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Abstract

We consider the problem of maximizing the minimum load (completion time) for machines that are
controlled by selfish agents, who are only interested in maximizing their own profit. Unlike the classical
load balancing problem, this problem has not been considered for selfish agents until now. The goal is
to design a truthful mechanism, i.e., one in which all users have an incentive to tell the truth about the
speeds of their machines. This then allows us to find good job assignments. It is known that this requires
monotonapproximation algorithms, in which the amount of work assigned to an agent does not increase
if its bid (claimed cost per unit work) increases.

For a constant number of machines,we show a monotone polynomial time approximation scheme
(PTAS) with running time that is linear in the number of jobs. It uses a new technique for reducing
the number of jobs while remaining close to the optimal solution. We use an FPTAS for the classical
problem, i.e., where no selfish agents are involved, to give a monotone FPTAS.

Additionally, we give a monotone approximation algorithm with approximation nrafio(m, (2 +
€)s1/sm) Wheree > 0 can be chosen arbitrarily small angdis the (real) speed of machire Finally
we give improved results for two machines.

1 Introduction

In this paper, we are concerned with a fair allocation of jobs to parallel related machines, in the sense that
each machine should contribute a 'reasonable amount’ (compared to the other machines) to the processing
of the jobs. Specifically, we are interested in maximizing the minimum load (completion time) which is
assigned to any machine. The minimum load is also known asabey, as it is the amount to which all
machines are “covered”. This problem has been studied in the past on identical [11, 10, 21] as well as related
machines [7] and also in the online setting where jobs arrive one by one and need to be assigned without
information about future jobs [6]. It is also closely related to the max-min fairness problem [9, 16, 8], where
we want to distribute indivisible goods to players so as to maximize the minimum valuation.

In our case, the players (machines) have negative valuations for the jobs, since there is a cost incurred
in running the jobs. So our goal becomes maximizing the minimum loss, i.e., making sure that the cost
of processing is not distributed too unfairly. Moreover, the machines are controlled by selfish agents that
only care about maximizing their individual profit (or minimizing their individual loss). The speeds of the
machines are unknown to us, but before we allocate the jobs, the agents will give us bids which may or may
not correspond to the real speeds of their machines.

*A preliminary version of this paper appearedRmoc. 8th Latin American Symposium on Theoretical Informatics (LATIN
2008) p.264-275. LNCS 4957, Springer, 2008.
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Our goal in this paper will be to desigruthful mechanismsi.e., design games in such a way that
truth telling about their speeds is a dominant strategy for the agents: it maximizes the profit for each agent
individually. This is done by introducingide paymentfor the agents. In a way, we reward them (at some
cost to us) for telling us the truth. The role of the mechanism is to collect the claimed private data (bids),
and based on these bids to provide a solution that optimizes our desired objective, and hand out payments to
the agents. The agents know the mechanism and are computationally unbounded in maximizing their utility.
The seminal paper of Archer and Tardos [3] considered the general problem of one-parameter agents.
The class of one-parameter agents contain problems where any agserat private valug and his valuation
function has the formw; - t;, wherew; is the work assigned to ageintEach agent makes a bid depending
on its private value and the mechanism, and each agent wants to maximize its own profit. The paper [3]
shows the following key result, which we will use repeatedly in this paper: in order to achieve a truthful
mechanism for such problems, it is necessary and sufficient to designa@toneapproximation algorithm.
An algorithm is monotone if for every agent, the amount of work assigned to it does not increase if its
bid increases. Using this result, monotone (and therefore truthful) approximation algorithms were designed
for several classical problems, like scheduling on related machines to minimize the makespan [3, 5, 1, 18],
shortest path [4, 14], set cover and facility location games [12], and combinatorial auctions [19, 2].

Formal definition Denote the number of jobs by, and the size of jo by p; (j = 1,...,n). Denote

the number of machines by, and the speed of machindy s; (: = 1,...,m). As stated, each machine

belongs to a selfish useér The private valuet() of useri is equal tol/s;, that is, the cost of doing one

unit of work. Each usef will report some valué; to the mechanism, which may or may not correspond

to its private value;. The mechanism will use these bids to assign the jobs to the machines, and calculate

appropriate payments for each user. The load on machihg is the total size of the jobs assigned to

machine; divided bys;. Hence, agent incurs a cost of.; for running these jobs. Thgrofit of useri is

given by P; — L;, whereP; is the payment to uséiby the payment scheme defined by Archer and Tardos [3].
We briefly repeat the definition df;. Letb_; denote the vector of bids, not including agéentVe write

b (the total bid vector) also &$_;, b;). Then the payment function for uséis defined as

b;
P;(b—_i,b;) = hi(b—;) + bjw;(b_;, b;) — / wi (b, u)du,
0

wherew;(b_;, b;) is the work (total size of jobs) allocated to usegiven the bid vectob and theh; are
arbitrary functions (Theorem 4.2 in [3]).

Each agent is only interested in maximizing its own profit — L;, and may declare a big # ¢; if
this leads to a higher profit. Our goal is to maximinén L;. This problem is NP-complete in the strong
sense [15] even on identical machines. In order to solve it approximately, we will need to design monotone
algorithms as explained above, since we cannot hope to maxiniizé,; without knowing the true speeds.
Formally, monotonicity is defined as follows.

Definition 1 An algorithm ismonotoneif given two vector$, b’ of lengthm, which represent a set of.
bids, which differ only in one componeiti.e.,b; > b}, and¥j # i, b; = Vb, then the total size of the jobs
(the work) that machinégets from the algorithm if the bid vectoriss never higher than if the bid vector
isb'.

In order to analyze our approximation algorithms we use the approximation ratio. For an algdrithen
denote its cost byl as well. An optimal algorithm is denoted lmpT. The approximation ratio ofl is the



infimum R such that for any inputd < R - oPT. If the approximation ratio of an offline algorithm is at
mosty we say that it is g-approximation.

Previous results (non-selfish machines) For identical machines, Woeginger [21] designed a polynomial
time approximation scheme (PTAS). He also showed that the greedy algorithrtasnpetitive. This is
optimal for deterministic online algorithms. Azar and Epstein [6] presented a randomizgadh log m)-
competitive online algorithm and an almost matching lower bour@(@fm).

In [7], a PTAS was designed for related machines. For the semi-online case in which jobs arrive in
non-increasing order, [6] gave an-competitive algorithm calle@®iASED-GREEDY and showed that no
algorithm could do better. For the case where jobs arrive in non-increasing order and also the optimal value
is known in advance, [6] gave a 2-competitive algoritNmxT COVER.

For unrelated machines, Bava and Dani [9] give several algorithms. One gives a solution value
which is at mosDPT — py.x l€ss than the optimum, whegg,. is the largest job size (on any machine).

Note that this result may be close to zero. Two other algorithms have performance guaranteer 1.

Golovin [16] gave an algorithm which guarantees that at least-a1/k) fraction of the machines receive

jobs of total value at leastPT/k, for any integek. In the same paper, he also gavesRr/n)-approximation

for the case of restricted assignment (each job can only be assigned to a subset of the machines, and has the
same size on each allowed machine) where all job sizes are either 1 or som&value

For the case of restricted assignment (without further restrictions on job sizes), Bansal and Sviri-
denko [8] provided arO(loglogm/ logloglog m)-approximation. Be&kova and Dani [9] showed that
no polynomial-time algorithm can have a performance guarantee better than 2 unless P=NP. In particular,
no PTAS is possible.

