
Online Interval Coloring and Variants?

Leah Epstein1,?? and Meital Levy2

1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel.

Email: lea@math.haifa.ac.il
2 School of Computer Science, Tel-Aviv University, Israel.

Email: levymeit@post.tau.ac.il

Abstract. We study interval coloring problems and present new upper and lower bounds for several

variants. We are interested in four problems, online coloring of intervals with and without bandwidth

and a new problem called lazy online coloring again with and without bandwidth. We consider both

general interval graphs and unit interval graphs. Specifically, we establish the difference between the

two main problems which are interval coloring with and without bandwidth. We present the first non-

trivial lower bound of 3.2609 for the problem with bandwidth. This improves the lower bound of 3

that follows from the tight results for interval coloring without bandwidth presented in [9].

1 Introduction

We study online interval coloring problems. In the basic problem intervals are presented one by one
and the online algorithm must assign each interval a color before the next interval arrives, where
two intersecting intervals can not be colored by the same color. We are also interested in the case
where every interval has an associated bandwidth in (0,1], this problem was first introduced by
Adamy and Erlebach [1]. A set of intervals can be assigned the same color c, if for any point p, on
the real line, the sum of the bandwidths of intervals colored c and containing p, does not exceed 1.
We refer to a coloring satisfying the above condition as a proper coloring.

As mentioned in [1], the interval coloring problem with bandwidth arises in many applications.
Most of the applications come from networks field. Consider a network with a line topology that
consists of links, where each link has channels of constant capacity. This can be either an all-optical
WDM (wavelength-division multiplexing) network or an optical network supporting SDM (space-
division multiplexing). A connection request is from one network node a to another node b has
a bandwidth associated with it. The set of requests assigned to a channel must not exceed the
capacity of the channel on any of the links on the path [a, b]. The goal is to minimize the number
of channels (colors) used. A connection request from a to b corresponds to an interval [a, b] with
the respective bandwidth requirement and the goal is to minimize the number of required channels
to serve all requests.

Another network related application is that if the requests have constant duration c, and we
have to serve all requests as fast as possible. With respect to our online interval coloring problem
with bandwidth, the colors correspond to time slots, and the total number of colors corresponds to
the schedule length.

The last example comes from scheduling, a requested job has a duration and resource require-
ment during its execution. Jobs (intervals) arrive online and must be assigned to a machine (color)
? A preliminary version of this paper appeared in Proc. of the 32nd International Colloquium on Automata, Lan-

guages and Programming (ICALP2005).
?? Research supported by Israel Science Foundation (grant no. 250/01).

2
immediately. All the machines have the same capabilities and the objective is to minimize the
number of machines used.

The unweighted (basic) problem is equivalent to coloring an interval graph, where each node
corresponds to an interval and an edge between two nodes appears if the corresponding intervals
intersect. Interval graphs are perfect, therefore the chromatic number of the graph is the maximum
clique size [6], which represents a point where the most intervals intersect. It can be elaborated for
the bandwidth case, if we refer to the maximum clique size as the maximum weighted clique. Each
node has the weight of the related interval ,i.e., its bandwidth, and the clique size is the sum of
weights of the clique.

We study online coloring problems in terms of competitive analysis. Thus we compare an online
algorithm to an optimal offline algorithm OPT that knows the complete sequence of intervals in
advance. In this paper, we make use of two types of competitive ratios. The absolute competitive
ratio and the asymptotic competitive ratio.

Let B(σ) (or B, if the sequence σ is clear from the context), be the cost of algorithm B on the
request sequence σ. An algorithm A is R-competitive (with respect to the absolute competitive
ratio) if for every sequence σ, A(σ) ≤ R ·OPT (σ). The absolute competitive ratio of an algorithm
is the infimum value of R such that the algorithm is R-competitive.

The asymptotic competitive ratio for an online algorithm A is defined to be

R∞A = lim sup
n→∞

sup
σ

{
A(σ)

OPT (σ)

∣∣∣∣∣OPT (σ) = n

}
.

Most results in this paper hold for both definitions of competitive ratio. We mention the cases
where a result holds for only one definition.

Coloring interval graphs has been intensively studied, Kierstead and Trotter [9] constructed
an online algorithm which uses at most 3ω − 2 colors where ω is the maximum clique size of the
interval graph. They also presented a matching lower bound of 3ω − 2 on the number of colors in
a coloring of an arbitrary online algorithm. As mentioned above, the chromatic number of interval
graphs equals to the size of a maximum clique. This means that the optimal offline algorithm can
color every interval graph with ω colors.

Much research has been done analyzing the performance of the simple First Fit algorithm. An
upper bound of 40 on the competitive ratio was proven in [7], and later on an upper bound of 25.72
was presented by Kierstead and Qin [8]. In a recent study [11], a competitive ratio of 10 was proved.
Chrobak and Slusarek [3] showed a lower bound close to 4.5 on the competitive ratio of First Fit.

Coloring intervals with bandwidth was first posed in 2003 in [1], they presented an online
algorithm with a competitive ratio of 195. In [10] Narayanaswamy presented a new algorithm with
a competitive ratio of 10.

Motivated by The Maximum Resource Bin Packing Problem [2], we introduce a new problem
called Lazy Interval Coloring. As opposed to the regular interval coloring problem, we seek to use
as many colors as possible. If all bandwidths are 1, a new color may be used for an interval, only if it
intersects intervals with all the previously used colors. We also consider the bandwidth case, where
intervals have bandwidth in (0,1]. For both problems, a newly presented interval must be colored
by a used color if a proper coloring can be achieved. An application for this problem can be any
of the applications mentioned before, where using additional colors (channels/time slots/machines)

3
can improve the quality of service. The scheduler (who assigns colors) has the purpose of using
as many colors as possible. However, to avoid the usage of too many colors, the instructions of a
scheduler (given by the boss, who pays for the equipment) are not to use a new color unless it is
absolutely necessary.

Our Results: We show that introducing bandwidth to interval coloring makes the problem harder.
We present the first non-trivial lower bound of 3.2609, which improves the lower bound of 3, proved
in [9], for interval coloring without bandwidth. Recall that for the problem without bandwidth, the
bound 3 is tight. We also show that bandwidth makes lazy interval coloring a much harder problem.

In this work we consider resource augmentation for the interval coloring problem with and
without bandwidth. We show that there exists an online algorithm that when uses twice as much
resource for each color, can perform as well as the optimal offline algorithm. We also present a
matching lower bound.

For the bandwidth case we study two interesting cases. In the first case, the online algorithm
may use twice as much capacity for each color as the offline algorithm, for which we present an
online algorithm that uses at most 3 times the number of colors that the optimal offline algorithm
uses. In the second case, we present an online algorithm that uses at most as many colors as OPT
in the worst case, where each color has a capacity of 4.

Another interesting variant is to restrict the class of intervals, so all intervals are of the same
length. This type of graph is called “Unit Interval Graph”. For the interval coloring problem we
show that First Fit uses at most 2ω− 1 colors and that the analysis is tight. We also show a lower
bound of 3

2 on the competitive ratio of any online algorithm.

For interval coloring with bandwidth for unit interval graphs, we present several algorithms,
the best algorithm has 7

2 competitive ratio. We also present a lower bound of 2. For the asymptotic
competitive ratio, the bounds become 3.17778 and 1.831.

