
Maximizing the Minimum Load for Selfish Agents∗

Leah Epstein† Rob van Stee‡

Abstract

We consider the problem of maximizing the minimum load (completion time) for machines that are
controlled by selfish agents, who are only interested in maximizing their own profit. Unlike the classical
load balancing problem, this problem has not been considered for selfish agents until now. The goal is
to design a truthful mechanism, i.e., one in which all users have an incentive to tell the truth about the
speeds of their machines. This then allows us to find good job assignments. It is known that this requires
monotoneapproximation algorithms, in which the amount of work assigned to an agent does not increase
if its bid (claimed cost per unit work) increases.

For a constant number of machines,m, we show a monotone polynomial time approximation scheme
(PTAS) with running time that is linear in the number of jobs. It uses a new technique for reducing
the number of jobs while remaining close to the optimal solution. We use an FPTAS for the classical
problem, i.e., where no selfish agents are involved, to give a monotone FPTAS.

Additionally, we give a monotone approximation algorithm with approximation ratiomin(m, (2 +
ε)s1/sm) whereε > 0 can be chosen arbitrarily small andsi is the (real) speed of machinei. Finally
we give improved results for two machines.

1 Introduction

In this paper, we are concerned with a fair allocation of jobs to parallel related machines, in the sense that
each machine should contribute a ’reasonable amount’ (compared to the other machines) to the processing
of the jobs. Specifically, we are interested in maximizing the minimum load (completion time) which is
assigned to any machine. The minimum load is also known as thecover, as it is the amount to which all
machines are “covered”. This problem has been studied in the past on identical [11, 10, 21] as well as related
machines [7] and also in the online setting where jobs arrive one by one and need to be assigned without
information about future jobs [6]. It is also closely related to the max-min fairness problem [9, 16, 8], where
we want to distribute indivisible goods to players so as to maximize the minimum valuation.

In our case, the players (machines) have negative valuations for the jobs, since there is a cost incurred
in running the jobs. So our goal becomes maximizing the minimum loss, i.e., making sure that the cost
of processing is not distributed too unfairly. Moreover, the machines are controlled by selfish agents that
only care about maximizing their individual profit (or minimizing their individual loss). The speeds of the
machines are unknown to us, but before we allocate the jobs, the agents will give us bids which may or may
not correspond to the real speeds of their machines.

∗A preliminary version of this paper appeared inProc. 8th Latin American Symposium on Theoretical Informatics (LATIN
2008), p.264–275. LNCS 4957, Springer, 2008.

†Department of Mathematics, University of Haifa, 31905 Haifa, Israel.lea@math.haifa.ac.il .
‡Max-Planck-Institut f̈ur Informatik, Saarbr̈ucken, Germany.vanstee@mpi-inf.mpg.de . Research supported by German

Research Foundation (DFG). Work performed while the author was at the University of Karlsruhe, Germany.

1

Our goal in this paper will be to designtruthful mechanisms, i.e., design games in such a way that
truth telling about their speeds is a dominant strategy for the agents: it maximizes the profit for each agent
individually. This is done by introducingside paymentsfor the agents. In a way, we reward them (at some
cost to us) for telling us the truth. The role of the mechanism is to collect the claimed private data (bids),
and based on these bids to provide a solution that optimizes our desired objective, and hand out payments to
the agents. The agents know the mechanism and are computationally unbounded in maximizing their utility.

The seminal paper of Archer and Tardos [3] considered the general problem of one-parameter agents.
The class of one-parameter agents contain problems where any agenti has a private valueti and his valuation
function has the formwi · ti, wherewi is the work assigned to agenti. Each agent makes a bid depending
on its private value and the mechanism, and each agent wants to maximize its own profit. The paper [3]
shows the following key result, which we will use repeatedly in this paper: in order to achieve a truthful
mechanism for such problems, it is necessary and sufficient to design amonotoneapproximation algorithm.
An algorithm is monotone if for every agent, the amount of work assigned to it does not increase if its
bid increases. Using this result, monotone (and therefore truthful) approximation algorithms were designed
for several classical problems, like scheduling on related machines to minimize the makespan [3, 5, 1, 18],
shortest path [4, 14], set cover and facility location games [12], and combinatorial auctions [19, 2].

Formal definition Denote the number of jobs byn, and the size of jobj by pj (j = 1, . . . , n). Denote
the number of machines bym, and the speed of machinei by si (i = 1, . . . ,m). As stated, each machine
belongs to a selfish useri. The private value (ti) of useri is equal to1/si, that is, the cost of doing one
unit of work. Each useri will report some valuebi to the mechanism, which may or may not correspond
to its private valueti. The mechanism will use these bids to assign the jobs to the machines, and calculate
appropriate payments for each user. The load on machinei, Li, is the total size of the jobs assigned to
machinei divided bysi. Hence, agenti incurs a cost ofLi for running these jobs. Theprofit of useri is
given byPi−Li, wherePi is the payment to useri by the payment scheme defined by Archer and Tardos [3].

We briefly repeat the definition ofPi. Let b−i denote the vector of bids, not including agenti. We write
b (the total bid vector) also as(b−i, bi). Then the payment function for useri is defined as

Pi(b−i, bi) = hi(b−i) + biwi(b−i, bi)−
∫ bi

0
wi(b−i, u)du,

wherewi(b−i, bi) is the work (total size of jobs) allocated to useri given the bid vectorb and thehi are
arbitrary functions (Theorem 4.2 in [3]).

Each agenti is only interested in maximizing its own profitPi − Li, and may declare a bidbi 6= ti if
this leads to a higher profit. Our goal is to maximizeminLi. This problem is NP-complete in the strong
sense [15] even on identical machines. In order to solve it approximately, we will need to design monotone
algorithms as explained above, since we cannot hope to maximizeminLi without knowing the true speeds.
Formally, monotonicity is defined as follows.

Definition 1 An algorithm ismonotoneif given two vectorsb, b′ of lengthm, which represent a set ofm
bids, which differ only in one componenti, i.e.,bi > b′i, and∀j 6= i, bj = b′j , then the total size of the jobs
(the work) that machinei gets from the algorithm if the bid vector isb is never higher than if the bid vector
is b′.

In order to analyze our approximation algorithms we use the approximation ratio. For an algorithmA, we
denote its cost byA as well. An optimal algorithm is denoted byOPT. The approximation ratio ofA is the

2

infimumR such that for any input,A ≤ R · OPT. If the approximation ratio of an offline algorithm is at
mostρ we say that it is aρ-approximation.

Previous results (non-selfish machines) For identical machines, Woeginger [21] designed a polynomial
time approximation scheme (PTAS). He also showed that the greedy algorithm ism-competitive. This is
optimal for deterministic online algorithms. Azar and Epstein [6] presented a randomizedO(

√
m log m)-

competitive online algorithm and an almost matching lower bound ofO(
√

m).
In [7], a PTAS was designed for related machines. For the semi-online case in which jobs arrive in

non-increasing order, [6] gave anm-competitive algorithm calledBIASED-GREEDY and showed that no
algorithm could do better. For the case where jobs arrive in non-increasing order and also the optimal value
is known in advance, [6] gave a 2-competitive algorithmNEXT COVER.

For unrelated machines, Bezákov́a and Dani [9] give several algorithms. One gives a solution value
which is at mostOPT− pmax less than the optimum, wherepmax is the largest job size (on any machine).
Note that this result may be close to zero. Two other algorithms have performance guaranteen −m + 1.
Golovin [16] gave an algorithm which guarantees that at least a(1− 1/k) fraction of the machines receive
jobs of total value at leastOPT/k, for any integerk. In the same paper, he also gave anO(

√
n)-approximation

for the case of restricted assignment (each job can only be assigned to a subset of the machines, and has the
same size on each allowed machine) where all job sizes are either 1 or some valueX.

For the case of restricted assignment (without further restrictions on job sizes), Bansal and Sviri-
denko [8] provided anO(log log m/ log log log m)-approximation. Beźakov́a and Dani [9] showed that
no polynomial-time algorithm can have a performance guarantee better than 2 unless P=NP. In particular,
no PTAS is possible.

Our results In Section 3, we present amonotone(and hence truthful) strongly polynomial time approxi-
mation scheme (PTAS) for a constant number of related machines. Its running time is linear in the number
of jobs,n, when the numberm of machines is a fixed constant. To the best of our knowledge, the tech-
nique it uses for reducing the number of jobs while remaining close to the optimal solution is new. We then
discuss non-selfish related machines (the classical problem) by presenting an FPTAS for it in Section 4.1.
Independently, an FPTAS for the more general case of unrelated machines was given in [20]. We use our
FPTAS to give a monotone FPTAS, in Section 4.2, where the running time of the scheme is polynomial in
n andε and the logarithm of sum of job sizes.