Our results  In Section 3, we presentraonotongand hence truthful) strongly polynomial time approxi-
mation scheme (PTAS) for a constant number of related machines. Its running time is linear in the number
of jobs, n, when the numbem of machines is a fixed constant. To the best of our knowledge, the tech-
nigue it uses for reducing the number of jobs while remaining close to the optimal solution is new. We then
discuss non-selfish related machines (the classical problem) by presenting an FPTAS for it in Section 4.1.
Independently, an FPTAS for the more general case of unrelated machines was given in [20]. We use our
FPTAS to give a monotone FPTAS, in Section 4.2, where the running time of the scheme is polynomial in
n ande and the logarithm of sum of job sizes.

Additionally, we present a monotone approximation algorithm which is basedext COVER and
achieves an approximation ratio ofin(m, (2 + €)s1/s,,) in Section 5, for generah. This algorithm
is strongly polynomial-time for an arbitrary number of machines, and it is the first such algorithm that is
monotone. We present a simple-approximation in Section 6. It seems difficult to design a monotone
approximation algorithm with a constant approximation ratio for an arbitrary number of machines. Finally,
in Section 7 we study two monotone algorithms for two machines, and analyze their approximation ratios
as a function of the speed ratio between them. These algorithms are very simple and in many cases faster
than applying the PTAS or FPTAS on two machines.

Sorting Throughout the paper, we assume that the jobs are sorted in order of non-increasipg size (

P2 > ... > py), €xceptin Section 3, and the machines are sorted in a fixed order of non-decreasing bids
(i.e. non-increasing speeds, assuming the machine agents are trethfulss > ... > s,,), except for
Section 4.1 which contains an FPTAS which is not necessarily monotone.



2 Unsuccessful directions

To give a flavor of the problem, we begin by describing some algorithms that seem reasonable, but that have
a very high approximation ratio and/or are not monotone. First we note that it is known that any deterministic
algorithm which can be seen as a purely online algorithm (i.e., does not have any a-priori information on
jobs, and cannot perform sorting), cannot have finite approximation ratio [6]. It follows from the same
paper that algorithms which sort the jobs by non-increasing size but are otherwise online (i.e. after sorting,
no information about later jobs is used apart from the fact that they will not be larger than the current job)
cannot be better tham-competitive. Nor can online algorithms that only know the value of the optimal
cover do better.

The following natural algorithms are either not monotone, or have an infinite approximation ratio.

e Least Processing Time (LPT). This algorithm does not even have finite approximation ratio. Given
two machines of speeds 1 and 4, and two jobs of size 1, it will assign both jobs to the machine of
speed 4. But then the cover is 0. Moreover, it is known that LPT is not monotone but an adaptation
called LPT* is monotone [18]. However, the adaptation acts the same on this input and thus it cannot
be used for the current problem.

e A greedy algorithm which sorts the jobs first, and assigns every job, in turn, to the least loaded
machine, ignoring the effect of the new job on the schedule, has an infinite approximation ratio. This
can be seen from the following example. There are two machines, of spesuk)M (for a large
positive M) and two jobs of sized/ and1. If the larger job is assigned to the slower machine and the
smaller on to the faster machine, we get an approximation ratid .of

e Biased-Greedy is a a special case of the previous algorithm which prefers faster machines in case of
ties. As stated above, it cannot be better thasompetitive. Moreover, is not monotone. Consider
an example with three machines of speéds9, 9 and four jobs of size8, 3,2,2. One of the two
slowest machines receives two jobs of sizdf the speed of this machines increased@pit would
only get one job of size 3.

e LPT-Cover. This is a natural variant of LPT for the covering problem. It orders the jobs by size as
before, but now, assign each job to that machine where it improves the cover the most. In particular,
as long as there are empty machines, assign jobs there. This algorithm assigns job arbitrarily to empty
machines, therefore it is no better than the previous greedy algorithm. If it is defined to give preference
to faster machines, then it acts as Biased-Greedy on the input stated above.

Approach-Average To conclude this section, we state another direction that was not studied before and
initially seems promising, but fails. Calculaté = ijj/zi s;. Assign jobs (ordered by size) to a
machine which after assignment of the job has load closedt (ihich is an upper bound oopPT). This
algorithm also has unbounded approximation ratio. Consider the following input. There m@hines,

one of them has speed 1, the others have spged There aren jobs of size 1. It can be seen that a cover

of (only) 1/m can be achieved. But is slightly more thanm/2, and the firstn/2 jobs of size 1 will be
assigned to the fast machine, which results in a load of zero on at least one slow machine.



3 PTAS for constantm

To derive a PTAS, we would as usual like to reduce the number of options to be considered by rounding job
sizes. However, a main problem here is that the rounding should be independent of the bids, since otherwise
when one agent lies we get a different rounding and possibly a completely different set of jobs, making it
unlikely to give a monotone assignment and certainly very hard to prove monotonicity. This was the main
technical problem that we had to address in developing our PTAS.

This section is set up as follows. In Section 3.1, we prove some lemmas about the numbers of different
sizes of jobs. In Section 3.2, we show how to design a constant time simple optimal monotone algorithm
for an input where the number of jobs is constant (dependent ande). In Section 3.3, we show how to
reduce the number of jobs to a constant, allowing us to find the optimal value for this changed instance in
constant time. In Section 3.4, we show that due to this reduction, the optimal value is reduced by at most
3e - OPT. Finally in Section 3.5, we show that our algorithm has linear running time in the number of jobs.
Altogether, this proves the following theorem.

Theorem 1 There exists a monotone PTAS for machine covering on a constant number of related machines,
which produces an output of value at ledst-3¢)oPTin timeO(n+m™+8m*/<%) i e. linear in the number
of jobs.

3.1 Numbers of jobs

We are given a fixed (constant) number of machineef speedss; > ... > s,,. (Since our PTAS will

turn out to be truthful as shown in Section 3.2, we may assume that we know the real speeds and can sort
by them.) Without loss of generality, we assume that= 1. Note that the total size of all jobs may be
arbitrarily large. LetoPT be the optimal value of the cover, i.e., the maximal minimum load that can be
achieved for this input. Lety be the number of jobs of size strictly larger thapT in the input. We begin

by proving some auxiliary claims regarding.

Claim1l ng<m-—1.

Proof Assume by contradiction that there are at leagbbs that are all larger than sizeeT. Assigning
one job per machine, we get a load larger tkeaT on all machines (since all speeds are at most 1), which
is absurd. O

Claim 2 The sum of sizes of all jobs that have size of at roestis at mosRopPT(m — ng — 1) + OPT.

Proof Consider all jobs of size at mostrT. Assume by contradiction that the total size of these jobs is
more tharRoPT(m — ng — 1) + OPT. Let A be an arbitrary set of jobs that some optimal algorithm puts
on some least loaded machipes 1,...,m, and letB be all other jobs of size at mosiPT. Since a least
loaded machine has load exactiyT and therefore jobs of total size at maseT (since all speeds are at
most 1), the total size of the jobs Bis more tharRoPT(m — ny — 1). Since each job iB has size at most
OPT, it is possible to partition these jobs into sets, so that the total size of each of the firsty — 1 sets

is in (OPT, 20PT], and all remaining jobs are assigned to a@dtwhich must be nonempty). This can for
instance be done by sorting the jobdinn order of decreasing size. Assign each of the fitst no — 1 sets

to its own machine. Assign the, job larger tharopPTto ng machines, one per machine. AssigrandC

to the remaining empty machine. Sin€ehas nonzero size, we find an assignment with cover greater than
OPT, a contradiction. O



1. Define a fixed ordering on the machines. This ordering does not need to depend on the speeds, and
does not change even if machine speeds are modified.