For lazy interval coloring, we prove that for general instances any online algorithm performs
arbitrarily bad. However if all intervals have the same length we present upper and lower bounds
of 2. When introducing bandwidth to the lazy interval coloring problem, we show that any online
algorithm is arbitrarily bad compared to the maximum weighted clique (even for unit interval
graphs). We summarize our results and previous results in the following table.

Interval Graph Unit Interval Graph

LB UB LB UB

Interval Coloring 3 [9] 3 [9] 3
2

2

Interval Coloring with Bandwidth 3.2609 10 [10] 1.831

2

3.17778

3.5

Lazy Interval Coloring ∞ 2 2

Lazy Interval Coloring with Band-

width

∞ ∞

Table 1. Results obtained in this paper and previous work. For each case, a single entry means that the results hold

for both asymptotic and absolute competitive ratios. If two entries exist, the first one is the asymptotic competitive

ratio and the second one stands for the absolute competitive ratio.

4
2 Preliminaries

A weighted interval graph G, is a graph where each node corresponds to an interval. The weight
of the node is the bandwidth of the interval related to it. If two intervals intersect, there is an
edge between their related nodes in G. Recall that we denote the optimal coloring of the offline
algorithm by OPT .

Let ω(G) denote the size of the maximum cardinality clique in G (ω for short), i.e., ignoring
the weights. Let ω∗(G) (ω∗ for short) denote the largest weighted clique in G. A weighted clique is
the sum of the weights of the vertices in a clique. Note that for the interval coloring problem with
bandwidth we have OPT ≥ dω∗e

Below we give a generalized presentation of the algorithm of Kierstead and Trotter [9]. We use
specific cases of the generalized algorithm for the variant of resource augmentation in the next
sections. We present the algorithm using notations similar to these of [10].

Let σ = v1, . . . , vn be the list of vertices of G, in the order of arrival. Algorithm KTl,b is defined
for inputs σ such that, b(vi) ∈ (0, b]. The algorithm partitions the intervals (i.e. the vertices of G)
into sets Am (for integer values of m, such that m ≥ 1). We use Cm to denote the set of colors
dedicated to Am. Every set Am is colored using First Fit, independently of other sets. Therefore
the colors have the property Cx ∩ Cy = ∅ for x 6= y.

Algorithm 1 KTl,b

On a new interval vi:

1: For every integer m ≥ 1, let Vm(vi) and Em(vi)be the following subsets of V (G) and E(G) respectively.

Vm(vi) = {vj ∈ V (G) : j < i, m(vj) ≤ m};
Em(vi) = {(u, v) ∈ E(G) : u, v ∈ Vm(vi)};
Gm(vi) ∪ {vi} = G(Vm(vi) ∪ vi, Em(vi) ∪ {(u, vi) ∈ E(G) : u ∈ Vm(vi)})
ω∗i (H) = The size of the maximum weighted clique among cliques containing the interval vi in graph H

2: Let Gm(vi) = G(Vm(vi), Em(vi))

3: m(vi) = the smallest m such that ω∗i (Gm(vi) ∪ {vi}) ≤ m · l.
4: Am(vi) ⇐ Am(vi) ∪ {vi}
5: Color vi considering only the intervals of Am(vi) using First Fit on colors of Cm(vi).

A critical point, q, in interval vi ∈ Am(vi), is a point where ω∗(Gm(vi)−1(vi)∪{vi}) > (m(vi)−1)·l.
Since vi ∈ Am(vi), there is at least one such point for every interval in Am(vi).

Lemma 1. Given an interval vi, let m = m(vi). For the set Am and every critical point q ∈ vi,
the total bandwidth at q of intervals in Am does not exceed b + l.

Proof. Proof by contradiction, assume that there is a critical point, q ∈ vi ∈ Am, where the size of
the weighted clique of intervals in Am is strictly larger than b + l. Consider all intervals, vt, where
vt ∈ Am and q ∈ vt. Let vk be the last such interval (in the order of presentation). Clearly i ≤ k

and after vk is presented, the total bandwidth of Am at point q does not increase.

Since b(vi) ≤ b, and q is a critical point of vi, the total bandwidth at point q for intervals in
Gm−1(vi) is greater than (m−1) · l− b. Since m(vk) = m we have ω∗k(Gm(vk)) ≤ m · l, in particular,
the total bandwidth at point q ∈ vi ∩ vk does not exceed m · l.

Since {vj ∈ V (G) : j < i, m(vj) < m, q ∈ vj} ⊆ {vj ∈ V (G) : j < k, m(vj) < m, q ∈ vj}, the
bandwidth of intervals of Gm−1(vk) containing q (at the time vk arrives) is more than (m−1) · l−b.

5
Also by the assumption, the total bandwidth at point q in Am is more that b + l. We combine the
total bandwidth at point q in Gm(vk) ∪ {vk} and get more than ((m− 1) · l − b) + (l + b) = m · l.
This contradicts the fact that m(vk) = m

Lemma 2. For every m, ω∗(Am) ≤ 2(b + l).

Proof. Proof by contradiction, assume that there is a weighted clique of more than 2(b + l) in Am

obtained at point pj . By the previous lemma, this point is not a critical point of any interval in
Am. For every interval vi ∈ Am, where pj ∈ vi, there is a critical point either to the right of pj or
the left of pj or both. Denote the closest critical point (of any interval of Am which contains pj)
to the left of pj , ql and the closest critical point to the right of pj , qr. Since there is at least one
critical point for every vi, either ql ∈ vi or qr ∈ vi or both for every vi ∈ Am (since the critical point
of vi cannot be in the interval (ql, qr). But this means that either ql or qr have a total bandwidth
of more than b + l. By Lemma 1, this is not possible. Note that either ql or qr or both must exist.
If one of qr or ql does not exist, we get the contradiction at the point that exists.

Lemma 3. If all intervals have the same bandwidth, b, and l is divisible by b, for every m,
ω∗(Am) ≤ 2l.

Proof. Similarly to Lemma 1, we show the following. Given an interval vi let m = m(vi). For the
set Am and every critical point q ∈ vi, the total bandwidth at q of intervals in Am does not exceed
l. To prove this claim we use the same notations given in the proof of Lemma 1. Unlike in the
previous case, here the total bandwidth at point q for intervals in Gm−1(vi) is exactly (m − 1) · l,
since l is divisible by b. By contradiction we assume that the total bandwidth of point q exceeds l.
Therefore, the total bandwidth at point q in Gm(vk)∪{vk} is more than (m−1) · l)+ l = m · l. This
contradicts the fact that m(vk) = m. By the same argument given in Lemma 2 we get ω∗k(Am) ≤ 2l.

Lemma 4. (i) The largest value of m ever used in KTl,b is dω∗
l e

(ii) The coloring of KTl,b is at most dω∗
l e(maxm FF (Am)), where FF (Am) denotes the coloring of

the First Fit algorithm on the set Cm of intervals that were presented online.

Proof. (i): For a maximum weighted clique of ω∗ and for every interval vi ∈ σ, ω∗(Gdω∗
l
e(vi) ∪

{vi}) ≤ ω∗ ≤ dω∗
l e · l (ii): By (i) the largest value of m is at most dω∗

l e. For each m, Am is colored
by First Fit using the related colors of Cm (last step of the algorithm).

