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Abstract. We study online interval coloring problems with bandwidth. We are interested in some

variants motivated by bin packing problems. Specifically we consider open-end coloring, cardinality

constrained coloring, coloring with vector constraints and finally a combination of both the cardinality

and the vector constraints. We construct competitive algorithms for each of the variants. Addition-

ally, we present a lower bound of 24/7 for interval coloring with bandwidth, which holds for all the

above models, and improves the current lower bound for the standard interval coloring with bandwidth

problem.

1 Introduction

We study variants of the online interval coloring with bandwidth problem. In these coloring prob-
lems, the intervals are presented one by one and the online algorithm must assign each interval
a color before the next interval arrives. In the classical problem, the intervals do not have band-
width and two intersecting intervals cannot be colored by the same color. We are interested in the
case where every interval has an associated bandwidth in (0,1]. This problem (standard coloring
of intervals with bandwidth) was introduced by Adamy and Erlebach [1]. A set of intervals can be
assigned the same color c, if for any point p on the real line, the sum of the bandwidths of intervals
colored c and containing p, does not exceed 1. We refer to a coloring satisfying the above condition
as a proper coloring.

Online coloring of intervals with bandwidth is a simultaneous generalization of two major prob-
lems. The first one is online bin packing, the study of which dates back to the works of Johnson
and Ullman in the early 1970’s [13, 22], see also [7] for a survey. If all the presented intervals inter-
sect, colors correspond to bins. The second problem is the classical online interval graph coloring
problem, introduced by Kierstead and Trotter [16].

As mentioned in [1], the problem of coloring intervals with bandwidth arises in many appli-
cations. Most of these applications come from the field of networks. Consider a network with a
line topology that consists of links, where each link has channels of constant capacity. This can
be either an all-optical WDM (wavelength-division multiplexing) network or an optical network
supporting SDM (space-division multiplexing). A connection request is from one network node a to
another node b, and has a bandwidth associated with it. The set of requests assigned to a channel
must not exceed the capacity of the channel on any of the links on the path [a, b]. The goal is to
minimize the number of channels (colors) used. A connection request from a to b corresponds to an
interval [a, b] with the respective bandwidth requirement and the goal is to minimize the number of
required channels to serve all requests. Another network related application is one where requests
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have constant duration c, and we have to serve all requests as fast as possible. With respect to the
online interval coloring problem, the colors correspond to time slots, and the total number of colors
corresponds to the schedule length. The last example comes from scheduling, a requested job has
a duration and resource requirement during its execution. Jobs (intervals) arrive online and must
be assigned to a machine (color) immediately. All the machines have the same capabilities and the
objective is to minimize the number of machines used.

The unweighted (classical) problem is equivalent to coloring an interval graph, where each
interval corresponds to a node and an edge between two nodes appears if the corresponding intervals
intersect. Interval graphs are perfect, therefore the chromatic number of the graph is the maximum
clique size [12]. In the case of interval graphs, the maximum clique size represents a point where
the largest number of intervals intersect.

We study online coloring problems in terms of competitive analysis, that is, in terms of the ab-
solute competitive ratio and the asymptotic competitive ratio. Thus we compare an online algorithm
to an optimal offline algorithm OPT that knows the complete sequence of intervals in advance.

Let B(σ) (or B, if the sequence σ is clear from the context), be the cost of algorithm B on the
request sequence σ. An algorithm A is R-competitive (with respect to the absolute competitive
ratio) if for every sequence σ, A(σ) ≤ R ·OPT (σ). The absolute competitive ratio of an algorithm
is the infimum value of R such that the algorithm is R-competitive.

The asymptotic competitive ratio for an online algorithm A is defined to be

R∞A = lim sup
n→∞

sup
σ

{
A(σ)

OPT (σ)

∣∣∣∣∣OPT (σ) = n

}
.

All results given in this paper apply to both the absolute and the asymptotic competitive ratios.

Coloring of interval graphs has been intensively studied. Kierstead and Trotter [16] gave up-
per and lower bounds of 3 on the competitive ratio. Much research has been done analyzing the
performance of the simple First Fit algorithm for the unweighted problem. Upper bounds on the
competitive ratio of 40, 25.72 and 10 were given in [14, 15, 20] respectively. Chrobak and Slusarek
[6] showed a lower bound close to 4.5 on the competitive ratio of First Fit. See [21] for recent
developments.

The interval coloring problem with bandwidth was first posed in 2003 in [1] by Adamy and
Erlebach. They presented an online algorithm with a competitive ratio of at most 195. Azar et al.
[2] presented a new algorithm with a competitive ratio of 10. In [9] we studied several extensions
of this problem including coloring of unit length intervals.

Motivated by the well known bin packing problem, we investigate four variants studied in
the past with respect to bin packing. Namely, Open-end bin packing, Vector packing, Cardinality
constrained packing and Vector packing with cardinality constraints. Open-end online bin packing
(also called the Ordered open-end problem) was introduced by Yang and Leung [23]. Online vector
packing was studied by Garey et al. as a scheduling problem with resource constraints [11]. This
problem was studied also in [17, 10, 4]. Cardinality constrained bin packing was first studied by
Krause, Shen and Schwetman [18, 19]. It was also studied in [3, 8]. The vector packing problem
with cardinality constraints was mentioned in [5]. In that paper it is treated as a special case of
the vector packing problem.
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We make adjustments to these variants to suit the interval coloring with bandwidth problem in

the following way.