Additionally, we present a monotone approximation algorithm which is based onNEXT COVER and
achieves an approximation ratio ofmin(m, (2 + ε)s1/sm) in Section 5, for generalm. This algorithm
is strongly polynomial-time for an arbitrary number of machines, and it is the first such algorithm that is
monotone. We present a simplem-approximation in Section 6. It seems difficult to design a monotone
approximation algorithm with a constant approximation ratio for an arbitrary number of machines. Finally,
in Section 7 we study two monotone algorithms for two machines, and analyze their approximation ratios
as a function of the speed ratio between them. These algorithms are very simple and in many cases faster
than applying the PTAS or FPTAS on two machines.

Sorting Throughout the paper, we assume that the jobs are sorted in order of non-increasing size (p1 ≥
p2 ≥ . . . ≥ pn), except in Section 3, and the machines are sorted in a fixed order of non-decreasing bids
(i.e. non-increasing speeds, assuming the machine agents are truthful,s1 ≥ s2 ≥ . . . ≥ sm), except for
Section 4.1 which contains an FPTAS which is not necessarily monotone.

3

2 Unsuccessful directions

To give a flavor of the problem, we begin by describing some algorithms that seem reasonable, but that have
a very high approximation ratio and/or are not monotone. First we note that it is known that any deterministic
algorithm which can be seen as a purely online algorithm (i.e., does not have any a-priori information on
jobs, and cannot perform sorting), cannot have finite approximation ratio [6]. It follows from the same
paper that algorithms which sort the jobs by non-increasing size but are otherwise online (i.e. after sorting,
no information about later jobs is used apart from the fact that they will not be larger than the current job)
cannot be better thanm-competitive. Nor can online algorithms that only know the value of the optimal
cover do better.

The following natural algorithms are either not monotone, or have an infinite approximation ratio.

• Least Processing Time (LPT). This algorithm does not even have finite approximation ratio. Given
two machines of speeds 1 and 4, and two jobs of size 1, it will assign both jobs to the machine of
speed 4. But then the cover is 0. Moreover, it is known that LPT is not monotone but an adaptation
called LPT* is monotone [18]. However, the adaptation acts the same on this input and thus it cannot
be used for the current problem.

• A greedy algorithm which sorts the jobs first, and assigns every job, in turn, to the least loaded
machine, ignoring the effect of the new job on the schedule, has an infinite approximation ratio. This
can be seen from the following example. There are two machines, of speeds1 andM (for a large
positiveM) and two jobs of sizesM and1. If the larger job is assigned to the slower machine and the
smaller on to the faster machine, we get an approximation ratio ofM .

• Biased-Greedy is a a special case of the previous algorithm which prefers faster machines in case of
ties. As stated above, it cannot be better thanm-competitive. Moreover, is not monotone. Consider
an example with three machines of speeds10, 9, 9 and four jobs of sizes3, 3, 2, 2. One of the two
slowest machines receives two jobs of size2. If the speed of this machines increases to10, it would
only get one job of size 3.

• LPT-Cover. This is a natural variant of LPT for the covering problem. It orders the jobs by size as
before, but now, assign each job to that machine where it improves the cover the most. In particular,
as long as there are empty machines, assign jobs there. This algorithm assigns job arbitrarily to empty
machines, therefore it is no better than the previous greedy algorithm. If it is defined to give preference
to faster machines, then it acts as Biased-Greedy on the input stated above.

Approach-Average To conclude this section, we state another direction that was not studied before and
initially seems promising, but fails. CalculateA =

∑
j pj/

∑
i si. Assign jobs (ordered by size) to a

machine which after assignment of the job has load closest toA (which is an upper bound onOPT). This
algorithm also has unbounded approximation ratio. Consider the following input. There arem machines,
one of them has speed 1, the others have speed1/m. There arem jobs of size 1. It can be seen that a cover
of (only) 1/m can be achieved. ButA is slightly more thanm/2, and the firstm/2 jobs of size 1 will be
assigned to the fast machine, which results in a load of zero on at least one slow machine.

4

3 PTAS for constantm

To derive a PTAS, we would as usual like to reduce the number of options to be considered by rounding job
sizes. However, a main problem here is that the rounding should be independent of the bids, since otherwise
when one agent lies we get a different rounding and possibly a completely different set of jobs, making it
unlikely to give a monotone assignment and certainly very hard to prove monotonicity. This was the main
technical problem that we had to address in developing our PTAS.

This section is set up as follows. In Section 3.1, we prove some lemmas about the numbers of different
sizes of jobs. In Section 3.2, we show how to design a constant time simple optimal monotone algorithm
for an input where the number of jobs is constant (dependent onm andε). In Section 3.3, we show how to
reduce the number of jobs to a constant, allowing us to find the optimal value for this changed instance in
constant time. In Section 3.4, we show that due to this reduction, the optimal value is reduced by at most
3ε · OPT. Finally in Section 3.5, we show that our algorithm has linear running time in the number of jobs.
Altogether, this proves the following theorem.

Theorem 1 There exists a monotone PTAS for machine covering on a constant number of related machines,
which produces an output of value at least(1−3ε)OPT in timeO(n+m4m+8m2/ε2

), i.e. linear in the number
of jobs.

3.1 Numbers of jobs

We are given a fixed (constant) number of machinesm of speedss1 ≥ . . . ≥ sm. (Since our PTAS will
turn out to be truthful as shown in Section 3.2, we may assume that we know the real speeds and can sort
by them.) Without loss of generality, we assume thats1 = 1. Note that the total size of all jobs may be
arbitrarily large. LetOPT be the optimal value of the cover, i.e., the maximal minimum load that can be
achieved for this input. Letn0 be the number of jobs of size strictly larger thanOPT in the input. We begin
by proving some auxiliary claims regardingn0.

Claim 1 n0 ≤ m− 1.

Proof Assume by contradiction that there are at leastm jobs that are all larger than sizeOPT. Assigning
one job per machine, we get a load larger thanOPT on all machines (since all speeds are at most 1), which
is absurd. ¤

Claim 2 The sum of sizes of all jobs that have size of at mostOPT is at most2OPT(m− n0 − 1) + OPT.

Proof Consider all jobs of size at mostOPT. Assume by contradiction that the total size of these jobs is
more than2OPT(m − n0 − 1) + OPT. Let A be an arbitrary set of jobs that some optimal algorithm puts
on some least loaded machinej ∈ 1, . . . , m, and letB be all other jobs of size at mostOPT. Since a least
loaded machine has load exactlyOPT and therefore jobs of total size at mostOPT (since all speeds are at
most 1), the total size of the jobs inB is more than2OPT(m−n0− 1). Since each job inB has size at most
OPT, it is possible to partition these jobs into sets, so that the total size of each of the firstm − n0 − 1 sets
is in (OPT, 2OPT], and all remaining jobs are assigned to a setC (which must be nonempty). This can for
instance be done by sorting the jobs inB in order of decreasing size. Assign each of the firstm−n0−1 sets
to its own machine. Assign then0 job larger thanOPT to n0 machines, one per machine. AssignA andC
to the remaining empty machine. SinceC has nonzero size, we find an assignment with cover greater than
OPT, a contradiction. ¤

5

1. Define a fixed ordering on the machines. This ordering does not need to depend on the speeds, and
does not change even if machine speeds are modified.

2. For each possible job assignment, calculate the minimum load based on the speeds that are implied
by the agents’ bids (i.e., we assume that the agents are truthful).

3. Output the optimal assignment which is lexicographically smallest among all optimal assignments
(using the fixed ordering, and the known job sizes (not the loads!)).

Figure 1: Algorithm for a constant number of jobs

3.2 Finding a monotoneOPT

Let ε > 0 be a given constant. Without loss of generality we assumeε < 1. The method in Section 3.3
modifies the input so that we end up with a constant number of jobs (at most4(m + 2m2/ε2)). The reason
is that for this input, it is possible to enumerate all possible job assignments in constant time (there are at
mostm4m+8m2/ε2

different assignments). The algorithm in Figure 1 hence works in constant time. This
algorithm works (i.e., returns the optimal cover) because we now show that it is indeed monotone (and hence
truthful). The usage of a fixed ordering to obtain a monotone optimal algorithm was already used for the
makespan scheduling problem [3]. We give the proof for completeness.

Lemma 3.1 The above algorithm is monotone.

Proof We verify the property given in Definition 1. That is, we examine the effect of a single change in
the vector of bids. Suppose machinei claims to be faster, but it is not the bottleneck, then nothing changes.
The previous assignment is still optimal. A hypothetical lexicographically smaller optimal assignment with
the new speed would also reach a cover of the old optimal value with the old speed, because the old speed
was lower, a contradiction.

If machinei is the bottleneck (its load is exactlyOPT), theni will only get more work if it claims a
higher speed. This follows because there are two options:

1. The algorithm concludes that the original assignment is still the best (though with a smaller coverC ′

than before), then the amount allocated toi remains unchanged, because we still use the lexicographically
smallest optimal assignment (and the position of machinei does not change in the ordering that we use if its
claimed speed changes).

