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Abstract. We study an on-line problem that is motivated by service calls man-
agement in a remote support center. When a customer calls the remote support
center of a software company, a Technician opens a service request and assigns it
a severity rating. This request is then transferred to the appropriate Support En-
gineer (SE) who establishes a connection to the customer’s site and uses remote
diagnostic capabilities to resolve the problem. We assume that the SE can ser-
vice at most one customer at time and a request service time is negligible. There
is a constant set-up cost of creating a new connection to a customer’s site and
a specific cost per request for delaying its service that depends on the severity
of the request. The problem is to decide which customers to serve first so as to
minimize the incurred cost. This problem with just two customers is a natural
generalization of the TCP acknowledgment problem. For the on-line version of
the Remote Server Problem (RSP), we present algorithms for the general case
and for a special case of two customers that achieve competitive ratios of exactly
4 and3, respectively. We also show that no deterministic on-line algorithm can
have competitive ratio better that3. Then we study generalized versions of our
model, these are the case of an asymmetric set-up cost function and the case of
multiple SE’s. For the off-line version of the RSP, we derive an optimal algorithm
with a polynomial running time for a constant number of customers.

1 Introduction

Providing high quality support for company’s products has a profound effect on cus-
tomer satisfaction (see e.g. [11, 16]). A remote support center is intended to quickly
identify and correct many problems with a software product without having to send
a Technician to the site. Rapid escalation process ensures that the problem is quickly
identified and solved to minimize equipment down time. When a call is accepted, the
Technician troubleshoots the issue and classifies the severity of the request. The request
is then assigned to one of the Support Engineers (SE’s). A SE has to remotely access
the customer’s site in order to correct the problem. We assume that a SE can handle at
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most one open connection simultaneously and the time required to service a request is
negligible. Note that in real life it may take some time to resolve the problem. However,
the main difficulty is rather to get access to the customer’s machine, which is typically
protected by FireWall or some other security software. Thus, a SE contacts the system
administrator at the customer’s site and opens a connection which is usually being mon-
itored in order to obtain all necessary information about the environment and the prod-
uct status. Then the problem can be quickly resolved (e.g. by fixing the configuration
or installing a patch). We assume that there is a latency cost associated with delaying
the service of a request that depends on its urgency and the type of the client’s support
contract and a set-up cost associated with creating a connection to the customer’s site.
The problem is to decide which customer to service in order to minimize the incurred
cost. There is a trade-off between the latency and set-up costs. A set-up cost for a cer-
tain client is incurred only once when one or more requests of the client are serviced
consecutively. Therefore, by accommodating a few customer’s requests, the number of
connections opened by a SE to the customer’s site is reduced. However, delaying a re-
quest for a long time increases the latency cost, which can result in unacceptable level
of service. Hence, there is a need to balance between the two costs.

We model the basic Remote Server Problem (RSP) as follows. There is a single
server andk clients generating a sequence of requestsσ. Time is continuous and at
any moment a request for service from any client can arrive. We denote byσi a sub-
sequence of requests generated by thei-th client and byσj

i thej-th request in this se-
quence. We also denote byni the total number of requests generated by thei-th client.
We assume zero processing time for all requests. Thus, whenever the server opens a
connection to a client, all pending requests of this client are serviced immediately. A
server can maintain at most one open connection at time (if a new connection is cre-
ated, the existing connection, if any, is closed). There is a constant set-up costr > 0 of
creating a new connection. ThescheduleS of a server is a sequence of established con-
nections and their corresponding creation times. Letm be the total number of opened
connections and letst

i be the latest time before or at timet at which the server is con-
nected to clienti, or otherwise letst

i = 0. For a requestσj
i , we denote byaj

i anddj
i

its arrival time and delay (waiting time), respectively. Note thatσj
i is serviced at time

aj
i + dj

i = min{st
i : st

i ≥ aj
i}. Each requestσj

i has an associated latency cost function
f j

i and the server incurs the latency cost off j
i (dj

i ) on σj
i . We assume that a latency

cost functionf is a non-decreasing and continuous function of the delay value such that
f(0) = 0. The goal of an algorithm is that of minimizing the incurred cost, that is

CF (S, σ) =
k∑

i=1

ni∑

j=1

f j
i (dj

i ) + m · r,

where
∑k

i=1

∑ni

j=1 f j
i (dj

i ) is the latency costandm · r is the connectionset-up cost
of the scheduleS. The problem can be extended to a situation where the set-up cost
is a function of the client, i.e., each clienti is associated with a set-up costri > 0. In

this case the termm · r is replaced by
k∑

i=1

miri wheremi is the number of connections
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opened to clienti. Another extension is the Multiple-Server RSP, where there ares
servers, each of which may have an open connection to one client.

We consider on-line algorithms for servicing requests, which learn about a new re-
quest only when it arrives to the system. Furthermore, we assume that the complete cost
function isunknownto the online algorithm and the latency cost of a request is revealed
with time (note that an existing minor problem can become blocking for the customer at
any time). We use competitive analysis [18, 5] to evaluate the performance of our algo-
rithms. In competitive analysis, the performance of the on-line algorithm is compared
to the performance of on optimal off-line algorithmOPT , which knows in advance
the entire sequence of all future requests. An advantage of competitive analysis is that
a uniform performance guarantee is provided over all input instances. In the problem
addressed in this paper, the algorithms seek to minimize their cost for a particular se-
quence of request arrivals. For an input sequenceσ, denote the costs incurred by an
online algorithmA and byOPT onσ by CF (SA, σ) andCF (SOPT , σ), respectively.
We say thatA is c-competitive if for every sequence of packetsσ,

CF (SA, σ) ≤ c · CF (SOPT , σ) + a,

wherea is a constant independent ofσ.

