
Online Bin Packing with Cardinality Constraints∗

Leah Epstein†

Abstract

We consider a one dimensional storage system where each container can store a bounded
amount of capacity as well as a bounded number of itemsk ≥ 2. This defines the (standard)
bin packing problem with cardinality constraints which is an important version of bin packing,
introduced by Krause, Shen and Schwetman already in 1975. Following previous work on the
unbounded space online problem, we establish theexactbest competitive ratio for bounded space
online algorithms for every value ofk. This competitive ratio is a strictly increasing function
of k which tends toΠ∞ + 1 ≈ 2.69103 for large k. Lee and Lee showed in 1985 that the
best possible competitive ratio for online bounded space algorithms for the classical bin packing
problem is the sum of a series, and tends toΠ∞ as the allowed space (number of open bins)
tends to infinity. We further design optimal online bounded space algorithms forvariable sized
bin packing, where each allowed bin size may have a distinct cardinality constraint, and for the
resource augmentationmodel. All algorithms achieve theexactbest possible competitive ratio
possible for the given problem, and use constant numbers of open bins. Finally, we introduce
unbounded space online algorithms with smaller competitive ratios than the previously known
best algorithms for small values ofk, for the standard cardinality constrained problem. These are
the first algorithms with competitive ratio below 2 fork = 4, 5, 6.

1 Introduction

The classical bin packing problem [19, 5, 3] assumes no limit on thenumberof items which may be
packed in a single bin. In practice, many applications require such a bound either due to overheads
or additional constrains that are not modeled. For example, a disk cannot keep more than a certain
number of files, even if these files are indeed very small. A processor cannot run more than a given
number of tasks during a given time, even if all tasks are very short. The problem where there is a
given boundk > 1 on the number of items which can co-exist in one bin, is called “Bin Packing with
Cardinality Constraints” [11, 1]. We consider several versions of this problem.

We first define the classic online bin packing problem. In this problem, we receive a sequence
σ of itemsp1, p2 . . . pn, arriving one by one. The valuespi are thesizesof the items. We have an
infinite supply ofbins, each of which is of unit size. An item must be assigned to a bin upon arrival,
so that the sum of items in no bin exceeds1. A bin is emptyif no item is assigned to it, otherwise it is
used. The goal is to minimize the number of bins used. In thecardinality constrained bin packing

∗A preliminary version of this paper appears in Proceedings of the 13th European Symposium on Algorithms, 2005.
†Department of Mathematics, University of Haifa, 31905 Haifa, Israel.lea@math.haifa.ac.il . Research sup-

ported by Israel Science Foundation (grant no. 250/01).

1

problem, an additional constraint is introduced. A parameterk bounds the number of items that can
be assigned to a single bin.

The standard measure of algorithm quality for online bin packing is theasymptotic competitive
ratio, which we now define. For a given input sequenceσ, let A(σ) (or A) be the number of bins
used by algorithmA onσ. Let OPT (σ) (or OPT) be the cost of an optimal offline algorithm which
knows the complete sequence of items in advance, i.e., the minimum possible number of bins used to
pack items inσ. Theasymptotic performance ratiofor an algorithmA is defined to be

R(A) = lim sup
n→∞

sup
σ

{ A(σ)
OPT (σ)

|OPT (σ) = n

}
.

In theresource augmentedbin packing problem, the online algorithm is supplied with larger bins
at its disposal than those of the offline algorithm that it is compared to. The competitive ratio then
becomes a function of the bin size. All online bins are of the same size, and all the offline bins are of
the same size, but these two sizes are not necessarily the same.

In thevariable-sizedbin packing problem, there is a supply of several bin sizes that can be used
to pack the items. The cost of an algorithm is the sum of sizes of used bins. In this problem, the
generalization into cardinality constrained packing assumes that each bin sizesi ≤ 1 is associated a
parameterki which bounds the number of items that can be packed into such a bin.

