Online Bin Packing with Cardinality Constrairits

Leah Epstein

Abstract

We consider a one dimensional storage system where each container can store a bounded
amount of capacity as well as a bounded number of itéms 2. This defines the (standard)
bin packing problem with cardinality constraints which is an important version of bin packing,
introduced by Krause, Shen and Schwetman already in 1975. Following previous work on the
unbounded space online problem, we establisteaetbest competitive ratio for bounded space
online algorithms for every value df. This competitive ratio is a strictly increasing function
of k£ which tends tall, + 1 ~ 2.69103 for large k. Lee and Lee showed in 1985 that the
best possible competitive ratio for online bounded space algorithms for the classical bin packing
problem is the sum of a series, and tenddItg as the allowed space (number of open bins)
tends to infinity. We further design optimal online bounded space algorithmaf@ble sized
bin packing where each allowed bin size may have a distinct cardinality constraint, and for the
resource augmentatiomodel. All algorithms achieve thexactbest possible competitive ratio
possible for the given problem, and use constant numbers of open bins. Finally, we introduce
unbounded space online algorithms with smaller competitive ratios than the previously known
best algorithms for small values bf for the standard cardinality constrained problem. These are
the first algorithms with competitive ratio below 2 fbr= 4, 5, 6.

1 Introduction

The classical bin packing problem [19, 5, 3] assumes no limit omtimeberof items which may be
packed in a single bin. In practice, many applications require such a bound either due to overheads
or additional constrains that are not modeled. For example, a disk cannot keep more than a certain
number of files, even if these files are indeed very small. A processor cannot run more than a given
number of tasks during a given time, even if all tasks are very short. The problem where there is a
given boundk > 1 on the number of items which can co-exist in one bin, is called “Bin Packing with
Cardinality Constraints” [11, 1]. We consider several versions of this problem.

We first define the classic online bin packing problem. In this problem, we receive a sequence
o of itemspy,ps ... pn, arriving one by one. The valugs are thesizesof the items. We have an
infinite supply ofbins, each of which is of unit size. An item must be assigned to a bin upon arrival,
so that the sum of items in no bin excedd#\ bin is emptyif no item is assigned to it, otherwise it is
used The goal is to minimize the number of bins used. In¢hedinality constrained bin packing

*A preliminary version of this paper appears in Proceedings of the 13th European Symposium on Algorithms, 2005.
tDepartment of Mathematics, University of Haifa, 31905 Haifa, Isr&s@math.haifa.ac.il . Research sup-
ported by Israel Science Foundation (grant no. 250/01).

problem, an additional constraint is introduced. A paramété@ounds the number of items that can
be assigned to a single bin.

The standard measure of algorithm quality for online bin packing i#iyenptotic competitive
ratio, which we now define. For a given input sequengdet .A(o) (or .A) be the number of bins
used by algorithm4 ono. LetOPT (o) (or OPT) be the cost of an optimal offline algorithm which
knows the complete sequence of items in advance, i.e., the minimum possible number of bins used to
pack items iro. Theasymptotic performance ratior an algorithmA is defined to be

R(A) = ligl_)s;p sup {OJ_;(]?(L)|OPT(O-) = n} .

In theresource augmentdain packing problem, the online algorithm is supplied with larger bins
at its disposal than those of the offline algorithm that it is compared to. The competitive ratio then
becomes a function of the bin size. All online bins are of the same size, and all the offline bins are of
the same size, but these two sizes are not necessarily the same.

In the variable-sizedbin packing problem, there is a supply of several bin sizes that can be used
to pack the items. The cost of an algorithm is the sum of sizes of used bins. In this problem, the
generalization into cardinality constrained packing assumes that each b sizé is associated a
parametek; which bounds the number of items that can be packed into such a bin.

We stress the fact that items arrimgling this means that each item must be assigned in turn, with-
out knowledge of the next items. We consideunded spacalgorithms, which have the property
that they only have a constant number of bins available to accept items at any point during processing,
these bins are also called “open bins”. The bounded space assumption is a quite natural one. Essen-
tially the bounded space restriction guarantees that output of packed bins is steady, and that the packer
does not accumulate an enormous backlog of bins which are only output at the end of processing.

Previous results. Cardinality constrained bin packing was studied in the offline environment already
in 1975 by Krause, Shen and Schwetman [12, 13]. They showed that the performance guarantee of
the well known First Fit algorithm is at mogt7 — é% Additional results were offline approximation
algorithms of performance guarantee These results were later improved in two ways. Kellerer
and Pferschy [11] designed an improved offline approximation algorithm with performance guarantee
1.5 and finally a PTAS was designed in [2] (for a more general problem). On the other hand, Babel
et al. [1], designed a simplenline algorithm with competitive rati@ for any value ofk. They
also designed improved algorithms fbr= 2,3 of competitive ratiosl + 75 ~ 1.44721 and1.8
respectively. The same paper [1] also proved an almost matching lower bowf~ef1.41421 for
k = 2 and mentioned that the lower bounds of [22, 20] for the classic problem hold for cardinality
constrained bin packing as well. The lower bound of 1.5 given by Yao [22] holds for small values of
k > 2 and the lower bound of 1.5401 given by Van Vliet [20] holds for sufficiently ldrgBlo other
lower bounds are known.

For the classic bin packing problem, Lee and Lee [14] presented an algorithmidalegdonic,
which partitions items intan > 1 classes and uses bounded space of at mest open bins. For any
e > 0, there is a number such that thedARMONIC algorithm that uses: classes has a performance
ratio of at mosi{(1 + ¢)I1, [14], wherell, ~ 1.69103 is the sum of series (see Section 2). They also
showed there is no bounded space algorithm with a performance ratio HeglowCurrently the best
known unbounded space upper bound is 1.58889 due to Seiden [17].

2

The first to investigate the variable sized bin packing problem were Friesen and Langston [10].
Csirik [4] proposed th&/ARIABLE HARMONIC algorithm and showed that it has performance ratio
at mostll,,. Seiden [16] showed that this algorithm is optimal among bounded space algorithms.
Unbounded space variable sized bin packing was studied also in [18].

The resource augmented bin packing problem was studied by Csirik and Woeginger [6]. They
showed that the optimal bounded space asymptotic performance ratio is a fyriéliaf the online
bin sizeb. Unbounded space resource augmented bin packing was studied also in [8].

Our results. We consider bounded space algorithms. For every valéewé find the best competi-

tive ratio of any online bounded space algorithm. The competitive ratio is a strictly increasing function
of k and for large enough it approacheg + I, ~ 2.69103 wherell, is the best competitive ratio
shown by [14] for the classic bounded space problem. This is a surprising feature of the problem,
since one would expect this value to simply tendltg ask grows.