Our results. For the on-line version of the basic RSP, we describe an algorithm
called Balance that greedily serves a client when the cost of creating a connection equals
to the latency cost incurred by its pending requests. We show that the competitive ratio
of Balance is exactly4 for the case of multiple clients. For the case of two clients, we
derive an algorithm Two-Balance, which serves a client when the cost of creating a con-
nection equals tohalf the latency cost incurred by its pending requests. We demonstrate
that the competitive ratio of Two-Balance is3. We also give a lower bound of3 on
the competitive ratio of any deterministic on-line algorithm, which holds even for the
case of two clients. We note that this lower bound matches the upper bound for Two-
Balance. Then we extend our analysis to the case in which clients may have different
set-up costs and the case of multiple servers. For the case of different set-up costs, we
propose an algorithm that achieves a competitive ratio of6k − 2 for k clients. We also
modify Two-Balance to an algorithm Average-Two-Balance and show that it still has
a competitive ratio of3 in the case of two clients. We note that in this case, our lower
bound of 3 holds for any given pair of set-up costs. For the case ofk clients, we show
a lower bound of

√
k − 1/2 on the performance of any deterministic on-line algorithm.

For the case of multiple servers, we present an algorithm that has a competitive ratio of
at most2(s + 1), wheres is the number of servers, and demonstrate a lower bound of
3(s + 1)/2 on the performance of any deterministic on-line algorithm. Finally, we give
a polynomial-time algorithm for solving the off-line version of the RSP optimally for a
constant number of clients.

The rest of the paper is organized as follows. We discuss the related work in Section
2. Algorithms for the on-line version of the RSP appear in Section 3. Section 4 contains
the lower bounds. In Section 5 we study some natural extensions of our model. An
algorithm for the off-line version of the RSP is presented in Section 6. We conclude
with Section 7.
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2 Related Work

Our problem is most closely related to the TCP acknowledgment problem, which can be
viewed as a generalization of the ski-rental problem (also known as Rudolph’s ski rental
problem). In the TCP protocol, there exists a possibility of using a single acknowledg-
ment packet to simultaneously acknowledge multiple outstanding packets, thereby re-
ducing the overhead of the acknowledgments. Dooly et al. [7] introduced the dynamic
TCP acknowledgment problem in which the goal is to minimize the number of ac-
knowledgments sent plus the sum of the delays of all data packets (the delay of a packet
is the latency between the packet’s arrival time and the time at which the acknowl-
edgment is sent). They gave a deterministic2-competitive algorithm for this problem
and showed that this is the best possible competitive ratio achievable by a deterministic
on-line algorithm. Karlin et al. [12] developed a randomized on-line algorithm for the
TCP acknowledgment problem with competitive ratio ofee−1 . Seiden [17] and inde-
pendently Noga [15] demonstrated that this bound is tight. Albers and Bals [1] derived
tight bounds for a variation of the problem in which the goal is to minimize the number
of acknowledgments sent plus the maximal delay incurred for any of the packets.

The dynamic TCP acknowledgment problem can be reduced to the Remote Server
Problem with two clients as follows. Let the set-up cost of a connection ber = 1. Each
arriving TCP packet immediately generates a service request with a linear latency cost
functionf(d) = d. Initially, all the requests are generated by the first client. When the
server establishes a connection to the first client, all the pending packets are acknowl-
edged and new requests are being generated by the second client and so forth. It is easy
to see that the total cost of the schedule equals to the value of the objective function
of the original TCP acknowledgment problem. Our problem generalizes the TCP ac-
knowledgment problem in that there are multiple clients and an individual latency cost
function is associated with each request.

Generalizations of the ski-rental problem have been studied extensively. Fleischer
[10] considered the Bahncard problem in which the price of a ticket is discounted by a
constant factorβ for a predefined time from the date of purchase. The author provided
a deterministic algorithm with a competitive ratio of2/(1 + β) in the general case
and a randomized algorithm with a competitive ratio ofee−1+β in the case that the
Bahncard never expires. This was generalized in [12] to the case where due dates are
present. Azar et al. [3] studied a capital investment problem where the goal is that of
minimizing the total production and capital costs when future demand for the product
being produced and investment opportunities are unknown. Some of the results of [3]
were later improved by Bejerano et al. [4] and Damaschke [6].

In thek-server problem there is a metric spaceM in which there residek identical
mobile servers. When a request at a point inM is received, one of the servers must
move to this point. Our goal is to minimize the total distance moved by all servers while
servicing the request sequence. Manasse et al. [14] gave a2-competitive algorithm for
two servers and proved that no deterministic on-line algorithm fork servers can be
better thank-competitive. Koutsoupias and Papadimitriou [13] showed that the work
function algorithm for thek-server problem has competitive ratio of at most2k − 1.
Alborzi et al. [2] studied thek-client problem, where each ofk clients has at most one
active request on a point inM and a single server must serve all the requests. When
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the request of a client is served, that client may choose to introduce another request.
They demonstrated that several algorithms are(2k − 1)-competitive and showed that
no on-line algorithm can have competitive ratio better thanlg k/2 for the makespan
and total completion time cost functions. In our problem, unlike thek-server and the
k-client problems, the server does not move physically to the client but rather opens a
remote connection.

Divakaran and Saks [8] considered scheduling systems with unit size caches where
reordering of requests is available and requests may have different set-up and processing
times. They presented aO(1)-competitive on-line algorithm for the maximum flow time
problem. Feder et al. [9] studied classical caching problem in which up tok requests
can be reordered. They solved the off-line version of the problem and gave tight bounds
for the on-line setting, namelyk − O(1) for deterministic algorithms andΘ(log k) for
randomized algorithms.

3 On-Line Algorithms

In this section we consider the on-line version of the RSP. We first describe algorithm
Balance for the case of multiple clients. Then we present algorithm Two-Balance for
the case of two clients.

3.1 Multiple Clients

In this section we consider the case of multiple clients. We show that algorithm Balance
achieves a competitive ratio of at most4. Intuitively, Balance tries to find an equilibrium
between the connection set-up cost and the latency cost of the pending requests.