We stress the fact that items arriveonline, this means that each item must be assigned in turn, with-
out knowledge of the next items. We considerbounded spacealgorithms, which have the property
that they only have a constant number of bins available to accept items at any point during processing,
these bins are also called “open bins”. The bounded space assumption is a quite natural one. Essen-
tially the bounded space restriction guarantees that output of packed bins is steady, and that the packer
does not accumulate an enormous backlog of bins which are only output at the end of processing.

Previous results. Cardinality constrained bin packing was studied in the offline environment already
in 1975 by Krause, Shen and Schwetman [12, 13]. They showed that the performance guarantee of
the well known First Fit algorithm is at most2.7− 12

5k . Additional results were offline approximation
algorithms of performance guarantee2. These results were later improved in two ways. Kellerer
and Pferschy [11] designed an improved offline approximation algorithm with performance guarantee
1.5 and finally a PTAS was designed in [2] (for a more general problem). On the other hand, Babel
et al. [1], designed a simpleonline algorithm with competitive ratio2 for any value ofk. They
also designed improved algorithms fork = 2, 3 of competitive ratios1 +

√
5

5 ≈ 1.44721 and1.8
respectively. The same paper [1] also proved an almost matching lower bound of

√
2 ≈ 1.41421 for

k = 2 and mentioned that the lower bounds of [22, 20] for the classic problem hold for cardinality
constrained bin packing as well. The lower bound of 1.5 given by Yao [22] holds for small values of
k > 2 and the lower bound of 1.5401 given by Van Vliet [20] holds for sufficiently largek. No other
lower bounds are known.

For the classic bin packing problem, Lee and Lee [14] presented an algorithm calledHARMONIC,
which partitions items intom > 1 classes and uses bounded space of at mostm−1 open bins. For any
ε > 0, there is a numberm such that theHARMONIC algorithm that usesm classes has a performance
ratio of at most(1 + ε)Π∞ [14], whereΠ∞ ≈ 1.69103 is the sum of series (see Section 2). They also
showed there is no bounded space algorithm with a performance ratio belowΠ∞. Currently the best
known unbounded space upper bound is 1.58889 due to Seiden [17].

2

The first to investigate the variable sized bin packing problem were Friesen and Langston [10].
Csirik [4] proposed theVARIABLE HARMONIC algorithm and showed that it has performance ratio
at mostΠ∞. Seiden [16] showed that this algorithm is optimal among bounded space algorithms.
Unbounded space variable sized bin packing was studied also in [18].

The resource augmented bin packing problem was studied by Csirik and Woeginger [6]. They
showed that the optimal bounded space asymptotic performance ratio is a functionρ(b) of the online
bin sizeb. Unbounded space resource augmented bin packing was studied also in [8].

Our results. We consider bounded space algorithms. For every value ofk, we find the best competi-
tive ratio of any online bounded space algorithm. The competitive ratio is a strictly increasing function
of k and for large enoughk it approaches1 + Π∞ ≈ 2.69103 whereΠ∞ is the best competitive ratio
shown by [14] for the classic bounded space problem. This is a surprising feature of the problem,
since one would expect this value to simply tend toΠ∞ ask grows.

We further consider the resource augmented problem where the online algorithm may use larger
bins compared to the optimal offline algorithm. We design optimal online algorithms for this problem
as well. For large enough values ofk, the competitive ratios again approach values which differ by
1 from the best competitive ratios for the classic resource augmented problem [6]. We show that the
competitive ratios for our problem never drops below1 (unlike the case studied in [6]) and identify
the cases where the competitive ratio is exactly1.

For the variable sized bin packing problem, we design algorithms of the exact optimal competitive
ratios (among bounded space algorithms) for any set of bins and cardinality constraints. An interesting
feature is that we prove the algorithms have optimal competitive ratios, even though we do not know
what these ratios are.

