(

n1/`

(12`)`−1

)

·Θ(n)

Since the optimal flow is Θ(n), the competitive ratio follows. �

Theorem 4 Let A be an on-line scheduling algorithm to minimize the total flow time on `

machines. Then rm1,`(A) = Ω
(

∆1/`

(12`)`

)

for any 1 ≤ m1 ≤ ` if the maximum ratio between jobs

is ∆.

11

Proof We adjust σ by starting with a job of size ∆ and fixing n = ∆/3`. We assume ∆ ≥ 6`

so that n ≥ 2` and n1/` ≥ 2, which is needed for the construction of the sequence.

Starting from here, we build a sequence σ′ in exactly the same way as σ, except that we

do not let jobs of size 0 arrive. Clearly, opt1(σ
′) ≤ 6∆. We can follow the proof of Theorem

3. However, we now know that all the smallest jobs will be late. If they arrive we are in the

second case of the proof; but if they do not, then for an earlier α we must have L(α) > 1
2N(α).

So only Case 2 remains of that proof.

The total flow is at least 3
8
n1/`

(12`)` ∆ = 1
8

∆1/`

(12`)` ∆ (because now i ≤ ` in stead of i ≤ ` − 1),

giving the desired competitive ratio. �

A direct consequence of Theorems 3 and 4 is the following bound on the number of

machines needed to maintain a constant competitive ratio. This corollary can be also proved

using a simple adaptation of Theorem 10 in [4].

Corollary 1 Any on-line algorithm for minimizing total flow time on m machines that uses

resource augmentation and has a constant competitive ratio, is an Ω

(√
log(min(n,∆))

m
√

log log(min(n,∆))

)

-

machine algorithm (on sequences of Θ(n) jobs).

Next we consider resource augmentation on the speed as well as on the number of machines.

We consider an on-line algorithm which uses machines of speed s > 1. The optimal off-line

algorithm uses machines of speed 1.

Theorem 5 Let A be an on-line scheduling algorithm to minimize the total flow time on `

machines. Let s > 1 be the speed of the on-line machines. Then rm1,`(A) = Ω
(

n1/`

s(12`s2)`−1

)

for

any 1 ≤ m1 ≤ ` and sequences consisting of O(n) jobs. Furthermore, rm1,`(A) = Ω
(

∆1/`

s(12`s2)`

)

for any 1 ≤ m1 ≤ `.

Proof Again, we use a job sequence similar to σ. The jobs of phase i now have size

1/(3s2n1/`)i. For the ∆-part of the proof, we fix n = ∆/(3s2)`. Similar calculations as in the

previous proofs result in the stated lower bounds. �

Corollary 2 Any on-line algorithm for minimizing total flow time on m machines that uses

resource augmentation on the speed and has a constant competitive ratio, is an Ω(n1/(2m2))-

speed algorithm (on sequences of Θ(n) jobs) and an Ω(∆1/(2m2))-speed algorithm.

12

4 Other results

4.1 Hard Deadlines

We consider the problem of non-preemptive scheduling of jobs with hard deadlines. Each

arriving job J has a deadline d(J) by which it must be completed. The goal is to produce a

schedule, in which all jobs are scheduled such that all of them are completed on time (i.e. by

their deadlines). We give a lower bound on the resource augmentation required so that all

jobs finish on time. We use a similar lower bounding method to the method we used Section

3. We allow the on-line algorithm resource augmentation in both the number of machines

and their speed. We compare an on-line algorithm that schedules on ` machines of speed s

to an optimal off-line algorithm that uses a single machine of speed 1.

Let ∆ denote the ratio between the largest job in the sequence and the smallest job. The

lower bound sequence consists of `+ 1 jobs J0, . . . , J` where P (Ji) = 1/(2s+ 1)i. We define

release times and deadlines recursively; r(J0) = 0 and d(J0) = 2 + 1/s. Let π be the on-line

schedule, then r(Ji+1) = Sπ(Ji) and d(Ji+1) = Cπ(Ji). Hence Ji+1 runs in parallel to all jobs

J0, . . . , Ji in any feasible schedule π.

Lemma 5 An optimal off-line algorithm on a single machine of speed 1 can complete all jobs

on time.