Note that KT1,1 without bandwidth is equivalent to the original algorithm of Kierstead and
Trotter [9]. In their algorithm every layer can be colored by First Fit with at most 3 colors. The
number of layers equals to the size of the maximum cardinality clique. Therefore the coloring is at
most 3OPT .

2.1 Variants of Interval Coloring

Resource Augmentation in Interval Coloring: In the resource augmentation approach, the
online algorithm is given more resources than the offline algorithm. Interval coloring is a natural
problem to consider with resource augmentation. In this case, in the online coloring, the total band-
width of intersecting intervals with the same color can exceed 1. The allowed maximum bandwidth

6
of the intersecting intervals in the online coloring will be denoted by B. For the analysis we use the
concept of competitive ratio.
Equal length intervals in Interval Coloring: If the intervals must be of equal length, the as-
sociated graph is called a unit interval graph. Recognition of unit interval graphs has been studied
in [13, 4, 12]. It was also studied in the context of interval selection in [5]. For simplicity, we use
intervals of length 1 in some of the proofs of this paper.

3 Interval Coloring

3.1 Resource Augmentation

In [9] Kierstead and Trotter give a lower and upper bound of 3. The main goal when resource aug-
mentation is allowed, is to find a value of B for which there exists an algorithm with a competitive
ratio 1. We argue that for B = 2, the online algorithm presented in [9] uses max{1, OPT − 1}
colors. We also present a matching lower bound of max{1, OPT − 1} on the number of colors used
by any online algorithm.

Theorem 1. An adaptation of the algorithm of Kierstead and Trotter [9] can be used for interval
coloring with B = 2, and uses at most max{1, OPT − 1} colors.

Proof. Algorithm: KT1,1 without bandwidth is exactly the the algorithm of Kierstead and Trot-
ter.

According to Lemma 3 every set Am has a maximum bandwidth of at most 2. Since B = 2,
First Fit can color each Am by a unique color. Moreover, by the definition of sets A1 and A2, the
total bandwidth of intervals in A1 ∪A2 does not exceed 2. We use the same color for m = 1, 2, and
one color for each other value of m. By Lemma 4, we get a coloring which uses dω∗e−1 ≤ OPT −1
colors, if OPT ≥ 1 and otherwise it uses a single color.

We prove that the above bound cannot be improved. Clearly if OPT = 1 the algorithm also
uses at least one color, therefore we need to show a lower bound of OPT − 1. The lower bound
construction holds only for the absolute competitive ratio.

Theorem 2. There exists an infinite sequence of values of α, such that there exists an input for
which OPT = α and any online algorithm for interval coloring with B = 2, uses at least OPT − 1
colors.

Proof. We show that the claim holds for all even values of α. In general we show that when the
largest clique size increases by 2, the online algorithm must use additional two colors.

Denote by Si, the structure with maximum clique size of i that is colored by the online algorithm
by i−1 colors denoted by 1, . . . , i−1 and for every such a color there is a point in which two intervals
intersect. We claim that we can create such a structure for every even i. In particular we claim that
using two Si structures we can create one structure of Si+2, on which any online algorithm uses
i + 1 colors.

We prove the claim by induction on i, we construct the sequence of intervals into phases.

Initial Phase:
In the initial phase we provide disjoint sets of two identical intervals each. The number of intervals

7
is determined by the clique size we wish to get. In this phase OPT = 2 and the online algorithm
may use one color, denoted by 1. Note that for every set of two intervals there is a point in which the
clique size is exactly 2 and colored by the same color 1. Since we provide sets of identical intervals,
in this case, the intervals are colored by the same color and the complete intervals intersect. Observe
that these structures have the properties required from S2

Phase i:
We show that given two structures of intervals of Si, we can create a new structure Si+2 in which
the online algorithm colors this structure by i + 1 colors and for every color there is a point in the
structure where two intervals intersect.

Denote Si,1 the first structure and Si,2 the second structure, such that all the intervals in Si,1

are to the left of all intervals in Si,2 and there is no intersection between the intervals of these two
different structures.

Denote by l1, the left endpoint of the leftmost interval in Si,1 and by r1 the right endpoint of
the rightmost interval in Si,1. Denote l2 and r2 respectively for structure Si,2. Note that l2 > r1.
Present four intervals as follows. two identical intervals of [l1, l2+r1

2] and two identical intervals of
[l2+r1

2 , r2].

We claim that the new structure can be used as Si+2 (see figure).

2
i

S

1
,
i

S

2
,
i

S

2

l

1

l
 1

r

2

r

2

1
2

r
l
 +

+

Fig. 1. The structure of Si+2 constructed in phase i.

By the hypothesis assumption, the colors 1, . . . , i − 1 each have a point with two intersecting
intervals therefore none of the four intervals could be colored by any of the colors 1, . . . , i−1. Since
the clique size is increased by two, there are only two additional colors allowed in order for the
online algorithm to have at most OPT − 1 colors, we denoted these two colors by i and i+1. Since
all the four intervals intersect in the point l2+r1

2 , we have a point where two intervals are colored by
i and also a point where two intervals are colored by i + 1. Since these are the properties required
from Si+2, the claim is proven.

3.2 Unit Interval Graphs

In the following 2 theorems, we show that First Fit uses at most 2ω − 1 colors for unit interval
graphs and that the analysis is tight.

8
Theorem 3. First Fit uses at most 2ω − 1 colors for coloring unit interval graphs.

Proof. In this version, since all the intervals are of equal length, if the maximum clique equals
to ω, then there is no interval that intersects with more than 2ω − 2 different intervals. Assume
by contradiction that there exists an interval I = [x, x + 1] that does intersect with more than
2ω−2 different intervals. Since all intervals are of unit length, every interval that intersects I, must
contain either the point x or x + 1 (or both). Therefore either the point x or the point x + 1 is
contained in more than ω − 1 intervals not including interval I. This contradicts the fact that the
maximum clique size does not exceeds ω. Therefore First Fit uses at most 2ω − 1 colors.

Theorem 4. There exist unit interval graphs on which First Fit uses exactly 2ω − 1 colors.

Proof. We show a family of instances, where k is the size of largest clique on which First Fit uses
exactly 2k − 1 colors to color it. We define the sequence of intervals in phases.

Phase i (1 ≤ i ≤ 2k − 1) contains 2k − i intervals that receive the same color by First Fit. The
largest clique size after phase i is b i

2c+ 1. The intervals of phase i are [i− 1 + 2−i+1 + 2j, i− 1 +
2−i+1 + 2j + 1], for 0 ≤ j < 2k − i. All intervals have length 1, and all consecutive intervals of one
phase have fixed distances of 1 between them.

We prove the following claims.

1. The largest clique after phase 2` + 1 is of size ` + 1, and in ranges of the form (2j, 2j + 2−2`),
the total requested bandwidth is at most `.