On-line algorithm for the RSP – Balance:

A time t open a connection to clienti if the latency cost incurred by its pending re-
quests equals to the set-up costr. Ties between clients are broken arbitrarily.

In what follows, we fix an input sequenceσ. Consider the schedulesSB andSO

of Balance andOPT , respectively. Letmi be the number of connections opened by
Balance to clienti. Denote bytji and byt′ji the time at which Balance opens and closes
thej-th connection to clienti and lett′0i = 0. By the definition of Balance, a connection
is closed only in order to serve another client. We assume that the very last connections
of Balance andOPT to each clienti are immediately closed when the last requestσni

i

is served. This does not change the cost of the algorithm since the algorithm pays for
creating connections and not for closing them. We also assume that after the last request
arrives, Balance serves all the pending requests.

We divide the schedule of Balance w.r.t. the clienti into intervalsIj
i = (t′j−1

i , t′ji ]
in which Balance is first disconnected and then connected to this client (see Figure 1).
An interval starts just after time zero, or after a connection to clienti was closed. Note
that Balance does not create any connection at time zero.

We partition the total cost of the algorithm into the sum of costs of the intervals.
We denote the cost incurred by an algorithmA (Balance orOPT ) on clienti during
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The server of Balance.

Fig. 1. An example of client’s intervals sub-division.

interval I by Ci(SA, I). This cost includes the latency costCLi(SA, I) incurred by
the pending requests of clienti in SA throughoutI plus the connection set-up cost
CSi(SA, I), which is the cost incurred by the connections to clienti that areclosed
during I (not the connections that are created duringI). Note that Balance incurs the
cost ofCi(SB , Ij

i ) = 2r during any intervalIj
i since it incurs the latency cost ofr and

the connection set-up cost ofr (while disconnecting from clienti at the right endpoint
of the interval). Hence, the total cost incurred by Balance is

CF (SB , σ) =
k∑

i=1

mi∑

j=1

Ci(SB , Ij
i ) =

k∑

i=1

2r ·mi.

In a nutshell, we construct an assignment in which we assign the cost incurred
by Balance to the intervals defined above so that the cost assigned to an interval is
at most four times the cost incurred byOPT on the same client during this interval.
The assignment routine is presented on Figure 2. Basically, we try to assign the cost
Ci(SB , Ij

i ) incurred by Balance during an intervalIj
i to the same interval. In caseOPT

did not incur sufficient cost during this interval, we will assignCi(SB , Ij
i ) to another

interval on which the cost incurred byOPT is large enough and prove that it is always
possible. Intuitively, we show that the situation thatOPT did not incur sufficient cost
during the interval can happen on at most half of the intervals.

For each intervalIj
i Do ASG(Ij

i ) = 0;
For each intervalIj

i Do
If Ci(S

O, Ij
i ) ≥ r Then ASG(Ij

i ) = ASG(Ij
i ) + Ci(S

B , Ij
i );

Else/ ∗ Ci(S
O, Ij

i ) < r ∗ /

Let i′ be the client to which Balance opens thej′-th connection at timet′ji after it
closes the current connection to clienti;

ASG(Ij′
i′ ) = ASG(Ij′

i′ ) + Ci(S
B , Ij

i );

(*) We denote byASG(Ij
i ) the cost assigned to intervalIj

i .

Fig. 2. The assignment routine.

We say that an assignment routine is feasible if it is well defined, i.e., each interval
is assigned an existing interval. We show that the assignment routine is feasible and
assigns some cost only to intervals on whichOPT has incurred a cost of at leastr.
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Lemma 1. The assignment routine is feasible. For any intervalIj
i , if ASG(Ij

i ) > 0
thenCi(SO, Ij

i ) ≥ r.

Proof. The lemma trivially holds ifCi(SO, Ij
i ) ≥ r. Thus, suppose thatCi(SO, Ij

i ) <

r. We will show that the assignment is well-defined, andCi′(SO, Ij′

i′ ) ≥ r.
Client i′ is clearly well defined unless we deal with the very last connection of

Balance. Note that in this casej = mi. We argue the cost incurred byOPT on the last
interval of clienti is at leastr, and thereforeCi(SO, Ij

i ) ≥ r. If the latency cost ofOPT
incurred duringImi

i is at leastr (i.e. CLi(SO, Imi
i ) ≥ r), we are done. Otherwise,

OPT must be connected to clienti at some point of time duringImi
i . Thus, by our

assumptionOPT disconnects from clienti when the last request of this client arrives
and incurs the connection set-up cost of at leastr (i.e.CSi(SO, Imi

i ) ≥ r).
If Ci(SO, Ij

i ) < r, it means thatOPT does not pay latency cost duringIj
i and does

not disconnect from clienti, since we have thatCSi(SO, Ij
i ) < r andCLi(SO, Ij

i ) <

r. Therefore,OPT is either continuously connected to clienti throughoutIj
i , or it con-

nected to clienti duringIj
i , at some time prior totji . In both cases,OPT is connected

to i throughout[tji , t
′j
i = tj

′

i′ ]. Assume thatCLi(SO, Ij′

i′ ) < r, or otherwise we are
done. This implies thatOPT must be connected to clienti′ at some point of time dur-

ing (t′j
′−1

i′ , tj
′

i′ ]. SinceOPT is connected to clienti during(tji , t
j′

i′ ] andtji ≥ t′j
′−1

i′ by
the construction of intervals, we get that it must have disconnected from clienti′ during

(t′j
′−1

i′ , tji ] ⊆ (t′j
′−1

i′ , tj
′

i′ ]. Hence, we obtain thatCSi′(SO, Ij′

i′ ) ≥ r.

The next theorem derives the competitive ratio of Balance by establishing an upper
bound of four on the ratio between the cost assigned to an interval and the cost incurred
by OPT during this interval.

Theorem 1. The competitive ratio of algorithm Balance for the RSP is at most4.