Proof For each i > 0, P (Ji) = 1/(2s + 1)i, hence d(Ji) − r(Ji) = P (Ji−1)/s = 2s+1
s P (Ji).

This holds also for J0, since P (J0) = 1 and d(J0) − r(J0) = 2s+1
s . All jobs arriving after

Ji have release times and deadlines in the interval [Sπ(Ji), Cπ(Ji)]. The optimal off-line

algorithm can schedule Ji outside this time interval, and avoid conflict with future jobs.

By induction, previous jobs are scheduled before r(Ji) or after d(Ji), so there is no conflict

with them either. If Sπ(Ji) − r(Ji) ≥ P (Ji), schedule Ji at time r(Ji). Otherwise Cπ(Ji) =

Sπ(Ji)+P (Ji)/s < r(Ji)+P (Ji)(1+1/s), hence Ji is scheduled at time Cπ(Ji) and completed

at Cπ(Ji) + P (Ji) < r(Ji) + P (Ji)(2 + 1/s) = d(Ji). �

It is easy to see that the on-line algorithm cannot finish all jobs on time. If the first `

jobs finish on time, then all ` machines are busy during the time interval [r(J`), d(J`)] and it

is impossible to start J` before time d(J`). We omit the proof of the following theorem:

Theorem 6 The on-line algorithm fails, if ∆ ≥ (2s+ 1)`.

13

We show some corollaries from the lower bound on ∆. These are necessary conditions for

an on-line algorithm to succeed on any sequence. Given machines of constant speed s, the

number of machines ` must satisfy ` ≥ log ∆
log(2s+1) i.e. ` = Ω(log ∆). On the other hand, for a

constant number ` of machines, s has to satisfy 2s+ 1 ≥ ∆1/`, i.e. s = Ω(∆1/`).

The lower bound on ∆ clearly holds also for the case where the optimal off-line algorithm

is allowed to use m1 > 1 machines. Consider a k-machine algorithm that always succeeds

in building a feasible schedule (k = `/m1), then k satisfies k = Ω(log ∆/m) for constant s.

Finally, s satisfies s = Ω(∆1/mk) for constant k.

4.2 Total completion time

Finally, we mention some results on minimizing the total completion time using resource

augmentation. We begin by defining an algorithm which can use both resource augmentation

on the speed and on the number of machines.

Algorithm Wait We give an algorithm that is based on alpha points. The algorithm

works as follows. In the background we run an optimal preemptive algorithm opt on one

machine (for the record). A job becomes eligible when α of it is completed by opt. Eligible

jobs are run in the order they become allowed, as soon as the machine (or a machine, in case

there are more machines) becomes available.

Theorem 7 The competitive ratio for the problem of minimizing the total completion time

on a single machine, using resource augmentation on the speed, is 1 + 1/s.

Proof We analyze Wait in this environment. Consider a job sequence σ. Denote the

preemptive optimal schedule for σ by φ and consider a job J . Define W (J) = Cφ(J)− P (J).

Then J becomes eligible no later than at time W (J) +αP (J). At this time, the unprocessed

parts of all the jobs that became eligible earlier have total size at most W (J)/α. It takes

W (J)/(αs) time to complete them. Hence J completes at the latest at time W (J)+αP (J)+

W (J)/(αs)+P (J)/s ≤ (1+1/(αs))W (J)+(α+1/s)P (J), which is at most (1+1/s)(W (J)+

P (J)) = (1 + 1/s)Cφ(J) if we choose α = 1. Since this holds for every job J , we are done.

To show that no algorithm can do better, consider the following job sequence. A job of

size 1 arrives at time 0. If an algorithm A starts to run it on or after time 1, its completion

time is at least 1 + 1/s and we are done. Otherwise, as soon as A starts it, N jobs of size 0

14

arrive. opt runs these jobs before the job of size 1. Letting N increase without bound, we

get the desired competitive ratio. �

Theorem 8 Wait has a competitive ratio of 1 + 1/
√
` for the problem of minimizing the

total completion time using resource augmentation on the number of machines.