We further consider the resource augmented problem where the online algorithm may use larger
bins compared to the optimal offline algorithm. We design optimal online algorithms for this problem
as well. For large enough values iofthe competitive ratios again approach values which differ by
1 from the best competitive ratios for the classic resource augmented problem [6]. We show that the
competitive ratios for our problem never drops belb\unlike the case studied in [6]) and identify
the cases where the competitive ratio is exattly

For the variable sized bin packing problem, we design algorithms of the exact optimal competitive
ratios (among bounded space algorithms) for any set of bins and cardinality constraints. An interesting
feature is that we prove the algorithms have optimal competitive ratios, even though we do not know
what these ratios are.

A main difference between our results for bounded space algorithms and the results of [14, 6, 16]
is that our algorithms have exactly the best possible competitive ratio achievable by bounded space
online algorithms. The algorithms for variants of the classical problem have competitive ratios which
tend to the best competitive ratio as the number of open bins grows without bound. Our algorithms
just need a constant number of open bins to achieve the best competitive ratios. Therefore we need to
be very careful in the analysis since unlike the classic problem, we may not lose any small constants,
which depend on the number of open bins, in the analysis.

For small values ok we design several new unbounded space algorithms, based on combination
of large and small items together in bins (see [14, 15, 17]), according to sizes of small items. We

771

prove the competitive ratios of our algorithms for= 3,4,5,6 are% = 1.75, % ~ 1.86842, 555 ~

1.93719, % ~ 1.99306 (respectively). This improves on the boun%is: 1.8 (k = 3) and2 (k =

4,5,6) of [1].

2 Optimal Algorithms for Bounded Space Packing

In this section we define bounded space algorithms of optimal competitive ratio for each value of
k > 1. For everyk > 1, we define an online bounded space algorithm which packs at/mtesns

in each bin and uses at mdst- 1 open bins. We show that this algorithm is the best possible among
bounded space algorithms. We use the well known sequenée> 1 which is often used for bin

o0
packing, letr; = 2, ;1 = mi(m; — 1) + 1 and letll,, = 3 ﬁ ~ 1.69103.

=1
This sequence was used by Lee and Lee in [14] and by Van Vliet [20]. Adaptations of this
sequence were later used in several papers including [6, 18]. The sequence is constructed in a way

that1l — Zijl ﬂi =5 1 — (which can be easily shown by induction using the sequence definition).
This means that each time the next vatyeis picked to be an integer, such that all |ten1\5for

j < i can fit together in a bin leaving some empty space. Notellhais a lower bound on the best
competitive ratio for classical bounded space bin packing, and there exists a sequence of bounded
space algorithms, with an increasing sequence of open bins whose competitive ratios tend to this value
[14, 21]. The algorithms in this section are based on the algorithms in [14] with some differences in
the construction and proof due to the cardinality constraint (which also increases the competitive ratio
by 1 for large values ok). We also would like to achieve the best possible bound for every valke of

separately, and not only in the limit.

k
Let Ry = 32 max{ 1 —, k} We show that for every value d@f, the best competitive ratio is

exactlyRy. We start with some properties &f;, as a function of:.

Theorem 1 The value ofR;, is a strictly increasing function d¢, such thal*'gi < Rp <y +1,and
klim Ri = + 1~ 2.69103.
—00

Proof. We first find the value ofR,. Sincem; = 2 andwy = 3, we haveRy = % = 1.5. Note
also thatRz = ~ 1.83333, R4 = 2,R5 = 2.1 andR6 = % 2.16666. Next we show the

6
monotonicity ofR. For a givenk, let j, = 1mm {jlz > }. The valuej;, exists for allk since

7r'71
Je—1 Jk*l n ket o
m — 1 > k for all k. Then we haveR, = - 71 + Z = > —3 + —%=. By definition
=1 =7k i=1 "
f the valuesj;, clearlyj, < j heref O N S NURT Ry |
of the valuesj;, clearlyji, < jxy1. ThereforeRy 1 — R = > 1 T TR Tk >

Jk
Deprodi y Ldeer Lode — il Jiel > 0. We deduce the strict inequality abovedy-1 < k+1
which holds fori < jj.1.

k k
An upper bound o, follows fromRy = 3 max{ L -, k} ~+1. We

1= =1

next show thaRR;, tends to this value. For a givert> 0, let/ be a value such th@ 7 > oo — 5,

k
ZZL?ZHOO 3+ e2£>H —otl-5=
i=0+1

¢
2
and/ > 2. Letk = (%, thenR;, > El —

o +1—€cm

Next we define the algorithf@ARDINALITY CONSTRAINED HARMONICy (CCHjg) which is an
adaptation of the algorithrilARMONIC;, defined originally by Lee and Lee [14]. The fundamental
idea of “harmonic-based” algorithms is to first classify items by size, and then pack an item according
to its class (as opposed to letting the exact size influence packing decisions).

For the classification of items, we partition the inter¢@l1] into sub-intervals. We usk — 1
sub-intervals of the forn@zﬂ, i fori = 1,...,k — 1 and one final sub-intervdD, ;]. Each bin
will contain only items from one sub—lnterval (type). Items in sub-intef\aale packed to a bin for

i =1,...,k — 1, thus keeping the cardinality constraint. The items in intekvate packed: to a
bin. A bin which received the full amount of items (according to its type) is closed, therefore at most
k — 1 bins are open simultaneously (one per interval, excep(tgpt]).

To prove the upper bound on the competitive ratio, we use a simplified version of a theorem
9 stated in section 5. We use the technique of weighting functions. This technique was originally
introduced for one-dimensional bin packing algorithms [19]. The version we use is as follows.

Theorem 2 Consider a bin packing algorithm. Let be a weight measure. Assume that for every
output of the algorithm, the number of bins used by an algorithbdr is bounded byX (o) + ¢ for
some constant, whereX (o) is the sum of weights of all items in the sequence according to weight
measurew. Denote byl the maximum amount of weight that can be packed into a single bin of
an offline algorithm according to measute Then the competitive ratio of the algorithm is upper
bounded by¥'.

We define weights as follows. The weight of itenis denotedw(x). The weight of an item in
interval (=7, §], fori = 1,...,k — 1,is }. The weight of an item in intervaD,] is ;. Recall that
except fork—1 open bins that may not receive the full amount of items, each output bin receives a total
weight of 1. A closed bin for items in mterva(lm, 1] receivesi items, of weight: each. A closed
bin for items in interval(0, +] receivesk items, of weight} each. Therefore we gétC Hy (o) <

X(o)+k—1.

Theorem 3 For everyk, the competitive ratio o€CH, is R, and no online algorithm which uses
bounded space can have a better competitive ratio.

