On the Remote Server Problem
or

More about TCP Acknowledgments

Leah Epsteif* and Alex Kesselmaii*

1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel.
Email: lea@math.haifa.ac.il
2 Max Planck Institut fir Informatik, Saarkiicken, Germany.
Email: akessel@mpi-sb.mpg.de

Abstract. We study an on-line problem that is motivated by service calls man-
agement in a remote support center. When a customer calls the remote support
center of a software company, a Technician opens a service request and assigns it
a severity rating. This request is then transferred to the appropriate Support En-
gineer (SE) who establishes a connection to the customer’s site and uses remote
diagnostic capabilities to resolve the problem. We assume that the SE can ser-
vice at most one customer at time and a request service time is negligible. There
is a constant set-up cost of creating a new connection to a customer’s site and
a specific cost per request for delaying its service that depends on the severity
of the request. The problem is to decide which customers to serve first so as to
minimize the incurred cost. This problem with just two customers is a natural
generalization of the TCP acknowledgment problem. For the on-line version of
the Remote Server Problem (RSP), we present algorithms for the general case
and for a special case of two customers that achieve competitive ratios of exactly
4 and3, respectively. We also show that no deterministic on-line algorithm can
have competitive ratio better that Then we study generalized versions of our
model, these are the case of an asymmetric set-up cost function and the case of
multiple SE’s. For the off-line version of the RSP, we derive an optimal algorithm
with a polynomial running time for a constant number of customers.

1 Introduction

Providing high quality support for company’s products has a profound effect on cus-
tomer satisfaction (see e.g. [11,16]). A remote support center is intended to quickly
identify and correct many problems with a software product without having to send
a Technician to the site. Rapid escalation process ensures that the problem is quickly
identified and solved to minimize equipment down time. When a call is accepted, the
Technician troubleshoots the issue and classifies the severity of the request. The request
is then assigned to one of the Support Engineers (SE’s). A SE has to remotely access
the customer’s site in order to correct the problem. We assume that a SE can handle at

* Research supported by Israel Science Foundation (grant no. 250/01).
** Research supported by AvH-Stiftung.

most one open connection simultaneously and the time required to service a request is
negligible. Note that in real life it may take some time to resolve the problem. However,
the main difficulty is rather to get access to the customer’s machine, which is typically
protected by FireWall or some other security software. Thus, a SE contacts the system
administrator at the customer’s site and opens a connection which is usually being mon-
itored in order to obtain all necessary information about the environment and the prod-
uct status. Then the problem can be quickly resolved (e.g. by fixing the configuration
or installing a patch). We assume that there is a latency cost associated with delaying
the service of a request that depends on its urgency and the type of the client's support
contract and a set-up cost associated with creating a connection to the customer’s site.
The problem is to decide which customer to service in order to minimize the incurred
cost. There is a trade-off between the latency and set-up costs. A set-up cost for a cer-
tain client is incurred only once when one or more requests of the client are serviced
consecutively. Therefore, by accommodating a few customer’s requests, the number of
connections opened by a SE to the customer’s site is reduced. However, delaying a re-
quest for a long time increases the latency cost, which can result in unacceptable level
of service. Hence, there is a need to balance between the two costs.

We model the basic Remote Server Problem (RSP) as follows. There is a single
server andk clients generating a sequence of request3ime is continuous and at
any moment a request for service from any client can arrive. We denate &ysub-
sequence of requests generated byittieclient and bys! the j-th request in this se-
guence. We also denote by the total number of requests generated byithieclient.
We assume zero processing time for all requests. Thus, whenever the server opens a
connection to a client, all pending requests of this client are serviced immediately. A
server can maintain at most one open connection at time (if a new connection is cre-
ated, the existing connection, if any, is closed). There is a constant set-updsof
creating a new connection. TkeheduleS of a server is a sequence of established con-
nections and their corresponding creation times.rhdie the total number of opened
connections and lef; be the latest time before or at timet which the server is con-
nected to client, or otherwise let! = 0. For a request?, we denote by:] andd?
its arrival time and delay (waiting time), respectively. Note t(hfais serviced at time
al + d} = min{s’ : st > al}. Each request! has an associated latency cost function
f7 and the server incurs the latency costf@fd’) on o7. We assume that a latency
cost functionf is a non-decreasing and continuous function of the delay value such that
f(0) = 0. The goal of an algorithm is that of minimizing the incurred cost, that is

k ny
CF(S,0) =Y > fli(d)+m-r,

i=1 j=1

Wherer:1 Z?;l f7(d?) is thelatency cosandm - r is the connectiorset-up cost
of the schedules. The problem can be extended to a situation where the set-up cost
is a function of the client, i.e., each clients associated with a set-up cost> 0. In

k
this case the term - r is replaced by~ m;r; wherem, is the number of connections
=1

opened to client. Another extension is the Multiple-Server RSP, where theresare
servers, each of which may have an open connection to one client.

We consider on-line algorithms for servicing requests, which learn about a new re-
quest only when it arrives to the system. Furthermore, we assume that the complete cost
function isunknowrto the online algorithm and the latency cost of a request is revealed
with time (note that an existing minor problem can become blocking for the customer at
any time). We use competitive analysis [18, 5] to evaluate the performance of our algo-
rithms. In competitive analysis, the performance of the on-line algorithm is compared
to the performance of on optimal off-line algorith@PT', which knows in advance
the entire sequence of all future requests. An advantage of competitive analysis is that
a uniform performance guarantee is provided over all input instances. In the problem
addressed in this paper, the algorithms seek to minimize their cost for a particular se-
quence of request arrivals. For an input sequencdenote the costs incurred by an
online algorithmA and byO PT ono by CF(S4,0) andCF(S°FT, o), respectively.

