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Abstract. In the online capacitated interval coloring problem, a se-
quence of requests arrive online. Each of the requests is an interval
Ij ⊆ {1, 2, . . . , n} with bandwidth bj . Initially a vector of capacities
(c1, c2, . . . , cn) is given. Each color can support a set of requests such
that the total bandwidth of intervals containing i is at most ci. The goal
is to color the requests using a minimum number of colors. We present a
constant competitive algorithm for the case where the maximum band-
width bmax = maxj bj is at most the minimum capacity cmin = mini ci.
For the case bmax > cmin, we give an algorithm with competitive ratio
O(log bmax

cmin
) and, using resource augmentation, a constant competitive al-

gorithm. We also give a lower bound showing that constant competitive
ratio cannot be achieved in this case without resource augmentation.

1 Introduction

Motivated by a routing problem in optical networks we consider the following
problem. We are given a line network with links 1, 2, . . . , n and a vector of base
capacities (c1, c2, . . . , cn). The requests arrive one by one, in an online fashion,
and each request is identified by the interval of links that it uses Ij = [sj , tj ]
where 1 ≤ sj ≤ tj ≤ n. Moreover, the request Ij is associated with a bandwidth
bj that is the bandwidth request of Ij . Each time a request arrives, a color must be
assigned to it before the next request is revealed. A restriction on the coloring
is that the total bandwidth of all requests that are assigned a common color
and contain link i is at most ci. The goal is to use a minimum number of
colors. Naturally, we assume bj ≤ ci for all i ∈ Ij (otherwise a feasible coloring
would not exist). Without loss of generality we also assume (by scaling) that
mini=1,2,...,n ci = 1.

As practical motivation of our study, consider an optical line network, where
each color corresponds to a distinct frequency (this frequency is seen as a color
as it is a frequency of light) in which the information flows. Different links along
the line have different capacities, which are a function of intermediate equipment
along the link (e.g., a link with an intermediate repeater may have reduced
capacity for each color as a result of the repeater). Each request uses the same
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bandwidth on all links that this request contains. Moreover, requests arrive over
time. As the number of distinct available frequencies is limited, minimizing the
number of colors for a given sequence of requests is a natural objective. Changing
the color allocation of a request causes a setup cost that we would like to avoid,
and therefore we restrict ourselves to the online problem where once a request
is allocated a color this color allocation cannot be changed.

From a theoretical point of view, the problem is interesting as it extends the
previously studied case of uniform capacities (ci = 1 for all i) to the setting with
arbitrary capacities. For many problems of a similar flavor (both in the online
and offline variants), the setting with arbitrary capacities is significantly more
difficult to deal with than the uniform setting, and new techniques and ideas are
often required. For example, a 3

2
-approximation algorithm for offline coloring of

unit-bandwidth paths in trees with uniform edge capacities follows easily from
the known results for the unit-capacity case [17], but nontrivial new techniques
were needed to obtain a 4-approximation for the case with arbitrary capacities
[6]. Similar observations can be made for the throughput version of such problems
(i.e., maximizing the total bandwidth of requests that can be accepted with one
available color). For example, the only known constant competitive algorithm
for online throughput maximization in line or ring networks uses randomization
and preemption and works only for the case of uniform edge capacities [2]. For
the offline version of these problems, Chakrabarti et al. remark in [5] that most
of the techniques that have been used for the uniform capacity case do not seem
to extend to the case of arbitrary capacities.

In order to analyze our online algorithms for capacitated interval coloring, we
use the common criterion of competitive analysis. For an algorithm A, we denote
its cost by A as well. The cost of an optimal offline algorithm that knows the
complete sequence of intervals in advance is denoted by OPT. We consider the
absolute competitive ratio that is defined as follows. The absolute competitive
ratio of A is the infimum R such that for any input, A ≤ R·OPT. If the absolute
competitive ratio of an online algorithm is at most C we say that the algorithm
is C-competitive.