2. The algorithm concludes that another assignment is now better, theni clearly gets more work (to
reach a load aboveC ′, which is whati would have with the old amount of work and the new, faster speed).

This proves the lemma. ¤

3.3 Reducing the number of jobs

We construct an input for which we can find an optimal job assignment which is the smallest assignment
lexicographically, and thus monotone. We build it in a way that the value of an optimal assignment for the
adapted input is within a multiplicative factor of1 − 3ε from the value of an optimal assignment for the
original input. This is done by reducing the number of jobs of size no larger thanOPT to a constant number
(dependent onm andε), using a method which is based on the sizes of the jobs only (and hence does not
rely on machine speeds).

6

Let ∆ = 2m2/ε2 + m. If the input consists of at most∆ jobs, then we are done. Otherwise, we keep
the∆ largest such jobs as they are. This set is denoted byJL. Let JS be the rest of the jobs.

Let A be the total size of the jobs inJS . Let a be the size of the largest job inJS . If A ≤ 3a∆,
we combine jobs greedily to create mega-jobs of size in the interval[a, 3a]. Each mega-job is created by
combining jobs until the total size reaches at leasta, this size does not exceed2 · a. If we are left with a
remainder of size less thana, it is combined into a previously created job. The resulting number of mega-jobs
created fromJS is at most3∆.

Otherwise, we apply a “List Scheduling” algorithm with as input the jobs inJS and∆ identical ma-
chines. These machines are only used to combine the jobs ofJs into ∆ mega-jobs and should not be
confused with the actual (m) machines in the input.

List Scheduling (LS) works by assigning the jobs one by one (in some order) to machines, each job is
assigned to the machine with minimum load (at the moment the job is assigned). LS thus creates∆ sets
of jobs and the maximum difference in size between two sets is at mosta [17]. The jobs in each set are
now combined into a mega-job. Thus we get∆ mega-jobs with sizes in the interval[A

∆ − a, A
∆ + a]. Since

A
∆ ≥ 3a, we get that the ratio between the size of two such mega-jobs is no larger than2.

It is straightforward to see that the following lemma holds in all three cases.

Lemma 3.2 After reducing the number of jobs as described in this section, there are at most∆ jobs and at
most3∆ mega-jobs left, where∆ = 2m2/ε2 + m.

3.4 The optimal value of the modified instance

Lemma 3.3 The optimal cover of the modified instance is at least(1− 3ε)OPT.

Proof If no mega-jobs were created then clearly we consider all possible job assignments and achieve
an optimal one for the original problem. (See Section 3.2 for an explanation as to why we can assume we
know the true speeds of the machines.) Consider therefore the two cases where we applied the jobs merging
procedure. Note that since the total size of all jobs of size at mostOPT is at most2mOPT by Claim 2, and
given the amount of jobs inJL (and using Claim 1), we havea ≤ ε2OPT/m.

First assumeA ≤ 3a∆. We use the following notations.OPT′ is the value of an optimal assignment
using the modified jobs.OPT′′ is the value of an optimal assignment using the modified jobs and only
machines of speed at least2a/(εOPT) (called fast, whereas all other machines are called slow). Thus for
OPT′′ we assume that the slow machines are simply not present, making it easier to cover all the machines
to any given value. Clearly we haveOPT′′ ≥ OPT′ andOPT≥ OPT′.

We show thatOPT′′ ≥ (1− 3
2ε)OPT. Given an optimal assignment for the original instance, remove all

jobs assigned to slow machines. Remove all jobs that belong toJs (which are of size at mosta) that are
assigned to fast machines, and replace them greedily by mega-jobs. The mega-jobs are assigned until the
total size of allocated mega-jobs is just about to exceed the total size of jobs ofJs that were assigned to this
machine. Since all mega-jobs are of size at most3a, and each fast machine has load of at leastOPT and thus
a total size of assigned jobs of at least2a/ε (since it is fast), the loss is at most a factor of3

2ε of the total
load. The rest of the jobs (jobs ofJL removed from slow machines, and remaining mega-jobs) are assigned
arbitrarily.

We next show how to convert an assignment with valueOPT′′ (ignoring the slow machines) into an
assignment which uses all machines. Since there are at least∆ jobs of size at leasta (the jobs ofJL), and
these jobs are spread over at mostm machines, at least one machine has at least∆/m such jobs. From this
machine, remove at most2m/ε jobs of size at leasta (the smallest ones among those that are large enough),

7

and assign2/ε jobs to each machine that does not participate in the assignment ofOPT′′. The resulting load
of each such machine (taking the speed into account) has a load of at leastOPT since it is slow: we have
2
ε · a/(2a

εOPT) = OPT. The loss of the fast machine where jobs were removed is at most a factor ofε of its
original load. Therefore we get that in the new job assignment each machine is either loaded by at leastOPT

or by at least(1− ε)OPT′′. ThusOPT′ ≥ min{OPT, (1− ε)OPT′′}. SinceOPT′′ ≥ (1− 3
2ε)OPT, this proves

thatOPT′ ≥ (1− 3ε)OPT.
The second case is completely analogous, except that in this case we call machines with speed at least(

A
∆ − a

)
/(εOPT) fast. Thus each fast machine has total size of assigned jobs of at least

(
A
∆ − a

)
/ε. We

define fast in this way because in this case, the mega-jobs have size in the interval[A
∆ − a, A

∆ + a]. When
we replace jobs by mega-jobs, such a machine then loses at most2ε of its original load. When we convert
the assignment ofOPT′′, we use that mega-jobs have size at leastA

∆ − a, and there are∆ of them, so we can
now transfer2m/ε of them to slow machines and get the same conclusions as before. ¤

3.5 Running time

We reduce the number of jobs to a constant. Note in the reduction in Section 3.3, we are only interested in
identifying the∆ largest jobs. After this we merge all remaining jobs using a method based on their total
size. These things can be done in time linear inn. Finally, once we have a constant number of jobs, we only
need constant time for the remainder of the algorithm. Thus our algorithm has running time which is linear
in the number of jobsn.

4 FPTAS for constantm

In this section, we present a monotone fully polynomial-time approximation scheme for constantm. This
scheme uses as a subroutine a non-monotone FPTAS which is described in Section 4.1. We explain how this
subroutine can be used to create a monotone FPTAS in Section 4.2.

In the current problem, it can happen that some jobs are superfluous: if they are removed, the optimal
cover that may be reached remains unchanged. Even though these jobs are superfluous, we need to take
special care of these jobs to make sure that our FPTAS is monotone. In particular, we need to make sure that
these superfluous jobs are always assigned in the same way, and not to very slow machines. We therefore
needed to modify the FPTAS mechanism from [1] because we cannot simply use any “black box” algorithm
as was possible in [1].

4.1 An FPTAS which is not monotone

We describe an FPTAS for the classical problem, where the speeds of the machines are known. This FPTAS
can also easily be adapted to the case of unrelated machines.

Chooseε so that1/ε is an integer. We may assume thatn ≥ m, otherwiseOPT = 0 and we assign all
jobs to machine 1. In the proof of Lemma 5.2 we show that this assignment is monotone. (Since we achieve
an optimal cover of 0 in this case, we see this as having an approximation ratio of 1.)

We give an algorithm which finds the optimal cover up to a factor of1 − 2ε. We can again use an
algorithm which is anm-approximation [6], therefore we can assume we can findOPT within a factor ofm.
We scale the problem instance such that the algorithm of [6] returns a cover of size 1. Then we know that
OPT∈ [1, m]. We are now going to look for the highest value of the formj · ε (j = 1/ε, 1/ε + 1, . . . , m/ε)
such that we can find an assignment which is of value at least(1 − ε)jε. That is, we partition the interval

8

[1,m] into many small intervals of lengthε. We want to find out in which of these intervalsOPT is, and find
an assignment which is at most one interval below it.

Given a value forj, we scale the input up by a factor ofn
jε2 ≥ m

mε ≥ 1. Now the target value (the
cover that we want to reach) for a given value ofj is not jε but S = n/ε. For jobk and machinei, let
`k
i = dpk/sie (k = 1, . . . , n; i = 1, . . . , m).

We use dynamic programming based on the numbers`k
i . A load vectorof a given job assignment is

anm-dimensional vector of loads induced by the assignment. LetT (k, a) be a value between 0 andm for
k = 0, . . . , n and an (integer!) load vectora. T (k, a) is the maximum number such that jobk is assigned
to machineT (k, a) and a load vector ofa (or better) can be achieved with the jobs1, . . . , k. If the vectora
cannot be achieved,T (k, a) = 0. If a (or better) can be achieved,T (k, a) is a number between 1 andm.