We say thatd is c-competitive if for every sequence of packets

CF(S%,0) < c¢-CF(S°PT o) + a,

whereaq is a constant independent @f

Our results. For the on-line version of the basic RSP, we describe an algorithm
called Balance that greedily serves a client when the cost of creating a connection equals
to the latency cost incurred by its pending requests. We show that the competitive ratio
of Balance is exactly for the case of multiple clients. For the case of two clients, we
derive an algorithm Two-Balance, which serves a client when the cost of creating a con-
nection equals tbalf the latency cost incurred by its pending requests. We demonstrate
that the competitive ratio of Two-Balance 3s We also give a lower bound & on
the competitive ratio of any deterministic on-line algorithm, which holds even for the
case of two clients. We note that this lower bound matches the upper bound for Two-
Balance. Then we extend our analysis to the case in which clients may have different
set-up costs and the case of multiple servers. For the case of different set-up costs, we
propose an algorithm that achieves a competitive rati@kof 2 for £ clients. We also
modify Two-Balance to an algorithm Average-Two-Balance and show that it still has
a competitive ratio o8 in the case of two clients. We note that in this case, our lower
bound of 3 holds for any given pair of set-up costs. For the cagectiénts, we show
a lower bound of/k — 1/2 on the performance of any deterministic on-line algorithm.
For the case of multiple servers, we present an algorithm that has a competitive ratio of
at most2(s + 1), wheres is the number of servers, and demonstrate a lower bound of
3(s+ 1)/2 on the performance of any deterministic on-line algorithm. Finally, we give
a polynomial-time algorithm for solving the off-line version of the RSP optimally for a
constant number of clients.

The rest of the paper is organized as follows. We discuss the related work in Section
2. Algorithms for the on-line version of the RSP appear in Section 3. Section 4 contains
the lower bounds. In Section 5 we study some natural extensions of our model. An
algorithm for the off-line version of the RSP is presented in Section 6. We conclude
with Section 7.

4

2 Related Work

Our problem is most closely related to the TCP acknowledgment problem, which can be
viewed as a generalization of the ski-rental problem (also known as Rudolph’s ski rental
problem). In the TCP protocol, there exists a possibility of using a single acknowledg-
ment packet to simultaneously acknowledge multiple outstanding packets, thereby re-
ducing the overhead of the acknowledgments. Dooly et al. [7] introduced the dynamic
TCP acknowledgment problem in which the goal is to minimize the number of ac-
knowledgments sent plus the sum of the delays of all data packets (the delay of a packet
is the latency between the packet’s arrival time and the time at which the acknowl-
edgment is sent). They gave a determinigticompetitive algorithm for this problem

and showed that this is the best possible competitive ratio achievable by a deterministic
on-line algorithm. Karlin et al. [12] developed a randomized on-line algorithm for the
TCP acknowledgment problem with competitive ratio 6. Seiden [17] and inde-
pendently Noga [15] demonstrated that this bound is tight. Albers and Bals [1] derived
tight bounds for a variation of the problem in which the goal is to minimize the number
of acknowledgments sent plus the maximal delay incurred for any of the packets.

The dynamic TCP acknowledgment problem can be reduced to the Remote Server
Problem with two clients as follows. Let the set-up cost of a connection=bd. Each
arriving TCP packet immediately generates a service request with a linear latency cost
function f(d) = d. Initially, all the requests are generated by the first client. When the
server establishes a connection to the first client, all the pending packets are acknowl-
edged and new requests are being generated by the second client and so forth. It is easy
to see that the total cost of the schedule equals to the value of the objective function
of the original TCP acknowledgment problem. Our problem generalizes the TCP ac-
knowledgment problem in that there are multiple clients and an individual latency cost
function is associated with each request.

Generalizations of the ski-rental problem have been studied extensively. Fleischer
[10] considered the Bahncard problem in which the price of a ticket is discounted by a
constant factop for a predefined time from the date of purchase. The author provided
a deterministic algorithm with a competitive ratio ®f(1 + 3) in the general case
and a randomized algorithm with a competitive ratio_ef— in the case that the
Bahncard never expires. This was generalized in [12] to the case where due dates are
present. Azar et al. [3] studied a capital investment problem where the goal is that of
minimizing the total production and capital costs when future demand for the product
being produced and investment opportunities are unknown. Some of the results of [3]
were later improved by Bejerano et al. [4] and Damaschke [6].

In the k-server problem there is a metric spadein which there residé identical
mobile servers. When a request at a poinflinis received, one of the servers must
move to this point. Our goal is to minimize the total distance moved by all servers while
servicing the request sequence. Manasse et al. [14] g2aempetitive algorithm for
two servers and proved that no deterministic on-line algorithmkfeervers can be
better thank-competitive. Koutsoupias and Papadimitriou [13] showed that the work
function algorithm for thek-server problem has competitive ratio of at mpst— 1.

Alborzi et al. [2] studied thé-client problem, where each &fclients has at most one
active request on a point it/ and a single server must serve all the requests. When

the request of a client is served, that client may choose to introduce another request.
They demonstrated that several algorithms (@fe— 1)-competitive and showed that

no on-line algorithm can have competitive ratio better thak/2 for the makespan

and total completion time cost functions. In our problem, unlikekfeerver and the
k-client problems, the server does not move physically to the client but rather opens a
remote connection.

Divakaran and Saks [8] considered scheduling systems with unit size caches where
reordering of requests is available and requests may have different set-up and processing
times. They presented®(1)-competitive on-line algorithm for the maximum flow time
problem. Feder et al. [9] studied classical caching problem in which éprémuests
can be reordered. They solved the off-line version of the problem and gave tight bounds
for the on-line setting, namelyy — O(1) for deterministic algorithms an@(log k) for
randomized algorithms.

3 On-Line Algorithms

In this section we consider the on-line version of the RSP. We first describe algorithm
Balance for the case of multiple clients. Then we present algorithm Two-Balance for
the case of two clients.