A main difference between our results for bounded space algorithms and the results of [14, 6, 16]
is that our algorithms have exactly the best possible competitive ratio achievable by bounded space
online algorithms. The algorithms for variants of the classical problem have competitive ratios which
tend to the best competitive ratio as the number of open bins grows without bound. Our algorithms
just need a constant number of open bins to achieve the best competitive ratios. Therefore we need to
be very careful in the analysis since unlike the classic problem, we may not lose any small constants,
which depend on the number of open bins, in the analysis.

For small values ofk we design several new unbounded space algorithms, based on combination
of large and small items together in bins (see [14, 15, 17]), according to sizes of small items. We
prove the competitive ratios of our algorithms fork = 3, 4, 5, 6 are 7

4 = 1.75, 71
38 ≈ 1.86842, 771

398 ≈
1.93719, 287

144 ≈ 1.99306 (respectively). This improves on the bounds9
5 = 1.8 (k = 3) and2 (k =

4, 5, 6) of [1].

2 Optimal Algorithms for Bounded Space Packing

In this section we define bounded space algorithms of optimal competitive ratio for each value of
k > 1. For everyk > 1, we define an online bounded space algorithm which packs at mostk items
in each bin and uses at mostk − 1 open bins. We show that this algorithm is the best possible among
bounded space algorithms. We use the well known sequenceπi, i ≥ 1 which is often used for bin

3

packing, letπ1 = 2, πi+1 = πi(πi − 1) + 1 and letΠ∞ =
∞∑
i=1

1
πi−1 ≈ 1.69103.

This sequence was used by Lee and Lee in [14] and by Van Vliet [20]. Adaptations of this
sequence were later used in several papers including [6, 18]. The sequence is constructed in a way

that 1 −
j∑

i=1

1
πi

= 1
πj+1−1 (which can be easily shown by induction using the sequence definition).

This means that each time the next valueπi is picked to be an integer, such that all items1
πj

for
j ≤ i can fit together in a bin leaving some empty space. Note thatΠ∞ is a lower bound on the best
competitive ratio for classical bounded space bin packing, and there exists a sequence of bounded
space algorithms, with an increasing sequence of open bins whose competitive ratios tend to this value
[14, 21]. The algorithms in this section are based on the algorithms in [14] with some differences in
the construction and proof due to the cardinality constraint (which also increases the competitive ratio
by 1 for large values ofk). We also would like to achieve the best possible bound for every value ofk

separately, and not only in the limit.

Let Rk =
k∑

i=1
max

{
1

πi−1 , 1
k

}
. We show that for every value ofk, the best competitive ratio is

exactlyRk. We start with some properties ofRk as a function ofk.

Theorem 1 The value ofRk is a strictly increasing function ofk, such that32 ≤ Rk < Π∞ + 1, and
lim

k→∞
Rk = Π∞ + 1 ≈ 2.69103.

Proof. We first find the value ofR2. Sinceπ1 = 2 andπ2 = 3, we haveR2 = 3
2 = 1.5. Note

also thatR3 = 11
6 ≈ 1.83333,R4 = 2,R5 = 2.1 andR6 = 13

6 ≈ 2.16666. Next we show the
monotonicity ofRk. For a givenk, let jk = min

1≤j≤k
{j| 1k ≥ 1

πj−1}. The valuejk exists for allk since

πk − 1 ≥ k for all k. Then we haveRk =
jk−1∑
i=1

1
πi−1 +

k∑
i=jk

1
k =

jk−1∑
i=1

1
πi−1 + k−jk+1

k . By definition

of the valuesji, clearlyjk ≤ jk+1. ThereforeRk+1 − Rk =
jk+1−1∑

jk

1
πi−1 + k−jk+1+2

k+1 − k−jk+1
k >

jk+1−jk

k+1 + 1−jk+1

k+1 − 1−jk
k = jk−1

k − jk−1
k+1 ≥ 0. We deduce the strict inequality above byπi−1 < k+1

which holds fori < jk+1.