Open-end interval coloring: Given a point p and color c, we remove the restriction that all
intervals intersecting point p colored with c should have total bandwidth of at most 1. Instead,
we require that if the last interval which received color c and intersects p is removed, then the
total bandwidth of all such other intervals, is strictly less than 1. A possible application of
this model is the situation where the decision on the color of a new interval does not depend
on the exact value of its bandwidth, but on the current load of each color. This is consistent
with our algorithms which use a partition into classes of bandwidth rather than using the exact
bandwidth to classify a new interval and to assign it a color.

Interval coloring with vector constraints: Instead of one dimensional bandwidths, the inter-
vals are associated with d-dimensional vectors. This is a generalization of the standard interval
coloring with bandwidth problem. Here each interval has d distinct weights and each color has
d corresponding unit capacities. An interval can receive color c if the assignment is valid ac-
cording to all d components. This variant models a multiple number of available resources that
each request needs and all requests must share, rather than a single resource as in the standard
problem.

Cardinality constrained interval coloring: The cardinality constrained coloring, also called
the k-bounded interval coloring with bandwidth problem, additionally imposes the constraint
that at each point p, at most k intersecting intervals are allowed to use one color. This variant
models applications where only a limited number of requests can be satisfied simultaneously, a
restriction that occurs in addition to the bandwidth constraints. We assume k > 1, otherwise
the problem is equivalent to standard online interval coloring [16].

Cardinality and vector constrained interval coloring: This is a combination of the two pre-
vious variants. Each interval is associated with a d-dimensional vector of d distinct bandwidths
and each color has d corresponding capacities. Additionally at most k intersecting intervals are
allowed in one color at each point. We assume k > 1, otherwise the problem would also reduce
to standard online interval coloring.

Our Results: We present competitive online algorithms for each of the variants. We use ideas which
are extensions of the algorithm in [2]. For the open-end coloring model we present an algorithm with
competitive ratio of at most 12. For the cardinality constrained variant we suggest an algorithm
with competitive ratio of min{10 + 2 · k

k−1 , k + 3}, for odd k and min{12, k + 3}, for even k.

We design a 10d-competitive algorithm for the vector constrained model and an algorithm of
competitive ratio at most min{10d + 2, 3k}, for even k and min{10d + 2 k

k−1 , 3k} for odd k, for the
combined model of both vector and cardinality constraints.

We also present a lower bound of 24
7 ≈ 3.428571, an improvement of the previously known

lower bound of 3.26 for standard interval coloring with bandwidth presented in [9]. The latter lower
bound does not apply for most variants studied in the current paper. For cardinality constrained
coloring, a simplification of that lower bound can be applied only to very large values of k. It is
also not valid for the open-end model. However the lower bound of Kierstead and Trotter [16] can
be used in both these models. By using intervals of bandwidth 1, as done in the construction of
[16], two intersecting intervals can not receive the same color in any of our models. Therefore the
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best lower bound previously known for these cases is 3. Our lower bound can be easily modified
and applied to all the variants considered in this paper by a simple change of parameter.

Our results are summarized in Table 1.

Lower Bound Upper Bound

Interval Coloring With 24/7 10 [2]

Bandwidth

Open-End Coloring 24/7 12

Cardinality Constraints 24/7 min{12, k + 3} (even k)

min{10 + 2 k
k−1

, k + 3} (odd k)

Vector Constraints 24/7 10d

Vector and Cardinality 24/7 min{10d + 2, 3k} (even k)

Constraints min{10d + 2 k
k−1

, 3k} (odd k)

Table 1. Results obtained in this paper and previous work. The results are given in terms of competitive ratio.

2 Preliminaries

A weighted interval graph G of a set of intervals S, is a graph where each node corresponds to an
interval. The weight of the node is the bandwidth of the interval in S related to it. If two intervals
intersect, there is an edge between their related nodes in G. Recall that we denote the optimal
coloring of the offline algorithm by OPT .

Let ω(G) or ω(S) denote the size of the maximum cardinality clique in G (ω for short), i.e.,
ignoring the weights. Let ω∗(G) or ω∗(S) (ω∗ for short) denote the largest weighted clique in G.
A weighted clique is the sum of the weights of the vertices in a clique. Note that for the interval
coloring problem with bandwidth we have OPT ≥ dω∗e

Below we give the generalized presentation of the algorithm of Kierstead and Trotter [16] pre-
sented in [9]. For convenience we include the full presentation and list four relevant lemmas from
[9] and their proofs.

Let σ = v1, . . . , vn be the list of vertices of G, in the order of arrival. Algorithm KTl,b is defined
for inputs σ such that, b(vi) ∈ (0, b]. The algorithm partitions the intervals (i.e. the vertices of G)
into sets Am (for integer values of m, such that m ≥ 1). We use Cm to denote the set of colors
dedicated to Am. Every set Am is colored using First Fit, independently of other sets. Therefore
the colors have the property Cx ∩ Cy = ∅ for x 6= y.

A critical point, q, in interval vi ∈ Am(vi), is a point where ω∗i (Gm(vi)−1(vi)∪{vi}) > (m(vi)−1)·l.
Since vi ∈ Am(vi), there is at least one such point for every interval in Am(vi).

Lemma 1. Given an interval vi, let m = m(vi). For the set Am and every critical point q ∈ vi,
the total bandwidth at q of intervals in Am does not exceed b + l.

Proof. Proof by contradiction, assume that there is a critical point, q ∈ vi ∈ Am, where the size of
the weighted clique of intervals in Am is strictly larger than b + l. Consider all intervals, vt, where
vt ∈ Am and q ∈ vt. Let vk be the last such interval (in the order of presentation). Clearly i ≤ k

and after vk is presented, the total bandwidth of Am at point q does not increase.
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Algorithm 1 KTl,b

On a new interval vi:

1: For every integer m ≥ 1, let Vm(vi) and Em(vi) be the following sub-sets of V (G) and E(G) respectively.