The problem studied in this paper is a generalization of the classical online
interval graph coloring problem. If all capacities are 1, all bandwidth requests
are 1, and the number of links in the network is unbounded, we arrive at the
standard interval coloring problem.

Coloring interval graphs has been intensively studied. Kierstead and Trotter
[14] constructed an online algorithm which uses at most 3ω−2 colors where ω is
the maximum clique size of the interval graph. They also presented a matching
lower bound of 3ω − 2 on the number of colors in a coloring of an arbitrary
online algorithm. Note that the chromatic number of interval graphs equals the
size of a maximum clique, which is equivalent in the case of interval graphs to
the largest number of intervals that intersect any point (see [11]). Many papers
studied the performance of First Fit for this problem [12, 13, 16, 7]. It is shown
in [7] that the performance of First Fit is strictly worse than the one achieved
by the algorithm of [14].
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Generalizations of interval coloring received much attention recently. Adamy
and Erlebach [1] introduced the interval coloring with bandwidth problem (which
is also a special case of our problem). In this problem all capacities are 1 and each
interval has a bandwidth requirement in (0, 1]. As in our problem, the intervals
are to be colored so that at each point, the sum of bandwidths of intervals colored
by a certain color does not exceed the capacity, which is 1. This problem was
studied also in [15, 8, 3]. The best competitive ratio known for that problem is
10 [15, 3]. A lower bound strictly higher than 3 was shown in [8].

Other previous work is concerned with the throughput version of related
problems. In the demand flow problem on the line, each interval is associated
with a profit, and the goal is to maximize the total profit of the accepted intervals
without violating any edge capacity. This corresponds to maximizing the total
profit of intervals that can receive the same color in our model. For the off-line
version of that problem, constant-factor approximation algorithms have been
presented in [5, 6] for the case where bmax ≤ cmin, where bmax = maxj bj is
the maximum requested bandwidth and cmin = mini=1,...,n ci is the minimum
edge capacity. For the general case, an approximation ratio O(log bmax

cmin
) was

achieved in [5]. Recently, a quasi-polynomial time approximation scheme was
presented [4].

Our results: In Sect. 3 we present our first main result, a constant com-
petitive algorithm for capacitated interval coloring for the case in which the
maximum bandwidth request is at most the minimum capacity, i.e., the case
where bmax ≤ cmin. (Note that this restriction means that the minimum edge ca-
pacity anywhere on the line must be at least as large as the maximum bandwidth
of any request. This is stronger than the standard requirement that bj ≤ ci for
all i ∈ Ij .) This is an important special case that contains the interval coloring
problem with bandwidth studied in [1, 15, 3, 8]. This restriction on the maximum
bandwidth is common in work on demand flow problems as well, see e.g. [5, 6].
While our algorithm uses the standard technique of partitioning the requests
into different types and dealing with each type separately, in our case the dif-
ferent types need to share colors and so the bandwidth sharing scheme for the
colors needs to be designed very carefully.

We also consider the general case, i.e., the case where bmax can be larger
than cmin. First, we remark that it is not difficult to design an O(n)-competitive
algorithm for this case. This can be done by partitioning the requests into at
most n sets, each of which contains all requests for which the bottleneck link (i.e.,
the link of smallest capacity) is link i. We are left with n disjoint instances of bin
packing, and we can run e.g. First-Fit on each set. In Sect. 4, we first design an
O(log bmax)-competitive algorithm (the ratio is O(log bmax

cmin
) if the capacities are

not normalized). Then we show that for any amount ε of resource augmentation
on the capacities (i.e. increasing capacities by a multiplicative factor of at most
1+ε), we can obtain a constant competitive algorithm (the ratio is a function of
ε). Finally, we give our second main result, a lower bound showing that no online
algorithm can achieve constant competitive ratio in the general case without
resource augmentation. The basic idea of our lower bound is to adapt the known
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logarithmic lower bound for online coloring of trees [10] to our problem. However,
arbitrary trees cannot be represented as interval graphs, and hence we need to
use the capacities and bandwidths in a very intricate way in order to encode the
required tree structures. Furthermore, the construction must be such that the
algorithm cannot benefit from the information that is conveyed by the encoding.