3.1 Multiple Clients

In this section we consider the case of multiple clients. We show that algorithm Balance
achieves a competitive ratio of at mdsintuitively, Balance tries to find an equilibrium
between the connection set-up cost and the latency cost of the pending requests.

On-line algorithm for the RSP — Balance:

A time t open a connection to clieitif the latency cost incurred by its pending re-
guests equals to the set-up cosTies between clients are broken arbitrarily.

In what follows, we fix an input sequenee Consider the schedule®® and S©
of Balance and) PT, respectively. Letn; be the number of connections opened by
Balance to client. Denote byt! and byt"] the time at which Balance opens and closes
thej-th connection to clientand Iett’? = (. By the definition of Balance, a connection
is closed only in order to serve another client. We assume that the very last connections
of Balance and PT to each client are immediately closed when the last requeSst
is served. This does not change the cost of the algorithm since the algorithm pays for
creating connections and not for closing them. We also assume that after the last request
arrives, Balance serves all the pending requests. ' 4 4

We divide the schedule of Balance w.r.t. the cliemito intervalsl? = (t/77", /7]
in which Balance is first disconnected and then connected to this client (see Figure 1).
An interval starts just after time zero, or after a connection to clievdas closed. Note
that Balance does not create any connection at time zero.

We partition the total cost of the algorithm into the sum of costs of the intervals.
We denote the cost incurred by an algoritht(Balance orO PT’) on clients during

The server of Balance.

Z 7. 7 G e

—r T el -

Fig. 1. An example of client’s intervals sub-division.

interval I by C;(S4, I). This cost includes the latency castZ;(S4, I) incurred by
the pending requests of clientin S4 throughout! plus the connection set-up cost
CS;(S4, 1), which is the cost incurred by the connections to clietitat areclosed
during I (not the connections that are created durljigNote that Balance incurs the
cost of C;(SB, I) = 2r during any intervall} since it incurs the latency cost efand
the connection set-up cost ofwhile disconnecting from clientat the right endpoint
of the interval). Hence, the total cost incurred by Balance is

k m; k
CF(SP,0)=>"> Ci(SP,)= 2r-m,.
i=1 j=1 i=1

In a nutshell, we construct an assignment in which we assign the cost incurred
by Balance to the intervals defined above so that the cost assigned to an interval is
at most four times the cost incurred BYPT on the same client during this interval.

The assignment routine is presented on Figure 2. Basically, we try to assign the cost
C;(SB, I') incurred by Balance during an intenl to the same interval. In cagePT

did not incur sufficient cost during this interval, we will assigp(S, Iij) to another
interval on which the cost incurred iyPT is large enough and prove that it is always
possible. Intuitively, we show that the situation tidaP7" did not incur sufficient cost
during the interval can happen on at most half of the intervals.

For each interval! Do ASG(I7) = 0;
For each intervall/ Do
If C;(S°,I7) > rThen ASG(I7) = ASG(I7) + C;(SB, I7);
Else/* Ci(S°,I}) <r %/
Let i’ be the client to which Balance opens tfieth connection at time'? after it
closes the current connection to client
ASG(I)) = ASG(I},) + Ci(S®, I7);

(*) We denote byASG(I7) the cost assigned to interva.

Fig. 2. The assignment routine.

We say that an assignment routine is feasible if it is well defined, i.e., each interval
is assigned an existing interval. We show that the assignment routine is feasible and
assigns some cost only to intervals on whigR7T" has incurred a cost of at least

7

Lemma 1. The assignment routine is feasible. For any interffzél if ASG(Iij) >0
thenC;(S9, 1) > r.

Proof. The lemma trivially holds it (S©, I7) > r. Thus, suppose that;(S°, I7) <
. We will show that the assignment is well-defined, @ S©, Iij,/) >r.

Client ¢’ is clearly well defined unless we deal with the very last connection of
Balance. Note that in this cage= m;. We argue the cost incurred lgyP7" on the last
interval of clienti is at least, and therefore; (S, I7) > r.Ifthe latency cost 0O PT
incurred duringl[™ is at least (i.e. CL;(S°,I]™) > r), we are done. Otherwise,
OPT must be connected to clientat some point of time during;"*. Thus, by our
assumptiorO PT disconnects from clientwhen the last request of this client arrives
and incurs the connection set-up cost of at legse. C'S; (S, I]") > r).

If C;(S9, Iij) < r, it means thaD P does not pay latency cost durimg and does
not disconnect from client since we have that's;(S°, I7) < r andCL;(S°, I7) <
r. ThereforeO PT is either continuously connected to clie‘nhroughoutlf, or it con-
nected to client during I/, at some time prior te;. In both cases) PT is connected
to i throughout{t!, #”/ = #//]. Assume thaC'L;(SC, I}) < r, or otherwise we are
done. This implies tha® PT must be connected to cliefitat some point of time dur-
ing (#4, ", #]/]. SinceOPT is connected to clientduring (/,,] andt > 4" by

1771

the construction of intervals, we get that it must have disconnected from €lguning
7"] € ("%, 7", #),]. Hence, we obtain that'S; (S°, 17,) > r. |

The next theorem derives the competitive ratio of Balance by establishing an upper
bound of four on the ratio between the cost assigned to an interval and the cost incurred
by OPT during this interval.

Theorem 1. The competitive ratio of algorithm Balance for the RSP is at most

Proof. Obviously, the total cost assigned by the assignment routir@F$S”, o).
Lemma 1 implies that the assignment is feasible. Consider an int&fvale claim
that ASG(I7) < 4 - C4(S©,I7). By Lemma 1, ifC;(S°, I) < r thenI/ is not as-
signed any cost. In casg;(S°, I{) > r, by the construction’{ can be assigned the
costs incurred by Balance duririd and another interval that isniquelydefined by
I, thatis interval[ij,/ of clienti’ from which Balance disconnects before it connects to
clientsi. This constitutes at most the costsf since Balance incurs the cost of exactly
2r on any interval.