Proof We use the same definitions as in the previous proof. We have the same bound

on when J becomes eligible. In the current case, it takes W/(α`) time to complete the

other jobs if they are balanced over the machines; if they are not balanced, some machine

is available earlier. Thus J completes at the latest at time W + αP (J) +W/(α`) + P (J) ≤
(1 + 1/(α`))W + (1 + α)P (J) which is at most (1 + 1/

√
`)Cφ(J) for α = 1/

√
`. �

The above shows that augmentation in the number of machines lets the competitive ratio

tend to 1 as the number of machines grows. It is not clear whether the competitive ratio

reaches the value 1 for some fixed number of machines. We show that for 2 and 3 machines,

the best competitive ratio is strictly above 1.

Theorem 9 No algorithm for minimizing the total completion time using resource augmen-

tation on the number of machines can have a better competitive ratio than (11 +
√

89)/16 ≈
1.27712 for ` = 2, and 1.033526 for ` = 3.

Proof Suppose we have an online algorithm A with a better competitive ratio than stated

in the theorem.

` = 2. Take R = (11 +
√

89)/16. Consider the following job sequence. One job of size 1

arrives at time 0. Denote the time that A starts it by t. If t ≥ R − 1, no more jobs arrive

and we are done.

Otherwise, two jobs of size R− 1 arrive. opt runs these before the job of size 1 and has a

total cost of 3t+5R− 4. Denote the starting time of the first of these jobs in A’s schedule by

t′. Suppose t′ > t+ 2−R, then the second smaller job may start no earlier than time t+ 1.

A has total cost at least 2t + t′ + 2R, which is at least R(3t + 5R − 4) since t ≤ R − 1. We

are done.

Suppose t′ ≤ t+ 2−R. In this case, N jobs of size 0 arrive at time t′. A completes them

no earlier than at time t′ + R − 1 ≤ t+ 1. By letting N grow without bound, this implies a

competitive ratio of (t′ +R− 1)/t′ ≥ 1 + (R− 1)/(t+ 2−R) ≥ 1 + (R− 1)/1 = R.

15

` = 3. Take R equal to the smallest root of the equation 10R3− 55R2 + 51R− 5 = 0 that

is larger than 1. Then R ≈ 1.033526.

One job of size 1 arrives at time 0. A must start it at some time t1 ≤ R−1. (If t1 > R−1,

we are done immediately.) We set x = 3
2 −R ≈ 0.466474.

At time t1, a second job arrives of size x. By our choice of x, A must start x at some time

t2 so that t2 + x ≤ t1 + 1. Otherwise its total cost is at least 2(t1 + 1) whereas the optimal

cost is only 2t1 + 2x+ 1, and

2t1 + 2

2t1 + 2x+ 1
≥ 2R

2R− 1 + 2(3
2 −R)

= R.

We define y = R−1
R (t2 + x). At time t2, two jobs of size y arrive. We have t2 = Ry

R−1 − x.
Suppose A starts them both at or after time t2 + x− y. Suppose first t2 > t1 + x. Then

the optimal cost is t1 + x + 3t2 + 5y + 1, and A pays at least t1 + 1 + 3(t2 + x) + y. Using

t2 + x ≤ t1 + 1, and t1 + 1 ≤ R we get that y ≤ R− 1. The ratio is at least

t1 + 1 + 3(t2 + x) + y

t1 + 1 + x+ 3t2 + 5y
=

t1 + 1 + y(3 R
R−1 + 1)

t1 + 1− 2x+ y(5 + 3 R
R−1)

.

Since this expression is at least 1, it reaches its minimum for the maximum values of t1 and of

y. Substituting y = R− 1 and t1 = R− 1, we get that the ratio is at least 5R−1
11R−8 > 1.2 > R.

If t2 ≤ t1 + x, then depending on t2, opt runs the jobs of size y before or after the job of

size x. The optimal cost is min(4t1 + 4x+ 5y + 1, 4t2 + 7y + 2x+ 1). Suppose t2 < t1 + x−y
2 ,

then y ≤ R−1
3R−1(2t1 + 3x) and we have

t1 + 1 + 3(t2 + x) + y

4t2 + 2x+ 7y + 1
≥ 4t1 + 1 + 9

2x− 1
2y

4t1 + 1 + 4x+ 5y
≥

15
4 − 1

2R− R−1
3R−1(t1 + 3

2x)

3 + 5 R−1
3R−1(2t1 + 3x)

≥
15− 2R− R−1

3R−1(5− 2R)

12 + 5 R−1
3R−1(10− 4R)

= R.