Vm(vi) = {vj ∈ V (G) : j < i, m(vj) ≤ m};
Em(vi) = {(u, v) ∈ E(G) : u, v ∈ Vm(vi)};
Let Gm(vi) = G(Vm(vi), Em(vi))

Gm(vi) ∪ {vi} = G(Vm(vi) ∪ {vi}, Em(vi) ∪ {(u, vi) ∈ E(G) : u ∈ Vm(vi)})
For an arbitrary interval graph H, let ω∗i (H) denote the size of the maximum weighted clique among cliques

containing the interval vi in graph H

2: Let m(vi) be the smallest m such that ω∗i (Gm(vi) ∪ {vi}) ≤ m · l.
3: Am(vi) ← Am(vi) ∪ {vi}
4: Color vi considering only the intervals of Am(vi) using First Fit on colors of Cm(vi).

Since b(vi) ≤ b, and q is a critical point of vi, the total bandwidth at point q for intervals in
Gm−1(vi) is greater than (m−1) · l− b. Since m(vk) = m we have ω∗k(Gm(vk)) ≤ m · l, in particular,
the total bandwidth at point q ∈ vi ∩ vk does not exceed m · l.

Since {vj ∈ V (G) : j < i, m(vj) < m, q ∈ vj} ⊆ {vj ∈ V (G) : j < k, m(vj) < m, q ∈ vj}, the
bandwidth of intervals of Gm−1(vk) containing q (at the time vk arrives) is more than (m−1) · l−b.
Also by the assumption, the total bandwidth at point q in Am is more that b + l. We combine the
total bandwidth at point q in Gm(vk) ∪ {vk} and get more than ((m− 1) · l − b) + (l + b) = m · l.
This contradicts the fact that m(vk) = m ut

Lemma 2. For every m, ω∗(Am) ≤ 2(b + l).

Proof. Proof by contradiction, assume that there is a weighted clique of more than 2(b + l) in Am

obtained at point pj . By the previous lemma, this point is not a critical point of any interval in
Am. For every interval vi ∈ Am, where pj ∈ vi, there is a critical point either to the right of pj or
the left of pj or both. Denote the closest critical point (of any interval of Am which contains pj)
to the left of pj , ql and the closest critical point to the right of pj , qr. Since there is at least one
critical point for every vi, either ql ∈ vi or qr ∈ vi or both for every vi ∈ Am (since the critical point
of vi cannot be in the interval (ql, qr)). But this means that either ql or qr has a total bandwidth
of more than b + l. By Lemma 1, this is not possible. Note that either ql or qr or both must exist.
If one of qr or ql does not exist, we get the contradiction at the point that exists. ut

Lemma 3. If all intervals have the same bandwidth, b, and l is divisible by b, for every m,
ω∗(Am) ≤ 2l.

Proof. Similarly to Lemma 1, we show the following. Given an interval vi let m = m(vi). For the set
Am and every critical point q ∈ vi, the total bandwidth at q of intervals in Am does not exceed l. To
prove this claim we use the same notations given in the proof of Lemma 1. Unlike in the previous
case, here the total bandwidth at point q for intervals in Gm−1(vi) is exactly (m− 1) · l, since l is
divisible by b. By contradiction we assume that the total bandwidth of point q exceeds l. Therefore,
the total bandwidth at point q in Gm(vk)∪{vk} is more than (m−1) · l+ l = m · l. This contradicts
the fact that m(vk) = m. By the same argument given in Lemma 2 we get ω∗k(Am) ≤ 2l. ut

Lemma 4. (i) The largest value of m ever used in KTl,b is dω∗
l e

(ii) The number of colors used by KTl,b is at most dω∗
l e(maxm FF (Am)), where FF (Am) denotes

the number of colors used by First Fit on the set Am of intervals that were presented online.
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Proof. (i): For a maximum weighted clique of ω∗ and for every interval vi ∈ σ, ω∗(Gdω∗

l
e(vi) ∪

{vi}) ≤ ω∗ ≤ dω∗
l e · l (ii): By (i) the largest value of m is at most dω∗

l e. For each m, Am is colored
by First Fit using the related colors of Cm (last step of the algorithm). ut

Note that KT1,1 without bandwidth is equivalent to the original algorithm of Kierstead and
Trotter [16]. In their algorithm every layer can be colored by First Fit with at most 3 colors. The
number of layers equals the size of the maximum cardinality clique. Therefore the number of colors
used is at most 3OPT .

3 Upper Bounds

In this section we present algorithms for different models. We denote the optimal offline algorithm
for a specific variant A, by OPTA, e.g., for the open-end model we denote the optimal offline
algorithm that follows the restrictions of the model by OPTOpen−End. When we write simply OPT ,
we refer to the minimum number of colors required to color the input if the considered variant is
standard online coloring with bandwidth.

3.1 Open-End Coloring

In the Open-End version, colors can consist of intersecting intervals with a total bandwidth of more
than 1. However, for any given point, the removal of the last interval colored with a specific color
must bring the color’s level back to strictly below 1 at that point.

Theorem 1. There exists an online algorithm with competitive ratio of at most 12 for the open-end
interval coloring.

Proof. Algorithm. Perform an online partition of the intervals into three disjoint sub-sequences
S1, S2, and S3 according to the bandwidth of the intervals. The sub-sequences are defined as follows.
For an interval I,

– I ∈ S1 if b(I) ≤ 1
4

– I ∈ S2 if 1
4 < b(I) < 1

– I ∈ S3 if b(I) = 1

Each sub-sequence is colored by a different set of colors. The colors to be assigned are split into
three disjoint classes C1, C2, and C3. Each class is designated to intervals of one sub-sequence, i.e.,
C1 for S1, C2 for S2 and C3 for S3.