It follows that

k my k m;
CF(SP,0) =) > Ci(SP 17)=> "> ASG(I?)
=1 j=1 i=1j=1
k my;
<4 > Ci(S9,17) <4CF(S9,0).
i=1 j=1

3.2 Two Clients

In this section we consider the case of two clients. We describe algorithm Two-Balance
and demonstrate that it -competitive. Similarly to Balance, Two-Balance tries to
balance the connection set-up cost and the latency cost, but it is not done symmetrically.

On-line algorithm for the two-client RSP — Two-Balance:

A time t open a connection to clientif the latency cost incurred by its pending re-
guests equals twice the set-up cost (6.

The analysis is similar to that of Balance. We use exactly the same assignment
scheme and we again need to show that the assignment routine is feasible and assigns
some cost only to intervals on whiéhPT incurred sufficiently large cost.

Lemma 2. The assignment routine is feasible. For any interi/lthat is not the inter-
val corresponding to the very first connection of Two-Balance the following holds. (i) If

ASG(I7) > 0thenC;(S©, I7) > r and (ii) if C; (SO, I7) < r thenCy (SO, I%) > 2r.

v Saf

Proof. The first part of the proof (including feasibility) is similar to that of Lemma 1.
We will show that if for an interval? we haveC;(S°, I/) < r thenC;/ (S9, I/,) > 2r.

Note thatO PT is connected to clientthroughout(t/, 7] sinceC; (S©, I) < r.Given
that there are only two clients, the connections of Two-Balance alternate betardn
i/, and we get that! = ', "' and#'/ = ¢/, (this is true because Two-Balance always
disconnects from clientin order to connect to client and vice versa). It must be the
case that’L; (S, I7) > 2r since(t/, /] C I’ and the latency cost of the requests

generated by client during (¢/, #'/] has reached exactly by timet”?. Il

The next theorem derives the competitive ratio of Two-Balance. In our analysis we
ignore the cost that might have been assigned to the interval of the second connection
of Two-Balance, by the interval of the first connection of Two-Balance. This gives an
additional additive constant of at madst.

Theorem 2. The competitive ratio of algorithm Two-Balance for the two-client RSP is
at most3.

Proof. Again, the total cost assigned by the assignment rQutidéCIQS‘B, o). Lemma
2 implies that the assignment is feasible. Consider an intéfyale claim thatdSG(17) <
3-Ci(S9, I)). We proceed by case analysis.

If C;(S°, Iﬁ) < r, then by property (i) of Lemma Z,f is not assigned any cost at all.

If r < Cy(S9, If) < 2r, then by property (ii) of Lemma 2[f can be assigned only
the cost incurred by Two-Balance @\, which is at mos8r.

If C;(S©,17) > 2r, I can be assigned the costs incurred by Two-Balancg @md
another intervaliniquelydefined byIf, which is at mosbr.

It follows that CF(S®,0) < 3CF(5°,0). 1

4 Lower Bounds

In this section we deal with lower bounds. Remember that the complete cost function is
unknownto the online algorithm and the latency cost of a request is revealed with time.
First we present a lower bound 8fon the performance of any deterministic on-line
algorithm.

Theorem 3. The competitive ratio of any deterministic on-line algorithm for the RSP
is at least3.

Proof. We prove this theorem for a general setting, where the connection set-up costs
of different clients may be distinct. Let be a deterministic on-line algorithm. Suppose
that there are two clientsandi’, with set-up costs andr’. Consider the following
scenario. Initially, at time zero the first client generates a request. \Mherves the
request of the first client, the second client generates a request and so forth. This is
repeatedh times, so that the sequence containsequests of each client. The latency
cost function of a request increases linearly till it is serveddbgnd remains constant
thereafter, that is

o ={5as

wherezx is the delay of the request undér The total cost incurred by is
n) n)
40) = Zdz +Zd§, +nr +nr'.
Jj=1 j=1

Without loss of generality, assume thaf'_, ¢/, < >°"_, d/. We define an off-line
algorithm in the following way. The algorithm establishes a connection to the ¢lant
time zero and keeps it open all the time. When the last request of ¢lieserved, the
algorithm creates a connection to the other cli¢mind serves all its pending requests.
In addition, for each request, of the clienti’ such that?/, > r + r/, the algorithm
opens a connection to cliefitat timea?, upon arrival ofo’, and immediately re-opens
back a connection to the clieatafter serving this request. Note that such a request
incurs the connection set-up costrof- r’. We get the following upper bound on the
cost incurred) PT"

n
< Zmin(d{,,r—i—r')—i—r—l—r',
i—1

where the additive term of + 7’ is the connection set-up cost of the first and the last
connections opened by the off-line algorithm and we can ignore it for largée show
that

—zn:dj+r Jer]Jrr >2Z< ’"*”)

> 3CF(S9, o f?)me &+,

10
which holds since for any < j < n we have that

2(d?, +

/ .
W) > 3min(d,, 7 +1').

The theorem follows. ||

Next we show that the competitive ratio of Balance is at ldast
Theorem 4. The competitive ratio of algorithm Balance for the RSP is at ldast

Proof. Consider the following scenario. Assume thkat 3 and letM be a large even
number and be a small constant. We define the latency cost function for all requests
as

dd<r,
fld) = { rd>r.
Forq = 0,1,..., M, the first client generates a request at time ¢ - (r + 2¢). For
the even values of (¢ = 0,2,..., M), the second client generates a request at time

t =q- (r+ 2¢) 4 e and for the odd values af (¢ = 1,3,..., M — 1), the third client
generates a request at time- ¢ - (r + 2¢) + e.