Several proofs are omitted due to space limitations.

2 Preliminaries

The following KT`b algorithm for the online interval coloring with bandwidth
problem (where all edges have the same capacity) was studied by Epstein and
Levy [8, 9] (see also [15, 3]). We are given an upper bound b on the maximum
request bandwidth. We are also given a value of a parameter `. The algorithm
partitions the requests into classes and then colors each class using the First-Fit
algorithm. The partition of the requests is performed online so that a request
j is allocated to class m where m is the minimum value so that the maximum
load of the requests that were allocated to classes 1, 2, . . . ,m, together with the
additional new request, is at most m`. (For a set of requests, the load created
on a link is the sum of the bandwidths of the requests containing that link, and
the maximum load is the largest load of all links.) For an interval vi that was
allocated to class m, a critical point of vi is a point q in vi such that the set of all
the intervals that were allocated to classes 1, 2, . . . ,m − 1 prior to the arrival of
vi, together with the interval vi, has total load greater than (m− 1)` in q (i.e., q
prevents the allocation of vi to class m− 1). They proved the following lemmas:

Lemma 1. Given an interval vi that was allocated class m. For the set Am of
intervals that were allocated to class m, and for every critical point q of vi, the
total load of Am in q is at most b + `.

Lemma 2. For every m, the set Am of intervals that were allocated to class m
has a maximum load of at most 2(b + `).

Note that the set Am of intervals assigned to class m can be colored with a single
color if its maximum load does not exceed the capacity of any edge (cf. [15]).

Lemma 3. The number of classes used by the algorithm is at most dω∗

`
e where

ω∗ is the maximum load.

It was shown in [14] that using the above algorithm with b = ` = 1 in the case
where all intervals have unit bandwidth (bj = 1 for all j) results in classes that
have maximum load two and can be colored online with three colors per class
(the first class can be colored using a single color), assuming unit edge capacity.
(If the edges have capacity 2, one color suffices for each class. The same obviously
holds also if b = ` = 1

2
, all requests have bandwidth equal to 1

2
, and the edges

have unit capacity.) We refer to this special case of algorithm KT`b as algorithm
KT ; it is the classical algorithm by Kierstead and Trotter that requires at most
3ω − 2 colors for coloring a set of intervals with maximum clique size ω.
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3 Algorithm for the Case maxj bj ≤ mini=1,2,...,n ci

The Algorithm. Since we assume that mini=1,2,...,n ci = 1, all bandwidth
requests are at most 1. The level of request Ij = [sj , tj ] is blog2 mini∈Ij

cic, i.e.
the rounded down base 2 logarithm of the minimum capacity of any link along
the request. A level i > 0 request is small if its bandwidth is at most 2i−3, and a
level 0 request is small if its bandwidth is at most 1

4
. A request that is not small

is a large request. Note that large requests exist only in level 0, 1 and 2.
Our algorithm first rounds down all capacities to integer powers of 2, this

does not change the classification into levels. Next it performs an online partition
of the requests according to their levels. For all i, the small requests of level i
are colored using an algorithm for online coloring along a line network with
identical capacities, and these capacities are max{1, 2i−1}. For the coloring of
these small requests we use the same set of colors for the requests of all levels.
More specifically, requests of level 0 are allocated a capacity of 1 in each color,
on every link. Requests of level i > 0 are allocated a capacity of 2i−1 in each
color, on every link. To color the small requests, note that a small request has
bandwidth at most 2i−3 for i > 0 and at most 1

4
for level 0. Therefore we

can apply the algorithm KT`b from Sect. 2, using b = ` = 2i−3 for i > 0 and
b = ` = 1

4
for level 0. A new class is opened if a new request of some level opens

a new class. Each class is colored using a single color, i.e., given color t, it is
used for all requests assigned to class t, no matter which level they belong to. It
is not difficult to show that this coloring is valid.