We initialize T (0, 0) = m, representing that a cover of 0 can be achieved without any jobs (this is
needed for the dynamic program), andT (0, a) = 0 for anya > 0. For a load vectora = (a1, . . . , am),
T (k, a) is computed fromT (k − 1, a) by examiningm values (each for a possible assignment of jobk):

T (k, a) = max
(
0,

{
i ∈ {1, . . . , m}

∣∣∣ai − `k
i ≥ 0 ∧ T (k − 1, (a−i, ai − lki)) > 0

})

The notation(a−i, x) represents the load vector in which theith element ofa has been replaced byx and
all other elements are unchanged. Each valueT (k, a) is set only once, i.e., if it is nonzero it is not changed
anymore. When a valueT (k, a) is set to a nonzero valuex, we also setT (k, (a−i, ai − y)) = x for every
y = 1, . . . , lki − 1 such thatT (j, (a−i, ai − y)) = 0. This represents the fact that although a load vector of
preciselya cannot be achieved with this assignment, a load vector that dominatesa (is at least as large in
every element) can be achieved by assigning jobk to machineT (k, a).

The size of the tableT for one value ofk is (S + 1)m. The n tables are computed in total time
nmS(S + 1)m = O(m(n/ε)m+2). (The factorS is from updating the table after setting someT (k, a) to
a nonzero value.) As soon as we find a valuek ≤ n such thatT (k, S, . . . , S) > 0, we can determine the
assignment for the firstk jobs by going back through the tuples. Each time, we can subtract the last job from
the machine where it was assigned according to the value of the tuple to find the previous load vector. If
some element of the load vector drops below 0 due to this subtraction, we replace it by 0. Ifk < n, the last
n− k jobs are assigned to machine 1 (the fastest machine).

If T (n, S, . . . , S) = 0 after running the dynamic program, the target value cannot be achieved. In this
case we adjust our choice ofj (using binary search) and try again. In this way, we eventually find the highest
value ofj such that all machines can be covered tojε using jobs that are rounded.

Note that the loss by rounding is at mostn per machine (in the final scaled instance): if we replace the
rounded job sizes by the actual job sizes as they were after the second scaling, then the loss is at most 1 per
job, and there are at mostn jobs on any machine. So the actual cover given by the assignment found by the
dynamic program is at leastS − n. Since the target valueS = n/ε, we lose a factor of1− ε with regard to
S. After scaling back (dividing byn/(jε2) again) we have that the actual cover found is at least(1− ε)jε.
On the other hand, due to the binary search a cover of(j + 1)ε cannot be reached (not even with job sizes
that are rounded up). This implies that our cover is at least(1− ε)(OPT− ε) ≥ (1− 2ε)OPT sinceOPT≥ 1.

4.2 A monotone FPTAS-mechanism

Our FPTAS mechanism is displayed in Figure 2. It is a variation on the FPTAS-mechanism described in [1].
Their mechanism makes only one direct reference to the actual goal function (makespan in their case) and
relies on a black box algorithm to find good assignments. The only changes that we had to make are therefore
the following:

9

Input: n jobs in order of non-decreasing sizes, a bid vectorb = (b1, . . . , bm), a parameterε and a
subroutine, which is the FPTAS from Section 4.1.

1. Construct a new bid vectord = (d1, . . . , dm) by normalizing the bids such that the lowest bid is 1,
rounding up each bid to the closest value of(1+ ε)i, and replacing each bid larger than(1+ ε)`+1

by (1 + ε)`+1.

2. Enumerate over all possible vectorsd′ = ((1 + ε)i1 , . . . , (1 + ε)im), whereij ∈ {0, . . . , ` + 1}.
For each vector, apply the subroutine from Section 4.1 and sort the output assignment such that the
ith fastest machine ind′ will get theith largest amount of work.

3. Test all the sorted assignments ond, and return the one with the maximal cover. In case of a tie,
choose the assignment with the lexicographically maximum assignment (where the machines are
ordered according to some external machine-id).

Figure 2: A monotone FPTAS-mechanism

• Where the mechanism from [1] uses their black box algorithm, we use instead the subroutine described
in Section 4.1.

• We need a different value for`, which denotes the second highest power of1 + ε that is considered as
a valid bid. We explain below how to find this value.

• In the last step (testing all the sorted assignments), we do not return the assignment with the minimal
makespan but instead the assignment with the maximal cover.

As specified in [1], we will normalize the bids such that the lowest bid (highest speed) is 1. Assuming
the bids are truthful, i.e.bj = 1/sj for j = 1, . . . ,m, a very simple upper bound for the optimal cover is
thenU =

∑n
i=1 pi, the total size of all the jobs. (Placing all the jobs on the fastest machine gives loadU on

that machine, and it is clear that the fastest machine cannot get more load than this.)
Consider a slower machinej. Supposebj ≥ U/pn. Then the load of this machine if it receives only job

n is at leastU ≥ OPT. This means that for our algorithm, it is irrelevant what the exact value ofbj is in this
case, because already forbj = U/pn an optimal cover is certainly reached by placing a single arbitrary job
on machinej. We can therefore change any bid which is higher thanU/pn to U/pn.

Since the mechanism normalizes and rounds bids to powers of1 + ε, we can now define

` =
⌈
log1+ε

U

pn

⌉
=

⌈
log1+ε

∑n
i=1 pi

pn

⌉
.

Plugging this in in the mechanism from [1], this gives us a fully polynomial-time approximation scheme for
the machine covering problem, since` is still (weakly) polynomial in the size of the input.

Theorem 2 The FPTAS-mechanism given in Figure 2 is monotone.

Proof We follow the proof of Andelman et al. [1]. We need to adapt this proof to our goal function.
Suppose that machinej increases its bid. First of all, if the increase is so small that the vectord′ remains
unchanged, the subroutine will give the same output, and in step 3 we will also choose the same assignment.
Thus the load onj does not change.

10

If dj > (1 + ε)`, the assignment found by our algorithm will also not change whenj slows down: the
vectord′ again remains the same and we can reason as in the first case.

Now suppose thatdj ≤ (1 + ε)`, and the speed ofj changes so that its rounded bid increases by a
factor of1 + ε. (For larger increases, we can apply this proof repeatedly.) Suppose thatj is not the unique
fastest machine. We thus consider the case where a normalized rounded bid rises fromdj to (1 + ε)dj , the
assignment changes fromW to W ′, and we assume that the amount of work assigned to machinej increases
from wj to w′j > wj . Denote the size of the cover of assignmentW on bid vectord by C. There are two
cases.

Suppose that the cover that our algorithm finds increases asj becomes slower. So all machines have
load strictly aboveC. Consider the new assignmentW ′ on the old speeds. All machines besidesj do not
change their speeds and therefore still have a load strictly aboveC. Machinej receives more work than in
the old assignmentW and therefore also has a load strictly aboveC, since it already had at leastC when
it was faster. This means thatW ′ gives a better cover thanW on the old speeds. However, our algorithm
would then have outputW ′ in the first place, because it checks all these speed settings, a contradiction.

Now suppose that the cover that our algorithm finds stays the same asj becomes slower. This means
thatj is not the bottleneck machine (the unique least loaded machine). The old assignmentW clearly has
a cover ofC also with the new speeds, so our algorithm considers it. It would only outputW ′ if W ′ were
lexicographically larger thanW and also had a cover ofC (or better). However, in that caseW ′ again would
have been found before already exactly as above, a contradiction.

Finally, suppose thatj is the unique fastest machine. Due to normalization,dj remains 1, bids between
1 + ε and(1 + ε)` decrease by one step, and bids equal to(1 + ε)`+1 can either decrease to(1 + ε)` or
remain unchanged. We construct an alternative bid vectord̂ as in [1] where we replace all bids of(1+ ε)`+1

in d′ with (1 + ε)`. This is the point where we use the fact that we check “too many” speed settings.
Every machine that bids(1+ε)` or more needs to receive only at least one arbitrary job to have sufficient

load. In such cases, our subroutine indeed puts only one job on such a machine, because it finds the minimum
amount of jobsk to get to a certain cover and puts all remaining jobs on the fastest machine. Therefore,
the cover that our algorithm finds for̂d will be the same as that ford′, and it will also give the same output
assignment. This is also optimal for(1 + ε)d̂. The difference between(1 + ε)d̂ andd is only that the biddj

changes from 1 to1 + ε. We can now argue as before: whether the cover that our algorithm finds increases
or not asj becomes slower, a hypothetical new better assignment ford̂(1 + ε) would also be better ford,
but in that case the algorithm would have found it before. ¤

5 Approximation algorithm SNC for arbitrary values of m

In this section, we present an efficient approximation algorithm for an arbitrary number of machinesm. Our
algorithm uses Next Cover [6] as a subroutine. This semi-online algorithm is defined in Figure 3. Azar and
Epstein [6] showed that if the optimal cover is known, Next Cover (NC) gives a 2-approximation. That is,
for the guessG = OPT/2 it will succeed. NC also has the following property, which we will use later.