Proof. Obviously, the total cost assigned by the assignment routine isCF (SB , σ).
Lemma 1 implies that the assignment is feasible. Consider an intervalIj

i . We claim
that ASG(Ij

i ) ≤ 4 · Ci(SO, Ij
i ). By Lemma 1, ifCi(SO, Ij

i ) < r thenIj
i is not as-

signed any cost. In caseCi(SO, Ij
i ) ≥ r, by the constructionIj

i can be assigned the
costs incurred by Balance duringIj

i and another interval that isuniquelydefined by

Ij
i , that is intervalIj′

i′ of client i′ from which Balance disconnects before it connects to
client i. This constitutes at most the cost of4r since Balance incurs the cost of exactly
2r on any interval.

It follows that

CF (SB , σ) =
k∑

i=1

mi∑

j=1

Ci(SB , Ij
i ) =

k∑

i=1

mi∑

j=1

ASG(Ij
i )

≤ 4
k∑

i=1

mi∑

j=1

Ci(SO, Ij
i ) ≤ 4CF (SO, σ).
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3.2 Two Clients

In this section we consider the case of two clients. We describe algorithm Two-Balance
and demonstrate that it is3-competitive. Similarly to Balance, Two-Balance tries to
balance the connection set-up cost and the latency cost, but it is not done symmetrically.

On-line algorithm for the two-client RSP – Two-Balance:

A time t open a connection to clienti if the latency cost incurred by its pending re-
quests equals twice the set-up cost (i.e.2r).

The analysis is similar to that of Balance. We use exactly the same assignment
scheme and we again need to show that the assignment routine is feasible and assigns
some cost only to intervals on whichOPT incurred sufficiently large cost.

Lemma 2. The assignment routine is feasible. For any intervalIj
i , that is not the inter-

val corresponding to the very first connection of Two-Balance the following holds. (i) If
ASG(Ij

i ) > 0 thenCi(SO, Ij
i ) ≥ r and (ii) if Ci(SO, Ij

i ) < r thenCi′(SO, Ij′

i′ ) ≥ 2r.

Proof. The first part of the proof (including feasibility) is similar to that of Lemma 1.
We will show that if for an intervalIj

i we haveCi(SO, Ij
i ) < r thenCi′(SO, Ij′

i′ ) ≥ 2r.
Note thatOPT is connected to clienti throughout(tji , t

′j
i ] sinceCi(SO, Ij

i ) < r. Given
that there are only two clients, the connections of Two-Balance alternate betweeni and

i′, and we get thattji = t′j
′−1

i′ andt′ji = tj
′

i′ (this is true because Two-Balance always
disconnects from clienti in order to connect to clienti′ and vice versa). It must be the
case thatCLi′(SO, Ij′

i′ ) ≥ 2r since(tji , t
′j
i ] ⊂ Ij′

i′ and the latency cost of the requests
generated by clienti′ during(tji , t

′j
i ] has reached exactly2r by timet′ji .

The next theorem derives the competitive ratio of Two-Balance. In our analysis we
ignore the cost that might have been assigned to the interval of the second connection
of Two-Balance, by the interval of the first connection of Two-Balance. This gives an
additional additive constant of at most3r.

Theorem 2. The competitive ratio of algorithm Two-Balance for the two-client RSP is
at most3.

Proof. Again, the total cost assigned by the assignment routine isCF (SB , σ). Lemma
2 implies that the assignment is feasible. Consider an intervalIj

i , We claim thatASG(Ij
i ) ≤

3 · Ci(SO, Ij
i ). We proceed by case analysis.

If Ci(SO, Ij
i ) < r, then by property (i) of Lemma 2,Ij

i is not assigned any cost at all.
If r ≤ Ci(SO, Ij

i ) < 2r, then by property (ii) of Lemma 2,Ij
i can be assigned only

the cost incurred by Two-Balance onIj
i , which is at most3r.

If Ci(SO, Ij
i ) ≥ 2r, Ij

i can be assigned the costs incurred by Two-Balance onIj
i and

another intervaluniquelydefined byIj
i , which is at most6r.

It follows thatCF (SB , σ) ≤ 3CF (SO, σ).
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4 Lower Bounds

In this section we deal with lower bounds. Remember that the complete cost function is
unknownto the online algorithm and the latency cost of a request is revealed with time.
First we present a lower bound of3 on the performance of any deterministic on-line
algorithm.

Theorem 3. The competitive ratio of any deterministic on-line algorithm for the RSP
is at least3.

Proof. We prove this theorem for a general setting, where the connection set-up costs
of different clients may be distinct. LetA be a deterministic on-line algorithm. Suppose
that there are two clientsi and i′, with set-up costsr andr′. Consider the following
scenario. Initially, at time zero the first client generates a request. WhenA serves the
request of the first client, the second client generates a request and so forth. This is
repeatedn times, so that the sequence containsn requests of each client. The latency
cost function of a request increases linearly till it is served byA and remains constant
thereafter, that is

f(d) =
{

d d < x,
x d ≥ x,

wherex is the delay of the request underA. The total cost incurred byA is

CF (SA, σ) =
n∑

j=1

dj
i +

n∑

j=1

dj
i′ + nr + nr′.

Without loss of generality, assume that
∑n

j=1 dj
i′ ≤

∑n
j=1 dj

i . We define an off-line
algorithm in the following way. The algorithm establishes a connection to the clienti at
time zero and keeps it open all the time. When the last request of clienti is served, the
algorithm creates a connection to the other clienti′ and serves all its pending requests.
In addition, for each requestσj

i′ of the clienti′ such thatdj
i′ > r + r′, the algorithm

opens a connection to clienti′ at timeaj
i′ upon arrival ofσj

i′ and immediately re-opens
back a connection to the clienti after serving this request. Note that such a request
incurs the connection set-up cost ofr + r′. We get the following upper bound on the
cost incurredOPT :

CF (SO, σ) ≤
n∑

j=1

min(dj
i′ , r + r′) + r + r′,

where the additive term ofr + r′ is the connection set-up cost of the first and the last
connections opened by the off-line algorithm and we can ignore it for largen. We show
that

CF (SA, σ) =
n∑

j=1

(dj
i + r) +

n∑

j=1

(dj
i′ + r′) ≥ 2

n∑

j=1

(
dj

i′ +
(r + r′)

2

)

≥ 3CF (SO, σ) = 3
n∑

j=1

min(dj
i′ , r + r′),



10

which holds since for any1 ≤ j ≤ n we have that

2(dj
i′ +

(r + r′)
2

) ≥ 3min(dj
i′ , r + r′).