An upper bound onRk follows fromRk =
k∑

i=1
max

{
1

πi−1 , 1
k

}
<

k∑
i=1

1
πi−1 +

k∑
i=1

1
k < Π∞+1. We

next show thatRk tends to this value. For a givenε > 0, let ` be a value such that
∑̀
i=1

1
πi−1 ≥ Π∞− ε

2 ,

and` ≥ 2
ε . Let k = `2, thenRk ≥

∑̀
i=1

1
πi−1 +

k∑
i=`+1

1
`2
≥ Π∞ − ε

2 + `2−`
`2

≥ Π∞ − ε
2 + 1 − ε

2 =

Π∞ + 1− ε

Next we define the algorithmCARDINALITY CONSTRAINED HARMONICk (CCHk) which is an
adaptation of the algorithmHARMONICk defined originally by Lee and Lee [14]. The fundamental
idea of “harmonic-based” algorithms is to first classify items by size, and then pack an item according
to its class (as opposed to letting the exact size influence packing decisions).

For the classification of items, we partition the interval(0, 1] into sub-intervals. We usek − 1
sub-intervals of the form(1

i+1 , 1
i] for i = 1, . . . , k − 1 and one final sub-interval(0, 1

k]. Each bin
will contain only items from one sub-interval (type). Items in sub-intervali are packedi to a bin for

4

i = 1, . . . , k − 1, thus keeping the cardinality constraint. The items in intervalk are packedk to a
bin. A bin which received the full amount of items (according to its type) is closed, therefore at most
k − 1 bins are open simultaneously (one per interval, except for(1

2 , 1]).
To prove the upper bound on the competitive ratio, we use a simplified version of a theorem

9 stated in section 5. We use the technique of weighting functions. This technique was originally
introduced for one-dimensional bin packing algorithms [19]. The version we use is as follows.

Theorem 2 Consider a bin packing algorithm. Letw be a weight measure. Assume that for every
output of the algorithm, the number of bins used by an algorithmALG is bounded byX(σ) + c for
some constantc, whereX(σ) is the sum of weights of all items in the sequence according to weight
measurew. Denote byW the maximum amount of weight that can be packed into a single bin of
an offline algorithm according to measurew. Then the competitive ratio of the algorithm is upper
bounded byW .

We define weights as follows. The weight of itemx is denotedw(x). The weight of an item in
interval(1

i+1 , 1
i], for i = 1, . . . , k − 1, is 1

i . The weight of an item in interval(0, 1
k] is 1

k . Recall that
except fork−1 open bins that may not receive the full amount of items, each output bin receives a total
weight of1. A closed bin for items in interval(1

i+1 , 1
i] receivesi items, of weight1i each. A closed

bin for items in interval(0, 1
k] receivesk items, of weight1k each. Therefore we getCCHk(σ) ≤

X(σ) + k − 1.

Theorem 3 For everyk, the competitive ratio ofCCHk isRk, and no online algorithm which uses
bounded space can have a better competitive ratio.

Proof. We prove the upper bound first. Letε > 0 a very small constant, such thatε << 1
kπk+1

We
claim that the maximum weight of a single bin is achieved for the following set of items.f1 ≥ . . . ≥
fk, so thatfi = 1

πi
+ ε. This set of items fits in a single bin according to the definition of the sequence

πj . Their sum of weights is exactlyRk =
k∑

i=1
max

{
1

πi−1 , 1
k

}
.

To show that the maximum weight of any bin is indeedRk, consider an arbitrary setS of ` ≤ k

items which fits into one bin. If̀ 6= k, we addk − ` items of size zero and give them weight1
k . This

may only increase the sum of weights. Letg1 ≥ . . . ≥ gk be the sorted list of items. Ifgi ∈ (1
πi

, 1
πi−1]

holds for all i such thatπi ≤ k andgi ∈ [0, 1
k] for all i such thatπi > k, then the weight of the

items ofS is exactlyRk. Otherwise leti be the first index of item that does not satisfy the above. If

w(gi) = 1
k we get that

k∑
j=1

w(gj) =
i−1∑
j=1

w(gj) +
k∑

j=i
w(gj) =

i−1∑
j=1

w(fj) +
k∑

j=i

1
k ≤

k∑
j=1

w(fj) = Rk.