2. For each possible job assignment, calculate the minimum load based on the speeds that are implied
by the agents’ bids (i.e., we assume that the agents are truthful).

3. Output the optimal assignment which is lexicographically smallest among all optimal assignments
(using the fixed ordering, and the known job sizes (not the loads!)).

Figure 1: Algorithm for a constant number of jobs

3.2 Finding a monotoneoPT

Lete > 0 be a given constant. Without loss of generality we asseame 1. The method in Section 3.3
modifies the input so that we end up with a constant number of jobs (atdfiest 2m?/<2)). The reason

is that for this input, it is possible to enumerate all possible job assignments in constant time (there are at
mostm4m+8m?/=* different assignments). The algorithm in Figure 1 hence works in constant time. This
algorithm works (i.e., returns the optimal cover) because we now show that it is indeed monotone (and hence
truthful). The usage of a fixed ordering to obtain a monotone optimal algorithm was already used for the
makespan scheduling problem [3]. We give the proof for completeness.

Lemma 3.1 The above algorithm is monotone.

Proof We verify the property given in Definition 1. That is, we examine the effect of a single change in
the vector of bids. Suppose machingaims to be faster, but it is not the bottleneck, then nothing changes.
The previous assignment is still optimal. A hypothetical lexicographically smaller optimal assignment with
the new speed would also reach a cover of the old optimal value with the old speed, because the old speed
was lower, a contradiction.

If machinei is the bottleneck (its load is exacttyprT), theni will only get more work if it claims a
higher speed. This follows because there are two options:

1. The algorithm concludes that the original assignment is still the best (though with a smalle€’tover
than before), then the amount allocated temains unchanged, because we still use the lexicographically
smallest optimal assignment (and the position of machdwes not change in the ordering that we use if its
claimed speed changes).

2. The algorithm concludes that another assignment is now better; ttlearly gets more work (to
reach a load abow€’, which is whati would have with the old amount of work and the new, faster speed).

This proves the lemma. O

3.3 Reducing the number of jobs

We construct an input for which we can find an optimal job assignment which is the smallest assignment
lexicographically, and thus monotone. We build it in a way that the value of an optimal assignment for the
adapted input is within a multiplicative factor #f— 3¢ from the value of an optimal assignment for the
original input. This is done by reducing the number of jobs of size no largerdhamo a constant number
(dependent om ande), using a method which is based on the sizes of the jobs only (and hence does not
rely on machine speeds).



Let A = 2m?2/e? + m. If the input consists of at mog\ jobs, then we are done. Otherwise, we keep
the A largest such jobs as they are. This set is denoted by et J5 be the rest of the jobs.

Let A be the total size of the jobs ifis. Let a be the size of the largest job . If A < 3aA,
we combine jobs greedily to create mega-jobs of size in the intgiyah]. Each mega-job is created by
combining jobs until the total size reaches at legghis size does not exce@d a. If we are left with a
remainder of size less thanit is combined into a previously created job. The resulting number of mega-jobs
created fromJ/g is at most3A.

Otherwise, we apply a “List Scheduling” algorithm with as input the jobd4rand A identical ma-
chines. These machines are only used to combine the jobs mfto A mega-jobs and should not be
confused with the actuah{) machines in the input.

List Scheduling (LS) works by assigning the jobs one by one (in some order) to machines, each job is
assigned to the machine with minimum load (at the moment the job is assigned). LS thus Areatss
of jobs and the maximum difference in size between two sets is at andst]. The jobs in each set are
now combined into a mega-job. Thus we getnega-jobs with sizes in the interv[% — a, % + a]. Since
g > 3a, we get that the ratio between the size of two such mega-jobs is no largex.than

It is straightforward to see that the following lemma holds in all three cases.

Lemma 3.2 After reducing the number of jobs as described in this section, there are atArjobs and at
most3A mega-jobs left, wherd = 2m?/e? + m.

3.4 The optimal value of the modified instance
Lemma 3.3 The optimal cover of the modified instance is at ldast 3<)OPT.

Proof If no mega-jobs were created then clearly we consider all possible job assignments and achieve
an optimal one for the original problem. (See Section 3.2 for an explanation as to why we can assume we
know the true speeds of the machines.) Consider therefore the two cases where we applied the jobs merging
procedure. Note that since the total size of all jobs of size at mesis at mos2moPT by Claim 2, and

given the amount of jobs id;, (and using Claim 1), we have< ¢20PT/m.

First assumed < 3aA. We use the following notationsopPT is the value of an optimal assignment
using the modified jobs.oPT’ is the value of an optimal assignment using the modified jobs and only
machines of speed at least/(coPT) (called fast, whereas all other machines are called slow). Thus for
opPT’ we assume that the slow machines are simply not present, making it easier to cover all the machines
to any given value. Clearly we hageT’ > opT andoPT > OPT.

We show thabp1’ > (1 — %s)OPT. Given an optimal assignment for the original instance, remove all
jobs assigned to slow machines. Remove all jobs that belog (ahich are of size at most) that are
assigned to fast machines, and replace them greedily by mega-jobs. The mega-jobs are assigned until the
total size of allocated mega-jobs is just about to exceed the total size of jobstat were assigned to this
machine. Since all mega-jobs are of size at astand each fast machine has load of at least and thus
a total size of assigned jobs of at le@s{/= (since it is fast), the loss is at most a factor%@fof the total
load. The rest of the jobs (jobs df, removed from slow machines, and remaining mega-jobs) are assigned
arbitrarily.

We next show how to convert an assignment with vabwa” (ignoring the slow machines) into an
assignment which uses all machines. Since there are atAejadts of size at least (the jobs of.J;), and
these jobs are spread over at mesinachines, at least one machine has at 1&gt such jobs. From this
machine, remove at mo2tn /< jobs of size at least (the smallest ones among those that are large enough),



and assigrz /¢ jobs to each machine that does not patrticipate in the assignmemrtréf The resulting load
of each such machine (taking the speed into account) has a load of abbeasince it is slow: we have
2. a/(4kt) = OPT. The loss of the fast machine where jobs were removed is at most a factof dé
original load. Therefore we get that in the new job assignment each machine is either loaded byoatileast
or by at least1 — ¢)oPT’. ThusoPT > min{OPT, (1 — £)OPT’}. SinceoPT’ > (1 — 3£)OPT, this proves
thatopPT > (1 — 3¢)OPT.

The second case is completely analogous, except that in this case we call machines with speed at least
(4 — a) /(eoPT) fast. Thus each fast machine has total size of assigned jobs of af feast) /e. We
define fast in this way because in this case, the mega-jobs have size in the iiﬁewal, g + a]. When
we replace jobs by mega-jobs, such a machine then loses akmokits original load. When we convert
the assignment adPT”, we use that mega-jobs have size at I%st a, and there aré\ of them, so we can
now transferRm /e of them to slow machines and get the same conclusions as before. O

3.5 Running time

We reduce the number of jobs to a constant. Note in the reduction in Section 3.3, we are only interested in
identifying theA largest jobs. After this we merge all remaining jobs using a method based on their total
size. These things can be done in time lineat.ifrinally, once we have a constant number of jobs, we only
need constant time for the remainder of the algorithm. Thus our algorithm has running time which is linear
in the number of jobs.

4 FPTAS for constantm

In this section, we present a monotone fully polynomial-time approximation scheme for canstahis
scheme uses as a subroutine a non-monotone FPTAS which is described in Section 4.1. We explain how this
subroutine can be used to create a monotone FPTAS in Section 4.2.

