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Abstract

We study a variant of classical scheduling, which is calledscheduling with “end of sequence” in-
formation. It is known in advance that the last job has the longest processing time. Moreover, the last
job is marked, and thus it is known for every new job whether it is the final job of the sequence. We
explore this model on two uniformly related machines, that is, two machines with possibly different
speeds. Two objectives are considered, maximizing the minimum completion time and minimizing the
maximum completion time (makespan). Lets be the speed ratio between the two machines, we consider
the competitive ratios which are possible to achieve for the two problems as functions ofs. We present
algorithms for different values ofs and lower bounds on the competitive ratio. The proposed algorithms
are best possible for a wide range of values ofs. For the overall competitive ratio, we show tight bounds
of φ + 1 ≈ 2.618 for the first problem, and upper and lower bounds of1.5 and1.46557 for the second
problem.

1 Introduction

The traditional model of online scheduling assumes that the length of the job stream is not known in advance,

and the algorithm needs to obey the competitive ratio at every time. This reflects the structure of some

systems. However, it is often the case that the worst case occurs when the largest job arrives last (see e.g.

the seminal paper of Graham [8]). In real world systems, even though the information on future jobs is not

complete, it is still known for each job whether the current job is last or not.

In this paper we try to model this situation and study the following relatively new semi-online scheduling

problem on two uniformly related machines. In this problem it is known that the very last job has the longest

processing time (though previous jobs in the sequence may have the same processing time as well), and the

adversary who presents the sequence informs the scheduler upon arrival of each job not only the size of the

job, but also whether it is the last job.

In the uniformly related machines system model, each machineMi has aspeedsi and each jobJk has an

initial processing time (or size)pk. The processing time of jobJk on machineMi is pk/si. Jobs arrive one
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by one and are are presented to a scheduler in this way. Each job must be assigned to one of the machines

before any future jobs are revealed. No preemption is allowed. We study two goals which are minimizing

the makespan and maximizing the minimum completion time. In our model, which is stated above, we get

additional information in advance compared to the standard online model. Therefore we see this problem as

a semi-online scheduling problem.

We use thecompetitive ratioto measure the quality of a semi-online algorithm, similarly to online

algorithms. For any input job sequenceI, let CA(I) andC∗(I) denote the values of the solutions of an

algorithmA and optimal offline algorithm which knows the whole sequence in advance, respectively. For

the objective to minimize the makespan, we say thatRA is the competitive ratio of the algorithmA if

RA = sup
I

{
CA(I)
C∗(I)

}
.

On the other hand, for the objective to maximize the minimum completion time, the competitive ratioRA

of the algorithmA is defined as

RA = sup
I

{
C∗(I)
CA(I)

}
.

For simplicity, we useCA andC∗ instead ofCA(I) andC∗(I) if the meaning is clear from the context.

Previous Work: The semi-online scheduling model studied in this paper was first suggested by Zhang

and Ye [17]. They study the standard makespan minimization problem on two and three identical machines

(i.e., machines that all have the same speed). They provided optimal algorithms with competitive ratios
√

2

and3/2 for two and three machines respectively. They also pointed out that all the additional information

given by an adversary is necessary for the model. That is, the model is no different from the standard model

without having all the extra information (it is not enough that the last job is largest if is not announced to be

last, and it is not enough to announce the last job if it is not largest).

Various other models of semi-online scheduling problems on identical machines have been studied ex-

tensively in recent years [11, 16, 10, 13, 2, 6, 15, 3, 12]. These variants differ in which partial information

about future job is known in advance. A few examples are listed below.

In the first model jobs arrive in non-increasing order of processing time [9, 13]. Several models assume

some information is known in advance, this can be the total processing time of jobs [11, 1], the optimal

makespan [2, 4] or the largest processing time [10]. A model where all job processing times are bounded

between two known values, with a ratio of at mostρ for some givenρ > 1 between these two values,

was studied in [10]. On the other hand, some semi-online problems give the algorithm more power than a

general online problem, and jobs do not always need to be assigned right away. One such model is studied

in [11, 16], where a buffer is available for storage of a small number of jobs. A semi-online algorithm

in [12] benefits from allowing the current assignment to be changed whenever a new job arrives, subject to

the constraint that the total processing time of moved jobs is bounded byβ times the processing time of the

arriving job.
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Our Contributions: In this paper we focus on the two uniformly related machines case. Two objective

functions of the problem are explored, (maximization of the) smallest completion time of any machine

(Max-min) and (minimization of) the maximum completion time of any machine, also called the makespan

(Min-max).

The processing time of a job on a given machine is also called the workload of the job on that machine.

The workload of a machine is the sum of workloads of all jobs assigned to it. Thus, the makespan is the

maximum workload among all the machines and the minimum completion time is the minimum workload

of any machine. For two identical machines (s = 1), the optimal competitive ratio for the Min-max problem

is
√

2 [17]. We show that for the Max-min problem this value equals to1 +
√

2
2 .

We present algorithms relying on the speed ratios of machines for both problems. The competitive

ratios depend also on the speeds. The proposed algorithms are best possible for almost all the value ofs.