The theorem follows.

Next we show that the competitive ratio of Balance is at least4.

Theorem 4. The competitive ratio of algorithm Balance for the RSP is at least4.

Proof. Consider the following scenario. Assume thatk = 3 and letM be a large even
number andε be a small constant. We define the latency cost function for all requests
as

f(d) =
{

d d < r,
r d ≥ r.

For q = 0, 1, . . . , M , the first client generates a request at timet = q · (r + 2ε). For
the even values ofq (q = 0, 2, . . . , M ), the second client generates a request at time
t = q · (r + 2ε) + ε and for the odd values ofq (q = 1, 3, . . . , M − 1), the third client
generates a request at timet = q · (r + 2ε) + ε.

The schedule of Balance is presented on Figure 3. It first serves at timet = r the
request of the first client arriving at timet = 0. Then Balance serves at timet = r+ε the
request of the second client arriving at timet = ε. Thus, at timet = r + ε Balance will
have an open connection to the second client. Thereafter, at timet = 2r + 2ε Balance
serves the request of the first client arriving at timet = r + 2ε and at timet = 2r + 3ε
it serves the request of the third client arriving at timet = r + 3ε. The same situation
repeats and so on.

time

time
Second client.

First client.

time
Third client.

r

Start of the schedule.

r+2ε

t=0

Fig. 3. The schedule of Balance.

The total cost incurred by Balance is at least4Mr since on each interval[q · (r +
2ε), (q + 1) · (r + 2ε)] for q = 0, 1, . . . , M , it incurs twice the connection set-up cost
of r plus twice the latency cost ofr. On the other hand,OPT will keep a connection



11

to the first client open all the time during[0,M(r + 2ε)] and serve the requests of the
second and the third client at timet = M(r + 2ε) incurring the total cost of at most
(M + 3)r. The obtained ratio can be made arbitrarily close to4 for sufficiently large
M .

5 Extensions

In this section we consider some extensions of the basic RSP. We will study the case of
asymmetric set-up cost function and the case of multiple servers.

5.1 Asymmetric Set-up Cost

In this section we consider the case in which clienti has a connection set-up cost of
ri. We present algorithms that achieve competitive ratios of6k − 2 and3 for the case
of k and two clients, respectively. We also show a lower bound of

√
k − 1/2 on the

performance of any deterministic on-line algorithm.

Definition 1. We say that clienti is activeat timet if the server has an open connection
to it at this time.

Next we describe algorithm Max-Balance. The intuition behind Max-Balance is that
we would like the server to stay connected to an active client with a high connection
set-up cost till the latency cost incurred by a client with a low connection set-up is suf-
ficiently high. This prevents the server from connecting too quickly to a “cheap” client
and then paying a high connection set-up cost for re-connecting back to the “expensive”
client.

On-line algorithm for the asymmetric RSP – Max-Balance:

A time t open a connection to clienti if the latency cost incurred by its pending re-
quests is larger or equal to the maximum of the set-up cost of the currently active
client i′ if any, and the set-up cost of clienti (i.e.max(ri′ , ri)).

Theorem 5. The competitive ratio of algorithm Max-Balance for the Asymmetric RSP
is at most6k − 2.

Proof. We follow the lines of the analysis of Balance. The assignment routine appears
on Figure 4.

Lemma 3. The assignment routine for Max-Balance is feasible. For any intervalIj
i ,

ASG(Ij
i ) < (6k − 2) · Ci(SO, Ij

i ).

Proof. Note that for each client̂i, the last interval of̂i is an interval whereOPT dis-
connects from it and therefore it incurs a connection set-up cost of at leastrî. This
shows that in assignments (3) and (4), there always exists a later interval as needed. In
assignment (2), the existence of a next connection is proved as in Lemma 1.

Consider all possible assignments to one given intervalIj
i . By the construction, in-

tervalIj
i can be assigned a value of at most2Ci(SO, Ij

i ) each time when it is processed
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For each intervalIj
i Do ASG(Ij

i ) = 0;
For each intervalIj

i Do
If Ci(S

O, Ij
i ) ≥ Ci(S

B , Ij
i )/2 Then ASG(Ij

i ) = ASG(Ij
i ) + Ci(S

B , Ij
i ) (1);

Else/ ∗ Ci(S
O, Ij

i ) < Ci(S
B , Ij

i )/2 ∗ /
If Ci(S

B , Ij
i ) = 2ri Then

Let i′ be the client to which Max-Balance opens thej′-th connection at time
t′ji after it closes the current connection to clienti;

If Ci′(S
O, Ij′

i′ ) ≥ ri Then ASG(Ij′
i′ ) = ASG(Ij′

i′ ) + Ci(S
B , Ij

i ) (2);

Else/ ∗ Ci′(S
O, Ij′

i′ ) < ri ∗ /

Let I ĵ
i be the first interval of clienti s.t. ĵ > j andCi(S

O, I ĵ
i ) ≥ ri;

ASG(I ĵ
i ) = ASG(I ĵ

i ) + Ci(S
B , Ij

i ) (3);
Else/ ∗ Ci(S

B , Ij
i ) > 2ri ∗ /

Let i′ be the last client s.t. Max-Balance closes thej′-th connection to it at

time t′j
′

i′ ≤ tj
i andri′ ≥ CLi(S

B , Ij
i );

Let I ĵ
i′ be the first interval of clienti′ s.t. ĵ ≥ j′ andCi′(S

O, I ĵ
i′) ≥ ri′ ;

ASG(I ĵ
i′) = ASG(I ĵ

i′) + Ci(S
B , Ij

i ) (4);

Fig. 4. The assignment routine for Max-Balance.

by any of assignments (1), (2), (3) and (4). Clearly, assignments (1) and (2) are feasi-
ble and the total value assigned by them toIj

i is at most4Ci(SO, Ij
i ) since they are

associated with the intervals that are uniquely defined byIj
i . We will demonstrate that

assignments (3) and (4) are also feasible and the total value assigned by them toIj
i is at

most6(k − 1) · Ci(SO, Ij
i ).