Otherwise, assumew(gi) > 1
k . Due to the greedy construction of the sequenceπj , and since

gi /∈ (1
πi

, 1
πi−1], we get thatgi ≤ 1

πi
and thereforew(gi) < 1

πi−1 = w(fi). Let i′ be the smallest
index such thatw(gi′) = 1

k (this value exists as mentioned above sincek ≤ πk − 1). If i′ = i + 1

we get thatw(gi) < w(fi), and forj ≥ i′, 1
k = w(gj) ≤ w(fj). In this case we have

k∑
j=1

w(gi) <

k∑
j=1

w(fi) = Rk. Otherwise consider the values ofj such thati ≤ j ≤ i′ − 1. We havegj ≤ 1
πi

,

and therefore according to the weight definition forx > 1
k , w(gj)

gj
≤ πi+1

πi
for i ≤ j ≤ i′ − 1. Given

5

that forj < i, gj ∈ (1
πj

, 1
πj−1], we have

k∑
j=i

gj ≤ 1
πi−1 and therefore

i′−1∑
j=i

w(gj) ≤ πi+1
π2

i−πi
. However

w(fi) + w(fi+1) = 1
πi−1 + 1

πi+1−1 = 1
πi−1 + 1

π2
i−πi

= πi+1
π2

i−πi
. Summarizing, we get

k∑
j=1

w(gj) =

i−1∑
j=1

w(gj) +
i′−1∑
j=i

w(gj) +
k∑

j=i′
w(gj) ≤

i−1∑
j=1

w(fj) + w(fi) + w(fi+1) +
k∑

j=i′
1
k ≤

k∑
j=1

w(fi) = Rk.

The proof of the lower bound is similar to previously known lower bound proofs for bounded
space algorithms, see [14, 6]. To prove the lower bound, letN be a large constant, andδ > 0 a very
small constant, such thatδ << 1

kπk+1
. We construct the following sequence. The sequence hask

phases. Phasei containsN items of size 1
πi

+ δ. Let K be the number of bins that may be open
simultaneously. Except for at mostK bins, all bins of each phase are closed after the phase. Such
bins can be filled by a maximum amount ofmin{πi − 1, k} items. Therefore phasei contributes at
least N

min{πi−1,k} − K = N max{ 1
πi−1 , 1

k} − K closed bins to the output. The optimal packing of
the sequence containsN identically packed bins with one item of each phase per bin. We get that the
competitive ratio is at leastRk − kK

N . This approachesRk for large enoughN .

3 Extension to Resource Augmentation

Following the work of [6] which studied resource augmentation for the classic bin packing problem,
we show that the algorithms defined in the previous section are optimal in a resource augmented
environment as well.

We compare an online algorithm which uses bins of size1 to an optimal offline algorithm whose
bins are of size1

b . We assume that all item sizes are bounded by1
b . This problem definition is

equivalent to the alternative definition where items have sizes in(0, 1], the online algorithm uses bins
of sizeb and the offline algorithm uses bins of size1. The competitive ratio for bounded cardinality
k is measured as a function ofb > 1. The best competitive ratio for bounded space algorithms and
unrestricted online algorithms are denotedRk(b) andrk(b) (respectively). We note a fundamental
difference between the resource augmented problem associated with the classic bin packing problem
and the problem studied in this paper. As we show later in this section, the competitive ratio is never
below1 for our problem, whereas the classic problem has a competitive ratio below1 for b ≥ 2 [6, 8].

We show that the competitive ratio (even for unbounded space algorithms) cannot actually reach
1 if b < k and is exactly1 for b = k.