In the current problem, it can happen that some jobs are superfluous: if they are removed, the optimal
cover that may be reached remains unchanged. Even though these jobs are superfluous, we need to take
special care of these jobs to make sure that our FPTAS is monotone. In particular, we need to make sure that
these superfluous jobs are always assigned in the same way, and not to very slow machines. We therefore
needed to modify the FPTAS mechanism from [1] because we cannot simply use any “black box” algorithm
as was possible in [1].

4.1 An FPTAS which is not monotone

We describe an FPTAS for the classical problem, where the speeds of the machines are known. This FPTAS
can also easily be adapted to the case of unrelated machines.

Chooses so thatl /¢ is an integer. We may assume that- m, otherwiseopT = 0 and we assign alll
jobs to machine 1. In the proof of Lemma 5.2 we show that this assignment is monotone. (Since we achieve
an optimal cover of 0 in this case, we see this as having an approximation ratio of 1.)

We give an algorithm which finds the optimal cover up to a factot ef 2. We can again use an
algorithm which is ann-approximation [6], therefore we can assume we candiptdwithin a factor ofm.
We scale the problem instance such that the algorithm of [6] returns a cover of size 1. Then we know that
OPT € [1,m]. We are now going to look for the highest value of the fgrma (j = 1/¢,1/e +1,...,m/¢)
such that we can find an assignment which is of value at [@astc)je. That is, we partition the interval



[1,m] into many small intervals of length We want to find out in which of these intervad®Tis, and find
an assignment which is at most one interval below it.

Given a value forj, we scale the input up by a factor g.gg > % > 1. Now the target value (the
cover that we want to reach) for a given valuejas not je but S = n/e. For jobk and machine, let
Bf = [pk/slfl (k = 1,...,n;i = 1,...,m).

We use dynamic programming based on the numdiarsA load vectorof a given job assignment is
anm-dimensional vector of loads induced by the assignmentZl(éta) be a value between 0 amd for
k =0,...,nand an (integer!) load vectar T'(k,a) is the maximum number such that jékis assigned
to machinel’(k, a) and a load vector of (or better) can be achieved with the jobs. ., k. If the vectora
cannot be achieved;(k, a) = 0. If a (or better) can be achievedl(k, a) is a number between 1 ama.

We initialize T'(0,0) = m, representing that a cover of 0 can be achieved without any jobs (this is
needed for the dynamic program), afd0,a) = 0 for anya > 0. For a load vectot = (aq,...,an),
T (k,a) is computed fron7'(k — 1, a) by examiningm values (each for a possible assignment of/@b

T(k,a) = max (O{Z e {1,...,m}|ai — 8 >0 ATk - 1, (a_s, a; — I¥)) >o})

The notationa_;, x) represents the load vector in which thie element of: has been replaced hyand
all other elements are unchanged. Each vdl(fe a) is set only once, i.e., if it is nonzero it is not changed
anymore. When a valué(k, a) is set to a nonzero valug we also sef'(k, (a—;, a; — y)) = « for every
y=1,...,1%¥ — 1 such thatl'(j, (a—;,a; — y)) = 0. This represents the fact that although a load vector of
preciselya cannot be achieved with this assignment, a load vector that domindiesit least as large in
every element) can be achieved by assigningjéd machinel'(k, a).

The size of the tablg” for one value oft is (S + 1)". Then tables are computed in total time
nmS(S + 1)™ = O(m(n/e)™2). (The factorS is from updating the table after setting soffigt, a) to
a nonzero value.) As soon as we find a vatug n such thatl'(k, S,...,S) > 0, we can determine the
assignment for the firgt jobs by going back through the tuples. Each time, we can subtract the last job from
the machine where it was assigned according to the value of the tuple to find the previous load vector. If
some element of the load vector drops below 0 due to this subtraction, we replace it lay<Q.rif the last
n — k jobs are assigned to machine 1 (the fastest machine).

If T'(n,S,...,S) = 0 after running the dynamic program, the target value cannot be achieved. In this
case we adjust our choice pfusing binary search) and try again. In this way, we eventually find the highest
value ofj such that all machines can be coveregdasing jobs that are rounded.

Note that the loss by rounding is at maesper machine (in the final scaled instance): if we replace the
rounded job sizes by the actual job sizes as they were after the second scaling, then the loss is at most 1 per
job, and there are at mostjobs on any machine. So the actual cover given by the assignment found by the
dynamic program is at least— n. Since the target valug = n /e, we lose a factor of — ¢ with regard to
S. After scaling back (dividing by:/(j<?) again) we have that the actual cover found is at I€hst ¢)je.

On the other hand, due to the binary search a covéj ef 1)e cannot be reached (not even with job sizes
that are rounded up). This implies that our cover is at I€aste) (OPT—¢) > (1 — 2¢)OPTSIiNnCeoPT > 1.

4.2 A monotone FPTAS-mechanism

Our FPTAS mechanism is displayed in Figure 2. It is a variation on the FPTAS-mechanism described in [1].
Their mechanism makes only one direct reference to the actual goal function (makespan in their case) and
relies on a black box algorithm to find good assignments. The only changes that we had to make are therefore
the following:



Input: n jobs in order of non-decreasing sizes, a bid veétes (by,...,b,), a parametee and a
subroutine, which is the FPTAS from Section 4.1.

1. Construct a new bid vectdr= (d, ..., d,,) by normalizing the bids such that the lowest bid is 1,
rounding up each bid to the closest valud bf- ¢)?, and replacing each bid larger théin+ ¢)‘+!
by (1 + )L

2. Enumerate over all possible vectafs= ((1 + €)™,..., (1 + €)'™), wherei; € {0,...,¢ + 1}.
For each vector, apply the subroutine from Section 4.1 and sort the output assignment such that the
ith fastest machine id will get theith largest amount of work.

3. Test all the sorted assignmentsdrand return the one with the maximal cover. In case of a|tie,
choose the assignment with the lexicographically maximum assignment (where the machines are
ordered according to some external machine-id).

Figure 2: A monotone FPTAS-mechanism

e Where the mechanism from [1] uses their black box algorithm, we use instead the subroutine described
in Section 4.1.

¢ We need a different value fdy which denotes the second highest powet #f= that is considered as
a valid bid. We explain below how to find this value.

¢ In the last step (testing all the sorted assignments), we do not return the assignment with the minimal
makespan but instead the assignment with the maximal cover.

As specified in [1], we will normalize the bids such that the lowest bid (highest speed) is 1. Assuming
the bids are truthful, i.eb; = 1/s; for j = 1,...,m, a very simple upper bound for the optimal cover is
thenU = >""" | p;, the total size of all the jobs. (Placing all the jobs on the fastest machine give& load
that machine, and it is clear that the fastest machine cannot get more load than this.)

Consider a slower machirje Supposeé; > U/p,. Then the load of this machine if it receives only job
nis atleastU > oPT. This means that for our algorithm, it is irrelevant what the exact valibe isfin this
case, because already tgr= U/p,, an optimal cover is certainly reached by placing a single arbitrary job
on machingj. We can therefore change any bid which is higher thigp,, to U/p,,.

Since the mechanism normalizes and rounds bids to powérs-af, we can now define

2ie1 pﬂ .

n

U
£ = ’Vlogl—l—e p-‘ = ’Vlogl—ka

n

Plugging this in in the mechanism from [1], this gives us a fully polynomial-time approximation scheme for
the machine covering problem, sin€es still (weakly) polynomial in the size of the input.

Theorem 2 The FPTAS-mechanism given in Figure 2 is monotone.