First consider assignment (3). We argue that it is feasible. Moreover, we will as-
sociate each assignment by (3) to a clienti′ and show that for any clienti′ 6= i, this

assignment can be done at most once. Assume that the value of intervalI ĵ
i of client i is

assigned to intervalIj
i of the same client by assignment (3). Suppose that Max-Balance

disconnects from clienti and connects to clienti′ at time t′ĵi < tji . Note thatOPT

must be connected to clienti at some point of time duringI ĵ
i sinceCi(SO, I ĵ

i ) < ri.
Thus,Ij

i is the first interval during whichOPT disconnects from clienti after time

t′ ĵi . Therefore, if Max-Balance during(t′ ĵi , t
′j−1
i ) connects to clienti′ after closing a

connection to clienti, it must be the case that the latency cost incurred byOPT on the
corresponding interval of clienti′ is at leastri. By the construction, in this caseIj

i is
not assigned any value by assignment (3). We obtain thatASG(Ij

i ) can be increased at
mostk − 1 times by assignment (3), one per each other client.

Now consider assignment (4). We claim that it is feasible and for any clienti′ 6= i,
this assignment can be done at most twice. LetIj′

i′ be the earliest interval of client
i′ whose value is assigned to intervalIj

i of client i by assignment (4). Note that if

Ci′(SB , Ij′

i′ ) > 2ri′ , then prior to timetj
′

i′ , Max-Balance must be connected to a client

whose connection set-up cost is at leastCi′(SB , Ij′

i′ )/2 and suppose that it is thêj-th
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connection of clienti. If ĵ = j, then by the constructionIj
i will not be assigned the

value of any subsequent interval of clienti′. Otherwise, ifĵ < j, OPT is connected

to client i at some point of time duringI ĵ
i sinceCi(SO, I ĵ

i ) < ri. Thus,Ij
i is the first

interval during whichOPT disconnects from clienti after timet′ĵi . Let Ij′′

i′ be the
latest interval of clienti′ whose value is assigned toIj

i by assignment (4). We have that

Ij
i will not be not assigned the value of any interval of clienti′ betweenIj′

i′ andIj′′

i′

because on themOPT incurs the same latency cost as Max-Balance does. Moreover,
Ij
i will not be assigned the value of any succeeding interval of clienti′. We have that

assignment (4) toIj
i can be associated with at most two intervals of any specific client.

Therefore,ASG(Ij
i ) can be increased at most2(k − 1) times by assignment (4). The

lemma follows.

The theorem follows directly from Lemma 3.

We also sharpen the general upper bound for the case of two clients. The proof
builds on that of Theorem 2. Letr1 andr2 be the set-up costs of the two clients, and
let r = (r1 + r2)/2. We use algorithm Two-Balance with this value ofr to create the
schedule. We call this algorithm Average-Two-Balance.

Theorem 6. The competitive ratio of algorithm Average-Two-Balance for the two-client
Asymmetric RSP is at most3.

Proof. Consider an optimal off-line algorithmO1 for the problem of two clients with
set-up costsr1 andr2, and an optimal off-line algorithmO2 for the problem where both
clients have the same set-up costr as defined above. We can assume without loss of
generality that each one of those algorithms closes a connection only in order to open
a connection to the other client, or when the algorithm terminates. Therefore, both of
these algorithms have the property that the number of connections to the the first client
differs by at most one from the number of connections to the second client. It is easy
to see that a schedule ofO1 can be converted trivially to a schedule (not necessarily
optimal) for the modified problem, possibly adding a constant term of(max{r1, r2} −
min{r1, r2})/2 to the connection set-up cost. Observe that the latency cost remains the
same. Since the cost ofO2 is not larger than the cost of the converted schedule, we get
that

CF (SO2 , σ) ≤ CF (SO1 , σ) + |r1 − r2|/2.

A similar argument can be applied to the difference between the cost of the on-line
schedule using the set-up costr and its real cost using the set-up costsr1 andr2. The
theorem follows.

Note that the above algorithm has the best possible performance for any pair of
set-up costs, due to Theorem 3.

In the following theorem we show a lower bound of
√

k − 1/2 on the performance
of any deterministic on-line algorithm.

Theorem 7. The competitive ratio of any deterministic on-line algorithm for the Asym-
metric RSP is at least

√
k − 1/2.
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Proof. Let A be a deterministic on-line algorithm and letr =
√

k − 1. Suppose that
r2 clients have a connection set-up cost of1 (“cheap” clients) and one client has a
connection set-up cost ofr (“expensive” client). Consider the following scenario. Time
is divided into independent phases. At the beginning of a phase, each client generates a
request. (The latency cost of all requests remains zero unless stated otherwise.) First, the
latency cost of the request of the expensive client starts to grow linearly untilA serves
it. After the request is served byA, the latency costs remains at its current value. Then,
if A has served all the requests of the cheap clients, we start a new phase. Otherwise,
we arbitrarily choose one such request and its latency cost starts to grow linearly until
it is served byA and then stops growing. At this time, a new request is generated by the
expensive client and its latency cost grows tillA serves it. The same situation is repeated
until eitherA servesr requests of the expensive client orA serves all the requests of
the cheap clients. Thereafter, we begin a new phase.