Theorem 4 For all values ofb, k such thatb < k we haveRk(b) ≥ rk(b) > 1. For all values ofb, k
such thatb ≥ k, we haverk(b) = Rk(b) = 1 .

Proof. It is easy to see that the functionsrk(b) andRk(b) are monotonically decreasing inb, and
Rk(b) ≥ rk(b). Therefore givenb < k, we can prove the first part forb′ = max{b, k − 1

2} ≥ b. I.e.,
we prove thatrk(b′) > 1 and thereforerk(b) > 1. Let x = b′+k

2kb′ < 1
b′ and letε = 1−xb′

b′(k−1) > 0. Let
N be a large enough integer. The input sequence consists of a first phase withNk(k − 1) items of
sizeε possibly followed by a second phase withNk items of sizex. Denote the optimal offline cost
after the first phase byOPT1 and after the second phase byOPT2. We get thatOPT1 = N(k − 1),
sincekε < 1

b′ andOPT2 = Nk, sincex + (k− 1)ε = 1
b′ . Let R be the competitive ratio of an online

6

algorithmA. Let Yi (1 ≤ i ≤ k) be the number of binsA has with exactlyi items after the first

phase. Note that
k∑

i=1
iYi = Nk(k − 1). If the sequence stops here, we have

k∑
i=1

Yi ≤ R · OPT1 =

RN(k − 1). If
k∑

i=1
Yi(k − i) > Nk, we get

k∑
i=1

kYi > Nk(k − 1) + Nk = Nk2, which gives

R > k
k−1 . Otherwise if the sequence continues,

k∑
i=1

Yi(k − i) is exactly the number of larger items

can join the bins of the online algorithm. Since this number is at mostNk, the other items need
to be packed into new bins. Note thatkx = b′+k

2b′ > 1. Therefore the best packing can be with

k − 1 items per bin. This results in a packing of size
k∑

i=1
Yi +

Nk−
k∑

i=1

Yi(k−i)

k−1 ≤ R · OPT2 = RNk.

We get
k∑

i=1
(k − 1)Yi + Nk −

k∑
i=1

Yi(k − i) = Nk +
k∑

i=1
(i − 1)Yi ≤ RNk(k − 1). Combining

with
k∑

i=1
Yi ≤ RN(k − 1) we haveNk2 = Nk + Nk(k − 1) = Nk +

k∑
i=1

iYi ≤ RN(k2 − 1) or

R ≥ k2

k2−1
> 1.

For the second part we simply use the algorithm Next-Fit. Since1
b ≤ 1

k , and all item sizes are

at most1b , each bin receives exactlyk items. Given a sequence off items, we get
⌈

f
k

⌉
packed bins.

However due to the cardinality constraintOPT ≥
⌈

f
k

⌉
and therefore the competitive ratio is at most

1. Consider now a sequence ofNk items of size1
b . No algorithm can pack them into less thanN

bins (no matter how largeb is). SinceOPT = N as well we get thatrk(b) = Rk(b) = 1 for the case
b ≥ k.

The algorithms are defined exactly as in the previous section. However this means that some of the
defined classes do not exist ifb is large enough. Note that the algorithm for the caseb ≥ k becomes
exactly Next Fit as described in Theorem 4.

To define the competitive ratio, we first define sequencesπi(b) andΠi(b), originally defined by

[6] as follows.Π0(b) = 0, π1(b) = bbc + 1, Π1(b) = 1
π1(b) , πi(b) =

⌊
1

1
b
−Πi−1(b)

⌋
+ 1 andΠi(b) =

Πi−1(b) + 1
πi(b)

. The intuition behind this function is to find a sequence of integers, such that the next

integer at each point is picked greedily to be minimal, and the sum of their reciprocals is less than1
b .