The classes of colors are built dynamically, when a new color is required, the first unused color
is assigned. When a color is assigned to one of the three classes, it can no longer be assigned to any
of the other classes.

Run in parallel (i.e., independently) the following three sub-algorithms:

Sub-Algorithm AS1. Use KT 1
4
, 1
4

on the intervals of S1 ignoring the open-end option.
Sub-Algorithm AS2. Use a variant of KT1,1 without bandwidth on S2. In lines 1-3 of the algo-

rithm KT1,1, treat all intervals as if they have bandwidth of exactly 1. The change is made in
line 5 of the algorithm. Instead of using at most 3 colors for each Am, use only one color.
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Sub-Algorithm AS3. Use the Algorithm of Kierstead and Trotter, i.e., KT1,1 without bandwidth.

Lemma 5. (i) AS1 uses at most 5 ·OPTOpen−End(S1) colors;
(ii) AS2 uses at most 4 ·OPTOpen−End(S2) colors;
(iii) AS3 uses at most 3 ·OPTOpen−End(S3) colors;

Proof. Sub-Algorithm AS1. According to Lemma 4 part (i), the number of colors used by KT 1
4
, 1
4

is at most dω∗
1
4

emaxm FF (Am), where FF (Am) denotes the number of colors used by First Fit

on the set Am of intervals that were presented online. By Lemma 2, for every m, ω∗(Am) ≤ 1.
Therefore maxm FF (Am) = 1 and we get that the number of colors used is at most d4ω∗e. In
the open-end version, the total bandwidth for each color may exceed 1. Since all the intervals
in S1 have a maximum bandwidth of 1

4 , OPTOpen−End can use each color for a total bandwidth
of at most 5

4 . Therefore any algorithm needs at least d4
5ω∗e colors. Hence, we get, AS1(S1) ≤

d4ω∗e = d5 · 4
5ω∗e ≤ 5 · d4

5ω∗e ≤ 5OPTOpen−End(S1).
Sub-Algorithm AS2. Note that in this variant of KT1,1 without bandwidth, all the sets of intervals

Am should contain the same intervals as if we had used the regular KT1,1 without bandwidth.
The only difference is the coloring of the intervals within these sets.
First we claim that this variant results in a proper coloring. By Lemma 3, the cardinality clique
is at most 2 in each Am. In the Open-End variant, two intersecting intervals each of bandwidth
strictly less than 1 can be colored by the same color. Since every interval I ∈ S2 satisfies
1
4 < b(I) < 1 every Am can be colored by a single color, and the claim is proved.
Next we show that the number of colors used by AS2(S2) is at most 4 · OPTOpen−End(S2).
Algorithm AS2 uses at most ω colors, where ω is the largest cardinality clique and not the
largest weight clique. Since for every I ∈ S2, b(I) > 1

4 , OPTOpen−End(S2) can use at most four
intersecting intervals in a single color. Therefore OPTOpen−End(S2) uses at least ω

4 colors. Thus
we get that AS2 uses at most 4 ·OPTOpen−End(S2) colors.

Sub-Algorithm AS3. According to the analysis of the algorithm of Kierstead and Trotter, we have
the following bound on the number of colors used, AS3(S3) ≤ 3OPT (S3). Since for every I ∈ S3,
b(I) = 1, every two intersecting intervals cannot receive the same color. Thus OPT (S3) =
OPTOpen−End(S3).

ut

Since the algorithms run obliviously of each other, we need to sum their competitive ratios. By
combining the competitive ratios of the sub-algorithms of AS1 , AS2 and AS3 , we get a competitive
ratio of 12 for the complete algorithm.

ut

3.2 Coloring with Vector Constraints

In the vector constrained variant, each interval has a vector of d distinct weights and each color has
d corresponding unit capacities. Given a point p, the total bandwidth of each of the d components
in intervals intersecting p, which receive the same color must not exceed the unit capacity of the
corresponding component of their color. This constraint must hold for each of the d components
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simultaneously. The d-dimensional coloring problem we study here is a generalization of the problem
of interval coloring with bandwidth, the latter problem can be viewed as a 1-dimensional vector
constrained problem.

Denote by bi(I), the bandwidth of the i’th coordinate of the vector of bandwidths of interval I

Theorem 2. There exists an online algorithm for vector constrained interval coloring with com-
petitive ratio of at most 10d, where d is the dimension of the vector constraints.

Proof. Perform an online partition of the intervals into d disjoint sub-sequences S1, . . . , Sd according
to the bandwidth vector of the intervals. The sub-sequences are defined as follows. For every interval
I, I ∈ Si if 1 ≤ i ≤ d is the smallest number satisfying that bi(I) ≥ bj(I) for every j 6= i.

Each sub-sequence is colored by a different set of colors. The colors to be assigned are split into
d disjoint classes C1, . . . , Cd. Each class is designated to color intervals of one sub-sequence, i.e., C1

for S1, C2 for S2 and so on.

For every i run an instance of the algorithm of [2] on Si using the colors of Ci. Any interval
I ∈ Si is treated by this algorithm as an interval of the one-dimensional bandwidth bi(I). From
the definition of Si, bi(I) ≥ bj(I) for every j 6= i, therefore the resulting coloring is proper. The
algorithm of [2] can be summarized by the general presentation of Kierstead and Trotter given in
the preliminaries as follows.

For an interval I,

– I ∈ B1 if b(I) ≤ 1
4

– I ∈ B2 if 1
4 < b(I) ≤ 1

2

– I ∈ B3 if 1
2 < b(I) < 1

Algorithm of [2].