As for large requests we first define the following types. We define a type
1 large request to be a level 1 large request with bandwidth requirement that
belongs to the interval

(

1

2
, 1

]

. A large request that is not type 1 is called a type
2 large request. Each type of large request is packed independently using its own
set of colors. We next describe the packing of each type of large requests.
Type 1 large requests. We round up all bandwidth requests to 1 and then
apply algorithm KT , the online algorithm for interval coloring (without band-
width) of Kierstead and Trotter [14]. However, unlike that algorithm, where each
class was colored using three colors, we can use a single color for each class, sim-
ilarly to the algorithm for coloring requests of bandwidth in ( 1

4
, 1

2
] in [15], see

also Sect. 2.
Type 2 large requests. We partition the type 2 large requests into three
subgroups according to their levels. For each new open color we allocate a total
unit capacity for all the type 2 large requests of level 0. Moreover for each link
whose rounded capacity is at least two we also allocate a unit capacity for all
the type 2 large request of level 1. For each link whose rounded capacity is at
least four we allocate two units of capacity for all the type 2 large requests of
level 2. We then apply the following algorithms depending on the level of the
large request.
A level 0 large request of type 2. We further partition these requests into
two sub-families of requests according to their bandwidth request. The first sub-
family consists of requests with bandwidth in

(

1

4
, 1

2

]

, and the second sub-family

consists of requests with bandwidth in
(

1

2
, 1

]

. For each sub-family we use its
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own set of colors (note that all these colors can be used also by large requests of
type 2 from levels 1 and 2). For each request in the first sub-family we round up
its bandwidth request to 1

2
and then apply algorithm KT, the online algorithm

for interval coloring (without bandwidth) of Kierstead and Trotter, where each
class can be packed into a common color, as is done for type 1. For the second
sub-family we also round up its bandwidth request to 1 and afterwards apply
algorithm KT, where each class is packed using three colors, exactly as in [14].
A level 1 large request of type 2. We recall that such a request has bandwidth
at most 1

2
. We round up its bandwidth request to 1

2
and then apply algorithm

KT, where each class can be packed into a common color.
A level 2 large request of type 2. We round up its bandwidth request to 1
and apply algorithm KT, where each class can be packed into a common color.

Analysis. First, one can show that the solution returned by the algorithm
is feasible. In fact, even the rounded capacity constraints are satisfied by the
coloring produced by the algorithm. The next lemma is a trivial consequence of
the fact that the colors used to color small requests of the different levels are
shared among the levels.

Lemma 4. Let sj be the number of colors used to color the small requests of
level j. Then, the number of colors used by the algorithm for coloring the small
requests is exactly maxj≥0 sj.

Furthermore, we can show that OPT ≥ sj

32
for all j. Together with Lemma 4,

this gives the following:

Corollary 1. The number of colors used to color the small requests is at most
32 · OPT.

It remains to analyze the number of colors used by the large requests.

Lemma 5. Let b be a fixed value that is either 1

2
or 1 and let c be a fixed value

that is either b or 2b. Assume that we are given a subset S of large request of
level i, 0 ≤ i ≤ 2, each with bandwidth in the interval

(

b
2
, b

]

and we first round
up the bandwidth to b and afterwards use Kierstead and Trotter’s algorithm KT
with color capacity c. Then, if b < c the number of colors used to color all

the requests of this family is at most 2 ·
(

2
i+2

b
− 1

)

· OPT, and otherwise (if

b = c) the number of colors used to color all the requests of this family is at most

6 ·
(

2
i+2

b
− 1

)

· OPT.

Lemma 5 implies, using b = 1, c = 2 and i = 1, that the number of colors that
are used by the algorithm to color all type 1 large requests is at most 14 ·OPT.