The values ofπi(b) satisfyπi(b) > b. We can show that the values are strictly increasing as a function
of b. Clearly the values are non-decreasing. If two values are the same we letπi(b) = πi+1(b) = f be
these identical values. Then we argue thatπi(b) should have been chosen to be at mostf − 1. To see
that note that1b −Πi−1(b) > 2

f ≥ 1
f−1 . This holds for allf ≥ 2.

Csirik and Woeginger [6] introduced the functionρ(b) =
∞∑
i=1

1
πi(b)−1 and showed that this is the

best possible competitive ratio with resource augmentationb for the classic bin packing problem. Note
thatρ(1) = Π∞ ≈ 1.69103. We can prove the following theorems.

Theorem 5 For everyk, the competitive ratio ofCCHk (defined in the previous section) isRk(b) =
k∑

i=1
max

{
1

πi(b)−1 , 1
k

}
, and no online algorithm which uses bounded space can have a better compet-

itive ratio.

7

Theorem 6 The value ofRk(b) for a fixed value ofb is an increasing function ofk, such that1 ≤
Rk(b) < ρ(b) + 1, and lim

k→∞
Rk = ρ(b) + 1.

Proof. (of Theorem 5). We again use Theorem 2. The weights are defined as in the previous section.
We prove the upper bound first. Letε > 0 a very small constant, such thatε << 1

kπk+1(b)
We claim

that the maximum weight of a single bin is achieved for the following set of items.f1 ≥ . . . ≥ fk,
so thatfi = 1

πi(b)
+ ε. This set of items fits in a single bin of size1b according to the definition of the

sequenceπj(b). Their sum of weights is exactlyRk(b) =
k∑

i=1
max

{
1

πi(b)−1 , 1
k

}
.

To show the maximum weight of any bin is indeedRk(b) consider an arbitrary setS of ` ≤ k

items which fits into one bin of size1b . If ` 6= k, we addk− ` items of size zero and give them weight
1
k . This may only increase the sum of weights. Letg1 ≥ . . . ≥ gk be the sorted list of items. If
gi ∈ (1

πi(b)
, 1

πi(b)−1] holds for alli such thatπi(b) ≤ k andgi ∈ [0, 1
k] for all i such thatπi(b) > k,

then the weight of the items ofS is exactlyRk(b).
Otherwise leti be the first index of item that does not satisfy the above. Ifw(gi) = 1

k we get that
k∑

j=1
w(gj) =

i−1∑
j=1

w(gj) +
k∑

j=i
w(gj) =

i−1∑
j=1

w(fj) +
k∑

j=i

1
k ≤

k∑
j=1

w(fj) = Rk(b). Otherwise, assume

w(gi) > 1
k . Due to the greedy construction of the sequenceπj , and sincegi /∈ (1

πi(b)
, 1

πi(b)−1] we get

thatgi ≤ 1
πi(b)

and thereforew(gi) < 1
πi(b)−1 = w(fi). Let i′ be the smallest index such thatw(g′i) =

1
k . If such an index does not exist we leti′ = k + 1. If i′ = i + 1 we get thatw(gi) < w(fi), and for

i′ ≤ j ≤ k, 1
k = w(gj) ≤ w(fj). In this case we have

k∑
j=1

w(gi) <
k∑

j=1
w(fi) = Rk(b). Otherwise

consider the values ofj such thati ≤ j ≤ i′ − 1. We havegj ≤ 1
πi(b)

, and therefore according

to the weight definition forx > 1
k , w(gj)

gj
≤ πi(b)+1

πi(b)
. Given that forj < i, gj ∈ (1

πj(b)
, 1

πj(b)−1],

we have
k∑

j=i
gj ≤ 1

b − Πi−1(b) ≤ 1
πi(b)−1 and

k∑
j=i+1

gj ≤ 1
b − Πi(b) = 1

b − Πi−1(b) − 1
πi(b)

≤

1
πi+1(b)−1 . Using gj ≤ 1

πi(b)
again we get

k∑
j=i

gj ≤ 1
πi+1(b)−1 + 1

πi(b)
. This gives

i′−1∑
j=i

w(gj) ≤
(

πi(b)+1
πi(b)