Proof. We prove the upper bound first. Let> 0 a very small constant, such thatkc < ,miﬂ We
claim that the maximum weight of a single bin is achieved for the following set of it¢ms. ... >
f&, sothatf; = 7% + e. This set of items fits in a single bin according to the definition of the sequence

k
;. Their sum of weights is exactlig, = > max{ﬂil, %}
i=1 !
To show that the maximum weight of any bin is indefeg, consider an arbitrary sét of £ < k
items which fits into one bin. If # k, we addk — ¢ items of size zero and give them WeidptThis
may only increase the sum of weights. lget> ... > g, be the sorted list of items. if; € (7r , ml_l]

holds for alli such thatr; < k andg; € [0, 1] for all i such thatr; > k, then the weight of the
items of S is exactIyRk OtherW|se Iet be the flrst index of |tem that does not satlsfy the above. If

w(g;) = We get thatZ w(gj) = Z w(g;) + Z w(g;) = Z w(fj) + Z < Z w(f;) =

OtherW|se assumej(gl) % Due to the greedy constructlon of the sequefn;;eand since

gi ¢ (&], we get thatgz < + and thereforev(g;) < 15 = w(fi). Let? be the smallest

7r’7r—1 Ti—1

index such thatv(g;/) = E (this value exists as mentioned above sikce 7, — 1). If i/ =i+ 1

k
we get thatw(g;) < w(f;), and forj > @/, + = w(g;) < w(f;). In this case we have> w(g;) <
j=1

k
> w(f;) = Ry. Otherwise consider the values pbuch thati < j < ¢/ — 1. We haveg; < ﬂi
=1 L

and therefore according to the weight definition for- % w(gif) < ’TT“ fori < j <i —1. Given

5

i'—1
that forj < i, g; € (& } we havez 9; < 7= and thereforey_ w(g;) < 7; . However

i M — —T;
7 "]Z jZ

w(f) +w(fin) = 9+ 7= =75+ _gi = m+l Summarizing, we geg w(gj) =

mi—1 mit1—1 -y

Z w(gj) + Z w(gj) + Z w(gj) < Z w(f;) +w(fi) + w(fiva) + Z i < E w(fi) =

~ The proof of the Iower bound is S|m|Iar to previously known Iower bound proofs for bounded
space algorithms, see [14, 6]. To prove the lower boundylée a large constant, add> 0 a very
small constant, such that << kﬂl We construct the following sequence. The sequencekhas
phases. PhasecontainsN items of S|ze— + 4. Let K be the number of bins that may be open
simultaneously. Except for at moat blns "all bins of each phase are closed after the phase. Such
bins can be filled by a maximum amountmin{m 1, k} items. Therefore phasecontributes at
Ieastm L, 1} — K closed bins to the output. The optimal packing of
the sequence containé |dent|cally packed bins with one item of each phase per bin. We get that the
competitive ratio is at leag®;, — % This approacheR,, for large enoughV. m

3 Extension to Resource Augmentation

Following the work of [6] which studied resource augmentation for the classic bin packing problem,
we show that the algorithms defined in the previous section are optimal in a resource augmented
environment as well.

We compare an online algorithm which uses bins of $iz@ an optimal offline algorithm whose
bins are of size%. We assume that all item sizes are boundec%byThis problem definition is
equivalent to the alternative definition where items have sizé3,ifj, the online algorithm uses bins
of sizeb and the offline algorithm uses bins of sizeThe competitive ratio for bounded cardinality
k is measured as a function bf> 1. The best competitive ratio for bounded space algorithms and
unrestricted online algorithms are deno®gd(b) andr(b) (respectively). We note a fundamental
difference between the resource augmented problem associated with the classic bin packing problem
and the problem studied in this paper. As we show later in this section, the competitive ratio is never
below1 for our problem, whereas the classic problem has a competitive ratio hdtow > 2 [6, 8].

We show that the competitive ratio (even for unbounded space algorithms) cannot actually reach
1if b < k and is exactlyi for b = k.

Theorem 4 For all values ofb, k such thath < k£ we haveR,(b) > r(b) > 1. For all values ofb, k
such that > k, we haver,(b) = Ry(b) =

Proof. It is easy to see that the functiong(b) and R« (b) are monotonically decreasing n and
Ry (b) > 7y, (b). Therefore giverd < k, we can prove the first part fof = max{b,k — 1} > b. l.e,
we prove that(b') > 1 and thereforey,(b) > 1. Letz = &tk < L and lete = b,l(;fb{) > 0. Let
N be a large enough integer. The input sequence consists of a first phas€iyith- 1) items of
sizee possibly followed by a second phase withk items of sizer. Denote the optimal offline cost
after the first phase b§ P13 and after the second phase ®y7,. We get thaOPT, = N(k — 1),

sinceke < % andOPTy = Nk, sincez + (k—1)e = é Let R be the competitive ratio of an online

algorithm A. LetY; (1 < ¢ < k) be the number of bingl has with exactlyi items after the first
k k

phase. Note tha}" iY; = NEk(k — 1). If the sequence stops here, we haveY; < R - OPT, =
i=1 i=1
k k

RN(k —1). If > Y;(k—1i) > Nk, we get}. kY; > Nk(k — 1) + Nk = Nk2, which gives
=1 1= 1

R > =-. Otherwise if the sequence contmu@ Y;(k — 1) is exactly the number of larger items

can join the bins of the online algorithm. Slnce this number is at M&st the other items need

to be packed into new bins. Note that = b;g,’“ > 1. Therefore the best packing can be with

. Nkfzk: Y; (k—i)
k — 1 items per bin. This results in a packing of si/‘z;elY; + —55—— < R-OPT; = RNk.

k k k
We get> (k—1)Y; + Nk — > Yi(k—i) = Nk+ > (i —1)Y; < RNk(k — 1). Combining
=1 =1 =1

k k
with > Y; < RN(k — 1) we haveNk? = Nk + Nk(k — 1) = Nk + > i¥; < RN(k* — 1) or

z—l i=1
R > kQ 7 > 1.

For the second part we simply use the algorithm Next-Fit. Sice 1, and all item sizes are

at most%, each bin receives exactlyitems. Given a sequence gfitems, we get{ﬂ packed bins.

However due to the cardinality constradt"T > [ﬂ and therefore the competitive ratio is at most
1. Consider now a sequence bt items of size%. No algorithm can pack them into less than
bins (no matter how largkis). SinceOPT = N as well we get thaty(b) = Ry(b) = 1 for the case
b>k. m

The algorithms are defined exactly as in the previous section. However this means that some of the
defined classes do not existhifs large enough. Note that the algorithm for the case & becomes
exactly Next Fit as described in Theorem 4.