Furthermore, we get that the number of colors that are used to color all type
2 large requests of level 0 is at most 32 · OPT; this follows by using b = 1

2
,

c = 1 and i = 0 for the requests with bandwidth in
(

1

4
, 1

2

]

, and b = 1, c = 1

and i = 0 for the requests with bandwidth in
(

1

2
, 1

]

. Similarly, we get that the
number of colors for type 2 large requests of level 1 is at most 30 · OPT (using
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b = 1

2
, c = 1 and i = 1), and the number of colors for type 2 large requests of

level 2 is at most 30 · OPT (using b = 1, c = 2 and i = 2). As the colors used
to color type 2 large requests of different levels are shared among the levels, the
number of colors used to color all type 2 large requests is the maximum among
the numbers of colors used to color type 2 large requests of level i for i = 0, 1, 2.
By considering the different cases above, this maximum is at most 32 · OPT.

Theorem 1. The algorithm is 78-competitive.

Proof. Each color is used to either color small requests, or to color large requests
of type 1, or to color large requests of type 2. By Corollary 1 there are at most
32 · OPT colors that are used to color small requests. As discussed above, at
most 14 · OPT colors are used to color large requests of type 1, and at most
32 ·OPT colors are used to color large requests of type 2. The claim follows since
32 · OPT + 14 · OPT + 32 · OPT = 78 · OPT. ut

4 Algorithms and Lower Bound for the General Case

An O(log bmax)-Competitive Algorithm. Recall that bmax denotes the max-
imum bandwidth of a request. We now deal with the general case where bmax

can be larger than cmin. We still assume that the edge capacities are normalized
so that cmin = 1. In order to present an O(log bmax)-competitive algorithm, we
first note that the algorithm of the previous section is designed in such a way
that it can handle small requests even if they have bandwidth requests which
are larger than 1 and provides a solution whose cost is at most 32 · OPT for
these requests. Therefore, it suffices to consider the large requests. Recall that
for i > 0, a level i request is large if its bandwidth is at least 2i−3, and it has a
link with capacity that is smaller than 2i+1.

In our algorithm we perform an online partition of large requests into lev-
els, and pack the large requests of each level separately using colors that are
dedicated to the level. To pack the large requests of level i, we disregard the
capacities and bandwidth of the requests, and we pack the requests using Kier-
stead and Trotter’s algorithm KT assuming unit capacities and unit bandwidths.
This completes the definition of the algorithm, and it remains to analyze it.

First, it is not difficult to verify that the algorithm produces a feasible solu-
tion. The number of levels is O(log bmax), as our algorithm uses colors to color
large requests of level i only if there is at least one large request of level i. Fur-
thermore, we can show that for each i our algorithm uses O(OPT) colors to
color all the large requests of level i. We thus obtain the following theorem.

Theorem 2. There exists an O(log bmax)-competitive algorithm for the general
case of the capacitated interval coloring problem.

Note that we have assumed cmin = 1 without loss of generality. In the case
where cmin is not normalized to 1, the ratio becomes O(log bmax

cmin
).
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Resource Augmentation Algorithm. Given a fixed positive number 0 < ε <
1 such that 1

ε
is an integer, we allow the online algorithm to use colors such that

the total bandwidth of requests that are assigned a common color and contain
the link i is at most (1+ ε)ci. I.e., the online algorithm is allowed to use slightly
larger capacities than the offline algorithm is allowed. Let δ = ε

3
.

We perform an online partition of the requests into large requests and small
requests. We pack the small requests similarly to the previous section with at
most 32 · OPT colors. We next describe the algorithm to obtain a coloring of
the large requests.

Let c̃j denote cj rounded up to the nearest integer power of (1 + δ). We
now define the level of a request [si, ti] to be the logarithm with respect to the
base (1 + δ) of the minimum rounded capacity of a link along this request, i.e.,
log1+δ minsi≤j≤ti

c̃j . For each level i we use algorithm KT to compute a packing
of its large requests into colors, using a capacity of (1 + δ)i on each link. For
each i, one can show that the algorithm uses O(OPT) colors to color all the
large requests of level i.