Lemma 5.1 Suppose NC succeeds with guessG but fails with guessG + ε, whereε ≤ 1
3G. Then in the

assignment for guessG, the work on machinem is less thanmw + ε, wherew ≥ G is the minimum work
on any machine.

Proof Consider machinem. Suppose its work is at leastmw + ε, whereε ≤ G
3 ≤ w

3 .

11

Input: guess valueG, m machines in a fixed order of non-increasing speeds,n jobs in order of non-
increasing sizes.
For every machine in the fixed order, starting from machine 1, allocate jobs to the machine according to
the sorted order of jobs until the load is at leastG.
If no jobs are left and not all machines reached a load level ofG, report failure. If all machines reached
a load ofG, allocate remaining jobs (if any) to machinem, and report success.

Figure 3: Algorithm Next Cover (NC)

Supposem is odd. We create a new assignment as follows. Place the jobs on machinesi, i + 1 on
machine(i + 1)/2 for i = 1, 3, 5, . . . , m− 2. Cut the work on machinem into (m + 1)/2 pieces (without
cutting any jobs) that all have size at leastw + ε and at most2w. Put these on the last(m + 1)/2 machines.

The proof that it is possible to cut the pieces in this way is analogous to that for setB in the proof of
Claim 2. The last piece then has size at leastmw + ε− m−1

2 · 2w = w + ε. This means that NC succeeds
with guessw + ε ≥ G + ε, a contradiction.

Now supposem is even. This time we create a new assignment by placing the jobs on machinesi, i + 1
on machine(i+1)/2 for i = 1, 3, 5, . . . , m−3. Note that machinem−1 already has jobs no larger thanw.
That is true since some machinei among1, . . . , m−1 has received work of exactlyw, and all jobs assigned
to machinesi, . . . ,m are no larger thanw. We can consider the total work of the last two machines. This
load is at least(m + 1)w + ε and as shown before, it can be split intom+2

2 = m
2 + 1 parts of size at least

w + ε each. The parts can be assigned in the appropriate order to machinesm
2 , . . . , m. ¤

Our algorithm Sorted Next Cover (SNC) works as follows. A first step is to derive a lower bound and
an upper bound on the largest value which can be achieved for the input andm identical machines. To find
these bounds, we can apply LPT (Longest processing Time), which assigns the sorted (in non-increasing
order) list of jobs to identical machines one by one. Each job is assigned to the machine where the load
after this assignment is minimal. It was shown in [11, 10] that the approximation ratio of LPT is4m−2

3m−1 < 4
3 .

Thus we defineA to be the value of the output assignment of LPT. We also defineL = A
2 andU = 4

3A. We
have thatA andU are clear lower an upper bounds on the optimal cover on identical machines. Since NC
always succeeds to achieve half of an optimal cover, it will succeed with the valueG = L. Since a cover
of U is impossible, the algorithm cannot succeed with the valueG = U . Throughout the algorithm, the
valuesL andU are such thatL is a value on which NC succeeds whereasU is a failure value. We perform a
geometrical binary search. It is possible to prove using induction that if NC succeeds to cover all machines
with a guess valueG, then it succeeds to cover all machines using a smaller guess valueG′ < G. The
induction is on the number of machines and the claim is that in order to achieve a cover ofG′ on the firsti
machines, NC uses the same subset or a smaller subset used to achieveG.

The algorithm has a parameterε ∈ (0, 1/2) that we can set arbitrarily. See Figure 4. Since the ratio
betweenU andL is initially constant, it can be seen that the algorithm completes in at mostO(1

log(1+ε/2))
steps. The overall running time isO(n(log n + 1/ log(1 + ε/2))) due to the sorting. Note that Steps 2 and
6 are only executed once.

Lemma 5.2 SNC is monotone.

Proof The subsets constructed in step 3 and 6 do not depend on the speeds of the machines. If a machine
claims it is faster than it really is, the only effect is that it may get a larger subset. Similar if it is slower.

12

Input: parameterε ∈ (0, 1/2), sorted set of jobs (p1 ≥ . . . ≥ pn), sorted machine bids (b1 ≤ . . . ≤ bm).

1. If there are less thanm jobs, assign them to machine 1 (the machine of speeds1), output 0 and
halt.

2. Scale the jobs so that
∑n

i=1 pi = 1. Run LPT on identical machines and denote the value of the
output byA. SetL = A

2 andU = 4
3A.

3. Apply Next Cover on identical machines with the guessG =
√

U · L.

4. If Next Cover reports success, setL = G, else setU = G.

5. If U − L > ε
2L, go to step 3, else continue with step 6.

6. Apply Next Cover on identical machines with the valueL. Next Cover partitions the jobs inm
subsets, each of total size of jobs at leastL. Sort the subsets in non-increasing order and allocate
them to the machines in non-increasing order of speed according to the bids.

Figure 4: Algorithm Sorted Next Cover (SNC)

If the algorithm halts in step 1, then we again have a situation that jobs are partitioned into sets, and the
sets are assigned in a sorted way. This is actually the output that steps 2–6 would produce if SNC was run
with a guess value0. ¤

Theorem 3 For any0 < ε < 1, SNC maintains an approximation ratio ofmin(m, (2 + ε)s1/sm).

Proof We start with the second term in the minimum. The load that SNC has on machinei is at leastL/si,
and Next Cover cannot find a cover aboveU ≤ (1 + ε/2)L on identical machines. So the optimal cover on
identical machines of speed 1 is at most2(1 + ε/2)L = (2 + ε)L. Thus the optimal cover on machines of
speedsm is at most(2+ε)L/sm, and the optimal cover on the actual machines can only be lower sincesm is
the smallest speed. We thus find a ratio of at most((2+ ε)L/sm)/(L/si) = (2+ ε)si/sm ≤ (2+ ε)s1/sm.

We prove the upper bound ofm using induction.
Base case:On one machine, SNC has an approximation ratio of 1.
Induction hypothesis:Onm− 1 machines, SNC has an approximation ratio of at mostm− 1.
Induction step:Recall that the jobs are scaled so that their total size is 1. Suppose each machinej has

work at least1/(jm) (j = 1, . . . , m). Then the load on machinej is at least1/(jmsj). However, the
optimal cover is at most1/(s1 + s2 + ... + sm) ≤ 1/(jsj + (m− j)sm) ≤ 1/(jsj). Thus SNC maintains
an approximation ratio of at mostm in this case.

Suppose there exists a machinei in the assignment of SNC with work less than1/(im). Consider the
earliest (fastest) such machinei. Due to the resorting we have that the work on machinesi, . . . , m is less
than1/(im). So the total work there is less than(m − i + 1)/(im). The work on the firsti − 1 machines
is then at least1− (m− i + 1)/(im) = (im−m + i− 1)/(im) = (i− 1)(m + 1)/(im) and the work on
machine 1 is at least(m + 1)/(im). This is more thanm + 1 times the work on machinei.

We show that in this case there must exist a very large job, which is assigned to a machine by itself. Let
L′ andU ′ be the final values ofL andU in the algorithm. Letw be the minimum work assigned to any
machine for the guess valueL′. Since SNC gives machinei work less than1/(im), we havew < 1/(im).
We haveU ′ −L′ ≤ ε

2L′. SNC succeeds withL′ and fails withU ′ and thus, sinceε ≤ 1
2 and by Lemma 5.1,

machinem receives at mostmw + ε
2L′ ≤ mw + 1

4L′ ≤ (m + 1
4)w ≤ (m + 1

4)/(im) running NC with the
guess valueL′. Moreover, NC stops loading any other machine in step 6 as soon as it coversL′.

13

We conclude that the only way that any machine can get work more than(m + 1)L′ is if it gets a single
large job. This means that in particular the first (largest) job has sizep1 > (m + 1)w ≥ 3w ≥ 3L′. SNC
assigns this job to its first machine, and the remaining work on the other machines.

To complete the induction step, compare the execution of SNC to the execution of SNC with as input
them− 1 slowest machines and then− 1 smallest jobs. Denote the first SNC by SNCm and the second by
SNCm−1. We first show that SNCm−1 fails onU ′. SinceU ′ ≤ (1 + ε

2)w < 2w, then SNCm assigns only
p1 to machine 1, and thus SNCm−1 executes exactly the same on the other machines. Since machine 1 is
covered, SNCm fails on some later machine, and then this also happens to SNCm−1. Therefore, SNCm−1

cannot succeed withU ′ or any larger value. A similar reasoning shows that SNCm−1 succeeds with any
guess that is at mostL′. Finally, L′ is at least the starting guessA/2. Sop1 > 3L′ ≥ 3

2A implies that LPT
also puts only the first job on the first machine, since its approximation ratio is better than4/3. Therefore,
LPT gives the same guess valueA for the original input onm machines as it would for then − 1 smallest
jobs onm−1 machines. This means that SNCm and SNCm−1 maintain the same valuesU andL throughout
the execution, and then we can apply the induction hypothesis. ¤

6 Round Robin

We show that if the speed ratio between the fastest and slowest machines is large, the following very simple
and efficient algorithm performs quite well.