– Use KT 1
4
, 1
4

(taking bandwidth into account) on the intervals of B1.
– Use a variant of KT1,1 without bandwidth on B2. In lines 1-3 of the algorithm KT1,1, treat all

intervals as if they have bandwidth of exactly 1. The change is made in line 4 of the algorithm.
For each Am use only one color.

– Use KT1,1 without bandwidth on B3.

This algorithm has competitive ratios of 4, 3 and 3 for the classes S1, S2 and S3, respectively.
Since we run in parallel d instances of the algorithm of [2], each of which has a competitive ratio
of at most 10, we get the combined competitive ratio of at most 10d. ut

3.3 Coloring with Cardinality Constraints

In the cardinality constrained, or the k-bounded interval coloring with bandwidth problem there
is an additional restriction. In this variant, for each point p and color c, at most k intersecting
intervals colored using color c and intersecting point p may exist.

Note that the cardinality constraint can be expressed by giving vector constraints of dimension
d = 2. The first component can be defined to be the bandwidth requirement, whereas the second
component would be defined to be 1

k for all intervals. This would result in an algorithm of com-
petitive ratio of at most 20 using the algorithm of [2]. A slightly more careful analysis results in a
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competitive ratio of 14 for the same algorithm, since all intervals which would be colored accord-
ing to their second component would be assigned to the same subclass of intervals. We design an
improved algorithm with competitive ratio as follows.

Theorem 3. There exists an online algorithm for cardinality constrained interval coloring with a
competitive ratio of at most min{10 + 2 · k

k−1 , k + 3} for odd k, and of at most min{12, k + 3} for
even k, where k is the cardinality constraint.

Proof. Algorithm. If min{10 + 2 · k
k−1 , k + 3} = 10 + 2 · k

k−1 for odd k or min{12, k + 3} = 12 for
even k, use the algorithm described in case 1. Otherwise use case 2.

Case 1. Perform an online partition of the intervals into two disjoint sub-sequences S1 and S2

according to the bandwidth of the intervals. The sub-sequences are defined as follows.
For an interval I,
– I ∈ S1 if b(I) ≤ 1

k

– I ∈ S2 if 1
k < b(I) < 1

Sub-Algorithm AS1

Even k. Take the bandwidth of every interval in S1 to be exactly 1
k and use algorithm

KT 1
2
, 1
k
.

Odd k. Take the bandwidth of every interval in S1 to be exactly 1
k−1 and use algorithm

KT 1
2
, 1
k−1

, with the following change. The sets A1 and A2 are considered together in the
application of First Fit in line 4.

Sub-Algorithm AS2 Use the algorithm presented in [2] on S2. See details of this algorithm in
the proof of Theorem 2).

Case 2. Perform an online partition of the intervals into two disjoint sub-sequences R1 and R2

according to the bandwidth of the intervals. The sub-sequences are defined as follows.
For an interval I,

– I ∈ R1 if b(I) ≤ 1
2

– I ∈ R2 if 1
2 < b(I) < 1

Sub-Algorithm AR1. Use a variant of KT1,1 without bandwidth on R1. In lines 1-3 of the
algorithm KT1,1, treat all intervals as if they have bandwidth of exactly 1. The change is
made in line 4 of the algorithm. Instead of using at most 3 colors for each Am, use only one
color.

Sub-Algorithm AR2. Use KT1,1 without bandwidth, treating every interval as if its band-
width is exactly 1.

We next analyze the competitive ratio.

Case 1.
Sub-Algorithm AS1

Even k. Since each color can be used for a total of k intersecting intervals, we can treat
all intervals in S1 as if they have bandwidth of exactly 1

k . The value ω∗ is computed using
this assumption.
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The number of colors used by KT 1

2
, 1
k

is at most dω∗
1
2

emaxm FF (Am), according to Lemma

4 part (ii). Since now all intervals have the same bandwidth 1
k , and since 1

2 is divisible by
1
k , by Lemma 3, we get that for every m, ω∗(Am) ≤ 1. Therefore maxm FF (Am) = 1 and
we get that the number of colors used by our algorithm is at most d2ω∗e ≤ 2dω∗e.
Odd k. In this case, the value ω∗ is computed based on the assumption that every interval
has bandwidth 1

k−1 .
Similarly to the previous case, we would get a competitive ratio of 2 if an optimal algorithm
could use only k− 1 intersecting intervals for every color. However OPTk−Bounded can use k

intersecting intervals for each color. Therefore the OPTk−Bounded uses at least k−1
k ω∗ colors.

If the algorithm uses a single color, then the competitive ratio is 1, since OPTk−Bounded ≥ 1,
for an input with at least one interval. Otherwise, the sets A1, A2 are colored together using
First Fit, and since the size of the largest weighted clique in A1 ∪ A2 is at most 1, a single
color is used for A1 ∪A2. Therefore, the algorithm uses dω∗e − 1 ≤ ω∗ colors. Hence we get
a competitive ratio of 2 · k

k−1 .
Sub-Algorithm AS2. The algorithm presented in [2] has a competitive ratio of at most 10 on

intervals in (0,1]. Since for every I ∈ S2, b(I) in (0,1], the competitive ratio for this part is
also at most 10.

Combining the competitive ratio of this case we get at most 10 + 2k
k−1 for odd k and at most 12

for even k.
Case 2.