2. All intervals of phase i receive the color i.

Proof of 1: We prove the claim by induction. After phase 1 (` = 0), the largest clique is clearly of
size 1 (the intervals are non-intersecting). The ranges (2j, 2j+1) are empty since the intervals of
phase 1 start at odd points. Assume now that the claim holds for ` = s− 1 and prove for ` = s.
Phases 2s and 2s+1 introduce two sets of intervals. To show the first part of the claim we need
to show that the overlap between the intervals does not overlap with areas where the largest
clique is s. Non overlapping parts of new intervals may increase the size of the largest clique by
1. By definition, the overlap interval between intervals of these two phases are intervals of the
form [2j +2−2s, 2j +21−2s]. Using the inductive hypothesis, intervals of the form (2j, 2j +22−2s)
have bandwidth request of size s − 1 only, and therefore the largest clique in these intervals
after phase 2s + 1 does not exceed s + 1. To prove the second part of the claim, the interval
(2j, 2j +2−2s) is not a part of the overlap between phases 2s and 2s+1, therefore its bandwidth
request increases by at most 1, and becomes at most s.

Proof of 2: We prove that an interval of phase i intersects with intervals of all smaller colors. If i

is odd, then its left endpoint intersects with all intervals of even colors, and its right endpoint
with all intervals of odd colors. If i is even, its left endpoint intersects with intervals of all
odd colors, and its right endpoint with even colors. This can be easily verified by the intervals
definitions.

Theorem 5. Any online algorithm for unit interval graphs has a competitive ratio of at least 3
2

Proof. We divide the construction of the intervals of the lower bound into three phases.

Initial Phase:
In the initial phase we provide ω

2 identical requests for [0, 1], ω can be any even number. The online

9
algorithm has to color these intervals with exactly ω

2 colors, denote those colors by c1,...,cω
2

and
the set of those colors by Conilne

Phase 2:
In the next phase we present at most ω intersecting intervals. These intervals are presented one by
one in a way that all intervals colored by some color, c, where c ∈ Conilne are slightly shifted to
the right with respect to any interval that is colored by a color c̄, where c̄ /∈ Conilne. We present
intervals until exactly ω

2 of them are colored by colors that are not in Conilne

Let I1 = [a, a + 1] be the rightmost interval colored by c̄ and let I2 = [d, d + 1] be the leftmost
interval colored by c among intervals introduced so far. If there is no interval colored c̄ we say that
I1 is empty and If there is no interval colored c we say that I2 is empty. For 0 < ε << 1

4ω a new
interval, I, is presented as follows.

1. If both I1 and I2 are empty (this holds only when we introduce the first interval) then I =
[1.5, 2.5].

2. If only I1 is empty, I = [d− ε, d + 1− ε]
3. If only I2 is empty, I = [a + ε, a + 1 + ε]
4. If I1 and I2 are not empty then, I = [d+a

2 , d+a
2 + 1] , i.e. the interval is halfway between I1 and

I2 with unit length, intersecting all previous intervals presented in this step.

Note that none of the intervals in this phase intersect intervals of the initial phase. Moreover,
the left endpoints of all the intervals in the phase are located within a distance of 1 from the right
endpoints of the intervals of the initial phase. Also note that the algorithm stops after introducing
at most ω intervals, at that time, if it is reached, there are exactly ω

2 intervals with a color that is
not in Conline, since |Conline| = ω

2 .

Phase 3:
Suppose that [x, x + 1] is the rightmost interval with color c̄ which is not in Conline (from the
construction we have 1 < x < 2) after all intervals from phase 2 were presented. we present ω

2

identical intervals [x−1, x]. These intervals intersect all the intervals with color not in Conline from
the previous phase. They also intersect all the intervals from the initial phase.

To complete the analysis, note that the intervals presented in the last phase all intersect with
intervals of exactly ω different colors. There are ω

2 colors in Conline and ω
2 colors not in Conline from

the second phase. This gives a coloring of 3ω
2 colors while OPT can color with only ω colors.

4 Online Coloring of Intervals with Bandwidth

Interval coloring with bandwidth was recently studied by [1] and [10]. Adamy and Erlebach [1] gave
a 195-competitive ratio algorithm and Narayanaswamy [10] gave a 10-competitive ratio algorithm.
However, is this case really harder? In the theorem below we answer that question affirmatively.

We give a lower bound which is strictly higher than the upper bound for the problem of interval
coloring without bandwidth presented in [9]. To prove the lower bound we adapt the lower bound
on classical interval coloring given in [9]. In that paper a lower bound of of 3ω − 2 colors is shown,
for inputs where OPT = ω. Since interval graphs are perfect, these are exactly inputs where the
largest clique has size ω. Note that two intervals whose width is strictly larger than 1

2 cannot have
the same color. Therefore the same lower bound can be applied not only for intervals of width 1, but

10
for intervals of arbitrary widths in (1

2 , 1]. In this case, let q be the largest number of intersecting
intervals of width in (1

2 , 1], then we immediately get a lower bound of 3q − 2. Finally, we make
another adaptation to the lower bound, namely, we make use of the following lemma.

Lemma 5. The lower bound 3q − 2 on the number of colors holds even if q is given in advance.

Proof. The proof is an adaptation of the lower bound in [9]. The construction works in phases, after
each phase we shrink some parts of the line into single points. Given a point p, that is a result of
shrinking an interval [a, b]. Every interval presented in the past which is contained in [a, b] is also
shrunk into p and therefore such a point inherits a list of colors which no interval that contains it
can receive. This is done for convenience purposes. In practice it means that for a given point p

that is the result of shrinking, every future interval either contains this point or not, i.e., it either
contains all intervals that were shrunk into this point, or it has no overlap with any of them.

The sequence construction stops once 3q − 2 colors have been used. Therefore we may assume
that we are initially given a palette of 3q − 3 colors, 1, . . . , 3q − 3, that can all be used by the
algorithm. The ith color ever used is called color number i. As soon as color 3q − 2 is used, the
proof is complete. We construct an input where the largest clique is of size q and therefore OPT = q.

The sequence starts with introducing (4(3q)!)q intervals, this is phase 0. Since the algorithm is
using at most 3q − 3 colors, this means that there exists a set of (4(3q)!)q

3q−3 intervals that share the
exact same color. We shrink all intervals into single points. Later phases result in additional points.
We now define phase i. The phases are constructed in a way that in the beginning of phase i there
are at least 4(4(3q)!)q−i points that contain a given set of 3i−2 colors (points of interest). Without
loss of generality, assume that these are colors 1 . . . , 3i− 2 where the size of the largest clique is i.
There exist some other points containing other sets of i colors, or sets of at most i − 1 colors. All
these points are called void points. At this time, we partition the points of interest into at least
(4(3q)!)q−i consecutive sets of four. Points of interest that do not participate become void points.