Sort the machines and jobs by speed, so that the first machine has the largest speed and the first job has
the largest size. The Round Robin algorithm assigns jobs of indicesi + mk (in the sorted list) to machinei
(in the sorted list) fork ≥ 0 until it runs out of jobs. Comparing two successive machines, we see that the
jth job on machinei + 1 is never larger than thejth job on machinei (and may not even exist at all in case
we ran out of jobs). Thus the work is monotonically decreasing. Moreover, the job sets that are constructed
are independent of the speed, and the only effect of e.g. bidding a higher speed is to possibly get a larger set
of jobs. Thus this algorithm is monotone.

Claim 3 The approximation ratio of Round Robin is exactlym.

Proof It is easy to see that the ratio cannot be better thanm. Considerm identical machines,m− 1 jobs of
size 1 andm jobs of size1/m. Round Robin places only one job of size1/m on the last machine and has a
cover of1/m. By placing all the small jobs on the last machine, it is possible to get a cover of 1.

Consider the first machine in the ordering. It gets at least a fraction of1/m of the total size of all jobs.
Consider now another machine, whose index in the ordering isi. We change the sequence in the following
way. Take the largesti− 1 jobs and enlarge them to size∞. Clearly,OPTcan only increase. Call these jobs
“huge”. Next, we claim that without loss of generality, huge jobs are assigned to the firsti − 1 machines
in the ordering byOPT. Otherwise, do the following process. Forj = 1, ..., i − 1, if machinej has a huge
job, do nothing. Otherwise, remove a huge job from a machinex in i, ..., m (again, indices are in the sorted
list), and put it on machinej, put the jobs of machinej on machinex. Sincej is not slower thanx, the
cover does not get smaller. We got an assignmentOPT′ ≥ OPT. Consider now the assignment the algorithm
creates. Consider only the jobs which are not huge, we placed these jobs in a Round-Robin manner, starting
from machinei. Therefore, machinei received at least an1/m fraction of these jobs (with respect to total
size). OnOPT′, machinei does not have huge jobs, thus it can have at mostm times as much work as in our
assignment. Thus we have a cover of at leastOPT′/m ≥ OPT/m. ¤

It should be noted that if we find an algorithm with a better guarantee thanm, we cannot simply run both
it and SNC and take the best assignment to get a better overall guarantee. The reason that this does not work

14

Input: sorted set of jobs (p1 ≥ . . . ≥ pn), sorted machine bids (b1 ≤ b2)
Find i such thatmin{σ1(i), σ2(i)} is maximal. Ifσ1(i) ≥ σ2(i), assignLi to the first (faster) machine
andRi to the second. Else, assignLi to the second machine andRi to the first.

Figure 5: Algorithm Sorted Next Cover (SNC) on two machines

is that this approach does not need to be monotone, even if this hypothetical new algorithm is monotone: we
do not know what happens at the point where we switch from one algorithm to the other.

7 Algorithms for small numbers of machines

We next consider the case of two machines. Even though previous sections give algorithms for this case
with approximation ratio arbitrarily close to1, we are still interested in studying the performance of SNC
for this case. The main reason for this is that we hoped to get ideas on how to find algorithms with good
approximation ratios form > 2 machines that are more efficient than our approximation schemes. How-
ever, unfortunately, several obvious adaptations of SNC are not monotone, and it seems we will need more
sophisticated algorithms form > 2.

A first observation is that there are onlyn − 1 possible partitions of the jobs into two sets (since we
keep the jobs in sorted order), and thus there is no need to perform binary search. LetSi = (Li =
{1, . . . , i}, Ri = {i + 1, . . . , n}) be a partition of the sorted list of jobs (p1 ≥ p2 . . . ≥ pn). Clearly, to
have a finite approximation ratio we only need to considerSi for i = 1, . . . , n− 1. For a given partitionSi,
let σ1(i) =

∑i
j=1 pj andσ2(i) =

∑n
j=i+1 pj .

SNC is defined for two machines as in Figure 5. From Theorem 3 it follows that SNC (which ignores
the speeds) has an approximation of at most2. We next consider the approximation ratio as a function of
the speed ratios ≥ 1.

Lemma 7.1 On two machines, SNC has an approximation ratio ofmax{ 3
s+1 , 2s

s+1}.
Proof Assume without loss of generality that the speeds ares and 1, and the total work is 1. Then
OPT≤ 1

s+1 .
Let i be the index such that the partition chosen by SNC isSi. We have that the set of jobs which is

assigned toM1, has the summax{σ1(i), σ2(i)} ≥ 1
2 . Thus ifM1 has a smaller load thanM2, this load is at

least 1
2s and we have an approximation ratio of at mostOPT

1/(2s) ≤ 2s
s+1 .

To give a lower bound on the load ofM2, consider first the amount of jobs of size larger than1
3 in the

input. If no such jobs exist, letj be the smallest index1 ≤ j ≤ n− 1, such thatσ1(j) ≥ 1
3 . Clearlyj exists

sinceσ1(n) = 1. We would like to show thatσ1(j) < 2
3 . If σ1(j) = 1

3 we are done, otherwise,j ≥ 2 since
p1 < 1

3 . We haveσ1(j − 1) < 1
3 and thusσ1(j) = σ1(j − 1) + pj < 1

3 + 1
3 = 2

3 . Thus

min{σ1(i), σ2(i)} ≥ min{σ1(j), σ2(j)} ≥ 1
3
. (1)

Consider the case where there are two such jobs, thusp1 ≥ p2 > 1
3 , or there is a single such jobp1 but

p1 ≤ 2
3 , we haveσ1(1) > 1

3 andσ2(1) > 1
3 and thus again (1) holds. Finally, in casep1 > 2

3 , clearlyi = 1.
We get thatOPT≤ σ2(1) and thusM2 has (at least) optimal load.

15

Input: sorted set of jobs (p1 ≥ . . . ≥ pn), sorted machine bids (b1 ≤ b2)
Let r = b2/b1 ≥ 1 be the speed ratio between the two machines according to the bids. Findi such that
min{σ1(i)

r , σ2(i)} is maximal. Ifσ1(i) ≥ σ2(i), assignLi to the first (faster) machine andRi to the
second. Else, assignLi to the second machine andRi to the first.

Figure 6: Algorithm Speed-aware Sorted Next Cover (SSNC) on two machines

Supposep1 ≤ 2
3 . Then by (1) we haveσ2(i) ≥ 1

3 . This implies that ifM2 has load smaller thanM1, we
have an approximation ratio of at mostOPT

1/3 ≤ 3
s+1 .

To show that the bound is tight, consider the following sorted sequences. The first sequence consists of
1
2 and the two jobs s−1

2(s+1) and 1
s+1 if s ≥ 3 (or 1

2 , 1
s+1 , s−1

2(s+1) if s < 3). An optimal assignment assigns
1

s+1 to M2 and the other two jobs toM1, thusOPT = 1
s+1 . However, SNC partitions the input into two sets

whose sizes are12 , and so the approximation ratio is2s
s+1 .

The second sequence needs to be shown only fors ≤ 3
2 . We use the sorted sequence1

3 , 1
3 , 2s−1

3s+3 , 2−s
3s+3

(this is a sorted sequence for anys ≤ 2). There are two possible best partitions, but for both of them, the
minimum work is onM2 and is1

3 . However, an optimal assignment assigns one job of size1
3 and a job of

size 2s−1
3s+3 to M1, and the other jobs toM2, getting a cover of 1

s+1 . We get an approximation ratio of3s+1 . ¤
Below we prove that the fact that SNC ignores the speeds is crucial for its monotonicity in the general

case. However, ifm = 2, we can define an algorithm SSNC which takes the speeds into account and is
monotone as well. SSNC is defined in Figure 6.

Lemma 7.2 Let i indicate the partition that SSNC outputs for speed ratior. Then

σ1(i)
r

≥ σ2(i)− pi+1 (2)

and
σ1(i)− pi ≤ rσ2(i). (3)

Proof Sincei was a best choice,min{σ1(i)
r , σ2(i)} ≥ min{σ1(i)+pi+1

r , σ2(i)− pi+1}. Sincepi+1 > 0, this

impliesmin{σ1(i)+pi+1

r , σ2(i)− pi+1} = σ2(i)− pi+1. Filling this in in the inequality proves (2).

Similarly, we havemin{σ1(i)
r , σ2(i)} ≥ min{σ1(i)−pi

r , σ2(i)+pi} which impliesmin{σ1(i)−pi

r , σ2(i)+
pi} = σ1(i)−pi

r , leading to (3). ¤

Theorem 4 SSNC is monotone on two machines.