(The inequalities are true using similar considerations to the previous case).

If on the other hand t2 ≥ t1+ x−y
2 , then we have y ≥ R−1

3R−1(2t1+3x) and the ratio becomes

t1 + 1 + 3(t2 + x) + y

4t1 + 4x+ 5y + 1
=

t1 + 1 + (3R
R−1 + 1)y

4t1 + 1 + 4x+ 5y

≥
t1 + 1 + 4R−1

R−1 · R−1
3R−1(2t1 + 3x)

4t1 + 1 + 4x+ 5 R−1
3R−1(2t1 + 3x)

≥
R+ 4R−1

3R−1(5
2 −R)

3 + 5 R−1
3R−1(5

2 −R)
= R.

16

This shows that A must start one of the jobs of size y at some time t3 ≤ t2 + x − y. At

time t3, N jobs of size 0 arrive. A can only start these jobs after it completes the job of size

y, implying a competitive ratio of

t3 + y

t3
≥ t2 + x

t2 + x− y =
t2 + x

t2 + x− R−1
R (t2 + x)

= R

if we let N tend to infinity. �

We conjecture that the competitive ratio is greater than 1 for all values of m, and that it

approaches 1 in a rate depending super-exponentially on 1/m. However, this problem remains

open.

5 Conclusions and Open Problems

We have presented an algorithm for minimizing the flow time on ` identical machines with

competitive ratio O(min(∆1/`, n1/`)) against an optimal off-line algorithm on a single ma-

chine, and we have shown a lower bound of Ω
(

min(n1/`,∆1/`)
(12`)`

)

on the competitive ratio of

any algorithm, even against an adversary on one machine. For every constant `, this gives

an exact trade-off between the amount of resource augmentation and the number of on-line

machines.

An interesting remaining open problem is to find an algorithm which is optimally com-

petitive against an off-line algorithm on a single machine for any `.

For the problem of total completion time we showed an algorithm whose competitive ratio

decreases and tends to 1 as ` grows. It is interesting to find out whether a fixed value of ` can

already give competitive ratio of 1, or otherwise, to find out how fast the best competitive

ratio increases as a function of `.

Acknowledgments

We thank Kirk Pruhs for helpful discussions.

References

[1] B. Awerbuch, Y. Azar, S. Leonardi, and O. Regev. Minimizing the flow time without

migration. In Proceedings of the 31st Annual ACM Symposium on Theory of Computing,

17

pages 198–205, 1999.

[2] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge

University Press, 1998.

[3] M. L. Dertouzos and A. K.-L. Mok. Multiprocessor on-line scheduling of hard-real-time

tasks. IEEE Transactions on Software Engineering, 15:1497–1506, 1989.

[4] A. Goel, M. R. Henzinger, S. Plotkin and E. Tardos. Scheduling Data Transfers in

a Network and the Set Scheduling Problem. In Proceedings of the 31st Annual ACM

Symposium on Theory of Computing, 1999.

[5] J.A. Hoogeveen and A.P.A. Vestjens. Optimal on-line algorithms for single-machine

scheduling. In Proc. 5th Int. Conf. Integer Programming and Combinatorial Optimiza-

tion, LNCS, pages 404–414. Springer, 1996.

[6] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. Journal of the

ACM, 47(4):214–221, 2000.

[7] H. Kellerer, T. Tautenhahn, and G.J. Woeginger. Approximability and nonapproxima-

bility results for minimizing total flow time on a single machine. In Proc. 28th ACM

Symposium on the Theory of Computing, pages 418–426, 1996.

[8] S. Leonardi and D. Raz. Approximating total flow time on parallel machines. In Proc.

29th ACM Symposium on the Theory of Computing, pages 110–119, 1997. To appear in

Journal of Computer and System Sciences.

[9] Cynthia A. Philips, Cliff Stein, Eric Torng, and Joel Wein. Optimal time-critical schedul-

ing via resource augmentation. Algorithmica, 32(2):163–200, 2002.

[10] A.P.A. Vestjens. On-line Machine Scheduling. PhD thesis, Technical University Eind-

hoven, 1997.

[11] A. C. Yao. Probabilistic computations: Towards a unified measure of complexity. In

Proc. 12th ACM Symposium on Theory of Computing, 1980.

18