We next define additional intervals, increasing the size of largest clique by exactly one. Given a
set of four points a1, a2, a3, a4, let b be the leftmost void point on the right hand side of a1, between
a1 and a2. If no such point exists, then let b = a1+a2

2 , i.e., the point which is halfway between a1

and a2. Similarly, let c be the rightmost void point between a3 and a4, and if no such point exists
then c = a3+a4

2 . Let d be a point between a2 and a3 that is not a void point. We introduce the
intervals I1 = [a1,

a1+b
2] and I2 = [c+a4

2 , a4]. Clearly non of them may receive one of the currently
used 3i− 2 colors. If they both receive the same new color, we introduce the intervals I3 = [a1+b

2 , d]
and I4 = [d, c+a4

2]. The interval I3 intersects with a2, and with I1. Therefore it receives an additional
color. The second interval I4 intersects I3, a3 and I2. Therefore a third new color is given to it. If
I1, I2 receive distinct new colors, we introduce the interval I5 = [a1+b

2 , c+a4
2]. Since I5 intersects with

I1, I2, a2, a3, it must get a third new color. We shrink every such interval [a1, a4] into a single point
containing 3i+1 colors. Since there are less than 3k colors, and each point uses exactly 3i+1 < 3k

of them, there are less than (3k)! such choices, and we can pick 4(4(3q)!)q−i−1 of them having the
same set of colors. The points containing this exact set of colors become the points of interest of
the next phase, and the others become void points of the next phase. Points that are void points of
previous phases and are not contained in shrunk intervals remain void points. Note that the only
points where the new intervals intersect are points with no previous intervals, and therefore the
clique size increases by 1 exactly.

11
At this time we can perform phase i + 1. After phase k − 1, there are at least 3k − 2 colors in

use and the claim is proved. Note that prior to that phase, a minimum number of four points of
interest is required.

With this, we are ready to prove our main theorem of this section.

Theorem 6. Any deterministic online algorithm for interval coloring with bandwidth has compet-
itive ratio of at least 3.2609

Proof. Let α be a constant rational number fixed later and let t be an integer such that αt is
integer (there are infinitely many such values of t). Let ε = 1

2αt+1 . The first phase of requests
is a large number T = N !(2αt + 1) of identical requests (for a large enough integer N), all of
bandwidth ε. The requests are for a long enough interval. All future requests will be given within
this interval, and therefore they all intersect the initial requests. The sequence either stops here
(and has OPT = N !) or continues with a second phase which contains requests which are all of
bandwidth 1− k

2αt+1 = 1− kε, for some t ≤ k ≤ αt.

Furthermore, these requests all have bandwidth larger than 1
2 , therefore if they are packed

independently from the first phase, they are treated as requests of width 1. Adding the first phase
means that colors that were used for at least k + 1 intervals, cannot be used again in the second
phase, and other colors can be used again. Intervals of the second phase are introduced as in
Lemma 5 so that the optimal number to color them is ω, and the number of colors used in this
phase is 3ω. If the bandwidth of these intervals is 1− kε, then we use ω = T

k , so that an optimal
coloring uses ω colors, and each color is used for k intervals of the first phase. We denote by Xi

(1 ≤ i ≤ αt) the number of colors used in the first phase for exactly i intervals. The algorithm
has no reason to color less than t intervals with one color, since a color used for t intervals can
always be used again, therefore Xi = 0 for i < t. If a color is used for more than αt intervals, it
will not be used again, so we can assume that in such a case, the color is used for 1

ε intervals. We
denote by Y the number of colors that are used for this maximum number of intervals. We have

T = Y (2αt+1)+
αt∑
i=t

i·Xi. If there is no second phase, OPT = Tε and ALG = Y +
2αt∑
i=1

Xi. Otherwise,

we compute the number of colors used by the algorithm for a specific choice of t ≤ k ≤ αt. We get

ALG = Y +
αt∑

i=k+1

Xi + 3T
k = Y +

αt∑
i=k+1

Xi + 3 ·OPT .

Let C be the competitive ratio of ALG. We have Y +
αt∑
i=1

Xi ≤ C · Tε and for every t ≤ k ≤ αt,

Y +
j∑

i=k+1

Xi ≤ (C − 3)T
k . We multiply the first inequality by t, the last inequality (i.e., the second

inequality for k = αt) by αt+1, and all other inequalities by 1 (i.e., the second inequality for all other
values of k). We sum them and get T =

∑αt
i=t iXi +(2αt+1)Y ≤ C ·T t

2αt+1 +(C−3)
∑αt

i=t
T

2αt+1 +
(C − 3)T . Letting t tend to infinity, we have

∑αt
i=t

T
2αt+1 → ln α. We get C ≥ 3 ln α+4

1
2α

+ln α+1
. Solving in

Maple, we see that for an appropriate choice of α this gives a lower bound of 3.2609.

4.1 Resource Augmentation

In this section we consider two interesting possible values of B. For B = 4 we provide an online
algorithm that can color with OPT − 3 colors. For B = 2 we provide an online algorithm that uses

12
3OPT − 2 colors. The lower bound on the competitive ratio for B = 2 is at least 1 as was shown
for the case of interval coloring without bandwidth.

Proposition 1. An adaptation of the algorithm of Kierstead and Trotter [9] can be used for interval
coloring with B = 4, and uses at most max{1, OPT − 3} colors.

Proof. We use Algorithm: KT1,1 with bandwidth. According to Lemma 2 every Am has a maxi-
mum bandwidth of at most 4. By Lemma 4 the coloring of KT1,1 with bandwidth, is ω∗ · 1 = ω∗.
Since B = 4, First Fit can color each Am by a unique color. Moreover, by the definition of sets
A1, . . . , A4 bandwidth of intervals in A1 ∪ A2 ∪ A3 ∪ A4 does not exceed 4. We use the same color
for m = 1, 2, 3, 4, and one color for each other value of m. By Lemma 4, we get a coloring which
uses dω∗e − 3 ≤ OPT − 3 colors. If m ≤ 4 we get a coloring using a single color.

Proposition 2. There exists an online algorithm for interval coloring with bandwidth with B = 2,
that uses at most 3OPT-1 colors.

Proof. We split the intervals into two sets, and color them independently.

Algorithm:

Case 1 For intervals I where b(I) ≤ 1
2 , we run KT1, 1

2
with bandwidth;

Case 2 For intervals I where b(I) > 1
2 we run KT1,1 without bandwidth.

Case 1 uses at most d2ω∗e ≤ 2dω∗e colors. By Lemma 2 every Am has a maximum total
bandwidth of 2. Since B=2, we can color each Am by one color only. By Lemma 4, the coloring
which KT1, 1

2
with bandwidth outputs, is of size at most dω∗

1
2

· 1e = d2ω∗e. If we use the same color

for m = 1, 2 we get a coloring of 2ω∗ − 1 ≥ 2OPT − 1 colors.

Case 2 uses at most OPT colors, similarly to the case of coloring without bandwidth. The total
size of the coloring is therefore at most 3OPT − 1.

4.2 Unit Interval Graphs

For this version we present three algorithms.

1. First Fit.

2. 2-First Fit. Perform an online partition of the intervals into two subsequences according to
the bandwidth of the intervals. One subsequence for intervals with bandwidth b such that b ≤ 1

2

and the other for intervals with bandwidth b such that b > 1
2 . Apply First Fit on each subsequence

separately with disjoint sets of colors.

3. Odd-Even bin packing. Scale the real line into integers and assume all intervals are of unit
length .

Perform an online partition of the intervals into two subsequences called evens and odds. Each
interval intersects an integer point. If an interval is exactly between two integers, assign it to the
left integer point, and otherwise there is a unique integer point. If the integer point is an even
number assign the interval into the evens subsequence, otherwise assign it to the odds subsequence.
Apply the best online bin packing algorithm known separately for the odds subsequence and for
the evens subsequence using two disjoint sets of colors. Each class of intervals that was assigned to
an integer point is handled as an instance of a bin packing problem.