The schedule of Balance is presented on Figure 3. It first serves at time the
request of the first client arriving at tintie= 0. Then Balance serves at tirhe= r+¢ the
request of the second client arriving at time: €. Thus, at time = r 4 ¢ Balance will
have an open connection to the second client. Thereafter, at tim2r + 2¢ Balance
serves the request of the first client arriving at titne » + 2¢ and at time = 2r + 3¢
it serves the request of the third client arriving at titne r + 3e. The same situation
repeats and so on.

Start of the schedule.

First client. i
1 time

Second client.

W_

1 time

Third client. .
time

Fig. 3. The schedule of Balance.

The total cost incurred by Balance is at le&31r since on each intervad - (r +
2¢),(g+ 1) - (r +2¢)] forg = 0,1,..., M, it incurs twice the connection set-up cost
of r plus twice the latency cost of On the other hand) PT will keep a connection

11

to the first client open all the time durirff@, M (r + 2¢)] and serve the requests of the
second and the third client at tinte= M (r + 2¢) incurring the total cost of at most
(M + 3)r. The obtained ratio can be made arbitrarily closd for sufficiently large
M. 1

5 Extensions

In this section we consider some extensions of the basic RSP. We will study the case of
asymmetric set-up cost function and the case of multiple servers.

5.1 Asymmetric Set-up Cost

In this section we consider the case in which cliehias a connection set-up cost of
r;. We present algorithms that achieve competitive ratiogkof 2 and3 for the case
of & and two clients, respectively. We also show a lower bound/bf— 1/2 on the
performance of any deterministic on-line algorithm.

Definition 1. We say that clientis activeat timet if the server has an open connection
to it at this time.

Next we describe algorithm Max-Balance. The intuition behind Max-Balance is that
we would like the server to stay connected to an active client with a high connection
set-up cost till the latency cost incurred by a client with a low connection set-up is suf-
ficiently high. This prevents the server from connecting too quickly to a “cheap” client
and then paying a high connection set-up cost for re-connecting back to the “expensive”
client.

On-line algorithm for the asymmetric RSP — Max-Balance:

A time t open a connection to clieitif the latency cost incurred by its pending re-
quests is larger or equal to the maximum of the set-up cost of the currently active
clienti’ if any, and the set-up cost of clienfi.e. max(r;, r;)).

Theorem 5. The competitive ratio of algorithm Max-Balance for the Asymmetric RSP
is at most6k — 2.

Proof. We follow the lines of the analysis of Balance. The assignment routine appears
on Figure 4.

Lemma 3. The assignment routine for Max-Balance is feasible. For any inteij),al
ASG(I)) < (6k —2) - C;(S°, 17).

Proof. Note that for each client, the last interval of is an interval where) PT dis-
connects from it and therefore it incurs a connection set-up cost of atrleabhis
shows that in assignments (3) and (4), there always exists a later interval as needed. In
assignment (2), the existence of a next connection is proved as in Lemma 1.

Consider all possible assignments to one given intel{iaBy the construction, in-
terval I/ can be assigned a value of at ma&t(S©, I7) each time when it is processed

12

For each interval/ Do ASG(I7) = 0;
For each intervall] Do _ _ _ _
If Ci(S°,17) > Ci(SP,1])/2 Then ASG(I7) = ASG(I]) + Ci(S”,17) (1);
Else/* C3(S°,I7) < Ci(SP,I})/2 = /
If C;(S®,1}) = 2r; Then
Let ¢’ be the client to which Max-Balance opens tfieth connection at time
'] after it closes the current connection to clignt
If Cir(S°,I),) > r; Then ASG(I},) = ASG(I},) + C:(S®, I}) (2);
Else/ Cir(S,I5)) < s * /
Let I7 be the first interval of clienis.t.j > j andC;(S°, I7) > ry;
ASG(I]) = ASG(I?) + Ci(SP,17) (3);
Else/ * Ci(S®, 1)) > 2r; %/
Let i’ be the last client s.t. Max-Balance closes jti¢h connection to it af
timet'?, <t} andry > CL;(S®,1});
Let I, be the first interval of client’ s.t.; > j/ andCy (S, I7,) > rir;
ASG(I})) = ASG(I},) + Ci(S®, 1)) (4);

Fig. 4. The assignment routine for Max-Balance.

by any of assignments (1), (2), (3) and (4). Clearly, assignments (1) and (2) are feasi-
ble and the total value assigned by then/{ads at most4C’l-(SO,I,f) since they are
associated with the intervals that are uniquely defined{bWe will demonstrate that
assignments (3) and (4) are also feasible and the total value assigned by tEjeimao
most6(k — 1) - C4(S9, I7).

First consider assignment (3). We argue that it is feasible. Moreover, we will as-
sociate each assignment by (3) to a cli€nand show that for any client # i, this
assignment can be done at most once. Assume that the value of idteofallient; is
assigned to intervdlij of the same client by assignment (3). Suppose that Max-Balance
disconnects from client and connects to client at timet'] < tJ. Note thatOPT

must be connected to clienat some point of time during’ sinceC;(S°, /) < r;.
Thus, I7 is the first interval during whicl® PT disconnects from client after time
t'. Therefore, if Max-Balance during’/,¢"7~") connects to client’ after closing a
connection to client, it must be the case that the latency cost incurre@y" on the
corresponding interval of client is at least;. By the construction, in this cagé is
not assigned any value by assignment (3). We obtainABaif(Iij) can be increased at
mostk — 1 times by assignment (3), one per each other client.