We obtain thatA incurs the connection set-up cost of at leastr2 during a phase.
There are two cases. If all “cheap” requests are served before the next phase starts, then
clearly a connection set-up cost of1 was paid byr2 clients. Otherwise, the algorithm
must connect to the “expensive” clientr times, and so it pays the connection set-up cost
of r at leastr times, which again gives a total of at leastr2.

On the other hand, an off-line algorithm can just serve ther requests of the cheap
clients that will be active in the future (i.e. the requests of the clients whose latency cost
would not remain zero) at the beginning of a phase and then connect to the expensive
client. incurring the connection set-up cost of2r and zero latency cost. Thus,OPT
incurs the total cost of at most2r. Note that all the unprocessed requests of the cheap
clients will not incur any additional latency cost after the end of the phase.

5.2 Multiple Servers

In this section we consider the case in which there ares < k available servers. We pro-
pose an algorithm that has a competitive ratio of at most2(s+1). Then we demonstrate
a lower bound of3(s+1)/2 on the performance of any deterministic on-line algorithm.

Now we describe algorithm Round-Robin-Balance, which behaves exactly like Bal-
ance selecting servers in turn.

On-line algorithm for the Multi-Server RSP – Round-Robin-Balance (RR-Balance):

A time t open a connection to clienti if the latency cost incurred by its pending re-
quests equals to the set-up costr using the next server in the Round-Robin order.

We demonstrate that RR-Balance is2(s + 1)-competitive.

Theorem 8. The competitive ratio of RR-Balance for the Multi-Server RSP is at most
2(s + 1).

Proof. We divide the schedule of RR-Balance into phases and the schedule of each
client into intervals, similarly to Theorem 1. A phase is a collection ofs + 1 intervals
of s + 1 consecutive connections, which are associated withs + 1 different clients.
Note that RR-Balance incurs the cost of2r on the corresponding interval of each client
during such a phase.
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We claim thatOPT incurs the cost of at leastr on one of those intervals. That is
due to the fact thatOPT either disconnects from one of the clients during one of the
intervals of the phase and pays the connection set-up cost ofr or pays the latency cost
of r on the interval of the client to which it is not connected during its interval in the
phase.

Next we show a lower bound of3(s+1)/2 on the performance of any deterministic
on-line algorithm.

Theorem 9. The competitive ratio of any deterministic on-line algorithm for the Multi-
Server RSP is at least3(s + 1)/2.

Proof. We consider a scenario similar to that of Theorem 3. LetA be a deterministic on-
line algorithm. There arek = s+1 clients generating requests whose latency cost grows
linearly until they are served. We select an inactive client, which generates a request and
wait until this request is served byA (if all servers are in use, there is exactly one such
client, otherwise one such client is chosen arbitrarily). This process continues untilA
serves in totaln requests. LetDi be the total cost (the connection set-up cost and the

latency cost) for clienti. ThenCF (SA, σ) =
k∑

i=1

Di. Let i be a client for whomDi is

minimal. Clearly,

CF (SA, σ) ≥ kDi = (s + 1)
ni∑

j=1

(dj
i + r).

We define an off-line algorithm in the following way. The algorithm establishes
connections to all clients but clienti at time zero and keeps them open all the time.
When the last request of some client is served and its server becomes free, the algorithm
creates a connection to clienti using this server and serves all its pending requests. In
addition, for each requestσj

i of the clienti such thatdj
i > 2r, the algorithm opens a

connection to clienti at timeaj
i upon arrival ofσj

i , disconnecting an arbitrary server for
some clienti′, and immediately re-opens back a connection to the clienti′ after serving
this request. Note that such a request incurs the connection set-up cost of2r. We get the
following upper bound on the cost incurred byOPT :

CF (SO, σ) ≤
ni∑

j=1

min(dj
i , 2r) + kr,

where the additive term ofkr is the connection set-up cost of the first and the last
connections opened by the off-line algorithm (k − 1 connections at time zero and one
connection to clienti to serve its pending requests). We can ignore this term for large
n. We need to show that

CF (SA, σ) ≥ (s + 1)
ni∑

j=1

(dj
i + r) ≥ 3(s + 1)

2
CF (SO, σ) =

3(s + 1)
2

n∑

j=1

min(dj
i , 2r),
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which holds since for any1 ≤ j ≤ n we have that

2(dj
i + r) ≥ 3 min(dj

i , 2r).

6 An Optimal Off-Line Algorithm

In this section we present an algorithm that solves the off-line version of the RSP in
a polynomial time for a constant number of clients. In what follows we fix an input
sequenceσ. The next lemma shows that any optimal schedule can be converted to a
schedule with exactly the same cost in which a new connection is opened only when a
new request inσ arrives and the first connection is created at time zero.

Lemma 4. Given an optimal scheduleS, it is always possible to construct an equiva-
lent scheduleS′ s.t.CF (S′, σ) = CF (S, σ) in which a connection is opened only at
the arrival time of some request inσ and the first connection, if any, is established at
time zero.

Proof. If the first connection inS is opened at timet > 0 then inS′ we open it at time
zero. Now we will iteratively modifyS. Consider a connection to clienti that is opened
in S at timet s.t. no request inσ arrives at this time. Leti′ be the client to which the
server has been connected inS immediately before timet (note thati′ is well-defined
since it is not the first connection) and lett′ < t be the last time beforet at which
some request of either clienti or the clienti′ arrives, or otherwise lett′ = 0. We open
a connection to clienti in S′ at timet′ instead of timet. Since no request of clienti′

arrives during[t′, t], S′ does not incur additional latency cost on the requests of client
i′. Clearly, the latency cost incurred on the requests of clienti can only decrease. By
our construction,CF (S′, σ) ≤ CF (S, σ). The lemma follows by the optimality ofS.