Proof As a first step we show the following. Lets1 ≥ s2 and q1 ≥ q2 be two speed sets such that
rs = s1

s2
> rq = q1

q2
. Let is andiq be the partitions which SSNC outputs forrs andrq respectively.

We show the following: max{σ1(is), σ2(is)} ≥ max{σ1(iq), σ2(iq)} and min{σ1(is), σ2(is)} ≤
min{σ1(iq), σ2(iq)}. Sinceσ1(is) + σ2(is) = σ1(iq) + σ2(iq), it is enough to show one of the two proper-
ties. Clearly, ifis = iq this holds, therefore we assume thatis 6= iq. Furthermore, we show that in this case
we haveis > iq.

Assume thatis < iq. Thenσ1(is) < σ1(iq) andσ2(is) > σ2(iq). By definition of the algorithm we

havemin{σ1(is)
rs

, σ2(is)} ≥ min{σ1(iq)
rs

, σ2(iq)} andmin{σ1(is)
rq

, σ2(is)} ≤ min{σ1(iq)
rq

, σ2(iq)}. To avoid

16

contradiction, we must havemin{σ1(iq)
rs

, σ2(iq)} = σ2(iq) andmin{σ1(is)
rq

, σ2(is)} = σ1(is)
rq

. Filling this in

in the inequalities givesσ1(is)
rs

≥ σ2(iq) and σ1(is)
rq

≤ σ2(iq). This impliesrq ≥ rs, a contradiction.
We may concludemin{σ1(is), σ2(is)} ≤ σ2(is) ≤ σ2(iq) − piq+1 ≤ σ1(iq), where the last inequality

follows from (2), andσ2(is) < σ2(iq), thusmin{σ1(is), σ2(is)} ≤ min{σ1(iq), σ2(iq)}.
SupposeM2 becomes slower. Then the speed ratio between the two machines becomes larger.M2 is

still the slower machine and thus by the above, the amount of work it gets cannot increase.
Now supposeM1 becomes slower. We may assumeM1 remains faster thanM2. Otherwise, we divide

the slowing down into three parts. The first part is whereM1 is still faster thanM2. In the middle part, the
speeds do not change, but we change the order of the machines. Clearly, at this point the work onM1 does
not increase. FinallyM1 slows down further, but now we can use the analysis from above because it is like
M2 getting slower.

ThusM1 is still faster thanM2 but the speed ratio decreases. By the statement above, we get that the
amount of work thatM1 gets cannot increase. ¤

Theorem 5 On two machines, SSNC has an approximation ratio of at mostmin{1 + s
s+1 , 1 + 1

s}.
Proof Consider an optimal assignment. Without loss of generality, the total work is 1. Letµ be the
sum of jobs assigned toM1 by this assignment. The sum of jobs assigned toM2 is 1 − µ and OPT =
min{µ

s , 1− µ} ≤ 1
s+1 .

Consider first the cases ≥ φ. We claim that there exists an integer1 ≤ i′ ≤ n− 1 such that

s · OPT

s + 1
≤ σ2(i′) ≤ s · OPT

s + 1
+ (1− µ). (4)

Consider the smallest indexj of an itempj ≤ 1 − µ. Clearly,j ≤ n − 1 since the optimal assignment we
consider assigns an amount of exactly1 − µ to M2, and moreover, by the same reasoning,σ2(j) ≥ 1 − µ.
If j satisfies the condition (4), we definei′ = j and we are done. Ifσ2(j) < s·OPT

s+1 we find OPT =
min{µ

s , 1− µ} ≤ 1− µ ≤ σ2(j) < s·OPT
s+1 < OPT, a contradiction.

We are left with the caseσ2(j) > s·OPT
s+1 +(1−µ). Let j′ such thatj < j′ ≤ n be the smallest index for

which σ2(j′) < s·OPT
s+1 (note that we allowj′ = n which does not give a valid partition). Sincej′ > j, we

havepj′ ≤ 1−µ and thusσ2(j′−1) = σ2(j′)+pj′ < s·OPT
s+1 +1−µ. In this case definei′ = j′−1 ≤ n−1.

We next show thatσ1(i′) ≥ s2·OPT
s+1 , and later show that this implies the approximation ratio. Note that

by the definition ofi′ we haveσ1(i′) ≥ µ − s·OPT
s+1 . There are two cases. Ifµ ≥ s

s+1 , we haveOPT =
1−µ ≤ 1

s+1 . We then findσ1(i′) ≥ 1−OPT− s·OPT
s+1 ≥ (s+1− 1− s

s+1) ·OPT = s2+s−s
s+1 ·OPT = s2·OPT

s+1 .

If µ < s
s+1 , we haveOPT = µ

s . Thusσ1(i′) ≥ s · OPT− s·OPT
s+1 ≥ s2·OPT

s+1 .

This implies thatmin{σ1(i)
s , σ2(i)} ≥ min{σ1(i′)

s , σ2(i′)} ≥ s·OPT
s+1 , wherei is the partition that SSNC

chooses for speeds. If σ1(i) ≥ σ2(i), then the sets of jobs are not resorted, andM1 (resp.M2) receives a
total of σ1(i) (resp.σ2(i)), so we are done. Otherwise,M1 receives a load ofσ2(i)

s ≥ σ1(i)
s ≥ s·OPT

s+1 and

M2 receives a load ofσ1(i) ≥ σ1(i)
s ≥ s·OPT

s+1 .

For the cases < φ, consider several cases. In the sequel, ifs = 1, we consider an optimal assignment
whose work onM1 is no smaller than its work onM2. Note thatM1 is always assignedmax{σ1(i), σ2(i)} ≥
1
2 by the algorithm. SinceOPT≤ 1

s+1 , an optimal algorithm assigns at mostss+1 to M1 and we get a ratio
of 2s

s+1 < 1 + s
s+1 . ThusM1 gets sufficient load. Leti indicate the partition which is chosen by SSNC.

17

Suppose first that there exists a job of size at least2
3 . Clearly, this is the first job and it belongs to the

first set found by SSNC, which has a larger size than the second set. Also, for all other jobsi ≥ 2 we have
pi ≤ 1

3 . Thereforeσ1(i) ≥ 2
3 and sinceOPT < 1, M1 gets sufficient load. Ifi = 1, we are done since in

the optimal assignment, the work onM2 is at mostσ2(1) = 1 − p1. Otherwise,i ≥ 2. Using (3) we have
σ2(i) ≥ (σ1(i)− pi)/s ≥ (2/3)/s and thusσ2(i)/OPT≥ 2

3s/
1

s+1 = 2s+2
3s ≥ 2

3 ≥ 1 + s
s+1 .

Now suppose all jobs have size less than2/3. If pi ≤ 1/3 (and thuspi+1 ≤ 1
3 as well), we get from (2)

thatσ2(i)− pi+1 = 1− σ1(i)− pi+1 ≤ σ1(i)/s, which impliesσ1(i)(s + 1) ≥ s(1− pi+1) ≥ 2s
3 . Further,

we get from (3) that(1 − σ1(i))s ≥ σ1(i) − pi, implying σ1(i) ≤ (s + pi)/(s + 1) and thereforeσ2(i) =
1− σ1(i) ≥ (1− pi)/(s + 1) ≥ 2/(3s + 3). Thusmin{σ1(i), σ2(i)} ≥ 2

3(s+1) ≥ 2
3 OPT≥ (1 + s

s+1)OPT.

If pi > 1/3, butp1 < 2
3 , we havei = 1 or i = 2, since there are at most two jobs larger than1

3 . If i = 1,
we havemin{σ1(1), σ2(1)} = min{p1, 1− p1} > 1

3 ≥ 2
3 OPT≥ (1 + s

s+1)OPT. If i = 2, thenp1 > 1
3 , and

by (3) we haveσ2(2) ≥ σ2(1)−p2

s = p1

s . We have1 = p1 + p2 + σ2(2) ≤ 2p1 + σ2(2) ≤ (2s + 1)σ2(2).
ThereforeOPT/σ2(2) ≤ 1

s+1/ 1
2s+1 = 1 + s

s+1 . ¤
It follows that on two machines, SSNC is better than SNC in general. However, the following lemma

shows that SNC is better than SSNC fors ≤ 1 +
√

2.

Lemma 7.3 The approximation ratio of SSNC is not better thanmin{1 + s
s+1 , 1 + 1

s} on two machines.

Proof Supposes ≤ φ. Consider the following input instance for someε > 0: jobs of size s
2s+1 , s

2s+1 − ε,
and many small jobs of total size1 − 2s

2s+1 + ε. It is always possible to distribute these jobs in a ratio of
s : 1, so the optimal cover is1/(s + 1). For any0 < ε < s

2s+1 , SSNC will combine the first two jobs on the
fast machine, and on the slow machine it will have a load of only1− 2s

2s+1 + ε = 1
2s+1 + ε. Takingε → 0,

this shows that fors ≤ φ, the approximation ratio of SSNC is not better than1s+1/ 1
2s+1 = 2s+1

s+1 .