Now consider assignment (4). We claim that it is feasible and for any clieat:,
this assignment can be done at most twice. Igétbe the earliest interval of client
i’ whose value is assigned to inter\ﬁl of client i by assignment (4). Note that if
Cir (S, If,') > 2r;/, then prior to timet{,', Max-Balance must be connected to a client

whose connection set-up cost is at le@st(SZ, IZ?',/)/Z and suppose that it is theth

13

connection of client. If j = j, then by the constructio[ﬁ will not be assigned the
value of any subsequent interval of clieht Otherwise, if; < j, OPT is connected

to clienti at some point of time during’ sinceC;(S°, I7) < r;. Thus,I7 is the first
interval during whichOPT' disconnects from client after timet'/. Let IZ,N be the
latest interval of client’ whose value is assigned Ip by assignment (4). We have that

7 will not be not assigned the value of any interval of clienbetweens, and I’
because on the® PT incurs the same latency cost as Max-Balance does. Moreover,
I will not be assigned the value of any succeeding interval of ciiet/e have that
assignment (4) tdfij can be associated with at most two intervals of any specific client.
Therefore,ASG(I7) can be increased at maxtk — 1) times by assignment (4). The
lemma follows. ||

The theorem follows directly from Lemma 3. i

We also sharpen the general upper bound for the case of two clients. The proof
builds on that of Theorem 2. Let andr,; be the set-up costs of the two clients, and
letr = (r1 + r2)/2. We use algorithm Two-Balance with this valuerofo create the
schedule. We call this algorithm Average-Two-Balance.

Theorem 6. The competitive ratio of algorithm Average-Two-Balance for the two-client
Asymmetric RSP is at makt

Proof. Consider an optimal off-line algorithr@; for the problem of two clients with
set-up costg; andr;, and an optimal off-line algorithr®,, for the problem where both
clients have the same set-up costs defined above. We can assume without loss of
generality that each one of those algorithms closes a connection only in order to open
a connection to the other client, or when the algorithm terminates. Therefore, both of
these algorithms have the property that the number of connections to the the first client
differs by at most one from the number of connections to the second client. It is easy
to see that a schedule 6f; can be converted trivially to a schedule (not necessarily
optimal) for the modified problem, possibly adding a constant tertmak{ry,r2} —
min{ry,r2})/2 to the connection set-up cost. Observe that the latency cost remains the
same. Since the cost 6%, is not larger than the cost of the converted schedule, we get
that

CF(S%2,0) < CF(S°,0) + |r1 — 12| /2.

A similar argument can be applied to the difference between the cost of the on-line
schedule using the set-up cesand its real cost using the set-up costandrs. The
theorem follows. |

Note that the above algorithm has the best possible performance for any pair of
set-up costs, due to Theorem 3.

In the following theorem we show a lower boundgf — 1/2 on the performance
of any deterministic on-line algorithm.

Theorem 7. The competitive ratio of any deterministic on-line algorithm for the Asym-
metric RSP is at leasy'k — 1/2.

14

Proof. Let A be a deterministic on-line algorithm and let= /k — 1. Suppose that
r2 clients have a connection set-up costlof‘cheap” clients) and one client has a
connection set-up cost of(“expensive” client). Consider the following scenario. Time
is divided into independent phases. At the beginning of a phase, each client generates a
request. (The latency cost of all requests remains zero unless stated otherwise.) First, the
latency cost of the request of the expensive client starts to grow linearlyAdisgtves
it. After the request is served by, the latency costs remains at its current value. Then,
if A has served all the requests of the cheap clients, we start a new phase. Otherwise,
we arbitrarily choose one such request and its latency cost starts to grow linearly until
it is served byA and then stops growing. At this time, a new request is generated by the
expensive client and its latency cost growsAilerves it. The same situation is repeated
until either A servesr requests of the expensive client drserves all the requests of
the cheap clients. Thereafter, we begin a new phase.

We obtain thatd incurs the connection set-up cost of at leesturing a phase.
There are two cases. If all “cheap” requests are served before the next phase starts, then
clearly a connection set-up cost bfvas paid by-? clients. Otherwise, the algorithm
must connect to the “expensive” clientimes, and so it pays the connection set-up cost
of r at least- times, which again gives a total of at least

On the other hand, an off-line algorithm can just serverthequests of the cheap
clients that will be active in the future (i.e. the requests of the clients whose latency cost
would not remain zero) at the beginning of a phase and then connect to the expensive
client. incurring the connection set-up cost2f and zero latency cost. Thu®.PT
incurs the total cost of at mo8t. Note that all the unprocessed requests of the cheap
clients will not incur any additional latency cost after the end of the phade.

5.2 Multiple Servers

In this section we consider the case in which theresarek available servers. We pro-

pose an algorithm that has a competitive ratio of at ¢s# 1). Then we demonstrate

a lower bound o8(s+ 1) /2 on the performance of any deterministic on-line algorithm.
Now we describe algorithm Round-Robin-Balance, which behaves exactly like Bal-

ance selecting servers in turn.

On-line algorithm for the Multi-Server RSP — Round-Robin-Balance (RR-Balance):

A time t open a connection to clieitif the latency cost incurred by its pending re-
guests equals to the set-up costsing the next server in the Round-Robin order.

We demonstrate that RR-Balance{s + 1)-competitive.

Theorem 8. The competitive ratio of RR-Balance for the Multi-Server RSP is at most
2(s+1).

Proof. We divide the schedule of RR-Balance into phases and the schedule of each
client into intervals, similarly to Theorem 1. A phase is a collection ef 1 intervals

of s + 1 consecutive connections, which are associated with1 different clients.

Note that RR-Balance incurs the costafon the corresponding interval of each client
during such a phase.

15

We claim thatO PT incurs the cost of at leaston one of those intervals. That is
due to the fact thaD PT either disconnects from one of the clients during one of the
intervals of the phase and pays the connection set-up cespropays the latency cost
of r on the interval of the client to which it is not connected during its interval in the
phase. |

Next we show a lower bound 8{s +1)/2 on the performance of any deterministic
on-line algorithm.