Proof We follow the proof of Andelman et al. [1]. We need to adapt this proof to our goal function.
Suppose that machingeincreases its bid. First of all, if the increase is so small that the vett@mains
unchanged, the subroutine will give the same output, and in step 3 we will also choose the same assignment.
Thus the load o does not change.

10



If d; > (1 + €)%, the assignment found by our algorithm will also not change whelows down: the
vectord’ again remains the same and we can reason as in the first case.

Now suppose that; < (1 + ¢)!, and the speed of changes so that its rounded bid increases by a
factor of 1 + . (For larger increases, we can apply this proof repeatedly.) Supposgistadt the unique
fastest machine. We thus consider the case where a normalized rounded bid riséstigin-+ <)d;, the
assignment changes froi#i to W', and we assume that the amount of work assigned to maglicecases
from w; to w’; > w;. Denote the size of the cover of assignmenton bid vectord by C. There are two
cases.

Suppose that the cover that our algorithm finds increasgsbasomes slower. So all machines have
load strictly above”. Consider the new assignméiit’ on the old speeds. All machines besigedo not
change their speeds and therefore still have a load strictly aiow¢achine; receives more work than in
the old assignmeril” and therefore also has a load strictly ab@vesince it already had at leaSt when
it was faster. This means thHt’ gives a better cover thai’ on the old speeds. However, our algorithm
would then have outpuf’’ in the first place, because it checks all these speed settings, a contradiction.

Now suppose that the cover that our algorithm finds stays the sarhbexomes slower. This means
thatj is not the bottleneck machine (the unique least loaded machine). The old assiginotsdrly has
a cover ofC also with the new speeds, so our algorithm considers it. It would only olitput W’ were
lexicographically larger thal and also had a cover 6f (or better). However, in that ca$€’ again would
have been found before already exactly as above, a contradiction.

Finally, suppose that is the unique fastest machine. Due to normalizatirremains 1, bids between
1 4 ¢ and(1 + ¢)’ decrease by one step, and bids equdlite- £)**! can either decrease ta + <)* or
remain unchanged. We construct an alternative bid vekasrin [1] where we replace all bids of +£)¢+!
in d’ with (1 4 ¢)*. This is the point where we use the fact that we check “too many” speed settings.

Every machine that bidd + )¢ or more needs to receive only at least one arbitrary job to have sufficient
load. In such cases, our subroutine indeed puts only one job on such a machine, because it finds the minimum
amount of jobsk to get to a certain cover and puts all remaining jobs on the fastest machine. Therefore,
the cover that our algorithm finds fdrwill be the same as that fa¥, and it will also give the same output
assignment. This is also optimal for + ¢)d. The difference betweefl + £)d andd is only that the bidi;
changes from 1 td + €. We can now argue as before: whether the cover that our algorithm finds increases
or not asj becomes slower, a hypothetical new better assignmemi(ﬁovr ¢) would also be better fod,
but in that case the algorithm would have found it before. 0

5 Approximation algorithm SNC for arbitrary values of m

In this section, we present an efficient approximation algorithm for an arbitrary number of machi@es
algorithm uses Next Cover [6] as a subroutine. This semi-online algorithm is defined in Figure 3. Azar and
Epstein [6] showed that if the optimal cover is known, Next Cover (NC) gives a 2-approximation. That is,
for the guesss = opPT/2 it will succeed. NC also has the following property, which we will use later.

Lemma 5.1 Suppose NC succeeds with guésbut fails with guessr + ¢, wheree < %G. Then in the
assignment for guess, the work on machine: is less thanmmw + ¢, wherew > G is the minimum work
on any machine.

Proof Consider machine:. Suppose its work is at leastw + ¢, wheres < % <3

11



Input: guess valué&’, m machines in a fixed order of non-increasing speedgbs in order of non-
increasing sizes.

For every machine in the fixed order, starting from machine 1, allocate jobs to the machine according to
the sorted order of jobs until the load is at le@'st
If no jobs are left and not all machines reached a load levél,akport failure. If all machines reached
a load ofG, allocate remaining jobs (if any) to maching and report success.

Figure 3: Algorithm Next Cover (NC)

Supposen is odd. We create a new assignment as follows. Place the jobs on mac¢hines on
machine(i 4+ 1)/2 fori =1, 3,5, ..., m — 2. Cut the work on machinge: into (m + 1)/2 pieces (without
cutting any jobs) that all have size at least- £ and at mosRw. Put these on the laétn + 1) /2 machines.

The proof that it is possible to cut the pieces in this way is analogous to that fér isethe proof of
Claim 2. The last piece then has size at least + ¢ — mT‘l - 2w = w + . This means that NC succeeds
with guessw + ¢ > G + ¢, a contradiction.

Now supposen is even. This time we create a new assignment by placing the jobs on mactliinek
on machingi+1)/2fori =1,3,5,...,m— 3. Note that machine: — 1 already has jobs no larger than
That is true since some machihamongl, ..., m — 1 has received work of exactly, and all jobs assigned
to machines, ..., m are no larger thamw. We can consider the total work of the last two machines. This
load is at leastm + 1)w + ¢ and as shown before, it can be split iftg2 = 2 + 1 parts of size at least
w + € each. The parts can be assigned in the appropriate order to maghines m. O

Our algorithm Sorted Next Cover (SNC) works as follows. A first step is to derive a lower bound and
an upper bound on the largest value which can be achieved for the input afehtical machines. To find
these bounds, we can apply LPT (Longest processing Time), which assigns the sorted (in non-increasing
order) list of jobs to identical machines one by one. Each job is assigned to the machine where the load
after this assignment is minimal. It was shown in [11, 10] that the approximation ratio of L& < 1.
Thus we defined to be the value of the output assignment of LPT. We also déﬁﬁeg andU = %A. We
have thatd andU are clear lower an upper bounds on the optimal cover on identical machines. Since NC
always succeeds to achieve half of an optimal cover, it will succeed with the @akiel.. Since a cover
of U is impossible, the algorithm cannot succeed with the vélue U. Throughout the algorithm, the
valuesL andU are such thak is a value on which NC succeeds wher&ass a failure value. We perform a
geometrical binary search. It is possible to prove using induction that if NC succeeds to cover all machines
with a guess valué&, then it succeeds to cover all machines using a smaller guess @alse G. The
induction is on the number of machines and the claim is that in order to achieve a c@veomthe firsti
machines, NC uses the same subset or a smaller subset used to achieve

The algorithm has a parameterc (0, 1/2) that we can set arbitrarily. See Figure 4. Since the ratio
betweenJ and L is initially constant, it can be seen that the algorithm completes in at @l(qg,m)
steps. The overall running time@(n(logn + 1/log(1 + ¢/2))) due to the sorting. Note that Steps 2 and
6 are only executed once.

Lemma 5.2 SNC is monotone.

Proof The subsets constructed in step 3 and 6 do not depend on the speeds of the machines. If a machine
claims it is faster than it really is, the only effect is that it may get a larger subset. Similar if it is slower.

12



Input: parameter € (0,1/2), sorted set of jobgf > ... > p,), sorted machine bid${ < ... < b,,).
1. If there are less tham jobs, assign them to machine 1 (the machine of spggdoutput 0 and
halt.

2. Scale the jobs so that ; p; = 1. Run LPT on identical machines and denote the value of the
output byA. SetL = 4 andU = 3 A.

. Apply Next Cover on identical machines with the gué€ss- vU - L.
. If Next Cover reports success, get G, else seU = G.
. IfU — L > 5L, go to step 3, else continue with step 6.

o 01 B~ W

. Apply Next Cover on identical machines with the valle Next Cover partitions the jobs im
subsets, each of total size of jobs at leAstSort the subsets in non-increasing order and allocate
them to the machines in non-increasing order of speed according to the bids.