Table 1 and Table 2 list the results (see also Figures 1 and 2), where

R(s) =
3s + 1 +

√
5s2 + 2s + 1

2s + 2
,

R′(s) =
s− 1 +

√
5s2 + 2s + 1
2s

.

Table 1: Bounds on two uniformly related machines, Max-min

speeds Lower bound Upper bound

s ≥ 8.24264 R(s) R(s)
7.159191247 < s < 4 + 3

√
2 = 8.24264 R1(s) R(s)

5.40431 < s < 7.159191 R(s1) ≈ 2.324718 R(s)
1 ≤ s ≤ s1 ≈ 5.40431 R(s) R(s)

Some exact values in Table 1 are as follows.R1(s) = ( 1
27+ s

2+
√

12s+81s2

18 )
1
3 +( 1

27+ s
2−

√
12s+81s2

18 )
1
3 + 1

3 ,

s1 = 5
3 +

(
367
54 − 5

√
69

18

) 1
3 +

(
367
54 + 5

√
69

18

) 1
3 andR(s1) = (1

2 +
√

69
18 )

1
3 + (1

2 −
√

69
18 )

1
3 + 1.

Table 2: Bounds on two uniformly related machines, Min-max

speeds Lower bound Upper bound

s ≥ 1 +
√

3 1 + 1
s 1 + 1

s

2 ≤ s < 1 +
√

3 1 + 2s
2+2s+s2 1 + 1

s

1.46557 ≤ s < 2 1 + s
s2+1

R′(s)
1 < s < s4 = 1.46557 R′(s) R′(s)
s = 1

√
2

√
2
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Figure 1: Upper bound and lower bound as a function of s, wheres1 = 5.40431, s2 = 7.15191247,
s3 = 8.24264. Max-min.
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Figure 2: Upper bound and lower bound as a function of s. Min-max.

The exact value ofs4 in Table 2 iss4 = 1
6(116 + 12

√
93)1/3 + 1

6(116− 12
√

93)1/3 + 1
3 . Note that this

implies upper and lower bounds ofφ + 1 ≈ 2.618 for the Max-min problem. For the Min-max problem we

get an upper bound of1.5 and a lower bound of1.46557.

The online versions of the problems studied in this paper were studied in [7] (Min-max) and [5] (Max-

min). For Min-max model, in [7], it was shown that the best competitive ratio for minimizing makespan is

min{1 + 1
s , 1 + s

s+1}. Comparing it to our results we can see that for smalls our semi-online model indeed

improves the situation of the algorithm. However, for large enoughs, we see that the situation does not

change. Note that for these values ofs the competitive ratio is already quite small. For Max-min model,

in [5], it was shown that for the basic online model, the best competitive ratio iss + 1. For this problem

the additional information we have is helpful especially for large values ofs where we can show a constant

competitive ratio unlike the case for the online problem.

The rest of the paper is organized as follows. In Section 2 we define a general algorithm. In Section 3

we study the problem of maximizing the minimum completion time. In Section 4 we investigate the problem
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of minimizing the makespan.

2 Algorithms

We start with defining a general algorithm which will be used both in Section 3 and in Section 4. The

idea of the algorithm is to keep the faster machine relatively empty, and to assign the very last job to this

machine. Clearly, for some inputs this machine cannot be kept completely empty, and we fill it with some

amount of jobs.

For the definition and analysis of algorithms for our problems, we introduce some notations. We denote

jobs and their processing times byJt andpt (t = 0, 1, 2, . . .), respectively. Denote by1/s (s ≥ 1) the speed

of the slow machine, without loss of generality, the speed of fast machine is1. Machine 1 (M1) is the slow

machine and Machine 2 (M2) is the fast machine. LetMi(t) denote the workload of Machinei immediately

after the jobJt is assigned, fort = 0, 1, 2, . . ., andi = 1, 2. Let α(s) be a function ofs such that for any

value ofs, 0 < α(s) < 1
s . We defineβ(s) = α(s)

1−sα(s) . According to the constraints onα(s), β(s) is defined

for every value ofs and is positive.

Algorithm Aα(s):
Step 0.Let j = 0.

Step 1.If the next jobJj+1 is thelast job, assign it to Machine 2 and stop. Otherwise, go to Step
2.

Step 2.If M2(j) + pj+1 > α(s)(M1(j) + spj+1), assignJj+1 to Machine 1; otherwise assign it
to Machine 2. Letj = j + 1, go to Step 1.

For convenience of notation, we sometimes useβ for β(s) andα for α(s) throughout the paper. The

following observation holds regardless of the exact definition ofα.

Observation 1 Letn be the number of jobs presented to the AlgorithmAα. Consider the resulting schedule
produced for some0 ≤ j ≤ n− 1. ThenM2(j) ≤ βM1(j) holds for this schedule.

Proof. SinceM1(0) = M2(0) = 0, the property holds in the beginning of the sequence. Therefore we

can assume thatj ≥ 1. As long as machine 2 does not receive jobs, the property is true. LetJt be the

last job assigned to Machine 2 at a given moment (after the arrival ofj jobs). From the algorithm, we have

M2(t−1)+pt ≤ α(M1(t−1)+spt), sinceJt was assigned to machine 2. Note thatpt ≤ M2(t) = M2(j),

and the load of machine 1 is non-decreasing in time. Thus,

M2(j) = M2(t) = M2(t− 1) + pt ≤ α(M1(t− 1) + spt) ≤ α(M1(j) + sM2(j)). (1)

Sincesα < 1, so we haveM2(j) ≤ α
1−sαM1(j) = βM1(j).
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3 The Max-min objective

In this section our objective is to maximize the minimum completion time. LetR(s) = 3s+1+
√

5s2+2s+1
2s+2 .