To define the competitive ratio, we first define sequencéls) andIl;(b), originally defined by

[6] as follows. TIy(b) = 0, 71 (b) = |b] + 1, 1 (b) = #b), mi(b) = lnl()J + 1 andIL;(b) =
IL;_1(b) + (b) The intuition behind this function is to find a sequence of integers, such that the next

integer at each point is picked greedily to be minimal, and the sum of their reciprocals is Ie%,s than
The values ofr;(b) satisfyr;(b) > b. We can show that the values are strictly increasing as a function
of b. Clearly the values are non-decreasing. If two values are the samewélet m;.1(b) = f be
these identical values. Then we argue thdb) should have been chosen to be at mypst 1. To see

that note thag — IT;_; (b) > f > +13. This holds for allf > 2.

Csirik and Woeginger [6] mtroduced the functip(b) = Oo (b) 7 and showed that this is the
1= 1
best possible competitive ratio with resource augmentationthe classic bin packing problem. Note
thatp(1) = I1 =~ 1.69103. We can prove the following theorems.
Theorem 5 For everyk, the competitive ratio o€ CH;, (defined in the previous section); (b) =

Z max{ ==T k} and no online algorithm which uses bounded space can have a better compet-

|t|ve ratio.

Theorem 6 The value ofR(b) for a fixed value ob is an increasing function of, such thatl <
Ri(b) < p(b) + 1, andklim Ry = p(b) + 1.

Proof. (of Theorem 5). We again use Theorem 2. The weights are defined as in the previous section.
We prove the upper bound first. Let> 0 a very small constant, such thak < s () We claim

that the maX|mum weight of a single bin is achieved for the following set of |tejf?ns> > e

so thatf; =) + . This set of items fits in a single bin of sn%eaccording to the definition of the

sequencaj(b). Their sum of weights is exactli;, (b) = Z max{ 1) - %}

To show the maximum weight of any bin is indeﬁqi() consider an arbitrary set of / < k
items which fits into one bin of siz#. If £ # k, we addk — ¢ items of size zero and give them weight
%. This may onIy increase the sum of weights. ket> ... > g; be the sorted list of items. If
gi € (ml(L (b) —4—1 holds for alli such thatr;(b) < k andg; € [0, 4] for all i such thatr;(b) > k,
then the weight of the items of is exactlyR(b).

Otherwise let be the first index of item that does not satisfy the above(lf;) = + we get that

z w(g) = 5 wlgy) + 35 wlg;) = z w(f;) + z < z w(f;) = Ri(b). Otherwise, assume
j=t

7=1
(gz) > k,. Due to the greedy construction of the seque;n]qand sincey; ¢ (=4 | we get

m;(b)? 7r7,(b) 1
thatg; < %(b) and thereforev(g;) < ﬁ = w(f;). Leti’ be the smallest index such thatg]) =

1. If such an index does not exist we fet= &k + 1. If ' = i + 1 we get thatw(g;) < w(f;), and for

i <j <k 1 =w(g) < w(f). Inthis case we hanj w(g;) < Z w(f;) = Ri(b). Otherwise
= .
consider the values of such that < j < ¢ — 1. We haveg; < m(b), and therefore according

1 ow(gj) mi(b)+1

to the weight definition forr > £, o S Tm Given that forj < i, g; € (% #]
g J

)) HORBCHORSSS
we have}: g; < % —1II,-1(b) < ﬁ and Zﬂgj < % — IL;(b) = % —IL_1(b) — %(b) <
J=1 Jj=t
k i'=1
77%1%,))_1. Usingg; < -) again we gety g; < m“%b) T + ml(b). This gives - w(g;) <

Jj=i J=t

i (b)+ 1 1 1 _ 1 1
(w6) (> 93) S momo—D Tam T aae=1 = mo=1 T mam—1- However we have

k i—1 =1
w(fi) +w(fir1) = w1 + 7T Summarizing, we ge‘E w(gj) = le(gj) + Y w(gy)+

Z w(gj) < Z w(fj) +w(fi) + w(fiza) + Z < Z w(fi) = Ri(b).

To prove the lower bound, le¥ be a Iarge constant ad> 0 a very small constant, such that
0 << Ty (- We construct the following sequence. The sequencé passes. PhaseontainsV

items of smeT + 4. Let K be the number of bins that may be open simultaneously. Except for at
most K bins, all bins of each phase are closed after the phase. Such bins can be filled by a maximum
amount Ofmin{m() — 1,k} items. Therefore phasecontributes at Ieasntm K =
Nmax{ s k} K closed bins to the output. The optimal packing of the sequence comfains
|dent|cally packed bins with one items of each phase per bin. We get that the competitive ratio is at

leastR(b) — EX. This approacheR(b) for large enoughV. m

Proof. (of Theorem 6). As shown above the valug)f(b) is at leasti. Next we show the monotonic-
ity of Ry (b) for a fixed value ofb as a function ofk. If &k < b the value of the function ig,
therefore we need to prove monotonicity for> b. Note that for everys andb, m(b) > k. This

k
holds since ifr, < k we get thatz %@ > 1 > b. We therefore need to consider the case

() > k41, m1(b) > k+2. Fork’ =k, k+1,letj, = mln {]|k, 1} We haveR;, =

— 7T
Je—1 Jek=1
E m(b 1+ Z 5= Zl m(b)71+k_3,§+1. By definition of the valueg;, clearlyji < jr.1. There-

1=

Je+1—1 . .))
B - 1 E—jry14+2 k—jp+l Jbt1=Jk | 1=Jk41 _ 1—jp _ je—1_ jx—1
foreRy11—Ry, =]Z P () R i s R N | o= Tk 20
k
The strict inequality above follows from;(b) — 1 < k + 1fori < jgiq.

k
An upper bound orr;, follows from R, = Z max{ bl) 7> k} Z b) : + Z T <

p(b) + 1. We next show thaR;, tends to this value For a given > 0 Tet ¢ be a value such
k
that 3, —— > p(b) — 5, andl > 2. Letk = (2, thenR; > 2 oIt X e 2

(b)—1 i=0+1
2
p(b) =5+ 5 > pb) - 5+1-5=p()+1-cm

4 Extension to Variable Sized Bins

Following the work of Seiden [16] we design optimal online bounded space algorithm for the case
of variable sized bins. Similarly to that case and other work on variable sized bins [7], we design
algorithms for any set of bin sizes, we prove their optimality, however we do not know their compet-
itive ratios. Our algorithms are based on MerIABLE HARMONIC algorithms of Csirik [4]. The
optimality of these algorithms among the class of bounded space algorithms was proved in [16]. As
in previous sections, the main difference between these algorithms and our algorithms is in the way
that small items are packed. As in previous sections, our algorithms have the exact best possible com-
petitive ratio for a given set of bins and cardinality constraints, this with a constant number of open
bins that can be easily computed (as a function of the bins sizes and constraints). The algorithms for
the classical problem get close to the best possible competitive ratio as the number of open bins grows
without bound.