Figure 4: Algorithm Sorted Next Cover (SNC)

If the algorithm halts in step 1, then we again have a situation that jobs are partitioned into sets, and the
sets are assigned in a sorted way. This is actually the output that steps 2—6 would produce if SNC was run
with a guess value. 0

Theorem 3 For any0 < ¢ < 1, SNC maintains an approximation ratio ofin(m, (2 + €)s1/Sm)-

Proof We start with the second term in the minimum. The load that SNC has on madkiatleast./s;,
and Next Cover cannot find a cover abdve< (1 + ¢/2)L on identical machines. So the optimal cover on
identical machines of speed 1 is at mdgt + £/2)L = (2 + ¢) L. Thus the optimal cover on machines of
speeds,, is at most2+¢)L/s,,, and the optimal cover on the actual machines can only be lower sinise
the smallest speed. We thus find a ratio of at ni@Bt-c)L/s.,)/(L/s;) = (24 €)si/sm < (2+¢€)s1/Sm.

We prove the upper bound ef using induction.

Base caseOn one machine, SNC has an approximation ratio of 1.

Induction hypothesisOnm — 1 machines, SNC has an approximation ratio of at most 1.

Induction step:Recall that the jobs are scaled so that their total size is 1. Suppose each nyachine
work at leastl/(jm) (j = 1,...,m). Then the load on machingis at leastl/(jms;). However, the
optimal cover is at most/(s1 + s2 + ... + ) < 1/(js; + (m — j)sm) < 1/(js;). Thus SNC maintains
an approximation ratio of at most in this case.

Suppose there exists a machina the assignment of SNC with work less thaf{im). Consider the
earliest (fastest) such machineDue to the resorting we have that the work on machines , m is less
than1/(im). So the total work there is less tham — i + 1)/(im). The work on the firsi — 1 machines
isthen atleast — (m —i+1)/(im) = (im —m+i—1)/(im) = (i — 1)(m + 1)/(im) and the work on
machine 1 is at leagin + 1)/(im). This is more thamn + 1 times the work on machine

We show that in this case there must exist a very large job, which is assigned to a machine by itself. Let
L’ andU’ be the final values of. andU in the algorithm. Letw be the minimum work assigned to any
machine for the guess valug. Since SNC gives machinework less thar /(im), we havew < 1/(im).
We haveU’ — L’ < §L'. SNC succeeds with’ and fails withU” and thus, since < % and by Lemma 5.1,
machinem receives at mostw + 5L’ < mw + 1L’ < (m + $)w < (m + 1)/(im) running NC with the

guess valud.’. Moreover, NC stops loading any other machine in step 6 as soon as it édvers
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We conclude that the only way that any machine can get work more(than1)L’ is if it gets a single
large job. This means that in particular the first (largest) job haspgize (m + 1)w > 3w > 3L’. SNC
assigns this job to its first machine, and the remaining work on the other machines.

To complete the induction step, compare the execution of SNC to the execution of SNC with as input
them — 1 slowest machines and the— 1 smallest jobs. Denote the first SNC by SN@nd the second by
SNGC,,—1. We first show that SN_; fails onU’. SinceU’ < (1 + 5)w < 2w, then SNG, assigns only
p1 to machine 1, and thus SNC 1 executes exactly the same on the other machines. Since machine 1 is
covered, SNG, fails on some later machine, and then this also happens tq,SNCTherefore, SNG,_¢
cannot succeed with”’ or any larger value. A similar reasoning shows that SN succeeds with any
guess that is at mogt'. Finally, L’ is at least the starting gueds'2. Sop; > 3L’ > %A implies that LPT
also puts only the first job on the first machine, since its approximation ratio is bettet thamherefore,

LPT gives the same guess valddor the original input onn machines as it would for the — 1 smallest
jobs onm —1 machines. This means that SN@nd SNG,_; maintain the same valuésandL throughout
the execution, and then we can apply the induction hypothesis. O

6 Round Robhin

We show that if the speed ratio between the fastest and slowest machines is large, the following very simple
and efficient algorithm performs quite well.

Sort the machines and jobs by speed, so that the first machine has the largest speed and the first job has
the largest size. The Round Robin algorithm assigns jobs of indicesak (in the sorted list) to machine
(in the sorted list) fo > 0 until it runs out of jobs. Comparing two successive machines, we see that the
jth job on machiné + 1 is never larger than thggh job on machiné (and may not even exist at all in case
we ran out of jobs). Thus the work is monotonically decreasing. Moreover, the job sets that are constructed
are independent of the speed, and the only effect of e.g. bidding a higher speed is to possibly get a larger set
of jobs. Thus this algorithm is monotone.

Claim 3 The approximation ratio of Round Robin is exactly

Proof Itis easy to see that the ratio cannot be better thaonsidenn identical machinesy — 1 jobs of
size 1 andn jobs of sizel /m. Round Robin places only one job of sizén on the last machine and has a
cover of1/m. By placing all the small jobs on the last machine, it is possible to get a cover of 1.

Consider the first machine in the ordering. It gets at least a fractiarirafof the total size of all jobs.
Consider now another machine, whose index in the orderingWe change the sequence in the following
way. Take the largegt— 1 jobs and enlarge them to size. Clearly,opTcan only increase. Call these jobs
“huge”. Next, we claim that without loss of generality, huge jobs are assigned to the-firstmachines
in the ordering byopPT. Otherwise, do the following process. Foe 1, ...,7 — 1, if machinej has a huge
job, do nothing. Otherwise, remove a huge job from a machiimei, ..., m (again, indices are in the sorted
list), and put it on maching, put the jobs of maching on machiner. Since; is not slower tham, the
cover does not get smaller. We got an assignmertt > opT. Consider now the assignment the algorithm
creates. Consider only the jobs which are not huge, we placed these jobs in a Round-Robin manner, starting
from machinei. Therefore, machinéreceived at least ah/m fraction of these jobs (with respect to total
size). OnopPT, machine does not have huge jobs, thus it can have at mosines as much work as in our
assignment. Thus we have a cover of at least' /m > oPT/m. O

It should be noted that if we find an algorithm with a better guaranteerthave cannot simply run both
itand SNC and take the best assignment to get a better overall guarantee. The reason that this does not work
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Input: sorted set of job( > ... > p,), sorted machine bid${ < b3)
Find i such thatmin{o (i), 02(7)} is maximal. Ifo1(i) > o9(7), assignL; to the first (faster) machin
andR; to the second. Else, assi@n to the second machine ait] to the first.

112

Figure 5: Algorithm Sorted Next Cover (SNC) on two machines

is that this approach does not need to be monotone, even if this hypothetical new algorithm is monotone: we
do not know what happens at the point where we switch from one algorithm to the other.

7 Algorithms for small numbers of machines

We next consider the case of two machines. Even though previous sections give algorithms for this case
with approximation ratio arbitrarily close th we are still interested in studying the performance of SNC

for this case. The main reason for this is that we hoped to get ideas on how to find algorithms with good
approximation ratios forn > 2 machines that are more efficient than our approximation schemes. How-
ever, unfortunately, several obvious adaptations of SNC are not monotone, and it seems we will need more
sophisticated algorithms fer, > 2.