We show that for nearly every value ofs, R(s) is the exact competitive ratio for the speed ratios.

3.1 Analysis of the algorithm for the Max-min problem

In this section we useα(s) =
√

5s2+2s+1−(s+1)
2s2 . Note thatα is the positive solution ofs2α2 + (s + 1)α −

1 = 0, which is equivalent to1+sα
α(s+1) = 1

1−sα . The above choice ofα gives the valueR(s) to these two

expressions. Using simple algebra, it is possible to show that0 < α < 1
s+1 .

Theorem 2 The competitive ratio of AlgorithmAα(s) is at mostR(s) = 3s+1+
√

5s2+2s+1
2s+2 .

Proof. Let y be the processing time of the last jobJn. Then the cost of the algorithmCAα is CAα is

min{M1(n) = M1(n− 1), M2(n) = M2(n− 1) + y}. Consider the following two cases.

Case 1.CAα = M2(n− 1) + y. SinceM1(n) ≥ M2(n), machine 1 is non-empty. Letx be the processing

time of the last job assigned to Machine 1, andt its index. From the algorithm, we haveM2(n− 1) + x ≥
M2(t − 1) + x > αM1(t) = αM1(n − 1) (otherwise this job would have been scheduled on Machine 2).

Recall thatJn is a job with the longest processing timey. We havey ≥ x and thus we getM1(n − 1) <
1
α(M2(n− 1) + y), therefore,

C∗ ≤ M1(n− 1)/s + M2(n− 1) + y

1 + 1/s
=

M1(n− 1) + s(M2(n− 1) + y)
s + 1

≤ 1/α + s

s + 1
(M2(n− 1) + y) =

3s + 1 +
√

5s2 + 2s + 1
2s + 2

CAα

Case 2.CAα = M1(n−1). If y ≥ M1(n−1)+ sM2(n−1), then the machines cannot be totally balanced.

We apply Observation 1.

C∗ = M1(n− 1) + sM2(n− 1) ≤
(

1 + s
α

1− sα

)
M1(n− 1)

=
1

1− sα
CAα =

3s + 1 +
√

5s2 + 2s + 1
2s + 2

CAα .

Now assume thaty < M1(n− 1) + sM2(n− 1).

C∗ ≤ M1(n− 1)/s + M2(n− 1) + y

1 + 1/s

≤ M1(n− 1)/s + M2(n− 1) + M1(n− 1) + sM2(n− 1)
1 + 1/s

= M1(n− 1) + sM2(n− 1) ≤ 1
1− sα

M1(n− 1) =
3s + 1 +

√
5s2 + 2s + 1

2s + 2
CAα .
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3.2 Lowers bounds

In this section, we give instances to show a lower bound which matches the upper bound we have given in

the previous subsection for almost every value ofs.

Lemma 3 For any online algorithmA, the competitive ratioRA ≥ 3s+1+
√

5s2+2s+1
2s+2 , whens > 4+3

√
2 =

8.24264 or 1 ≤ s ≤ 5
3 +

(
367
54 − 5

√
69

18

) 1
3 +

(
367
54 + 5

√
69

18

) 1
3 ≈ 5.40431.

Proof. To prove the lemma we consider three cases which are,s = 1, 1 < s < 2 ands ≥ 2. The first

case can be easily combined into the second one, however, we give it separately to avoid confusion when

referring to “the fast machine” and “the slow machine”. Since the sequence must notify which job is last,

we specify it where necessary. If not specified, it means the job is not last.

Case a.s = 1. We show a lower bound of1 +
√

2/2. We use the same sequence as in the proof in [17] for

two identical machines, and the Min-max problem. The first two jobs have processing time1.

sub-case a.1. They are assigned to different machines. Then thelast job which has processing time2

arrives.C∗ = 2, CA = 1. ThusRA ≥ 2.

sub-case a.2.They are assigned to the same machine, without loss of generality, assume it isM1. The next

job with processing timex =
√

2 arrives.

sub-case a.2.1. It is assigned toM1, then thelast job has processing timex. We know thatC∗ = x + 1

andCA = x. ThusRA ≥ x+1
x = 1 +

√
2/2.

sub-case a.2.2. It is assigned toM2, we add alast job of processing time2 + x. ClearlyC∗ = 2 + x and

CA ≤ 2. Which implies thatRA ≥ 2+x
2 = 1 +

√
2/2.

Case b.1 < s ≤ 2. We start with a job of sizep0 = 1. We use a similar pattern for both cases (each case

relates to the machine where the first job is assigned). We use a parameter0 < z(s) < 1 (the value ofz

depends on the machine which received the first job, and is fixed later). Fork = 1, · · · , K + 1, we issue

the jobpk = z(1 + z)k−1. Clearly, the sum of all jobs up to jobj, is (1 + z)j . After this sequence we give

anotherlast job of sizepK+2 = pK+1. The total sum of jobs isSK = (2z + 1)(z + 1)K . Note that the last

job is indeed the largest since starting the third job, the sequence is non-decreasing. We would like to show

that if K is large enough, then the optimal schedule is almost balanced. We start with the following claim.