Sub-Algorithm AR1. Note that in this variant of KT1,1 without bandwidth, all the sets of
intervals Am contain the same intervals as if we had used the regular KT1,1 without band-
width. The only difference is the coloring of the intervals within these sets.
First we claim that this variant results in a proper coloring. By Lemma 3, the cardinality
clique is at most 2 in each Am. Since every interval I ∈ R1 satisfies b(I) ≤ 1

2 every Am can
be colored by a single color and the claim is proved.
We next show that the number of colors used by AR1(R1) is at most k ·OPTk−Bounded(R1).
Algorithm AR1 uses at most ω colors, where ω is the cardinality clique of the set R1 and not
the weighted clique. In the cardinality constrained variant OPTk−Bounded can only color k

intersecting intervals with the same color. Therefore it uses at least ω
k colors. Thus we get

that AR1(R1) uses at most k ·OPTk−Bounded(R1) colors.
Sub-Algorithm AR2. We have AR2(R2) ≤ 3OPT (R2) and OPT (R2) = OPTk−Bounded(R2).

The last equality is valid since for every I ∈ R2, b(I) > 1
2 , so no two intersecting intervals

can receive the same color.

Combining the competitive ratio of this case we get k + 3.

To complete the analysis, since k is known in advance, the algorithm uses the best option for a
specified k, thus getting the minimum competitive ratio out of the two cases. ut

3.4 Coloring with Vector and Cardinality Constraints

This case is a combination of the previous two variants. There is a d-dimensional vector for each
interval with d distinct bandwidths and each color has d corresponding capacities. Additionally at
most k intersecting interval are allowed in one color as required in the cardinality constraint. Note
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that the cardinality constraint can be expressed using an additional ((d + 1)-th)component of the
vector constraint, which is defined to be 1

k for all intervals. This would result in an algorithm of
competitive ratio of at most 10(d + 1) using the algorithm of Section 3.2. A slightly more careful
analysis results in a competitive ratio of 10d + 4 for the same algorithm, since all intervals which
would be colored according to their last component would be assigned to the same subclass of
intervals. We design an improved algorithm with competitive ratio as follows.

Theorem 4. There exists an online algorithm for interval coloring with vector and cardinality
constraints with a competitive ratio of at most min{10d+2, 3k} for even k and of at most min{10d+
2 k

k−1 , 3k} for odd k, where k is the cardinality constraint and d is the dimension of the vector
constraints.

Proof. Algorithm. If min{10d+2, 3k} = 10d+2 (for even k) or min{10d+2 k
k−1 , 3k} = 10d+2 k

k−1

(for odd k) use the algorithm described in case 1. Otherwise use case 2.

Case 1. The algorithm is similar to the algorithm presented for interval coloring with vector
constraints. We introduce a new sub-sequence S0. Interval I ∈ S0 if for every 1 ≤ i ≤ d,
bi(I) ≤ 1

k . The other sub-sequences are defined as follows.
For every interval I, I ∈ Si if 1 ≤ i ≤ d is the smallest number satisfying bi(I) ≥ bj(I) for every
j 6= i and bi(I) > 1

k .
For every i ≥ 1 run an instance of the algorithm of [2] on Si using the colors of Ci (for the
details of this algorithm see the proof of Theorem 2).

Even k. Take the bandwidth of every coordinate in the bandwidth vector of the intervals in
S0 to be exactly 1

k and use algorithm KT 1
2
, 1
k
.

Odd k. Take the bandwidth of every coordinate in the bandwidth vector of the intervals in S0

to be exactly 1
k−1 and use algorithm KT 1

2
, 1
k−1

, with the change that the sets A1 and A2 are
considered together in the application of First Fit in line 4.

Case 2. Take the bandwidth of every coordinate in the bandwidth vector of all the intervals to be
exactly 1 and use algorithm KT1,1 without bandwidth.

Analysis of the competitive ratio.
Denote by OPTV P−k−Bounded an optimal offline algorithm for vector packing with cardinality con-
straints.

Case 1. The algorithm presented in [2] has a competitive ratio of 10 on intervals with bandwidth
in (0,1]. Since for every I ∈ Si, bi(I) ∈ (0, 1], the number of colors used for each Si, where i ≥ 1
is at most 10OPTV P−k−Bounded(Si). Also since for every j 6= i, bi(I) ≥ bj(I), the coloring is
proper.
The coloring of S0 is similar to the coloring of the sub-algorithm AS1 presented for bounded
cardinality. Since all the bandwidths in the vector are at most 1

k , the coloring of S0 is proper.
The number of colors used for odd k is at most 2 · k

k−1OPTV P−k−Bounded(S0). For even values
of k, the number of colors is at most 2OPTV P−k−Bounded(S0). Combining both parts, we get a
competitive ratio of 10d + 2 for even values of k and 10d + 2 k

k−1 for odd values of k.
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Case 2. In this case we simply apply the algorithm of Kierstead and Trotter ignoring the band-

width vector. Since OPTV P−k−Bounded can color at most k intersecting intervals with the same
color, we lose an additional factor of k. Therefore, the competitive ratio of this case is 3k.

ut

4 Lower Bound

In this section we present a lower bound of 24
7 ≈ 3.428571 on the competitive ratio of any algorithm

for interval coloring with bandwidth. This is an improvement of the previously known lower bound
of 3.26 for standard interval coloring with bandwidth presented in [9]. Note that the lower bound
of [9] does not apply for most variants studied in this paper. For cardinality constrained coloring,
a simplification of that construction can be applied only to very large values of k. It is not valid
for the open-end model either. However the lower bound of Kierstead and Trotter [16] can be used
in both these models. By using intervals of bandwidth 1, as done in the construction of [16], two
intersecting intervals can not receive the same color in any of our models. Therefore the best lower
bound previously known for these cases is 3.

We prove the following theorem, using a single type of construction for all models. The con-
struction uses parameters, and the lower bound for each model separately can be achieved by fixing
the parameters appropriately. The theorem holds for all models studied in this paper. The variant
with vector constraints is a generalization of standard coloring with bandwidth, where the vector
has dimension 1. Additional dimensions can be added trivially by adding zero components. Sim-
ilarly, the variant with both vector and cardinality constraints is a generalization of cardinality
constrained coloring.