In order to define our general algorith@ARDINALITY CONSTRAINED VARIABLE HARMONIC
(CCVH) we use some definitions. Let the bins sizesshbe< ...s,, = 1. Let their cardinality

constraints bé, . . ., k,, (respectively). We define a set of critical sizes for each bin in the following
way. LetT; = {%\1 <j<k}andT = U T;. Let|T| = M and the members df be
1<i<m

L=t >ty > ... > ty. The type of a size, is defined to a valué(r) such that, € T, (ties are
broken arbitrarily). In this case the orderipfis /() < k; such that, = 2(&«))

We again classify items into intervals whose right endpoint is a critical size. This associates an
item with an type and order. Afterwards we pack an item according to its type and order (here as well
as in the previous sections, the exact size does not influence packing decisions). Each bin will contain

items of a single interval.

SinceM = |T| < f) k;, there is a bounded number of pairs of type and order. For the classifi-
i=1

cation of items, we partition the intervéd, 1] into sub-intervals. The “small” interval i®), t5/]. The

other intervals ar¢t;,,t;] for j = 1,..., M — 1. Each bin will contain only items from one pair of
type and order. Items in the sub-interval whose right endpoititase packed into bins of sizg,.,.

The items in this interval are packé(r) to a bin, thus keeping the cardinality constraints. Note that
at mostM — m bins are open simultaneously, since a bin which received the full amount of items
(according to its type) is closed.

The differences with algorithms for the classic variable sized bin packing problem are as follows.
The condition for an item to be “small” (i.e. in the “small” interval) is determined by the cardinality
constraints. Items cannot be packed using Next Fit due to these constraints. Moreover, in [16] the
smallest items are packed into bins of sizén that case it is actually possible to pack the small items
into any type of bin. Here the type of bin for the small items mustbg, (if there exists another
sizei’ such that, € T}, that size can be used for the small items as well).

The following theorem is used in [16] to prove upper bounds on the competitive ratio of algorithms
for variable sized bins.

Theorem 7 Consider a bin packing algorithm. Let be a weight measure. Assume that for every
output of the algorithm, the cost of all the bins used by the algorithidr is bounded byX (o) + ¢

for some constant, whereX (o) is the sum of weights of all items in the sequence according to weight
measurav. Denote by¥; the maximum amount of weight that can be packed into a single bin of size
s; of an offline algorithm according to measute Then the competitive ratio of the algorithm is
upper bounded b S%ﬁ{?—}

We assign weights to items in the following way. A weight of an itens again denoted by
w(x). An item of interval (0, /] receives weight‘zz(—&f)) (note that{(M) = kip)- An item of
interval (¢;41,t;] receives weigh%. Each closed bin of intervaD, t] is of sizes;), it receives
¢(M) items and thus the weight of items packed in it is equal to its size. Each closed bin of interval
(tj+1,t5] is of sizes;;. It receives/(j) items and thus the weight of items packed in it is equal to its
size. Therefore the cost of the algorithm differs from the total weight of all items by the cost of all
open bins, which is clearly bounded By — m.

We can now use Theorem 7 to prove the following theorem.

Theorem 8 For a given set of bins sizes and cardinality constraints, the algorithm CVH is an optimal
online algorithm.

Proof. Let s = s; be the bin size which maximizes the expressiamx {‘f—} Letk = k; be
1<i<m K

the cardinality constraint of this bin size. We allow the bin to contain items of(siamed we give
them the Weight‘;;i((—]{j; as the weight of other very small items. Assume therefore that a bin which
contains a maximum amount of weight has exaktliems. Letby, ..., by be their sizes. Lelv be a
large enough integer. Consider an offline packing whttins of sizes identically packed with items
bi,...,br. The cost of this algorithm i8/s.

We show that any bounded space online algorithm is forced to have competitive ratio of at least

k
Z w(by)
=1 ——. The input sequence is sorted so that it consists pifiases. PhagghasN identical items

10

of sizeb,. Let K be the number of bins that can be open simultaneously. For each bis,siae
compute the maximum number of items of shzethat can be packed in a closed bin of size This
number isQ(y, a) = min{k,, Lg—zj}. Lett;(,) be the upper bound of the interval fy. According
to the above weight definitions;(b,) = tiy)- Forl < a < m, such that, > b,, letxz(y, a) be the
smallest integer such thay < t,,), andi(z(y,a)) = a.

We charge an item of siZg,, which the online algorithm packs it in a bin of sizg with Q(y L
In this way the cost for all items packed in closed bins is exactly the cost of the online algorithm
for the closed bins. We claim that for paigsa for which x(y, a) is definedt,, ., = ﬁ and
z(y,a) < j(y) hold. If Q(y,a) = k, then;j—; > kq. Thereforegs > b, andt,,) = 7. Otherwise
7o —1 < Qy,a) < Z—Z Thereforem < by andm > by. This is exactly the definition
of ty(yq)- Sincej(y) is the largest index that satisfieg(y) > b,, we get thatr(y,a) < j(y).

We got that an item of siz&, in a bin of sizeb, is charged WlthQ(o = laye) = 4 (y). Let
K= 1max {k;}. AtmostKx items are in open bins after phagﬁeherefore the cost for this phase is at

leastNt;(y) — Kk = Nw(b,) — K. Summing over all phases we get the c@t(Nw(by) —Kk) =

y=1
k
k Z w(by)
N yzzjl w(by) — K kr. The competitive ratio is therefore at ledst—— — f]’cvﬁ This value approaches
k
> w(by)
y:l

for large enoughyV. m

5 Improved Unbounded Space Algorithms for Small Values ok

51 k=3

In this section we design an algorithm for= 3. Already the algorithm of [1] has a competitive
ratio lower than the best bounded space algorit@m:(1.8 which is smaller thariG—l). We design
an algorithm which uses a more careful partition into classes and has competitivé Fatin.75.
The algorithm is based on the idea of tHerRMONIC algorithm, and its generalizations (see [14, 15,
17, 9]). In these generalizations, items of two intervals are combined together in the same bins. We
would like to use a similar approach, however the boundaries of intervals are chosen with accord to
cardinality constraints.

We use the following five intervalsd = (3,1], B = (3,3],C = (3,3, D = (3, 1], E= (0, }].
Items which belong to an intervdlare called items of typé, typeI items, or simplyl items. Iltems
of typesA, C and D are packed independently of any other items, one, two and three items per bin,
respectively. Note that it is always possible to combine one item of B/path two items of typeF.
Therefore, each item of typE receives a color upon arrival, white or red. White items are packed in
separate bins (three per bin) whereas red items are packed two per bin, and combined with one type
B item. If there exists such an open bin, the red typems are added there. Otherwise once a type
B item arrives later, it is added to a bin with two typkitems. The colors are assigned so thatan
fraction of the typel items are red. We use = %. Therefore every fourth typg' item is red, and all

others are white.