Claim 4 Given the setU = {1, z, z(1 + z), · · · , z(1 + z)j} = {p0, · · · , pj+1}. Given a numbery such that
y ∈ [0, (1 + z)j+1] (i.e. y is positive and smaller or equal than the sum of all elements inU ), then we can
choose a subset ofW , W ⊆ U such that|y − ∑

i∈W
pi| ≤ 1.

Proof. By induction. If j = 0, theny ∈ [0, 1 + z] and the possible sums are{0, z, 1, 1 + z}. The largest

gap between two consecutive elements ismax{z, 1− z} ≤ 1, therefore it is possible to choose the required

subset. Givenj > 0, we choose the subset in the following way. Ify ≥ z(1 + z)j , we choosez(1 + z)j

and sety′ = y − z(1 + z)j . This gives0 ≤ y′ ≤ (1 + z)j . Otherwise we do not choosez(1 + z)j and set
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y′ = y. In both cases we can continue using the inductive hypothesis forj − 1. Note that in the second case

y = y′ < z(1 + z)j ≤ (1 + z)j sincez ≤ 1.

Next we show how to use this claim to get a convenient offline schedule.

Claim 5 Given someε > 0, it is always possible to chooseK such that we can always assign the jobs
p1, . . . , pK+2 such that SK

1+ 1
s

≤ C∗(1 + ε) is satisfied. I.e., the schedule is almost flat.

Proof. In a flat schedule, the loads both machines would beSK

1+ 1
s

. We always assign the last job to the fast

machine. The amount that the fast machine still needs to achieve a flat schedule is

SK

(1 + 1
s )
− pK+2 =

s(2z + 1)(z + 1)K

s + 1
− z(z + 1)K

= (z + 1)K
(

s(2z + 1)
s + 1

− z

)

=
(z + 1)K(zs + s− z)

s + 1
.

This value is positive sincez ≤ 1 < s. It is easy to showSK

1+ 1
s

− pK+2 ≤ (z + 1)K+1, thus the difference

satisfies that conditions of the previous claim. therefore there exists a subset of jobs we can add to the fast

machine getting load of at leastSK

1+ 1
s

− 1 and at mostSK

1+ 1
s

+ 1. This means that the workload of the slow

machine which receives all other jobs is at leastSK

1+ 1
s

− s and at mostSK

1+ 1
s

+ s. We getC∗ ≥ SK

1+ 1
s

− s. Since

SK can be arbitrarily large, we chooseK such thatSK ≥ (s + 1)(1 + 1
ε ).

We can proceed with the proof now. If the first job is assigned to the fast machine we usez(s) =

R(s)/s−1, whereR(s) = 3s+1+
√

5s2+2s+1
2s+2 , which is a solution of the equation(s+1)R2−(3s+1)R+s =

0. It is simple to shows < R(s) < 2 ≤ s + 1 for the cases < 2. We get thatsz(s) = R(s) − s, so

0 < z(s) ≤ sz(s) < 1.

Chooseε and letK be an integer satisfying claim 5. We give the jobs. If some jobpj+1 is assigned

to the slow machine, as a result, this machine has the workloadsz(1 + z)j , and the workload of the fast

machine is(1 + z)j . Thus we stop the sequence and give a last job of sizes(1 + z)j+1 (Clearly this is the

largest job, since it is larger than the sum of all previous jobs). SinceC∗ = s(1+ z)j+1, andCA = (1+ z)j

(usingsz < 1), which gives the competitive ratios(1 + z) = R.

Upon arrival of jobK + 2 (which is last), we haveC∗ ≥ SK

(1+ 1
s
)(1+ε)

. We get a workload ofsz(1 +

z)K < (1 + z)K on the slow machine, and a workload of(z + 1)K+1 on the fast one. So, the ratio

RA = C∗
CA

≥ 2z+1
z(s+1)/(1 + ε).

We getRA = 2R/s−1
(s+1)(R/s−1) = 2R−s

(s+1)(R−s) . In the following, we will show thatRA ≥ R. This is

equivalent to showing2R− s ≥ (s + 1)(R− s)R = R2(s + 1)− s(s + 1)R. From the definition ofR, we

get2R− s ≥ (3s+1)R− s− s(s+1)R, this gives2R− s ≥ R(−s2 +2s+1)− s or R(s2− 2s+1) ≥ 0

which clearly holds.

If the first job is assigned to the slow machine we usez(s) = R(s) − 1, Sinces < R(s) < 2 for the

cases < 2. We get that0 < z(s) < 1 < s.
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Chooseε and letK be an integer satisfying claim 5. We give the jobs. If some jobpj+1 is assigned to

the fast machine it has the loadz(1 + z)j , and the load of the slow machine iss(1 + z)j . Thus we stop the

sequence and give a last job of sizes(1 + z)j+1. SinceC∗ = s(1 + z)j+1, andCA = s(1 + z)j (using

z < s), which give the competitive ratio1 + z(s) = R(s).