A first observation is that there are only— 1 possible partitions of the jobs into two sets (since we
keep the jobs in sorted order), and thus there is no need to perform binary search; e, =
{1,...,i},R; = {i+1,...,n}) be a partition of the sorted list of jobg( > p2... > p,). Clearly, to
have a finite approximation ratio we only need to consigiefor i = 1,...,n — 1. For a given partitiort;,
letoy (i) =32y pj andoa(i) = 37y pj-

SNC is defined for two machines as in Figure 5. From Theorem 3 it follows that SNC (which ignores
the speeds) has an approximation of at nfostVe next consider the approximation ratio as a function of
the speed ratie > 1.

Lemma 7.1 On two machines, SNC has an approximation ratimefk{ -3, 2% }.

Proof Assume without loss of generality that the speedssaamd 1, and the total work is 1. Then
oPT< ﬁ

Let i be the index such that the partition chosen by SNG;isWe have that the set of jobs which is
assigned td\/;, has the sunmax{o1 (i), 02()} > % Thus if M7 has a smaller load thalls, this load is at

1 H H H T 2s
least:- and we have an approximation ratio of at m% < 2

To give a lower bound on the load 8f,, consider first the amount of jobs of size larger tléaim the
input. If no such jobs exist, legtbe the smallestindek < j < n — 1, such that; (j) > % Clearlyj exists
sinceoy(n) = 1. We would like to show that: (j) < 2. If o1(j) = & we are done, otherwisg,> 2 since
p1 < 3. We havery (j — 1) < % and thusr (j) = 01(j — 1) + pj < 3 + & = 2. Thus

: (1)

Lo =

min{o1 (i), 02(i)} > min{o1(5), o2(3)} >
Consider the case where there are two such jobsthasps > % or there is a single such jghy but

p1 < 2, we haveri(1) > % ando»(1) > 1 and thus again (1) holds. Finally, in case> 2, clearlyi = 1.
We get thabPT < 09(1) and thusM> has (at least) optimal load.
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Input: sorted set of job( > ... > p,), sorted machine bid${ < b3)

Letr = by/b; > 1 be the speed ratio between the two machines according to the bidsi $tiot that
min{%@,az(i)} is maximal. Ifo1(i) > o2(i), assignL; to the first (faster) machine an@; to the
second. Else, assign to the second machine ait] to the first.

Figure 6: Algorithm Speed-aware Sorted Next Cover (SSNC) on two machines

Suppose; < 2 . Then by (1) we haves (i) > % This implies that ifMs has load smaller tham/;, we
have an apprOX|mat|on ratio of at m 3T <
To show that the bound is tight, consider the foIIowmg sorted sequences. The first sequence consists of

l and the two jobsz— and -5 1 ;ifs >3 (or 1 55 S+1’ 2(s+1) if s < 3). An optimal assignment assigns
s+1 to M, and the other two JObS td/,, thusorPT = —1. However, SNC partitions the input into two sets
whose sizes aré, and so the approximation ratloﬁ—l.

The second sequence needs to be shown only for3. We use the sorted sequenges, 373, 2=%
(this is a sorted sequence for any< 2). There are two possible best partitions, but for both of them, the
minimum work is onM> and is%. However, an optimal assignment assigns one job of%iaad a job of
size2:— to M, and the other jobs ta/,, getting a cover of=<. We get an approximation ratio gf. [J

Below we prove that the fact that SNC ignores the speeds is crucial for its monotonicity in the general
case. However, ifn = 2, we can define an algorithm SSNC which takes the speeds into account and is
monotone as well. SSNC is defined in Figure 6.

w
+‘w

Lemma 7.2 Leti indicate the partition that SSNC outputs for speed ratid hen

g

17@ > 09(i) — pit1 (2)

and
01<i)—pi STJg(i). (3)

Proof Sincei was a best choicmin{%@, o2(i)} > min{%, o2(i) — pi+1}. Sincep; 1 > 0, this

|mpI|eSm1n{% 09(i) — pi+1} = o2(i) — p;i+1. Filling this in in the inequality proves (2).
Similarly, we havanin{%(i), o9(i)} > min{%, o39(1) +p; } which implie&nin{%, o9(1) +

pit = % leading to (3). O

Theorem 4 SSNC is monotone on two machines.

Proof As a first step we show the following. Lef > sy andg; > ¢ be two speed sets such that
re = j—; >rg= % Leti, andi, be the partitions which SSNC outputs fQrandr, respectively.

We show the following: max{o(is), 02(is)} > max{o1(iq), 02(iq)} and min{o(is), 02(is)} <
min{oy(iq), 02(iq)}. Sinceoy (i) + o2(is) = o1(iq) + 02(iy), it is enough to show one of the two proper-
ties. Clearly, ifi; = i, this holds, therefore we assume that# i,. Furthermore, we show that in this case
we haveig > i,.

Assume that; < i,. Theno(is) < o1(iq) andoa(is) > o2(i,). By definition of the algorithm we
havemin{ = - 91(is) oa(is)} > min{ #* (ig) ,02(iq)} andmin{ == 91(ia) ,o2(is)} < min{%{jq),ag(iq)}. To avoid
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contradiction, we must havain{ %% O'Q(Zq)} o2 (iq) andmm{”l(“ oo(is)} = ( <) Filling this in

in the inequalities glve% > oo(i q) and "17fq 2) < gy (ig). This impliesr, > 4, a contradlctlon.

We may concludenin{o (is), 02(is)} < 02(is) < 02(iq) — pi,+1 < 01(iq), Where the last inequality
follows from (2), andr(is) < 02(iq), thusmin{o (is), 02(is)} < min{oi(iq), o2(iq)}-

Supposells becomes slowerThen the speed ratio between the two machines becomes larfgds
still the slower machine and thus by the above, the amount of work it gets cannot increase.

Now supposel/; becomes sloweMWe may assume@/; remains faster thai/s. Otherwise, we divide
the slowing down into three parts. The first part is whifeis still faster than/,. In the middle part, the
speeds do not change, but we change the order of the machines. Clearly, at this point the Wortams
not increase. Finally/; slows down further, but now we can use the analysis from above because it is like
M, getting slower.

Thus M is still faster thanM;, but the speed ratio decreases. By the statement above, we get that the
amount of work thafl/; gets cannot increase. O

Theorem 5 On two machines, SSNC has an approximation ratio of at masf1 + 77,1 + %}.

Proof Consider an optimal assignment. Without loss of generality, the total work is 1u bet the
sum of jobs assigned td/; by this assignment. The sum of jobs assigned#pis 1 — yx andoPT =
min{£,1 —pu} < s+1
Consider first the case> ¢. We claim that there exists an intedex i’ < n — 1 such that
s-OPT
s+ 1

s-OPT
s+1

<oo(i') < + (1= p). (4)

Consider the smallest indgxof an itemp; < 1 — u. Clearly,j < n — 1 since the optimal assignment we
consider assigns an amount of exadthy i to M», and moreover, by the same reasoningj) > 1 — p.
If j satisfies the condition (4), we define = j and we are done. If5(j) < £ OPT we find oPT =

min{£,1—pu} <1—p < 03(j) < 2981 < oPT, a contradiction.

We are left with the casex(j) > SSF'?TJF (1—p). Letj" suchthat < j' < n be the smallest index for
which oy (5') < =28 (note that we allowj’ = n which does not give a valid partition). Singe> j, we
havep; < 1—p and thusr(j'— 1) =02(j') +py < S‘SFFI)TJr 1—p. Inthis case defing = ' —1 < n—1.