Theorem 5. Any deterministic online algorithm for interval coloring with bandwidth in the stan-
dard model, open-end model, and cardinality constrained model, has competitive ratio of at least
24
7 ≈ 3.428571.

Proof. The general structure of the input sequence is as follows. In the first part of the construction,
all intervals have bandwidth α and in the second (optional) part all intervals have bandwidth β > α.
The values of α and β are picked depending on the exact problem. The choice is such that it is
possible to assign the same color to two intersecting intervals of bandwidth α, or even to one interval
of bandwidth α and one of bandwidth β, which are intersecting. However, we need to make sure
that it is impossible to assign the same color to two intersecting intervals of bandwidth β, or to
any three intersecting intervals of bandwidth at least α.

Such choices can be e.g. α = 0.4 and β = 0.6 for the standard problem, or to the cardinality
constrained problem, for any k ≥ 2 (since the case k = 1 is equivalent to standard interval coloring,
it is impossible to improve the lower bound of 3 in this case). For the open-end problem, we can
take α = 0.6 and β = 1.

Given an integer value s, the first part of the sequence is built so that the largest clique size
(ignoring the bandwidth) is 2s. Since interval graphs are perfect, it is clearly possible to color the
graph using 2s colors, so that no two intervals colored with the same color may intersect. We next
show that it is possible to color the input using s colors, as follows. First, we distribute 2s colors so
that no two intersecting intervals receive the same color. Then we can partition colors into pairs,
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and unite every two colors into one. This can be done since at every point there will be at most
two intersecting intervals of bandwidth α.

The second part of the sequence is built in a way that the largest clique size (again, ignoring
the bandwidth) of intervals introduced in this part is 2s. The complete sequence can be colored
using 2s colors, similarly to the explanation above, by coloring each part of the sequence using 2s
colors. The same palette of 2s colors can be used for both parts.

Consider a sub-set of the input, usually this is a sub-set of input intervals contained in some
mega-interval (a continuous part of the real line). A color which was used for at least one interval in
the sub-set is called a “used color”. Next, we define the notion of “full colors” and “partial colors”
in a coloring of this sub-set as follows. If there exists an interval colored with color c, from the
second part of the input in the sub-set, i.e., there exists an interval with bandwidth β colored with
color c, then c is a full color. Moreover, if there exists a point p and a color c such that two distinct
intervals X and Y from the first part of the input, such that p ∈ X and p ∈ Y , both received the
color c, then c is a full color. Otherwise, if this does not hold, but c is a used color, then it is a
partial color. This happens if there exists at least one interval in the sub-set that is colored with
c, and all intervals in the sub-set that are colored with c are independent, that is, no two of them
overlap.

The construction of the two parts of the sequence are adaptations of the lower bound in [16].
The first part of the sequence uses intervals of bandwidth α and therefore two intersecting intervals
may receive the same color. This is a main difference with the proof in [16], since we need to deal
with such a situation, whereas in [16] all intervals have bandwidth 1. Another difference, that we
already used in the construction in [9] is the assumption that some information on the optimal cost
(which is either s or 2s in our case) is known in advance.

The construction of each part works in phases, after a phase we shrink some parts of the line
into single points. Consider a point p, that is a result of shrinking an interval [a, b]. Every interval
presented in the past which is contained in [a, b] is also shrunk into p and therefore such a point
inherits a list of used (partial and full) colors that some interval received. A partial color can be
used again exactly once in some interval containing p. A full color cannot be assigned to any interval
that contains the point p. This is done for simplification. In practice it means that for a given point
p that is the result of shrinking, every future interval either contains this point or not, i.e., it either
contains all intervals that were shrunk into this point, or has no overlap with any of them.

We would like to show that either the number of colors used in the first part is at least 24s−2
7 , or

the number of colors used after the second step is at least 48s−4
7 . This would imply the lower bound.

Therefore, the sequence construction can clearly stop once 7s colors have been used. Therefore we
may assume that we are initially given a palette of 7s colors, 1, . . . , 7s, that may be used by the
algorithm. The ith color ever used by the algorithm is called color number i. As soon as color 7s is
used, the proof is complete. This is just one stopping condition. We may stop the sequence earlier
as well, as will be discussed later.

The first part of the sequence has intervals of bandwidth α and starts with introducing S(0)
non-intersecting intervals, this is phase 1. A bound on the value S(0) is fixed later.

Since the algorithm is using at most 7s colors, this means that there exists a set of S(0)
7s intervals

that share the exact same color c. We shrink all intervals into single points. Later phases result in
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additional points. Since there are no intersecting intervals, color c is partial in all points colored
with it.

We now define phase i ≥ 2. The phases are constructed in a way that in the beginning of phase
i there is a set of at least S(i− 1) points that contain two given sub-sets of the 7s colors. The first
sub-set is of P (i− 1) partial colors and the second is of F (i− 1) full colors. These points are called
points of interest. Note that after phase 1 we have P (1) = 1 and F (1) = 0.

There exist some other points containing other sub-sets of full and partial colors. All these
points are called void points. At this time, we partition the points of interest into consecutive sets
of four. At most three points of interest that do not participate in this partitioning become void
points.

We next define additional intervals, increasing the size of the largest cardinality clique (with
respect to the number of intervals, i.e., ignoring bandwidth) by exactly one. Given a set of four
points listed from left to right a1, a2, a3, a4, let b be the leftmost void point on the right hand side
of a1, between a1 and a2. If no such point exists, then let b = a1+a2

2 , i.e., the point which is halfway
between a1 and a2. Similarly, let d be the rightmost void point between a3 and a4, and if no such
point exists then d = a3+a4

2 . Let f be a point between a2 and a3 that is not a void point. We
introduce the intervals I1 = [a1,

a1+b
2 ] and I2 = [d+a4

2 , a4].