After the arrival of jobK + 2 we haveC∗ ≥ SK/(1 + 1
s )/(1 + ε). We get a load ofz(1 + z)K on the

fast machine, ands(z + 1)K+1 on the slow one. So, the ratioRA = C∗
CA

≥ s(2z+1)
z(s+1) /(1 + ε).

We getRA = s(2R−1)
(s+1)(R−1) = R(s) due to the definition ofR(s) as the solution of(s + 1)R2 − (3s +

1)R + s = 0.

Case c.2 < s ≤ s1 = 5
3 +

(
367
54 − 5

√
69

18

) 1
3 +

(
367
54 + 5

√
69

18

) 1
3 ≈ 5.40431 ands > 4 + 3

√
2 ≈ 8.2426.

We consider the following instance: given the sequence of four jobs with size of{1, z, x(1 + z), x(1 + z)},
respectively. Wherex = R(s)− 1, again letR(s) = 3s+1+

√
5s2+2s+1

2s+2 . It is interesting to note thatR(s) is

a non-decreasing function ofs. 2 ≤ R(s) ≤ (3 +
√

5)/2 in the case thats ≥ 2. For simplicity, we useR

instead ofR(s) without cause any confuse. The value ofz depends ons,

z =

{
2x+1
s−2x , if 2 < s ≤ s1;
s+1

2R−1 − 1, if s > 4 + 3
√

2.

In the following we will prove thatz ≥ x in this case. First, we consider2 < s ≤ s1. z = 2x+1
s−2x =

2R−1
s+2−2R . s + 2 − 2R > 0, sinces3 ≥ 3s + 2 if s ≥ 2. In order to showz ≥ R − 1 = x, we only need to

show that2R− 1 ≥ s(R− 1)− 2(R− 1)2, which is equivalent tos ≤ 2(R− 1) + 1
R−1 + 2. This holds for

s ≤ s1.

Now we considers > 4 + 3
√

2. From the definition ofR, we havez = s+1
2R−1 − 1 = s

R(R−1) − 1. In

order to showz ≥ x = R− 1, we only need to prove thats ≥ 2R2 −R− 1. This holdss ≥ 4 + 3
√

2. We

can proceed the proof of this case now. We start with jobJ1 of size1.

Case c.1.J1 is assigned toM2. Then the next job is claimed to be the last job of sizes. We haveC∗ = s

andCA = 1, thusRA ≥ C∗
CA

= s > R, whens > 2.

Case c.2.J1 is assigned toM1. The next jobJ2 of sizez arrives.

Case c.2.1J2 is assigned toM2. Then the next job of sizes(1 + z) is claimed to be the last job. We

haveC∗ = s(1 + z), CA = max {s, z}. ThusRA ≥ max {1 + z, s + s/z} ≥ R, from z ≥ x = R− 1.

Case c.2.2J2 is assigned toM1. Then the next jobJ3 of sizex(1 + z) arrives.

Case c.2.2.1J3 is assigned toM2. Then the last job of sizes(1 + z) + sx(1 + z) arrives. Clearly,

C∗ = s(1 + z) + sx(1 + z) andCA = s(1 + z), sinces ≥ R > x. ThusRA ≥ 1 + x = R.

Case c.2.2.2J3 is assigned toM1. The last job of sizex(1 + z) arrives. Clearly,CA = x(1 + z). Now

we consider the optimal valueC∗. In the case2 < s ≤ 2+2
√

2, assign jobJ2 of sizez to slow machine, and

all the other jobs to fast machine. ThenC∗ = min {sz, 1 + 2x(1 + z)}, from the definition ofz = 2x+1
s−2x ,

we havesz = 1+sx(1+z). ThenRA = sz
x(1+z) = s(2x+1)

x(s+1) . Note thats(2x+1) = (s−1)x+s+x(s+1).

From the definition ofx, (s+1)x2−(s−1)x−s = 0, s(2x+1) = (s+1)x2 +x(s+1) = (1+x)x(s+1).
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ThenRA = s(2x+1)
x(s+1) = 1 + x = R. Now we consider the optimal valueC∗ in the cases > (9 + 5

√
5)/2.

Just assign the first job of size1 to slow machine and all the other jobs to the fast machine. Therefore,

C∗ = min {s, 2x(1 + z) + z}. From the definition ofz, we haves = 2x(1+ z)+ z. Then,RA = s
x(1+z) =

s
(R−1)(1+s/(R(R−1))−1) = R.

Lemma 6 For any online algorithmA, the competitive ratioRA ≥ max{(1
2 +

√
69

18 )
1
3 + (1

2 −
√

69
18 )

1
3 + 1 ≈

2.3247, R1(s) = ( 1
27 + s

2 +
√

12s+81s2

18 )
1
3 + ( 1

27 + s
2 −

√
12s+81s2

18 )
1
3 + 1

3} for any 5
3 +

(
367
54 − 5

√
69

18

) 1
3 +

(
367
54 + 5

√
69

18

) 1
3 ≈ 5.40431 = s1 ≤ s ≤ 4 + 3

√
2.