11

We define a bin as incomplete in the four following packings.
e A bin with a singleC' item.

e A bin with only one or twoD items.

e A bin with one or two whiteF items.

e A bin with a single redt item (and possibly & item as well).

At every time, the algorithm can have at most four incomplete bins, one for each combination.
Therefore upon termination, except for at most four incomplete bins, all bins can be packed as follows.

e Asingle A item.

Two C items.

ThreeD items.

OneB item.

Two red E items

Three whiteE items

OneB item and two red” items.

According to the definition of the algorithm, we never have a situation where one bin has only a
B item, and another bin has two réditems. This is true since a new bin is opened for such items
only if they cannot join a previously opened bin.

The algorithm is therefore at one of the following two situations. 1. There are no bins with two
red E' items with noB item. 2. There are no bins with orf@item and noF items.

We assign two weights to each item, according to the two scenarios. The weights are assigned
according to types of items. We usge () andws(I) to denote the weights of typeitems according
to the two weight functions. Let

wl(A) = U)Q(A) = 1,

wl(B) == 1, ’wg(B) == 0,

wl(C):W(C):%,
wi(D) = ws(D) = 3,
wl(E):l_Oé:1 wo(F) = 1—a+g:a+2:§

3 4’ 3 2 6 8
The weights are defined so that in the first scenario, on average all bins (but at most four) have
a total amount of weight of at leastpacked into them according to the first weight measure, and
otherwise the same property holds according to the second weight measure.
We use the following theorem, see Seiden [17].

12

Theorem 9 Consider a bin packing algorithm. Lat;, wo be two weight measures. Assume that for
every output of the algorithm, there existé = 1 or i = 2) such that the number of bins used by
the algorithmA LG is bounded byX; (o) + ¢ for some constant, whereX; (o) is the sum of weights
of all items in the sequence according to weight measyreDenote byi¥; the maximum amount of
weight that can be packed into a single bin according to measu¥g = 1,2). Then the competitive
ratio of the algorithm is upper bounded hyax (177, Wa).

Proof. Given an input, let be the value that satisfies the theorem for this input. Cleai¥i’ (o) >
2Lo) We getALG < X;(0) + ¢ < W;OPT +c. m

To use the theorem, we need to prove that for every inpl€&@ < X;(o) + ¢ for somei. We
ignore the (at most four) incomplete bins, which adds at mastthe constant. The weight of a bin
is the sum of weights of items assigned to it. In both scenarios, bins witkldteen have weight 1,
bins with twoC' items have weight, and so do bins with threP items.

We remove from the sequence items of incomplete bins. Denote the amouhiteais byn(B),
and of E' items byn(E). The number of red items is denoted.(ER), and the number of whit&
itemsn(EW), (i.e.,n(E) = n(EW) + n(ER)). According to the color assignments, and since at
most two white items and one red item were removed F R) < n(EW) < 3n(ER)+6. In the first
scenario, no bins contain rdd items only. The total weight oB and E items isn(B) + @ The
number of bins used for these typea(sB)Jr@ < n(B)+% (usingn(EW) < 3n(ER)+6
which givesdin(EW) < 3n(E) + 6). In this case we get LG < X + 5. In the second scenario, no
bins contain &3 item only. The total weight oB andE items is3”éE). The number of bins used for
these types i@ 28 4 EW) _ n(B) | n(BR) () (L 4 Ly = #E) (using3n(ER) < n(EW)
which givesdn(ER) < n(E)). In this case we gel LG < Xy + 4.

Next we analyze the maximum amount of weight that a bin can contain according to the two
weight measures. In both weight measures, if no item has wejghe total weight of three items
does not exceeé. Usingws, the smallest item of weight is slightly larger than%. If there is aC
item, then there can be no item but only aE item. We get thereforé + J + 1. If there is noC
item, the worst case is two extfaitems. This gived + % We get thereforél’; = % = 1.75. Using
wa, the smallest item of weiglitis slightly larger than%. There can be n® or C' items. The worst
case is two extrd’ items, and we gétts =1+ 2 - % = 1.75.

We proved the following theorem.

Theorem 10 The competitive ratio of the above algorithm for 3 is at mostl.75.

52 k=456

In this section we introduce a general algorithm and analyze it for three valie§ b algorithm is
a generalization of the algorithm fér= 3 with additional options. The intervals (also called classes)
are defined as follows. The interval of largest itemslis= (1 — %7 1]. The next interval, of smaller

large items isB = (3,1 — ¢]. IntervalsCy, ..., Cy_; areC; = (37, 1. IntervalsEy, . .., B, are
defined to bes; = (ﬁ, Llfori <k—1andE;_; = (0, ﬁ].

We use parameters; for intervalsE;. An «; fraction of the items of intervals; are colored red
and all others are colored white. All these values are rational, ap if {1’— is a minimal rational

13

representation od;, then the input items of this intervals are partitioned into setg adéms, out of
which, the firsty; — p; are colored white, and the nextare colored red.

The packing is done as follows. Items of cl&$sare packed per bin. White items of classds;
are packed per bin. Red items of clags; are packed per bin. This means that a bin never contains
more thark — 1 red items, and they occupy a space of at n%os‘[hese items can always be combined
with type B items. Basically, items of clasB are packed one per bin, but when possible, they are
combined with one of the typds;. When we need to open a bin for rég items for some, we first
check whether there exists a bin with only a cl&sgem, and if so the red items are added to that bin.
Otherwise a new bin is opened for them. When an item of diaasrives, we try to add it into a bin
of red items that still did not receivela item, and open a new bin if it does not exist.

A bin is complete if it received its full amount of items, or if it contain®atem or if it contains
the full amount of red items (possibly withoutzaitem). We can neglect bins that are not complete,
since their amount is at mo3t — 4. This amount is caused by at mast- 1 bins for intervals’; for
1 <i<k-—1,k— 1 bins for white items ok — 1 types, and: — 2 bins for red items ok — 2 types
(a bin with a redE; item cannot be incomplete). As in the algorithm foe= 3, only one of the two
situations can occur. Either there are no complete bins with red items without acii@ss, or there
are no bins with a clasB item and no red items.

We define weights as follows. Assign two weights to each item, according to the two scenarios.
The weights are assigned according to types of items. We agaim($¢ andw,(I) to denote the
weights of typel items according to the two weight functions. ket(A) = we(A) = 1, wy(B) =
1, wa(B) = 0, wi(Cy) = wa(Ci) = L, wi(By) = 1525, wy(B;) = 1520 4 a0 — tilEfos

The weights are defined so that in the first scenario, on average all bins (neglecting the bins which
are not complete) have a total amount of weight of at Iégsacked in them according to the first
weight measure, and otherwise the same property holds according to the second weight measure.