For each i, we define the type of i to be i mod 1

δ2 . Therefore, there are
exactly 1

δ2 types. For all levels with a common type we use the same set of
colors, whereas for different types we use disjoint sets of colors. Therefore, the
total number of colors used by our algorithm is at most O( 1

δ2 ) · OPT, and this
provides a constant competitive ratio for all constant values of δ. Furthermore,
we can show that the edge capacities are violated at most by a factor of (1 + ε):
Given a color c that is used to color large requests of type i, and a link j whose
capacity is cj , the total bandwidth of requests that are colored c and contain j
is at most (1 + 3δ) cj = (1 + ε)cj . We obtain the following theorem.

Theorem 3. For every constant ε > 0, there is a constant competitive algorithm
for the general case of the capacitated interval coloring problem with resource
augmentation by a factor of 1 + ε.

Competitive Lower Bound. We finally outline a lower bound construction
showing that no deterministic algorithm can achieve constant competitive ratio
in the general case (without resource augmentation). Let A be any deterministic
online algorithm for the problem. We imagine the links of the line numbered
from left to right, starting with link 1 as the leftmost link. The capacity of link
j is set to 3j , for all j ≥ 1. We identify colors with positive integers. Whenever
A uses a new color, and it has used i−1 distinct colors prior to using that color,
the new color is defined to be color i.

In the adversary construction, each newly presented interval has its left end-
point strictly to the right of all left endpoints of previously presented intervals,
and it has a strictly larger bandwidth than all previously presented intervals. In
fact, an interval with leftmost link L has bandwidth at least 3L − 3L−1 > 3L−1.
Furthermore, the set of all presented intervals can be colored optimally with two
colors.

The adversary strategy makes use of a component (i.e., a subroutine that is
used as part of the construction) denoted by CF (`), where F can be any set of
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positive integers (the set of forbidden colors) and ` can be any positive integer.
The goal of CF (`) is to force the algorithm to use a color that is not in F .
Furthermore, the interval I on which A uses a color not in F is the last interval
presented in the component. The length of I is at least `. A component CF (`)
is placed on a part of the line with leftmost link L (i.e., no interval presented
in CF (`) contains a link to the left of L). An instance of CF (`) with leftmost
link L is also called a CF (`) at L. Note that different incarnations of CF (`) may
contain different (non-isomorphic) sets of intervals, as the intervals presented by
the adversary depend on the actions of the on-line algorithm A. The construction
of CF (`) for |F | > 1 is recursive and makes use of smaller components CF ′(`′)
for F ′ ⊂ F .

A component CF (`) at L requires a part of the line consisting of g(`, |F |)
links, for a suitable function g. Note that g(`, |F |) ≥ ` must always hold, since
already the last interval of CF (`) has length at least `.

The adversary construction satisfies the following invariants.

Invariant 1: When the adversary presents a CF (`) at L, the total bandwidth
of all previously presented intervals containing L is at most βL := 3L−1.

Invariant 2: Let R′ be the leftmost among the rightmost ` links of the last
interval I of the component CF (`) at L presented by the adversary (i.e.,
R′ = R − ` + 1 if R is the rightmost link of I). The construction ensures
that the total bandwidth of intervals from CF (`) that contain R′ is at most
3R′−1 − 3L−1.

After a CF (`) at L has been presented, only intervals with left endpoint R′

(as defined in Invariant 2) or further to the right will be presented. Note that
Invariant 2, together with Invariant 1, implies that the bandwidth of intervals
starting to the left of R′ and containing R′ is at most 3L−1 + (3R′−1 − 3L−1) =
3R′−1, so that Invariant 1 automatically holds again for components placed at
R′ or further to the right.