13
In the following we show that algorithms First Fit, 2-First Fit and Odd-Even bin packing have

an absolute competitive ratios of at most the values 8, 6, 3.5 respectively.

Intensive research has been done analyzing the performance of the simple First Fit algorithm
for the problem of interval coloring. Adamy and Erlebach [1] argue that First Fit is arbitrarily bad
when introducing bandwidth. In the following theorem we show that on unit interval graph the
competitive ratio of first fit is constant.

Theorem 7. (i) Algorithm First Fit has a competitive ratio of 8 for unit interval graphs with band-
width. (ii) Algorithm First Fit has a competitive ratio of 4 for unit interval graphs with bandwidth
if each interval has a bandwidth of at most 1

2 .

Proof. Consider the color assignment for a new interval. We show that the color used for this
interval never exceeds the number 8dω∗e, and if all intervals have bandwidth of at most 1

2 , then the
color number never exceeds 4dω∗e. Denote a new interval by J = [x, x + 1]. If the interval receives
a color that was already used, the claim certainly holds. Assume therefore that J receives a new
color that was not used before. Let p be the color assigned to J , all colors j, 1 ≤ j < p were used.
If p ≤ 2 then since the input is non-empty, dω∗e ≥ 1, and the claim holds. Otherwise assume that
p > 2. Since the input is a unit interval graph, all intervals intersecting with the input interval,
intersect with it also in one of the points x or x+ 1. We first discuss the case where all bandwidths
are bounded by 1

2 (and therefore w(J) ≤ 1
2).

Consider the intervals which were already assigned a color. For a point y and a color c < p,
let A(c, y) be the set of intervals which contain the point y and received color c. Let W (c, y)
be the total bandwidth of intervals in A(c, y). For each color j < p − 1, let yj be the point in
the interval [x, x + 1] which maximizes W (j, y). Note that every interval in A(j, yj) intersects
also either x or x + 1, therefore it contributes to W (j, x) or to A(j, x + 1) (or to both). For
colors p − 1 and p, let yp−1 = yp a point that maximizes W (p − 1, y) + W (p, y). Therefore 2ω∗ ≥
p∑

j=1
(W (j, x) + W (j, x + 1)) ≥

p∑
j=1

W (j, yj). However, since interval J receives a new color, and

since W (J) ≤ 1
2 , we have that every color j < p − 1 has a point zj where W (j, zj) + W (J) > 1.

Therefore W (j, yj) ≥ W (j, zj) > 1−W (J) ≥ 1
2 . Also, W (p, yp) + W (p− 1, yp−1) > 1. We get that

p∑
j=1

W (j, yj) > p
2 and p < 4ω∗.

Consider now the general case. Note that the previous proof still holds if w(J) ≤ 1
2 , therefore

we assume w(j) > 1
2 . We define the points yj as before, only in the current case these are points

maximizing W (j, y) where y ∈ [x − 1, x + 2]. Let ` be the first color such that W (j, yj) < 1
2 . If

` does not exist, then we focus on the four points x − 1, x, x + 1, x + 2. Each interval in A(j, yj)
contributes to one of the four values W (j, x− 1 + a) for a = 0, 1, 2, 3. Therefore

4ω∗ ≥
p∑

j=1

(W (j, x− 1) + W (j, x) + W (j, x + 1) + W (j, x + 2))

≥
p∑

j=1

W (j, yj) ≥ p

2
,

which gives p < 8ω∗. If ` exists, consider an interval T colored with j > ` which intersects
the point x or the point x + 1. This interval was not colored ` since there exists a point z where

14
W (`, z) + w(J) > 1. Since W (`, z) can only increase over time, we get that W (T) > 1−W (`, z) ≥
1−W (`, y) ≥ 1

2 . Since every color j < p has at least one interval intersecting with x or x + 1, we
get that ` is the only color for which W (j, yj) < 1

2 . Note that if we define the point y` = yp to
be the point in [x, x + 1] where W (`, y`) + W (J) > 1 (which exists since J was not colored with

`), we get again 4ω∗ ≥
p∑

j=1
(W (j, x− 1) + W (j, x) + W (j, x + 1) + W (j, x + 2)) ≥

p∑
j=1

W (j, yj) ≥ p
2 ,

which gives p < 8ω∗.

Proposition 3. Algorithm 2-First Fit uses at most 6ω colors.

Proof. 2-First Fit uses different sets of colors for intervals of bandwidth in (0, 1
2] and in (1

2 , 1]. By
Theorem 7 part (ii) First Fit on intervals with bandwidth of at most 1

2 has a competitive ratio of
4. By Theorem 3 First Fit for intervals with bandwidth that exceeds 1

2 , the competitive ratio is 2.
Combining these competitive ratios we get a competitive ratio of at most 6.

Proposition 4. (i) Algorithm Odd Even bin packing has an absolute competitive ratio of 3.5 for
coloring unit interval graphs with bandwidth, using First Fit as the online bin packing algorithm.
(ii) The asymptotic competitive ratio of the algorithm Odd Even bin packing is at most 3.17778
using the algorithm Harmonic++ of Seiden [14].

Proof. We claim that the odds subsequence can be split into different classes, such that an interval
intersects all intervals within its class, but no other intervals. Each class is represented by an odd
number and it contains all the intervals that were assigned to that odd integer by the algorithm.
Same argument holds for the evens subsequence. Note that, since all intervals of the same class
intersect, each class can be viewed as an instance to the online bin packing problem. For the first
part we use the fact that First Fit for bin packing has competitive ratio of at most 1.75 with respect
to the absolute measure [15]. Since we use it with two sets of colors, we get a competitive ratio of
at most 3.5. For the second part we use the Harmonic++ algorithm of Seiden [14] and therefore
get 3.17778.

Theorem 8. Any online algorithm for unit interval graph with bandwidth has an absolute com-
petitive ratio of at least 2. Any online algorithm for unit interval graph with bandwidth has an
asymptotic competitive ratio of at least 1.831.

Proof. First we prove the absolute competitive ratio lower bound of 2. We introduce two identical
intervals I1 = I2 = [1, 2] and have bandwidth 1

3 . If they are assigned distinct colors then already
ALG = 2 and OPT = 1, and we are done. Otherwise all future intervals have bandwidth 2

3 and
intersect with the previous intervals. This means that no future interval has the same color as the
first two. Two further intervals are first given, I3 = [15 , 6

5] and I4 = [95 , 14
5]. If they receive distinct

colors, we introduce the interval I5 = [1, 2] which gets a fourth color. It is possible to color using
two colors only, coloring I1, I3, I4 with one color and I2, I5 with a second color. If they receive the
same color, we introduce two intervals I6 = [35 , 8

5], I7 = [75 , 12
5], which must receive two new colors.

The total number of colors used is again 4, while it is possible to color using only two colors, one
color for I1, I3, I7, and a second color for I2, I4, I6.

Next, we prove the lower bound 1.831. Let α be a constant rational number fixed later and let
t be an integer such that αt is integer (there are infinitely many such values of t). Let ε = 1

2αt+1 .