Proof. Let 2 ≤ R̂ ≤ R(s) be a competitive ratio we would like to prove. We start with a job of size 1. If it

is assigned toM2, then a last job of sizes arrives.C∗ = s andRA ≥ s ≥ R(s). Assume therefore that the

first job is assigned toM1, the next job is of sizêR − 1. If the second job is assigned toM2, then a last job

of sizesR̂ appears. ThusC∗ = sR̂ andCA = max {R̂− 1, s} = s, RA ≥ R̂. If the second job is assigned

to M1, then the next job is of sizêR(R̂− 1) ≥ R̂. If it is assigned toM2, then a last job of sizesR̂2 arrives.

We haveC∗ = sR̂2 andCA = sR̂, thus againRA ≥ R̂. Finally, if all three jobs are assigned toM1, a last

job of sizeR̂2 − R̂ arrives.

At this time, we consider two possible offline schedules.

In the first option, all jobs but the first one of sizêR − 1 are assigned to the fast machine. In this case

C∗ = 2R̂2 − 2R̂ + 1. To show that, note that the other machine has the workloads(R̂ − 1). Comparing

the values we have thats(R̂ − 1) ≥ 2R̂2 − 2R̂ + 1 for s ≥ s1. Therefore the competitive ratio is at least
2R̂2−2R̂+1

R̂2−R̂
. TakingR̂ to be the solution of the equationx3 − 3x2 + 2x− 1 = 0, we achieve the first option

for the lower bound.

In the second option, all jobs but the first one of size1 are assigned to the fast machine. In this case

C∗ = s. To show that, note that the sum of all other jobs is2R̂2 − R̂. SinceR̂ ≥ 2.32, we have2R̂2 − R̂ ≥
8.44 which is strictly larger thans. We haveCA = R̂2 − R̂, and therefore the competitive ratio is at least

s
R̂2−R̂

. TakingR̂ to be the solution of the equationx3 − x2 = s, we achieve the second option for the lower

bound.

The breakpoint between the two lower bounds isR3(s1) − R2(s1) ≈ 7.159191247. The first lower

bound is larger in the first interval, and the second one, in the second interval.

For s > 4 + 3
√

2 and1 ≤ s ≤ s1, the algorithmAα(s) is a best possible online algorithm. As can be

seen in Figure 1, the gap between the lower and upper bounds in the remaining interval is relatively small.

4 The Min-max objective

In this section we deal with this semi-online problem on two uniform machines whose objective is to mini-

mize the makespan.
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4.1 Lower Bounds

In this section we give lower bounds depend on the speeds.

Lemma 7 For any semi-online algorithmA, no deterministic algorithm can have competitive ratio lower
than

RA =





1 + 1
s , if s ≥ 1 +

√
3;

1 + 2s
2+2s+s2 , if 2 ≤ s < 1 +

√
3;

1 + s
1+s2 , if 1.46557 < s < 2;

R′(s) = s−1+
√

5s2+2s+1
2s , if 1 < s ≤ 1.46557.

Proof. We prove the lemma by the following cases.

Case a.s ≥ 1 +
√

3. We start with a jobJ1 of processing time1. If J1 is scheduled on the fast machine

M2, then the last job, which has sizes arrives. Clearly,CA = min{s2, 1 + s} = 1 + s andC∗ = s. If J1

is scheduled on the slow machineM1, the last job is of size1. We haveC∗ = 2, however,CA = s. Since

s ≥ 1 +
√

3, we haves2 − 2s − 2 ≥ 0, this is equivalent to1 + 1
s ≤ s/2. Therefore,RA ≥ 1 + 1

s in this

case.

Case b.1 +
√

3 > s ≥ 2.

Let x = 2s−2s2−s3

−4−6s+s3 andy = s(1 + x)/2. We havex ≥ 1 when1.8832 ≤ s < 1 +
√

3, x ≥ s/2 when

s ≥ 1.7511 andy ≥ x when0 < s < 1 +
√

3.

Again, we start with first jobJ1 of size 1.

Case b.1. J1 is assigned to fast machineM2, then the last job of sizes arrives, which implies that

RA ≥ 1 + 1
s .

Case b.2.J1 is assigned toM1, then next jobJ2 of sizex arrives.

Case b.2.1.J2 is assigned toM1, the last jobJ3 of sizex arrives. We haveC∗ = 2x sinces ≤ 2x for

s ≥ 1.7511 andCA = s(1 + x). SoRA = s(1 + x)/(2x) = 1 + 4/(s2 + 2s− 2) ≥ 1 + 2s/(2 + 2s + s2)

in our interval.

Case b.2.2.J2 is assigned toM2, next jobJ3 of sizey arrives.

Case b.2.2.1.J3 is assigned toM1, the last job is of sizey. ThenCA = s(1 + y), C∗ = 2y. Then

RA = 1 + 2s/(2 + 2s + s2).

Case b.2.2.2.J3 is assigned toM2, the last jobJ4 of sizes(1+x+y) arrives. We haveC∗ = s(1+x+y)

andCA = x + y + s(1 + x + y). Hence,RA = 1 + (x + y)/(s(1 + x + y)) = 1 + 2s/(2 + 2s + s2).