Theorem 9. The competitive ratio of any deterministic on-line algorithm for the Multi-
Server RSP is at lea8s + 1)/2.

Proof. We consider a scenario similar to that of Theorem 3.A bk a deterministic on-

line algorithm. There ark = s+1 clients generating requests whose latency cost grows
linearly until they are served. We select an inactive client, which generates a request and
wait until this request is served by (if all servers are in use, there is exactly one such
client, otherwise one such client is chosen arbitrarily). This process continuesiuntil
serves in totah requests. LeD; be the total cost (the connection set-up cost and the

k

latency cost) for client. ThenCF(S4,0) = 3. D;. Leti be a client for whomD; is
i=1

minimal. Clearly,

CF(8% 0) > kD; = (s+1) Z (& +7).
Jj=1

We define an off-line algorithm in the following way. The algorithm establishes
connections to all clients but clientat time zero and keeps them open all the time.
When the last request of some client is served and its server becomes free, the algorithm
creates a connection to clientising this server and serves all its pending requests. In
addition, for each request’ of the client: such that/ > 2r, the algorithm opens a
connection to client at timea{f upon arrival ofa{, disconnecting an arbitrary server for
some client’, and immediately re-opens back a connection to the clieafter serving
this request. Note that such a request incurs the connection set-up 2ost\@&f get the
following upper bound on the cost incurred Oy°T":

) < Zmln d7 2r) + kr,

where the additive term ofr is the connection set-up cost of the first and the last
connections opened by the off-line algorithin 1 connections at time zero and one
connection to client to serve its pending requests). We can ignore this term for large
n. We need to show that

n;

CF(584,0) > (s+1) ;(dg' +7r)> 3(‘9; 1)CF(SO o) = w ;min(dg, o),

16

which holds since for any < j < n we have that

2(d +) > 3min(d?, 2r).

6 An Optimal Off-Line Algorithm

In this section we present an algorithm that solves the off-line version of the RSP in
a polynomial time for a constant number of clients. In what follows we fix an input
sequencer. The next lemma shows that any optimal schedule can be converted to a
schedule with exactly the same cost in which a new connection is opened only when a
new request i arrives and the first connection is created at time zero.

Lemma 4. Given an optimal schedul§, it is always possible to construct an equiva-
lent scheduleés’ s.t. CF(S’,0) = CF(S,0) in which a connection is opened only at
the arrival time of some request inand the first connection, if any, is established at
time zero.

Proof. If the first connection ir5 is opened at timeé > 0 then inS’ we open it at time
zero. Now we will iteratively modifyS. Consider a connection to clienthat is opened

in S at timet s.t. no request i arrives at this time. Let’ be the client to which the
server has been connecteddrimmediately before time (note thati’ is well-defined
since it is not the first connection) and iét< ¢ be the last time before at which
some request of either clienor the client’ arrives, or otherwise let = 0. We open

a connection to clientin S’ at timet’ instead of timet. Since no request of clierit
arrives duringt’, ¢], S’ does not incur additional latency cost on the requests of client
. Clearly, the latency cost incurred on the requests of clieran only decrease. By
our constructionCF(S’,0) < CF(S, o). The lemma follows by the optimality of.

Now we present an algorithm that finds an optimal off-line schedule. According to
Lemma 4, we can restrict our attention to schedules in which a connection is opened
only when a new request arrives and the first connection is established at time zero. In
a nutshell, we will construct a weighted directed graph in which a path between
two designated nodes corresponds to a legal schedule and the length of the path is the
cost of this schedule. Thus, the off-line RSP is reduced to the shortest path problem.
For each request!, we define a label] = «] and we also define a special label
LY = 0. A nodew in the graph is a product df labels and the client id, that is =
Lit x - x LI x I, wherel € {1,...,k}. This node corresponds to the scheduler
state at timef, = max;(a’!), wherea): is the time at which the last connection to
clienti was closed, if any, oz = 0 otherwise and is the id of the client to which the
server is currently connected. There is a directed edg€gv, v’) between nodes and

o' = Ll x -+ x LI x U'iff all of the following holds:

1. t,» > t, (the time in a schedule is non-decreasing),

17

2. ' # 1 (we never open a connection to the client that is already connected),

3. L{;‘, = Li for ¢ #£ [(when we close a connection to the cliénthe other clients
remain unaffected),

4, ai’; = t,» (we close a connection to the clidrat timet,,).

This edge corresponds to the situation at timein which the scheduler closes a con-
nection to client and opens a connection to clight The weight of the edge is the
connection set-up cost plus the additional latency cost incurred by all the pending
requests i during [¢,, t,/]. Specifically, letR; = {07 : ali < a] < t,}fori #1be
the set of requests generated by cliebéfore timet,, that have not been served yet by
the scheduler. The latency costcogquals to

Y (fl(te —a]) = f] (max(t, —a],0))).

i#l,07 €R;

Finally, we create a special source nadethat has outgoing edges of weighto all
noded) x---x0xlforl € {1,...,k} (recall that the first connection is opened at time
zero) and a special target nodgethat has incoming zero weight edges from each node
v for which all the requests ia are served, that is for each requejteithera’ < afi
ori=1.

Optimal Off-Line Algorithm for the RSP:

Create the grapty® = (V, E) as described above.

Find a shortest patl? betweenv, andwv, using the algorithm of Dijkstra for single
source shortest path.

TransformP into a schedulé, that is for each edge= (v, v’) in P s.t.v’ # v, open
a connection to clierit at timet,,.