To use Theorem 9, we need to prove the conditions of the theorem hold.

Lemma 11 For every inpui, ALG(0) < X;(0) + ¢ holds for some.

Neglecting the incomplete bins (which affect only the constganwe would like to show thal LG <
X; + c¢. For both weight measures cases, bins with dngem have weight 1, and bins with
classC' items have weight. Denote the numbers @8 items byn(B), and of E; items byn(E;).
The number of redt; items is denoted(ER;), and the number of whit&; itemsn(EW;), (i.e.,

According to the color assignments, let = ’;— (a minimal rational representation af). Then
o (n(E;) = (gi—pi)) < n(ER;) < ayn(E;), and(1—aq)n(E;) < n(EW;) < (1—o5)n(Ei)+¢i—pi-
In the first scenario, no complete bins contain #gditems only. The total weight o8 and E;

k-1
items for alli is n(B) + Y. 5% - n(E;). The number of bins used for these types:($3) +
i=1

k—1 k-1
> @ < n(B) + - ¥ (15%n(E;) + 4224, In this case we getiLG < X + c1, Wherec,
=1 =1

epends on the number of neglected incomplete bins which is constant (for a given choice of the
pi, q; values). In the second scenario, no bins contai ilem only. The total weight o3 and £

k=1 . . k—1
items is 3= 09 (5. The number of bins used for these typeﬁs(”(iwi) + "(EiRi)) <
2 i=1

ik
=

14

]:le Uoan(Botepi | cun(Br) _ 1:211 n(E;) k=i | aizpi n this case we get LG < Xy + ¢,
wherec; is a constant which depends on the number of incomplete bins, and on the values chosen for
g,pi» 1 <i<k-—1.
Next we would like to analyze the maximum amount of weight that a bin can contain according
to the two weight measures. We do that separatelhkfes 4,5, 6. We always assume that there
are exactlyk items in each bin. This is done by allowing items of sizéhat belong to the class
Er_1. Note also that we will have ranges of sizes where weights are fixed to be monotonically non-
decreasing functions of size, therefore in these cases, we do not need to consider options where a

single item can be replaced by a smaller one.

The casek = 4. We are aiming at the competitive ratR(4) = I ~ 1.86842. Define the following
values. oy = 15, a2 = 15, az = 15. This implies the weightsw; (E;) = 55, wi(E2) = %,
wl(Eg) = 3i’ 'UJQ(Ei) = % fori =1,2,3.

We compute the maximum amount of weight in a single bin with respeaet tfirst. If no item in
the bin is of classd, then the largest weight of any item can%)eHowever, a bin can contain at most
two such items. All other items have weights of at mé)st'l'his gives a total of at mos} < R(4).
Next, if a classA item is present, all other others are of clasBgsEs, E5. They all have identical
weight. At most three more items can exist, thus we get the total weigHs - % =R(4).

Next, we compute the maximum weight with respecuto If no item of weightl is present,
then all weights are upper bounded by the weights of the same items with respegard therefore
this case is covered by the calculation doneder Otherwise, an item of weightoccupies a space
of more than%. If an item of clasg’s exists, it occupies a space of more tt’@rand the two other
items are of types,, F», E5. Moreover, there is room for only one item of either cldgsor F,
(these items are larger ths@). Since weights are monotone for all sizes, the worst case is one item
of each class3, (s, E1, E5 whose sum of weights i5 + 4 + & + = = R(4). If there is no item
of Cs, there are three other items, only one of them can ©g ifem, and which gives the worst case
1+ 342 50 < 8 <R(4).

The casek = 5. We are aiming at the competitive rati®(5) = % ~ 1.93719. Define the
following values.oq = 135, a2 = 2%, a3 = —%, oy = 1. This implies the following weights.
wl(El) = %, wl(EQ) = %, ’wl(E3) = %, wl(E4) = %, wg(Ei) = % for i = 1,2,3 and
w2<E4) = %

We compute the maximum amount of weight in a single bin with respeet tirst. If no item
in the bin is of class4, then the largest weight of any item can ?eHowever, a bin can contain at
most two such items, and at most three items larger ﬁh(&two of which may be of size larger than
1). The weight of three items larger théris therefore at most- 1 + 1. All other items have weight
of at most%, which gives a total of at mo§t+ 2 - i = % < R(5). Next, if a classA item is present,
all other others are of classég, F», E3, E4. Four more items are present, but at least one of them
must be in clas¥;. Items inEy, Es, E5 all have weight%, thus we get the total weight of at most
143 155 + 355 = R(5).

Next, we compute the maximum weight with respeciwto If no item of weightl is present, then
again all weights are bounded from above by the weights of the same items with respeand
therefore this case is covered by the calculation donefoOtherwise, an item of weightoccupies

15

a space of more thah

If an item of clas<’;, exists, it occupies a space of more tr%rand the three other items are of
typesEs, E», E3, E4. Moreover, if there is a cIasEl item then there is no clags, item and at most
one classz; item. This gives a total weight df+ 1 + 3% 4+ 29 + 16 = 765 < R(5). If there is no
classE; item, then if we have a clads, item, we can have another item of either classor E5, and
a classE, item, which gives the weight of at most+ 1 + 2 3% + 5 = R(5). Finally if there is
no E; andE, items, then the weight is at moBtr + 3 199 =R(5).

If no item of clasCy exists, but there is a claéég item, we have the following options. If there
is aCy item as well, then the occupied area is already more th@hso the other two items are of
classesE, and this gives weight of at most+ + + 1 + 2. 15 < 899 < R(5). If there is noCy
item, then the Iargest weight of the additional three items caﬁg—geach, which bounds the weight
byl+1+3. 2% <9 <R(5).