Case c.β ≈ 1.46557 < s < 2. Whereβ ≈ 1.46557 is a solution of the equation ofs3 − s2 − 1 = 0. The

lower bound we prove here is smaller thanmin{s, 1 + 1
s} for all considered values ofs.

We start with a sub-interval which iss ≤ 1.8832 = 1
2 +

√
2

2 + 1
2

√
−1 + 2

√
2. If the first job is assigned

to the fast machine, then the last job has size ofs. Thus, in this case we have alwaysRA ≥ min{s, 1 + 1
s}.

Consider now the case that the first job is assigned at slow machineM1.

11



Let z = s + 1/s. The next job is of sizez. If it is assigned toM1, the last job is of sizez as well.

C∗ = sz for sz ≤ 1+ z and1+ z otherwise.CA ≥ s(1+ z). This gives a lower bound of at least1+ s
s2+1

.

Otherwise, the next job is of sizex = (2 + 2s2 − s3)/(s3 − s2 − 1), this number is non-negative in our

interval. If it is assigned to the fast machine, the last job is of sizes(1+x+z). We haveC∗ = s(1+x+z).

If it is assigned to the slow machine, this results in a competitive ratio larger thans. Otherwise the ratio is

1 + x+z
s(x+z+1) ≥ 1 + s

s2+1
for s ≤ 1.8832.

If x is assigned to the slow machine, the next job isy = (1+s2)2/(s(s3−s2−1)). Note thaty ≥ x and

y ≥ z in the intervals ≤ 2. If y is assigned to the fast machine, we have the last jobs(x+ y +1+ z) = C∗.
If it is assigned to the slow machine, this results in a competitive ratio larger thans. Otherwise the ratio is

1+ y+z
s(x+y+z+1) = 1+ s

s2+1
. Otherwise, the last job is of sizey as well. We get thatC∗ = sy = y+x+1+z.

CA ≥ s(1 + x + y).

We would like to use a similar instance for the rest of the interval. However, the proof fails at the point

where the job of sizex arrives. Instead of the above sequence, we let the first job be of size1 + x instead of

1. Clearly, if it is assigned to the fast machine we still get a high competitive ratio. Otherwise, the next job

is of sizez. If we reach a situation where this job is assigned to the fast machine, we can continue as before,

since all optimal schedules assigned the jobs of sizes1 andx to the same machine. It is only left to consider

the case where the job of sizez is assigned to the slow machine, we let another job of sizez arrive and it is

the last job. Note thatz ≥ 1 + x already forx ≥ 1.8393. Sincesz > z + x + 1 in all the interval we are

considering now, we haveC∗ ≤ sz. This gives a ratiox+z+1
z = 1 + s

s3−s2−1
> 1 + s

s2+1
for s ≤ 2.3593.

Case d.1 < s ≤ β ≈ 1.46577. Whereβ is a solution of the equations3 = s2 + 1. Before proving this

case, we first prove the following claim regarding the first job.

Claim 8 The first job must be assigned to the slow machineM1, otherwise we can get an instanceI for
which the ratio is no less thanR′(s).

Proof. Suppose that the first job is assigned to the fast machineM2. The instanceI is given as follows.

Assume that this first job has size 1 (otherwise scale accordingly). We continue similarly to Lemma 3

with jobs of sizesz, z(1 + z), z(1 + z)2, . . . wherez = (s + 1 − s2)/(s2) < 1. The sum afteri such

jobs is(1 + z)i. If some job in this sequence is assigned to the slow machine, we can immediately give

a last job of sizes(1 + z)i (instead of the remainder of this sequence), and thus haveC∗ = s(1 + z)i.

If this additional job is assigned to the slow machine, it contains the last two jobs and we get a ratio of

(sz(1+z)(i−1) +s2(1+z)i)/(s(1+z)i) = (z+s(z+1))/(1+z) = (2s+1)/(s+1) > R′(s). Otherwise,

all jobs but one (the second to last job) are on the fast machine and we get the ratio(s(1 + z)i + (1 +

z)(i−1))/(s(1 + z)i) = (s + sz + 1)/(s + sz) = (2s + 1)/(s + 1).

After giving enough jobs (that are all assigned to the fast machine), we can balance any required

schedule. Denote the sum of jobs presented so far byX. Next we have a job of sizeTX whereT =

(s + 1− sR′(s))/(2sR′(s)− s− 1). The largest job so far (not including the new job) has sizeXz/(1 + z)

so in order to let the last job have the same size as this job, the new job need to be the largest, and we need
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to haveT ≥ z/(1 + z). It can be easily verified that this algebraic property holds in the interval consid-

ered here. If this job of sizeTX is assigned to the fast machine, a last job of sizeTX follows it. We get

C∗ = (2TX + X)/(1 + 1/s) and the fast machine has total size of jobs which is at leastX + TX. Thus

we get the ratio(s + 1)(T + 1)/(s(2T + 1)) = R′(s)
If the job of sizeTX was assigned to the slow machine, a last job of sizes(T +1)X follows it. We have

C∗ = s(T + 1)X. This job may be assigned to the fast machine or the slow machine. In the first case, this

machine additionally has all smaller jobs and we get the ratio(X+s(T +1)X)/(s(T +1)X) = 1+1/(s(T +

1)). In the second case, we get the ratio(s2(T + 1)X + sTX)/(s(T + 1)X) = (T + s(T + 1))/(T + 1) .