If they both receive the same color (used or unused at points a1 and a4), we introduce the
intervals I3 = [a1+b

2 , f ] and I4 = [f, d+a4
2 ]. The interval I3 intersects with a2, and with I1. The

second interval I4 intersects I3, a3 and I2. We consider the colors used for the four new intervals.
If at most two distinct colors were used, then there exists a point in the range [a1, a4] where two
intersecting intervals received the same color, and therefore there is at least one new full color in
this interval. If a color that is partial in the point a1, a2, a3, a4 was used, then this color becomes
full in [a1, a4]. If three unused colors were used, then these colors become additional partial colors
in [a1, a4].

If I1, I2 receive distinct colors (used or unused), we introduce the interval I5 = [a1+b
2 , d+a4

2 ],
instead of presenting intervals I3 and I4 as was done in the previous case. Interval I5 intersects
with I1, I2, a2, a3. We consider the colors used for the three new intervals. If I5 gets the same color
as I1 or I2, then this color becomes full in [a1, a4]. If a color which is partial in the point a1, a2, a3, a4

was used, then this color becomes full in [a1, a4]. If three unused colors were used, then these colors
become additional partial colors in [a1, a4].

We shrink every such interval [a1, a4] into a single point. Each of the new shrunk points received
either three new partial colors, or one full (not necessarily new) color.

Note that we do not use more than 7s colors, and each new shrunk point receives a number
of full and partial colors, which is at most three colors in total. Four intervals are introduced only
if the first two received the same color. If the point has no new full colors, then it has exactly
three new partial colors. Otherwise, it has at least one new full color, and possibly one or two
new partial or full colors. Before the phase, all points of intervals had the exact same sub-sets
of partial and full colors. This gives seven options for the type of new colors (or colors which
changed status from partial to full). Let “f” denote full and “p” denote partial, then the options
are (p, p, p), (f, p, p), (f, f, p), (f, f, f), (f, p), (f, f), (f). There are less than (7s)3 options for each
type, and thus in total, there are less then 7 · (7s)3 choices for the updated sub-sets given the
previous ones. We can choose at least S(i) = S(i−1)

4·7·(7s)3
points having the same sets of full and partial
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colors. Note that in this calculation, we can neglect the (at most three) points of interest that may
have become void. This is the case where the number of points of interest is not divisible by 4.
The values S(i− 1) are chosen such that all of them are divisible by 4. Therefore, if any points of
interest become void, it means that the number of points of interest is actually larger than S(i−1),
and does not get reduced below S(i− 1) by omitting these at most three points.

The points containing these exact sets of colors become the points of interest of the next phase,
and the others become void points of the next phase. Points that are void points of previous phases
and are not contained in shrunk intervals remain void points. Note that the only points where the
new intervals intersect are points with no previous intervals, and therefore the clique size increases
by exactly 1.

After the first 2s phases, the sequence may continue with the second part. If P (2s) + F (2s) ≥
24s−2

7 the sequence stops since the lower bound is obtained. Otherwise, the second part goes on for
2s phases, however the intervals have bandwidth β, therefore no new partial colors are introduced,
and every phase results in three new full colors. To verify this, it can be checked that in both
construction cases, the new intervals must receive three distinct colors, that are either unused or
partial. The number of full colors after all phases is at least F (2s) + 6s. Let A be the number of
phases among the first 2s which increased the number of partial colors by 3. Therefore 24s−2

7 >

P (2s) + F (2s) ≥ 3A + 1 (since in the first phase exactly one color is introduced, which must be
partial). In all other phases except the first one and up to phase 2s, the number of full colors
increased. Therefore F (2s) ≥ 2s − 1 − A. We get 2s − 1 − F (2s) ≤ A < 24s−9

21 and therefore
F (2s) > 6s−4

7 and F (2s) + 6s > 48s−4
7 , which proves the lower bound in this case.

Note that in each phase, the number of intervals which can be used for the next phase decreases
by a factor of at most 28 · (7s)3. To complete the construction, we need S(4s) ≥ 1. If the initial
number of intervals introduced is S(0) = (28 · (7s)3)4s, this holds and we are done. ut

5 Conclusion

We designed competitive algorithms for several variants of interval coloring. Our lower bound on
the competitive ratio holds for all these models. For the vector constrained model, our upper bound
is linear in d whereas our lower bound is constant. It would be interesting to improve the lower
bound so that it depends on d. Note that the same problem is known to be open for the online
vector packing problem as well (see [7]).

References

1. U. Adamy and T. Erlebach. Online coloring of intervals with bandwidth. In Proc. of te First International

Workshop on Approximation and Online Algorithms (WAOA2003), pages 1–12, 2003.

2. Y. Azar, A. Fiat, M. Levy, and N.S. Narayanaswamy. An improved algorithm for online coloring of intervals with

bandwidth. Theoretical Computer Science, 363(1):18–27, 2006.

3. L. Babel, B. Chen, H. Kellerer, and V. Kotov. Algorithms for on-line bin-packing problems with cardinality

constraints. Discrete Applied Mathematics, 143(1-3):238–251, 2004.

4. D. Blitz, A. van Vliet, and G. J. Woeginger. Lower bounds on the asymptotic worst-case ratio of online bin

packing algorithms. Unpublished manuscript, 1996.

5. A. Caprara, H. Kellerer, and U. Pferschy. Approximation schemes for ordered vector packing problems. Naval

Research Logistics, 92:58–69, 2003.



16
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