Now we present an algorithm that finds an optimal off-line schedule. According to
Lemma 4, we can restrict our attention to schedules in which a connection is opened
only when a new request arrives and the first connection is established at time zero. In
a nutshell, we will construct a weighted directed graphGσ in which a path between
two designated nodes corresponds to a legal schedule and the length of the path is the
cost of this schedule. Thus, the off-line RSP is reduced to the shortest path problem.
For each requestσj

i , we define a labelLj
i = aj

i and we also define a special label
L0

0 = 0. A nodev in the graph is a product ofk labels and the client id, that isv =
Lj1

c1
× · · · × Ljk

ck
× l, wherel ∈ {1, . . . , k}. This node corresponds to the scheduler

state at timetv = maxi(aji
ci

), whereaji
ci

is the time at which the last connection to
client i was closed, if any, ora0

0 = 0 otherwise andl is the id of the client to which the
server is currently connected. There is a directed edgee = (v, v′) between nodesv and

v′ = L
j′1
c′1
× · · · × L

j′k
c′k
× l′ iff all of the following holds:

1. tv′ ≥ tv (the time in a schedule is non-decreasing),
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2. l′ 6= l (we never open a connection to the client that is already connected),

3. Lji
ci

= L
j′i
c′i

for i 6= l (when we close a connection to the clientl, the other clients
remain unaffected),

4. a
j′l
c′l

= tv′ (we close a connection to the clientl at timetv′ ).

This edge corresponds to the situation at timetv′ in which the scheduler closes a con-
nection to clientl and opens a connection to clientl′. The weight of the edge is the
connection set-up costr plus the additional latency cost incurred by all the pending
requests inσ during [tv, tv′ ]. Specifically, letRi = {σj

i : aji
ci

< aj
i < tv′} for i 6= l be

the set of requests generated by clienti before timetv′ that have not been served yet by
the scheduler. The latency cost ofe equals to

∑

i 6=l,σj
i∈Ri

(f j
i (tv′ − aj

i )− f j
i (max(tv − aj

i , 0))).

Finally, we create a special source nodevs that has outgoing edges of weightr to all
nodes0×· · ·×0× l for l ∈ {1, . . . , k} (recall that the first connection is opened at time
zero) and a special target nodevt that has incoming zero weight edges from each node
v for which all the requests inσ are served, that is for each requestσj

i eitherani
i ≤ aji

ci

or i = l.

Optimal Off-Line Algorithm for the RSP:

Create the graphGσ = (V, E) as described above.
Find a shortest pathP betweenvs andvt using the algorithm of Dijkstra for single

source shortest path.
TransformP into a scheduleS, that is for each edgee = (v, v′) in P s.t.v′ 6= vt, open

a connection to clientl′ at timetv′ .

Consider the following example. Suppose thatk = 2. The first client generates a
requestσ1

1 with the latency functionf1
1 (d) = d at time t = 1 and the second client

generates a requestσ1
2 with the same latency function at timet = 2. The corresponding

graph is presented on Figure 5. Note that some nodes such as0× 1× 2 are unreachable
from vs because in an optimal schedule the server never opens a connection to the
currently connected client. Two shortest paths betweenvs andvt are marked by the
bold edges. In both schedules the server opens a connection to the first client at time
zero (vs → 0× 0× 1) and at timet = 1 it serves the request of the first client. Then in
the first and in the second schedules the server opens a connection to the second client
at timet = 1 (0 × 0 × 1 → 1 × 0 × 2) and at timet = 2 (0 × 0 × 1 → 2 × 0 × 2),
respectively, and serves the request of the second client at timet = 2. The cost of an
optimal schedule is2r.

In the next theorem we show that the presented algorithm constructs an optimal
schedule and has a polynomial running time for a constant number of clients.

Theorem 10. The proposed algorithm finds a scheduleS of minimum cost for the RSP
in a polynomial time for a constant number of clients.
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Fig. 5. An example of the graph Gσ.

Proof. First we demonstrate that the algorithm finds an optimal solution and then derive
an upper bound on its running time.

By Lemma 4, there exists an optimal scheduleSO in which a connection is created
only when a new request arrives and the first connection is opened at time zero. It is
easy to see that there is one-to-one correspondence between such schedules andvs → vt

paths inGσ. Moreover, the cost of the schedule equals to the length of the corresponding
path. Therefore,CF (S, σ) = CF (SO, σ).

Note that the number of nodes inGσ is bounded by|V | ≤ (|σ|+ 1)k · k + 2, where
|σ| is the total number of requests inσ. Trivially, the number of edges inGσ is at most
|E| < |V |2/2. The theorem follows since the running time of Dijkstra single source
shortest path algorithm isO(|V | log |V |+ |E|).

We note that our algorithm can be easily extended to handle asymmetric set-up costs
and multiple servers.

7 Conclusion and Open Problems

We have introduced a new on-line problem motivated by remote software support. A
special case of the deterministic problem with just two customers is a generalization
of the well-known TCP acknowledgment problem. We have presented upper and lower
bounds for the basic version of the problem as well as for its natural extensions. Many
of the established bounds are almost tight.

An interesting research direction can be to analyze a more realistic model in which
requests may have non-zero service time. For the general variants of our model, the
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lower bounds for deterministic algorithms turn out to be quite large. Thus, it would
be interesting to consider randomized algorithms since worst-case analysis is too pes-
simistic. Another open problem is to close the gaps between the lower and the upper
bounds for the basic model and for the case of asymmetric set-up cost function.

Randomized algorithms can be considered already for the basic problem of uni-
form set-up costs and a single server. For this problem a natural algorithm would be
Balance(α) which picks a random parameterα according to some distribution, and
then switches to clienti once the total latency cost of the requests generated by clienti
equalsα times the connection setup cost. The analysis of this algorithm is left for future
research.

Acknowledgment. We would like to thank two anonymous referees for many helpful
suggestions.
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