The last two ratios are larger thanR′(s).
Now we are ready to prove this case. We abuse the notationz and define the valuez(s) = s(R′(s)−1)

1+s−sR′(s) .

Note that1 + s > sR′(s) for anys < 2. We further defineα = z+1−sz
s+1 . The value ofα is monotonically

decreasing withs and we have0 ≤ α ≤ 1
2 in this interval.

The first job is of sizeα ≥ 0. If α = 0 the sequence starts with the next job. Otherwise, it must be

assigned toM1 according to Claim 8.

The next job is of size1− α. This job must be assigned toM1 otherwise a last job of sizes arrives, the

C∗ = s andCA = min{1 − α + s, αs + s2}. Sinceα + s = R′(s) and1 − α + s ≥ sR′(s) hold in our

interval.

The next job is of sizez. This job must be assigned toM1 otherwise a last job of sizes(z + 1) arrives,

we haveC∗ = s(z + 1), CA = min{z + s(z + 1), s + s2(z + 1)}. Again, we get these two ratios is at least

R′(s) in our interval.

The last job is of sizez as well. According to the value ofα, we have thatC∗ = z + 1− α = s(α + z).

HoweverCA ≥ s(1 + z), and the ratios(1+z)
s(α+z) = R′(s).

As can be seen in Figure 2, the gap between the lower and upper bounds in the remaining interval is also

relatively small.

4.2 Analysis of the algorithm for the Min-max problem

In this section, we present algorithms for the above semi-online problem. The competitive ratios again

depend on the value ofs. First we consider a naı̈ve algorithm which just uses the fast machine for all jobs.

In [7], it was shown that the competitive ratio of this algorithm is at most of1 + 1/s (this is a simple fact

that follows from total size of all jobs).

For s < 2, we schedule the jobs according to the following algorithms. Letα(s) =
√

5s2+2s+1−(s+1)
2s .

This is the positive solution of the equationsα2 + (s + 1)α − s = 0. With this value ofα, we get that the

two expressionss+1
1+sα and1 + α are equal, and have the valueR′(s).

Thensα(s) < 1 whens < 2. Let β(s) = α(s)
1−sα(s) . We useAα(s) for our problem, and prove the

following theorem.

Theorem 9 The competitive ratio of AlgorithmAα is at mostR′(s) = s−1+
√

5s2+2s+1
2s = 1 + α.
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Proof. Let y be the processing time of the last jobJn. Then the cost of the algorithmCAα is max{M1(n) =

M1(n− 1),M2(n) = M2(n− 1) + y}. Consider the following two cases.

Case 1.CAα = M1(n − 1). Let x be the processing time of the last job assigned to Machine 1, and

t its index. From the algorithm, we haveM2(n − 1) + x ≥ M2(t − 1) + x > αM1(t) = αM1(n − 1)

(otherwise this job would have been scheduled on Machine 2). SinceJn is a job with the longest processing

time,y ≥ x. We getα(s)M1(n− 1) < M2(n− 1) + y. Therefore,

C∗ ≥ M1(n− 1)/s + M2(n− 1) + y

1 + 1
s

=
M1(n− 1) + s(M2(n− 1) + y)

s + 1

≥ 1 + sα

s + 1
(M1(n− 1))

ThenRAα = CAα(s)

C∗ ≤ s+1
1+sα(s) = s−1+

√
5s2+2s+1
2s .

Case 2.CAα = M2(n− 1) + y. If y ≥ M1(n− 1) + sM2(n− 1), thenC∗ ≥ y. Using Observation 1

we haveM1(n− 1) ≥ 1
β M2(n− 1), thus,

RAα ≤ M2(n− 1) + y

y
= 1 +

M2(n− 1)
y

≤ 1 +
M2(n− 1)

M1(n− 1) + sM2(n− 1)

= 1 +
M2(n− 1)

sM2(n− 1) + 1−sα
α M2(n− 1)

= 1 + α.

Next we consider the case thaty < M1(n − 1) + sM2(n − 1). ThenC∗ ≥ M2(n−1)+y+
M1(n−1)

s

1+ 1
s

=
M1(n−1)+sy+sM2(n−1)

s+1 . We use Observation 1 once again,

RAα ≤ (s + 1)(M2(n− 1) + y)
sM2(n− 1) + sy + M1(n− 1)

= 1 +
1
s
− (s + 1)M1(n− 1)

sM1(n− 1) + s2M2(n− 1) + s2y

≤ 1 +
1
s
− (s + 1)M1(n− 1)

(s2 + s)M1(n− 1) + (s3 + s2)M2(n− 1)

= 1 +
1
s
− M1(n− 1)

sM1(n− 1) + s2M2(n− 1)
≤ 1 +

1
s
− 1

s + s2β
= 1 + α.

It is easy to see thatR(s) < 1 + 1
s whens < 2. Thus the algorithmAα has a better performance for

s < 2. Note that fors ≥ 1+
√

3, we have presented a best possible algorithm. AlgorithmAα is also optimal

for identical machines, i.e. whens = 1, in this case our algorithm reduces to the one of [17].
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