15
The first phase of requests is a large number T = N !(2αt + 1) of identical requests for intervals
[0, 1] (for a large enough integer N), all of bandwidth ε. The sequence either stops here (and has
OPT = N !) or continues with a second phase which contains requests which are all of bandwidth
1 − k

2αt+1 = 1 − kε, for some t ≤ k ≤ αt. All the new requests intersect with requests of the
first phase. Furthermore, these requests all have bandwidth larger than 1

2 , therefore if they are
packed independently from the first phase, they are treated as requests of width 1. Adding the first
phase means that colors that were used for at least k + 1 intervals, cannot be used again in the
second phase, and other colors can be used again. Intervals of the second phase are introduced as
in Theorem 5, so that the optimal number to color them is ω, and the number of colors used in this
phase is 3ω

2 . If the bandwidth of these intervals is 1 − kε, then we use ω = T
k , so that an optimal

coloring uses ω colors, and each color is used for k intervals of the first phase. We denote by Xi

(1 ≤ i ≤ αt) the number of colors used in the first phase for exactly i intervals. The algorithm
has no reason to color less than t intervals with one color, since a color used for t intervals can
always be used again, therefore Xi = 0 for i < t. If a color is used for more than αt intervals, it
will not be used again, so we can assume that in such a case, the color is used for 1

ε intervals. We
denote by Y the number of colors that are used for this maximum number of intervals. We have

T = Y (2αt+1)+
αt∑
i=t

i·Xi. If there is no second phase, OPT = Tε and ALG = Y +
2αt∑
i=1

Xi. Otherwise,

we compute the number of colors used by the algorithm for a specific choice of t ≤ k ≤ αt. We get

ALG = Y +
αt∑

i=k+1

Xi + 3
2 · T

k = Y +
αt∑

i=k+1

Xi + 3
2 ·OPT .

Let C be the competitive ratio of ALG. We have Y +
αt∑
i=1

Xi ≤ C · Tε and for every t ≤ k ≤ αt,

Y +
j∑

i=k+1

Xi ≤ (C − 3
2)T

k . We multiply the first inequality by t, the last inequality (i.e., the second

inequality for k = αt) by αt + 1, and all other inequalities by 1 (i.e., the second inequality for
all other values of k). We sum them and get T =

∑αt
i=t iXi + (2αt + 1)Y ≤ C · T t

2αt+1 + (C −
3
2)

∑αt
i=t

T
2αt+1 + (C − 3

2)T . Letting t tend to infinity, we have
∑αt

i=t → ln α. We get C ≥
3
2

ln α+ 5
2

1
2α

+ln α+1
.

Solving in Maple, we see that for an appropriate choice of α this gives a lower bound of 1.83157.

5 Lazy Online Interval Coloring

Motivated by The Maximum Resource Bin Packing Problem, we introduce a new problem called
Lazy Online Interval Coloring. In this problem the objective is to use as many colors as possible.
A newly presented interval can be colored by a new color only if it intersects intervals with all the
previously used colors.

Theorem 9. Any online algorithm for the problem Lazy Online Interval Coloring is arbitrarily
bad.

Proof. The construction is organized in phases. In the initial phase we provide two intersecting
intervals that are colored by two colors by any online algorithm. We denote these colors by 1 and
2. For the next phases, it suffices to show that for every phase i, we increase the number of colors
used by OPT from i + 1 to i + 2 while the number of colors used by the online algorithm remains
two. Intervals from every phase are independent of (i.e., non-intersecting) intervals from different
phases.

16
The first phase (Phase 0) consists of two identical intervals which are [0, 1]. Any algorithm colors

them using two colors.

Phase i:
In the first step we present at most 2i + 1 non-intersecting intervals. The online algorithm must
color these intervals with colors 1 and 2. These intervals are presented such that all intervals colored
by 1 by the online algorithm are consecutive and to the left of all intervals that are colored 2. The
intervals are presented as follows.

To present a new interval, let I1 = [a, b] be the rightmost interval colored by 1 and let I2 = [d, e]
be the leftmost interval colored by 2. If there is no interval colored 1 we say that I1 is empty and
if there is no interval colored 2 we say that I2 is empty. Let 0 ≤ ε << 1

16i , a new interval, I, is
presented as follows.

1. If both I1 and I2 are empty (this situation occurs only before the first interval is presented)
then I = [2i, 2i+1]. This interval is on the right hand side of all intervals from previous phases.
All intervals of the current phase would not intersect with intervals from previous phases.

2. If only I1 is empty, I = [d− 2ε, d− ε]
3. If only I2 is empty, I = [b + ε, b + 2ε]
4. If I1 and I2 are not empty then, I = [3b+d

4 , b+3d
4], i.e. between I1 and I2 with half the size of the

distance between I1 and I2.

After at most 2i + 1 intervals are given, there are at least i + 1 consecutive intervals with the
same color. In the next step, an interval that intersects i+1 consecutive intervals of the same color
is presented. The online algorithm has to color this interval by the other color and therefore does
not increase the number of colors. An offline algorithm colors these i+1 consecutive intervals using
the i + 1 distinct colors it used in the past. The next interval must be colored by a new color since
it intersects intervals that are colored with distinct i + 1 colors. This results in i + 2 colors used by
the offline algorithm.

1 11 2 2 2 2 2 2

...

2

Fig. 2. The coloring of the online algorithm for phase i in a possible execution of the lower bound for lazy intervals

coloring without bandwidth. Note that in this example the last interval presented in this phase intersects only intervals

colored with color 1.

5.1 Unit Interval Graphs

Proposition 5. Any online algorithm for the Lazy Online Interval Coloring with equal length
intervals uses at least OPT+1

2 colors.

Proof. In this version, since all the intervals are of equal length, if the maximum size clique equals
to ω, then there is no interval that intersects with more than 2ω− 2 different intervals (see proof of
Theorem 3). Therefore OPT can only use as much as 2ω − 1 colors. Since any online coloring uses
at least ω we get a coloring of at least OPT+1

2 colors.

17
Theorem 10. There is an upper bound of OPT+1

2 on the coloring of any online algorithm for the
Lazy Online Interval Coloring problem on unit interval graphs.

Proof. In the following sequence of intervals, we show that in fact an offline algorithm can use
2ω − 1 colors for a maximum clique of ω. We also show that any online algorithm uses exactly ω

colors.

We construct the input sequence of intervals in phases. In the initial phase we provide ω in-
tersecting intervals that are colored using ω colors by both the online algorithm and the offline
algorithm. We denote these colors that the online algorithm uses by 1, 2, ..ω. For the next phases,
it suffices to show that for every phase i, for i = 1, ...ω − 1, we increase the number of colors used
by OPT from ω + i− 1 to ω + i while the number of colors used by the online algorithm remains ω.

Phase i:
Let x = 10i and ε << 1

4ω .

Step 1 we present the following sequence of at most ω intervals until the online algorithm uses
the color ω. [ai1 , ai1 + 1], [ai2 , ai2 + 1], .., [aik , aik + 1], for k ≤ ω.
The first interval is [ai1 , ai1 +1] = [x− 9

4 , x− 5
4], and for every ,j, [aij , aij +1] = [aij−1 +ε, aij−1 +

1 + ε] , i.e., every interval is shifted by ε to the right. Once online algorithm colors any interval
in the sequence by ω we stop.