Consider the following example. Suppose that 2. The first client generates a
requests; with the latency functiony}(d) = d at timet = 1 and the second client
generates a reques} with the same latency function at time= 2. The corresponding
graph is presented on Figure 5. Note that some nodes siick &x 2 are unreachable
from vs; because in an optimal schedule the server never opens a connection to the
currently connected client. Two shortest paths betweeand v, are marked by the
bold edges. In both schedules the server opens a connection to the first client at time
zero s — 0 x 0 x 1) and at time = 1 it serves the request of the first client. Then in
the first and in the second schedules the server opens a connection to the second client
attimet =1(0x0x1—1x0x2)andattime =20 x0x1— 2x0x2),
respectively, and serves the request of the second client at time. The cost of an
optimal schedule i8r.

In the next theorem we show that the presented algorithm constructs an optimal
schedule and has a polynomial running time for a constant number of clients.

Theorem 10. The proposed algorithm finds a sched§lef minimum cost for the RSP
in a polynomial time for a constant number of clients.

18

Fig. 5. An example of the graph G°.

Proof. First we demonstrate that the algorithm finds an optimal solution and then derive
an upper bound on its running time.

By Lemma 4, there exists an optimal schedsif¢in which a connection is created
only when a new request arrives and the first connection is opened at time zero. It is
easy to see that there is one-to-one correspondence between such scheduyles apd
paths inG?. Moreover, the cost of the schedule equals to the length of the corresponding
path. ThereforeQ' F(S,0) = CF(S9, o).

Note that the number of nodes@? is bounded byV | < (|o|+1)¥ -k + 2, where
|| is the total number of requestsdn Trivially, the number of edges i is at most
|E| < |V|?/2. The theorem follows since the running time of Dijkstra single source
shortest path algorithm i9(|V|log |V| + |E|). |1

We note that our algorithm can be easily extended to handle asymmetric set-up costs
and multiple servers.

7 Conclusion and Open Problems

We have introduced a new on-line problem motivated by remote software support. A
special case of the deterministic problem with just two customers is a generalization
of the well-known TCP acknowledgment problem. We have presented upper and lower
bounds for the basic version of the problem as well as for its natural extensions. Many
of the established bounds are almost tight.

An interesting research direction can be to analyze a more realistic model in which
requests may have non-zero service time. For the general variants of our model, the

19

lower bounds for deterministic algorithms turn out to be quite large. Thus, it would
be interesting to consider randomized algorithms since worst-case analysis is too pes-
simistic. Another open problem is to close the gaps between the lower and the upper
bounds for the basic model and for the case of asymmetric set-up cost function.

Randomized algorithms can be considered already for the basic problem of uni-
form set-up costs and a single server. For this problem a natural algorithm would be
Balance(«) which picks a random parameteraccording to some distribution, and
then switches to clientonce the total latency cost of the requests generated by ¢lient
equalsxy times the connection setup cost. The analysis of this algorithm is left for future
research.

Acknowledgment. We would like to thank two anonymous referees for many helpful
suggestions.

References

1. S. Albers and H. Bals, “Dynamic TCP Acknowledgement: Penalizing Long Del&ysg.
14th Annual ACM-SIAM Symposium on Discrete Algorithpps 47-55, 2003.

2. H. Alborzi, E. Torng, P. Uthaisombut and S. Wagriene k-Client ProblemJ. Algorithms
Vol. 41(2), pp. 115-173, 2001.

3. Y. Azar, Y. Bartal, E. Feuerstein, A. Fiat, S. Leonardi and A. Rosen, “On Capital Invest-
ment,” In Proc. 23rd International Colloquium on Automata, Languages, and Programming
(ICALP96) Springer LNCS, Vol. 1099, pp. 514-525, 1996.

4. Y. Bejerano, I. Cidon and Joseph Naor, “Dynamic session management for static and mobile
users: a competitive on-line algorithmic approaddrdceedings of DIALM '00pp. 65-74,
2000.

5. A. Borodin and R. El-Yaniv, “On-Line Computation and Competitive Analysiz&mbridge
University Press1998.

6. P. Damaschke, “Nearly optimal strategies for special cases of on-line capital investment,”
Theoretical Computer Scienceéol. 302(1-3), pp. 35-44, 2003.

7. D.R. Dooly, S. A. Goldman and S. D. Scott, “On-line analysis of the TCP acknowledgement
delay problem,JACM Vol. 48(2), pp. 243-273, 2001.

8. S. Divakaran and M. Saks, “An On-line Algorithm for the problem of single machine schedul-
ing with job set-ups,DIMACS Technical Report 2000-32000.

9. T. Feder, R. Motwani, R. Panigrahy, S. Seiden, R. van Stee and A. Zhu, “Combining request
scheduling with web cachingTCS, special issue in memoriam of Steve Seibegppear.

10. R. Fleischer, "On the Bahncard problenTheoretical Computer Scienc®ol. 268(1), pp-
161-174, 2001.

11. IBM Remote Supporthttp://www-1.ibm.com/services/us/index.wss/so/its/a1001373

12. A. R. Karlin, C. Kenyon and D. Randall, "Dynamic TCP acknowledgement and other stories
about e/(e-1),ACM Symposium on Theory of Computipg. 502-509, 2001.

13. E. Koutsoupias and C. H. Papadimitriou, “On the k-server conjectdogifnal of the ACM
Vol. 42(5), pp. 971-983, September 1995.

14. M. Manasse, L. A. McGeoch, and D. Sleator, “Competitive algorithms for server problems,”
Journal of Algorithms\ol. 11, pp. 208-230, 1990.

15. J. NogaPrivate communication

16. Oracle Remote Suppomyww.remote-dba.net

20

17. S. S. Seiden, “A guessing game and randomized online algorithimBfoceedings of the
32nd Annual ACM Symposium on Theory of Compuiapg 592-601, May 2000.

18. D. Sleator and R. Tarjan, “Amortized Efficiency of List Update and Paging RUBACM
28, pp. 202-208, 1985.