If no items of classe€, C5 exist, there can be at most t\m items and other items have weight

at mos , WNnich together bounas the weil + < <
t most2%;, which together bounds the weight by 2 - 1 4+ 2. 338 < I8 < R(5

The casek = 6. We are aiming at the competitive ratio = 257 ~ 1.99306. Define the following
values.a; = 2 = &, ag = 2 =10_5 V=2, a;=123

fO”OWing Weights wl(El) = 24868' ’lUl(EQ) = 2%38’ ’LU1(E3) = 58%’ wl(E4) = %, wl(Eg,) = %,
wa(E;) = 2% fori =1,2,3,4 andws(Es) = 2% = .

in the bin is of class4, then a bin can contain at most two such items larger gnam at most three
items larger thari or at most four items larger th%‘r The worst case gives two items of clasg,
gives atotal of atmost - + 1 + § +2- 2 = 288 < R(6). Next, if a classA item is present, all
be in cIassE5 Items inF1, Es, E3, E4 all have Werght144, thus we get the total weight of at most
144- 144 + 144 R(6>

then again all weights are upper bounded by the weights of the same items with respecnd
therefore this case is covered by the calculation donefoOtherwise, an item of weighitoccupies
an item of sizr.Pl (without changing its weight). Similarly we replace an item of classith an
item of sizeg- 5 (0 for i < k — 1 and with an item of siz@ if i = 5. We only decreased sizes of

8 = 21 I Q3= 3 = 95, = Iy iy = 2. This implies the
We compute the maximum amount of weight in a single bin with respegt thirst. If no item
one ofC3 and one ofCy. The two other items have weight of at mq%i (since% < 144) which
other others are of classés, 1 <1 < 5. Five more items are present, but at least one of them must
Next, we compute the maximum weight with respectta If no item of weightl is present,
a space of more tha%t. Consider the other contents of the bin. We replace an item of €lagsth
items therefor1e they all fit into the bin. We define the expansion of an item of sifeeightw to be

r(z,w) = £=38,
size S and of maximum expansionis at mostSs + L.

The expansions for class€s, ..., Cs are 139 = 1.3125, 2% ~ 1.08333, 122 = 0.9375,22 =
0.825 (respectively). The expansions for clas#gs. .., E5 are{ ~ 1.166667, 22 = 1.5625, 2
1.66667, 129 ~ 1.041667, 0 (respectively).

Let es andes be the amounts of items of classBs and F3. If there is no clasg’; item, we can
bound the Weight as follows. There are ey — e3 other items, therefore the weight is bounded by
L+eogg +eagy+ T2+ (53— 53— 51) 6= 15 + seac2 + soaes- If ez +es < 4wegetat
mostigg < R(6). Otherwrse, ife; + eo = 5 we do not have any other items except for an item of

22

16

weight1 and five items of Welghf— or 288, which gives a total of at mo%% < R(6).

If there is an item of clas€; the empty space left is less thénThrs means that— ex+e3 < 3
andeg <2.We get a total weight of at mos$t5 + ex g + ez iy + =29 + (§ — 2+ &) - £ =
3B 4 Shes + goes. If ea + e3 < 2 we can bound the weight bj23 < R (6). We are Ieft Wlth the
casess = 2,e3=1,e5 = 1,e3 = 2, e3 = 0,e3 = 3. In the first two cases, only an item of claBs
can be added to the bin. In the last case, an item of @dasy £5 can be added. Therefore we need
to consider two cases, where the four small items are of cla%@déig Eg, E5 andFs3, F3, F3, Fj.
We get total weightd.5 + 2 - 52 + 12 + L =R(6), and1.5+ 3 - 1 + L = R(6).

We summarize with the following theorem.

Theorem 12 The competitive ratios of the above algorithm are at m%st:z 1.86842 for k = 4,

71 287
305 ~ 1.93719 for k = 5 and {77 ~ 1.99306 for k£ = 6.

6 Conclusion

The main open question is whether an algorithm with competitive ratio strictly betteRtban be
designed for all values df. In this paper we showed that such an algorithm cannot be bounded space
(unlessk < 3). We note that the methods used in this paper for small valuesahnot be extended

for largerk.

References

[1] L. Babel, B. Chen, H. Kellerer, and V. Kotov. Algorithms for on-line bin-packing problems with
cardinality constraintsDiscrete Applied Mathematic$43(1-3):238-251, 2004.

[2] A. Caprara, H. Kellerer, and U. Pferschy. Approximation schemes for ordered vector packing
problems.Naval Research Logistic82:58-69, 2003.

[3] E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms for bin packing: A
survey. In D. Hochbaum, editohpproximation algorithmsPWS Publishing Company, 1997.

[4] J. Csirik. An online algorithm for variable-sized bin packingcta Informatica 26:697—709,
1989.

[5] J. Csirik and G. J. Woeginger. On-line packing and covering problem#. Fat and G. J.
Woeginger, editorg)nline Algorithms: The State of the Art, pages 147-177, 1998.

[6] J. Csirik and G. J. Woeginger. Resource augmentation for online bounded space bin packing.
Journal of Algorithms44(2):308—-320, 2002.

[7] L. Epstein and R. van Stee. On variable-sized multidimensional packingrom of the 12th
Annual European Symposium on Algorithms (ESA2Qtes 287—298, 2004.

[8] L. Epstein and R. van Stee. Online bin packing with resource augmentati®iodeedings of
the 2nd Workshop on Approximation and Online Algorithms (WAOA 2@a4des 48—60, 2004.

17

[9] L. Epstein and R. van Stee. Optimal online bounded space multidimensional packingcliof
15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODAes 207—-216, 2004.

[10] D. K. Friesen and M. A. Langston. Variable sized bin packiggAM Journal on Computing
15:222-230, 1986.

[11] H. Kellerer and U. Pferschy. Cardinality constrained bin-packing probleingsals of Opera-
tions Researg2:335-348, 1999.

[12] K. L. Krause, V. Y. Shen, and H. D. Schwetman. Analysis of several task-scheduling algorithms
for a model of multiprogramming computer systerdsurnal of the ACM22(4):522-550, 1975.

[13] K. L. Krause, V. Y. Shen, and H. D. Schwetman. Errata: “Analysis of several task-scheduling al-
gorithms for a model of multiprogramming computer systendstirnal of the ACM24(3):527—
527, 1977.

[14] C.C.LeeandD.T. Lee. A simple online bin packing algoritournal of the ACM32(3):562—
572, 1985.

[15] P. Ramanan, D. J. Brown, C. C. Lee, and D. T. Lee. Online bin packing in linear Jimoenal
of Algorithms 10:305-326, 1989.

[16] S. S. Seiden. An optimal online algorithm for bounded space variable-sized bin pagSkiig.
Journal on Discrete Mathematic$4(4):458-470, 2001.

[17] S. S. Seiden. On the online bin packing problelmurnal of the ACM49(5):640-671, 2002.

[18] S. S. Seiden, R. van Stee, and L. Epstein. New bounds for variable-sized online bin packing.
SIAM Journal on Computing2(2):455-469, 2003.

[19] J.D. Ullman. The performance of a memory allocation algorithm. Technical Report 100, Prince-
ton University, Princeton, NJ, 1971.

[20] A.van Vliet. An improved lower bound for online bin packing algorithritdormation Process-
ing Letters 43(5):277-284, 1992.

[21] G. J. Woeginger. Improved space for bounded-space online bin pacEmgM Journal on
Discrete Mathematic$6:575-581, 1993.

[22] A.C. C. Yao. New algorithms for bin packingournal of the ACM27:207-227, 1980.

18