For F = ∅, a CF (`) at L consists of a single interval of length ` + 1 with
leftmost link L and bandwidth 3L−βL. The length of the part of the line required
for a CF (`) with |F | = 0 is thus g(`, 0) = ` + 1. As another simple case to start
with, consider the case F = {f1} for some positive integer f1. The adversary
first presents an interval I1 of length ` + 1 with leftmost link L and bandwidth
3L − βL. If A assigns a color different from f1 to I1, the component CF (`) is
finished (and I1 is the last interval of that component). If A assigns color f1 to
I1, the adversary next presents an interval I2 of length `+1 whose leftmost link
is the rightmost link R of I1. The bandwidth of I2 is 3R−βL. Algorithm A must
color I2 with a color different from f1, because I1 and I2 cannot receive the same
color (their bandwidths add up to 3L−βL +3R−βL = 3R +(3L−2 ·3L−1) > 3R

and both intervals contain link R). The component CF (`) is finished, and I2 is
its last interval. Note that I1 has rightmost link R and hence does not overlap
the rightmost ` links of I2. Therefore, the bandwidth occupied by this CF (`) on
its rightmost ` links (starting with link R + 1) is bounded by 3R − βL, showing
that Invariant 2 is satisfied. The length of the part of the line required for the
CF (`) with |F | = 1 is thus g(`, 1) = 2` + 1.
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Let |F | = k for some k > 1. The idea underlying the construction of CF (`)
is to repeatedly use components CF ′(`′) for suitable subsets F ′ ⊂ F to force
A to use all colors from F on intervals that all intersect on a common link;
then, a new interval that contains that link and is in conflict with the previous
intervals containing that link is presented and must receive a color outside F .
On the other hand, if the algorithm already uses a color outside F to color an
interval presented in one of the recursive constructions CF ′(`′), the construction
of CF (`) finishes right away. We can assume (by induction) that Invariant 2 has
been shown to hold for the recursive constructions CF ′(`′) that are used in the
construction of CF (`), and we will show that Invariant 2 holds again for CF (`).

Assume that F = {f1, f2, . . . , fk}. We will show how to construct CF (`) on a
part of the line with leftmost link L. The construction proceeds in rounds. There
will be at most k rounds, and after the last round one additional final interval
may be presented.

For round 0, let F0 = ∅. First, the adversary presents a CF0
(`0) for suitable

`0 ≥ ` starting at L. If A assigns a color outside F to the last (and only) interval
of C∅(`0), the construction of CF (`) is finished. Otherwise, we can assume w.l.o.g.
that A assigns color f1 to the last interval I0 of C∅(`0). Let R0 be the rightmost
link of I0. Let R′

0 = R0 − `0 + 1. The remaining rounds up to round k − 1 will
take place inside the rightmost `0 links of I0; only the final interval that may be
presented after round k − 1 extends beyond the right end of I0.

For round 1, let F1 = {f1}. The adversary presents a CF1
(`1) starting at L1 =

R′
0. Observe that the total bandwidth of intervals presented earlier that contain

R′
0 is bounded by 3R′

0−1: bandwidth at most 3L−1 from intervals presented before
the current CF (`) (by Invariant 1), and bandwidth at most 3R′

0−1 − 3L−1 from
the CF0

(`0) that was presented in round 0. The last interval I1 of CF1
(`1) receives

some color c. If c /∈ F , the construction of CF (`) is finished. If c ∈ F , we can
assume w.l.o.g. that c = f2.

In general, assume that round j of the construction of CF (`) has finished.
The last interval Ij of the CFj

(`j) presented in round j has received color fj+1.
Let Rj be the rightmost link of Ij . Let R′

j = Rj − `j + 1. Arguing as above, we
know that the total bandwidth of intervals containing R′

j that were presented

so far is at most 3R′

j−1. Let Fj+1 = {f1, f2, . . . , fj+1}. The adversary presents a
CFj+1

(`j+1) starting at Lj+1 = R′
j . This component will be placed completely

inside the rightmost `j links of Ij . The last interval Ij+1 of CFj+1
(`j+1) receives

some color c. If c /∈ F , the construction of CF (`) is finished. If c ∈ F , we can
assume w.l.o.g. that c = fj+2. This finishes round j + 1.