Now supposes > φ. In this case we use the jobss2

(s+1)2
− ε, 1

s+1 + ε, and s
(s+1)2

. These jobs are in
order of decreasing size ifs > φ. Again SSNC puts the first two jobs on the fast machine, and has a cover
of only s

(s+1)2
. The optimal assignment is to combine the first and third jobs on the fast machine for a cover

of 1
s+1 − ε

s . ¤
For a comparison of the approximation ratios of SNC and SSNC, see Figure 7.
In the following, we show that SSNC or simple adaptations of it are not monotone on more than two

machines. In our examples we use a small number of machines. The examples can be extended to a larger
number of machines by adding sufficiently many very large jobs.

For three or more machines, SSNC works as follows. We use the following guess values:Gj =∑j
i=1 pi/s1. Run Next Cover (Figure 3) for each guess valueGj , using machine speeds which are based on

the bids, and return the largest guess value for which Next Cover succeeds. (SSNC can be made faster by
using binary search.)

Let a >
√

2. We use a job set which consists of five jobs of sizesa3, a3 − 1, a2 − 1, a2 − 1, 1. There
are three machines of speedsa2, a, 1. Running SSNC results in the sets{a3}, {a3 − 1}, {a2 − 1, a2 − 1, 1}
for a cover ofa. It is easy to see that changing the first set into{a3, a3 − 1} so that the load on the fastest
machine becomes strictly larger thana results in a second set{a2 − 1, a2 − 1} and the third machine gets a
load which is too small.

Assume now the speed of fastest machine decreases froma2 to a. SSNC finds the sets{a3}, {a3 −
1, a2 − 1}, {a2 − 1, 1} for a cover ofa2. So the size of the largest set can increase (in this case, froma3 to
a3 + a2 − 2) if the fastest machine slows down.

This example shows that not only the above algorithm is not monotone, but also a version of it which
rounds machine speeds to power ofa is not monotone. In previous work, machine speeds were rounded to

18

Figure 7: The approximation ratios of SNC and SSNC as a function of the highest speeds. The approxima-
tion ratio of SNC has a minimum of6/5 for s = 3/2 and tends to 2 for larges. The approximation ratio of
SSNC has a maximum ofφ for s = φ, and is monotonically decreasing (to 1) afterwards.

powers of relatively large numbers (e.g.,2.5 in [1]). Thus it seems unlikely that rounding machine speeds
to powers of some number smaller than

√
2 would give a monotone algorithm.

Another option would be to round job sizes. We show that this approach results in a non-monotone
algorithm already for two machines (the example can again be extended for more machines).

Assume that we round job sizes to powers ofb > φ. Let a be a number such thatb < a < b + 1. This is
a constant used to define machine speeds (the same example may be used to show that the combination of
rounding both machine speeds and job sizes is not monotone either, since rounding speeds into powers of
a would leave the speeds unchanged). We consider the following problem instance with two machines and
five jobs. The speeds of both machines area initially, and the job sizes are(1 + ε)b, b, b, 1, where we take
ε < 1/b.

Our algorithm sees the job sizes asb2, b, b, 1 and initially placesb2 on machine 1 and the remaining jobs
on machine 2. Note that putting the first job of sizeb also on machine 1 only gives a cover of(b + 1)/a,
whereas the first option givesb2/a (andb > φ). The algorithm then uses the actual job sizes (which it needs
to do in order to resort the job sets accurately), and puts only the job of size(1+ ε)b on the second machine.

Now the speed of machine 2 decreases froma to 1. The new job sets are{b2, b}, {b, 1}, to get a (rounded)
cover of(b2 + b)/a > b. This hold since(b2 + b)/a < b + 1. Keeping the old sets would give only a cover
of b2/a < b. Taking the sets{b2, b, b} and{1} would give only a cover of1. However, this means that the
actual size of the first set is now(2 + ε)b, whereas the size of the second set isb + 1, which is less. So
the size of the smallest set is nowb + 1, which is larger than before ((1 + ε)b), so the work on machine 2
increases although its speed decreased.

8 Open questions

After the preliminary version of our paper appeared, arandomizedmonotone PTAS for generalm was
given by Dhangwatnotai et al. [13]. As is the case for the makespan problem, the question of providing a
deterministic monotone PTAS for generalm remains open.

19

Acknowledgment The authors would like to thank an anonymous referee who pointed out an error in an
earlier version of our approximation scheme in Section 3, another referee who helped improve the presenta-
tion, and Motti Sorani for helpful discussions.

References

[1] Nir Andelman, Yossi Azar, and Motti Sorani. Truthful approximation mechanisms for scheduling
selfish related machines.Theory of Computing Systems, 40(4):423–436, 2007.

[2] Aaron Archer, Christos Papadimitriou, Kunal Talwar, and Eva Tardos. An approximate truthful mech-
anism for combinatorial auctions with single parameter agents.Internet Mathematics, 1:129–150,
2004.

[3] Aaron Archer and Eva Tardos. Truthful mechanisms for one-parameter agents. InProc. 42nd Annual
Symposium on Foundations of Computer Science, pages 482–491, 2001.

[4] Aaron Archer and Eva Tardos. Frugal path mechanisms.ACM Transactions on Algorithms, 3(1):1–22,
2007.

[5] Vincenzo Auletta, Roberto De Prisco, Paolo Penna, and Giuseppe Persiano. Deterministic truthful
approximation mechanisms for scheduling related machines. InProc. of 21st International Symposium
on Theoretical Aspects of Computer Science (STACS), page 608–619, 2004.

[6] Yossi Azar and Leah Epstein. On-line machine covering. InProc. of the 5th Annual European Sympo-
sium on Algorithms (ESA’97), pages 23–36, 1997.

[7] Yossi Azar and Leah Epstein. Approximation schemes for covering and scheduling on related ma-
chines. InProc. of 1st International Workshop on Approximation Algorithms for Combinatorial Opti-
mization Problems (APPROX), pages 39–47, 1998.

[8] Nikhil Bansal and Maxim Sviridenko. The Santa Claus Problem. InProc. of 38th Annual ACM
Symposium on Theory of Computing (STOC), pages 31–40, 2006.

[9] Ivona Beźakov́a and Varsha Dani. Nobody left behind: fair allocation of indivisible goods. ACM
SIGecom Exchanges, 5.3, 2005.

[10] János Csirik, Hans Kellerer, and Gerhard J. Woeginger. The exact LPT-bound for maximizing the
minimum completion time.Operations Research Letters, 11:281–287, 1992.

[11] Bryan L. Deuermeyer, Donald K. Friesen, and Michael A. Langston. Scheduling to maximize the
minimum processor finish time in a multiprocessor system.SIAM J. Discrete Methods, 3:190–196,
1982.

[12] Nikhil R. Devanur, Milena Mihail, and Vijay V. Vazirani. Strategyproof cost-sharing mechanisms for
set cover and facility location games. InACM Conference on E-commerce, page 108–114, 2003.

[13] Peerapong Dhangwatnotai, Shahar Dobzinski, Shaddin Dughmi, and Tim Roughgarden. Truthful ap-
proximation schemes for single-parameter agents. InProc. 49th Foundations of Computer Science
(FOCS), pages 15–24, 2008.

20

[14] Edith Elkind, Amit Sahai, and Ken Steiglitz. Frugality in path auctions. InProc. of 15th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), page 701–709, 2004.

[15] Michael R. Garey and David S. Johnson.Computers and Intractability: A Guide to the theory of
NP-Completeness. Freeman and Company, New York, 1979.

[16] Daniel Golovin. Max-min fair allocation of indivisible goods.Technical Report, Carnegie Mellon
University, CMU-CS-05-144, 2005.

[17] Ronald L. Graham. Bounds for certain multiprocessing anomalies.Bell System Technical J., 45:1563–
1581, 1966.

[18] Annaḿaria Kov́acs. Fast monotone 3-approximation algorithm for scheduling related machines. In
Proc. of 13th Annual European Symposium on Algorithms (ESA), page 616–627, 2005.

[19] Ahuva Mu’alem and Noam Nisan. Truthful approximation mechanisms for restricted combinatorial
auctions. InProc. of the 18th National Conference on Artificial Intelligence and 14th Conference on
Innovative Applications of Artificial Intelligence (AAAI/IAAI), page 379–384, 2002.

[20] Pavlos S. Efraimidis and Paul G. Spirakis. Approximation schemes for scheduling and covering on
unrelated machines.Theoretical Computer Science, 359(1-3):400–41, 2006.

[21] Gerhard J. Woeginger. A polynomial time approximation scheme for maximizing the minimum ma-
chine completion time.Operations Research Letters, 20(4):149–154, 1997.

21