We next show that (i') > 52 OPT , and later show that this implies the approximation ratio. Note that

by the definition ofi’ we haveol(") > - sngl’T There are two cases. jf > —*;, we haveoPT =
1 < -5 Wethen findry (i) > 1—0PT—=0PT > (541 -1 5.).0pT= £15=s . op7 = =OPT
OPT OPT
If u< S+1,we haveopPT = £ Thu3cfl( N>s- OPT s i 58+1 :
This implies thatmin{ 2®, o5(i)} > min{ &, o5(i')} > =OPT, wherei is the partition that SSNC

chooses for speed If o4 (¢ ) > 0’2( ), then the sets Of]ObS are not resorted, afid(resp.M-) receives a
total of o1 (i) (resp.o»(i)), so we are done. Otherwis&/{; receives a load om > "1() > s0PT and

51
M, receives a load of (i) > % > %-

For the case < ¢, consider several cases. In the sequed,=#f 1, we consider an optimal assignment
whose work on/; is no smaller than its work oi/2. Note that)/; is always assigneghax{o (i), o2(i)} >
i 5 by the algorlthm SinceprT < +1, an optimal algorithm assigns at magt; to M/; and we get a ratio
f 251 <1+ 75. Thus)M; gets sufficient load. Letindicate the partition which is chosen by SSNC.
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Suppose first that there exists a job of size at Iéas(tlearly, this is the first job and it belongs to the
first set found by SSNC, which has a larger size than the second set. Also, for all othepjdbwe have
pi < % Thereforeo (i) > % and sinceoPT < 1, M; gets sufficient load. If = 1, we are done since in
the optimal assignment, the work ar;, is at mostoo(1) = 1 — p;. Otherwise; > 2. Using (3) we have
o2(i) > (01(i) — pi) /s > (2/3)/s and thussy (i) JOPT > 2 /Lo = 2582 > 2 > 1 4 &

Now suppose all jobs have size less tRdf. If p; < 1/3 (and thug;;; < % as well), we get from (2)
thatos (i) — piv1 = 1 — 01(i) — piy1 < 01(i)/s, which impliesoy (i)(s + 1) > s(1 — pi1) > 2. Further,
we get from (3) thatl — o1 (3))s > o1(i) — p;, iImplying o1 (i) < (s + p;)/(s + 1) and thereforery (i) =
1—o1(4) > (1—pi)/(s + 1) >2/(3s + 3). Thusmin{o (i), o2(i)} > ﬁ > 20PT> (1+ -%)OPT.

If p; > 1/3, butp; < ,we have = 1ori = 2, since there are at most two jobs Iargert%amf z' =1,
we havemin{o; (1), o2(1 )} mln{p1, 1—pi}>1>20PT> (14 17)OPT. If i = 2, thenp, > 1, and
by (3) we havery(2) > 22=r2 — 21 we havel = pL+po+ 02(2) < 2p1 + 09(2) < (25 + 1) 2(2).
ThereforeoPT/o2(2) < 5 /57 = 1+ =5 O

It follows that on two machines, SSNC is better than SNC in general. However, the following lemma
shows that SNC is better than SSNC fog 1 + /2.

Lemma 7.3 The approximation ratio of SSNC is not better tham{1 + 77,1 + %} on two machines.

Proof Supposes < ¢. Consider the following input instance for some- 0: jobs of size; %+, 3,57 — ¢,
and many small jobs of total size— 2325}1 + €. Itis always possible to distribute these jobs in a ratio of
s : 1, so the optimal cover it/ (s + 1). Forany0 < e < 5%, SSNC will combine the first two jobs on the
fast machine, and on the slow machine it will have a load of anly;25; + ¢ = 51 +¢. Takinge — 0,

this shows that fos < ¢, the approximation ratio of SSNC is not better théFlclt/QsJrl = 2;:31

Now supposes > ¢. In this case we use the jol?szW — &, s+1 + &, and( Tz These jobs are in
order of decreasing size df > ¢. Again SSNC puts the first two jobs on the fast machine, and has a cover

of only G +1)2 The optimal assignment is to combine the first and third jobs on the fast machine for a cover
of =5 — <. O

For a comparison of the approximation ratios of SNC and SSNC, see Figure 7.

In the following, we show that SSNC or simple adaptations of it are not monotone on more than two
machines. In our examples we use a small number of machines. The examples can be extended to a larger
number of machines by adding sufficiently many very large jobs.

For three or more machines, SSNC works as follows. We use the following guess vélyes:

5:1 pi/s1. Run Next Cover (Figure 3) for each guess valtig using machine speeds which are based on
the bids, and return the largest guess value for which Next Cover succeeds. (SSNC can be made faster by
using binary search.)

Leta > /2. We use a job set which consists of five jobs of sizési® — 1,a%2 — 1,a> — 1,1. There
are three machines of speedsa, 1. Running SSNC results in the s€i8’}, {a® — 1}, {a®? — 1,a%> — 1,1}
for a cover ofa. It is easy to see that changing the first set ifiid, a® — 1} so that the load on the fastest
machine becomes strictly larger thanesults in a second sét? — 1, a? — 1} and the third machine gets a
load which is too small.

Assume now the speed of fastest machine decreasesdffdma. SSNC finds the setfa’}, {a® —
1,a® — 1},{a® — 1,1} for a cover ofa®. So the size of the largest set can increase (in this case dtdm
a® + a® — 2) if the fastest machine slows down.

This example shows that not only the above algorithm is not monotone, but also a version of it which
rounds machine speeds to powelkds not monotone. In previous work, machine speeds were rounded to
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Figure 7: The approximation ratios of SNC and SSNC as a function of the highestsspdeslapproxima-
tion ratio of SNC has a minimum /5 for s = 3/2 and tends to 2 for large The approximation ratio of
SSNC has a maximum @ffor s = ¢, and is monotonically decreasing (to 1) afterwards.

powers of relatively large numbers (e.B.5 in [1]). Thus it seems unlikely that rounding machine speeds
to powers of some number smaller thg® would give a monotone algorithm.

Another option would be to round job sizes. We show that this approach results in a non-monotone
algorithm already for two machines (the example can again be extended for more machines).

Assume that we round job sizes to power$ of ¢. Leta be a number such that< a < b+ 1. Thisis
a constant used to define machine speeds (the same example may be used to show that the combination of
rounding both machine speeds and job sizes is not monotone either, since rounding speeds into powers of
a would leave the speeds unchanged). We consider the following problem instance with two machines and
five jobs. The speeds of both machines airitially, and the job sizes ar@l + )b, b, b, 1, where we take
e < 1/b.

Our algorithm sees the job sizesidsb, b, 1 and initially places? on machine 1 and the remaining jobs
on machine 2. Note that putting the first job of sizalso on machine 1 only gives a cover(df+ 1)/a,
whereas the first option givéd/a (andb > ¢). The algorithm then uses the actual job sizes (which it needs
to do in order to resort the job sets accurately), and puts only the job dfisize)b on the second machine.

Now the speed of machine 2 decreases fatm1. The new job sets afé?, b}, {b, 1}, to geta (rounded)
cover of(b% + b) /a > b. This hold sinceb? + b)/a < b + 1. Keeping the old sets would give only a cover
of b2/a < b. Taking the set$b? b, b} and{1} would give only a cover of. However, this means that the
actual size of the first set is no@@ + )b, whereas the size of the second séh #s 1, which is less. So
the size of the smallest set is néw 1, which is larger than beford{ + £)b), so the work on machine 2
increases although its speed decreased.

8 Open questions
After the preliminary version of our paper appearedaadomizedmonotone PTAS for generak was

given by Dhangwatnotai et al. [13]. As is the case for the makespan problem, the question of providing a
deterministic monotone PTAS for generalremains open.
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