After round k−1, either the construction has finished early and we are done,
or the algorithm has used colors f1, f2, . . . , fk on the intervals I0, I1, . . . , Ik−1

that were the last intervals of the components CFj
(`j) for j = 0, . . . , k − 1. In

the latter case, let Rk−1 be the rightmost link of Ik−1. Note that Rk−1 is also
contained in I0, . . . , Ik−2. The adversary presents an interval Ik with leftmost
link Rk−1, length `k, and bandwidth 3Rk−1 − βL. Note that Ik is in conflict
with I0, . . . , Ik−1 on link Rk−1, as each of I0, . . . , Ik−1 has bandwidth at least
3L − 3L−1 = 3L − βL > βL. Therefore, the algorithm A must assign a color
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outside F to Ik, and the construction of CF (`) is finished. `k is chosen in such
a way that the interval Ik extends ` links further to the right than any of the
previous intervals presented as part of this component CF (`). Note that no other
interval (other than Ik) from this CF (`) overlaps the rightmost ` links of Ik. Let
Rk be the rightmost link of Ik, and let R′

k = Rk − ` + 1. The total bandwidth
of intervals from this CF (`) that overlap the rightmost ` links of Ik is equal to
the bandwidth of Ik, which is less than 3R′

k−1 − 3L−1. Therefore, Invariant 2 is
satisfied for this CF (`).

As we know that previously presented intervals of total bandwidth at most
3L−1 contain the link L (by Invariant 1), we can conclude that the total band-
width of intervals overlapping the rightmost ` links of Ik is bounded by 3L−1 +
3R′

k−1 − βL = 3R′

k−1, so that Invariant 1 continues to hold for components
placed at R′

k or further to the right. One can also show that the construction of
CF (`) ensures that Invariant 2 is maintained. Furthermore, it is clear that the
component CF (`) forces the algorithm to use a color outside the set F .

The length g(`, k) of the part of the line that is needed to place a CF (`),
for ` > 0, with |F | = k can be calculated to be g(`, k) = ` + 1 for k = 0 and
g(`, k) = ak(` + 1) − 1 for k > 0. Here, the sequence an for n ≥ 0 is defined
by a0 = 1 and an+1 = 1 +

∏n
i=0

ai. We have a0 = 1, a1 = 2, a2 = 3, a3 = 7,
a4 = 43, etc. This sequence is known as Sylvester’s sequence or the sequence of
Euclid numbers. For n ≥ 1, it satisfies an+1 = a2

n − an + 1. It is known that

an = bc2
n−1

c+1, where c ≈ 1.59791 (see [18], sequences A000058 and A007018).

Next, we consider the optimal coloring of CF (`). Consider a CF (`) placed at
some link L. Let R be the rightmost link of its last interval I. Let R′ = R− `+1
be the link at which later components could potentially be placed. Call the set
of intervals from CF (`) that contain R′ and are different from I the siblings of
I. We can prove by induction on the size of F that every CF (`) can be colored
with 2 colors in such a way that all intervals from the CF (`) containing R′

(these are the last interval of CF (`) and its siblings) are assigned the same color.
Furthermore, the coloring is such that in each of the two color classes, there is
a free capacity of at least 3L−1 on all links of the component.

For any k ≥ 1, we can let F = {1, 2, . . . , k− 1} and place a CF (1) starting at
link 1. By the discussion above, the on-line algorithm A uses a color ≥ k on this
instance, while the optimum can color all intervals with 2 colors. This shows that
A cannot have competitive ratio better than k/2. As k is arbitrary, we obtain
the following theorem. Note that the number of links needed to place a CF (1) is

g(1, k) = 2ak −1 = 2(bc2
k−1

c+1)−1, where c ≈ 1.59791. Thus k = Θ(log log n),
where n is the length of the line, and k = Θ(log log log cmax), since the capacity
of link i is 3i.

Theorem 4. There is no deterministic on-line algorithm for capacitated inter-
val coloring with non-uniform capacities with constant competitive ratio. More-
over, the competitive ratio of any deterministic on-line algorithm for the problem
is at least Θ(log log n) for lines of length n and at least Θ(log log log cmax) for
lines with maximum edge capacity cmax and minimum edge capacity 1.
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