Step 2 Present the following sequence of at most ω intervals until the online algorithm uses the
color ω.
[bi1 , bi1 +1], [bi2 , bi2 +1], .., [bim , bim +1], for m ≤ ω. The first interval in this step is [bi1 , bi1 +1] =
[x+ 5

4 , x+ 9
4], and for every ,j, [bij , bij +1] = [bij−1−ε, bij−1 +1−ε], i.e., every interval is shifted

by ε to the left. when the online algorithm colors any interval in the sequence by ω we stop.
Step 3 The intervals that the online algorithm colored by ω are [aik , aik + 1] and [bim , bim + 1] for

some m, k ≤ ω. In the next step, we present ω − 1 intervals [aik + 1, aik + 2] intersecting only
[aik , aik + 1] from the first step and ω − 1 intervals [bim − 1, bim] intersecting only [bim , bim + 1]
from the second step. In this step the online algorithm must color all 2(ω−1) intervals by colors
1, ..., ω − 1 since they all intersect an interval colored ω. Note that the two sets of identical
intervals do not intersect each other.

Step 4 In the final step we present the interval [x− 1
2 , x + 1

2]. This interval intersect all intervals
from previous step and none of the intervals from steps 1 and 2.

The online algorithm has to color the interval presented in the last step by ω, maintaining a
coloring of exactly ω colors. On the other hand an offline algorithm can increase the number of
colors by one. The intervals of step 1 are colored with colors k, ldots, 1 (from left to right). The
intervals of step 2 are colored with colors ω, . . . , ω−m+1 (from left to right). The intervals of step
3 are colored as follows. The ones that intersect the interval colored by color 1 (from step 2) receive
colors 2, . . . , ω. The other intervals of step 3 are colored with colors ω+i−1, . . . , ω+1, 1, . . . , ω+1−i

if i > 1 and with colors 1, . . . , ω − 1 otherwise. Therefore the intervals of step 3 is colored with all
the colors in 1, ..., ω + i− 1. The interval from the last step is therefore colored by ω + i.

5.2 Lazy Online Coloring of Intervals with Bandwidth

In this case we show that no algorithm is competitive even on unit interval graphs.

18
Theorem 11. Any online algorithm for lazy online coloring of intervals with bandwidth and equal
length intervals is arbitrarily bad.

Proof. For an integer D > 0, we show that the competitive ratio is at least D. We break up the
construction of the sequence of intervals into 2D−1 phases. In the initial phase (phase 0) we provide
two identical intervals of bandwidth 1 which are requests for [0, 1]. These are colored by two colors
by any online algorithm. We denote these colors by 1 and 2. For the next phases, it suffices to show
that for every phase i, we increase the number of colors used by OPT from i + 1 to i + 2 while the
number of colors used by the online algorithm remains two.
Phase i: In the first step we present intersecting intervals of bandwidth δ = 1

2D . The amount of
intervals never exceeds 2D so the total requested bandwidth is at most 2. The online algorithm can
only color these intervals with colors 1 and 2. These intervals are presented such that all intervals
colored by 1 by the online algorithm are slightly shifted to the left with respect to all intervals that
are colored 2. Moreover all the intervals presented here intersect. We present exactly 2i+1 intervals
in the following way.

Let I1 = [a, a + 1] be the rightmost interval colored by 1 and let I2 = [d, d + 1] be the leftmost
interval colored by 2. If there is no interval colored 1 we say that I1 is empty and If there is no
interval colored 2 we say that I2 is empty. For 0 < ε << 1

12D a new interval, I, is presented as
follows.

1. If both I1 and I2 are empty (presentation of the first interval) then I = [5i− 1, 5i].

2. If only I1 is empty, I = [d− ε, d + 1− ε]

3. If only I2 is empty, I = [a− 1 + ε, a + ε]

4. If I1 and I2 are not empty then, I = [d+a
2 , d+a

2 +1] , this is an interval of length 1, located halfway
between I1 and I2 and intersecting all previously presented intervals of this step.

After 2i + 1 intervals there are at least i + 1 intervals with the same color. In the next step,
an interval of bandwidth 1 that intersects these i + 1 intervals of the same color and does not
intersect any other interval is presented. The online algorithm has to color this interval by the
second color and therefore does not increase the number of colors. An offline algorithm can color
the i + 1 intervals with i + 1 colors it used before. The next interval can be colored by a new color
i + 2 since it intersects intervals that are colored with i + 1 distinct colors.

1

2

1

1

1

2

2

...

Fig. 3. Possible running of the lower bound for lazy with bandwidth and equal length intervals. The thick interval

has bandwidth 1 and the thin intervals have bandwidth ε. Note that in this example the thick interval intersects only

intervals with the same color 1.

19
References

1. U. Adamy and T. Erlebach. Online coloring of intervals with bandwidth. In Proc. of te First International

Workshop on Approximation and Online Algorithms (WAOA2003), pages 1–12, 2003.

2. J. Boyar, L. Epstein, L. M. Favrholdt, J. S. Kohrt, K. S. Larsen, M. M. Pedersen, and S. Wøhlk. The maximum

resource bin packing problem. manuscript.

3. M. Chrobak and M. Ślusarek. On some packing problems relating to dynamical storage allocation. RAIRO

Journal on Information Theory and Applications, 22:487–499, 1988.

4. D. G. Corneil, H. Kim, S. Natarajan, S. Olariu, and A. P. Sprague. Simple linear time recognition of unit interval

graphs. Information Processing Letters, 55(2):99–104, 1995.

5. T. Erlebach and F. C. R. Spieksma. Interval selection: applications, algorithms, and lower bounds. J. Algorithms,

46(1):27–53, 2003.

6. T. R. Jensen and B. Toft. Graph coloring problems. Wiley, 1995.

7. H. A. Kierstead. The linearity of first-fit coloring of interval graphs. SIAM Journal on Discrete Mathematics,

1(4):526–530, 1988.

8. H. A. Kierstead and J. Qin. Coloring interval graphs with First-Fit. SIAM Journal on Discrete Mathematics,

8:47–57, 1995.

9. H. A. Kierstead and W. T. Trotter. An extremal problem in recursive combinatorics. Congressus Numerantium,

33:143–153, 1981.

10. N. S. Narayanaswamy. Dynamic storage allocation and online colouring interval graphs. In Proc of the 10th

Annual International Conference on Computing and Combinatorics (COCOON2004), pages 329–338, 2004.

11. S. Pemmaraju, R. Raman, and K. Varadarajan. Buffer minimization using max-coloring. In Proc. of the Fifteenth

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), pages 562–571, 2004.

12. I. Rabinovitch. The scott-suppes theorem on semiorders. J. Math. Psych., 15:209–212, 1977.

13. D. Scott and P. Suppes. Foundational aspects of theories of measurement. J. Symbolic Logic, 23:113–128, 1958.

14. S. S. Seiden. On the online bin packing problem. Journal of the ACM, 49(5):640–671, 2002.

15. D. Simchi-Levi. New worst-case results for the bin-packing problem. Naval Res. Logist., 41(4):579–585, 1994.

Acknowledgment. We would like to thank an anonymous referee for pointing out an error in
an earlier version of this paper.