) (
k∑

j=i+1
gj

)
≤ 1

πi(b)(πi(b)−1) + 1
πi(b)

+ 1
πi+1(b)−1 = 1

πi(b)−1 + 1
πi+1(b)−1 . However we have

w(fi) + w(fi+1) = 1
πi(b)−1 + 1

πi+1(b)−1 . Summarizing, we get
k∑

j=1
w(gj) =

i−1∑
j=1

w(gj) +
i′−1∑
j=i

w(gj) +

k∑
j=i′

w(gj) ≤
i−1∑
j=1

w(fj) + w(fi) + w(fi+1) +
k∑

j=i′
1
k ≤

k∑
j=1

w(fi) = Rk(b).

To prove the lower bound, letN be a large constant, andδ > 0 a very small constant, such that
δ << 1

kπk+1(b)
. We construct the following sequence. The sequence hask phases. Phasei containsN

items of size 1
πi(b)

+ δ. Let K be the number of bins that may be open simultaneously. Except for at
mostK bins, all bins of each phase are closed after the phase. Such bins can be filled by a maximum
amount ofmin{πi(b) − 1, k} items. Therefore phasei contributes at least N

min{πi(b)−1,k} − K =
N max{ 1

πi−1 , 1
k} − K closed bins to the output. The optimal packing of the sequence containsN

identically packed bins with one items of each phase per bin. We get that the competitive ratio is at
leastRk(b)− kK

N . This approachesRk(b) for large enoughN .

8

Proof. (of Theorem 6). As shown above the value ofRk(b) is at least1. Next we show the monotonic-
ity of Rk(b) for a fixed value ofb as a function ofk. If k ≤ b the value of the function is1,
therefore we need to prove monotonicity fork > b. Note that for everyk andb, πk(b) > k. This

holds since ifπk ≤ k we get that
k∑

t=1

1
πk(b) ≥ 1 > b. We therefore need to consider the case

πk(b) ≥ k +1, πk+1(b) ≥ k +2. Fork′ = k, k +1, let j′k = min
1≤j≤k′

{j| 1
k′ ≥ 1

πj(b)−1}. We haveRk =

jk−1∑
i=1

1
πi(b)−1+

k∑
i=jk

1
k =

jk−1∑
i=1

1
πi(b)−1+ k−jk+1

k . By definition of the valuesji, clearlyjk ≤ jk+1. There-

foreRk+1−Rk =
jk+1−1∑

jk

1
πi(b)−1+k−jk+1+2

k+1 −k−jk+1
k >

jk+1−jk

k+1 +1−jk+1

k+1 −1−jk
k = jk−1

k − jk−1
k+1 ≥ 0.

The strict inequality above follows fromπi(b)− 1 < k + 1 for i < jk+1.

An upper bound onRk follows from Rk =
k∑

i=1
max

{
1

πi(b)−1 , 1
k

}
≤

k∑
i=1

1
πi(b)−1 +

k∑
i=1

1
k <

ρ(b) + 1. We next show thatRk tends to this value. For a givenε > 0, let ` be a value such

that
∑`

i=1
1

πi(b)−1 ≥ ρ(b) − ε
2 , and ` ≥ 2

ε . Let k = `2, thenRk ≥ ∑̀
i=1

1
πi(b)−1 +

k∑
i=`+1

1
`2
≥

ρ(b)− ε
2 + `2−`

`2
≥ ρ(b)− ε

2 + 1− ε
2 = ρ(b) + 1− ε

4 Extension to Variable Sized Bins

Following the work of Seiden [16] we design optimal online bounded space algorithm for the case
of variable sized bins. Similarly to that case and other work on variable sized bins [7], we design
algorithms for any set of bin sizes, we prove their optimality, however we do not know their compet-
itive ratios. Our algorithms are based on theVARIABLE HARMONIC algorithms of Csirik [4]. The
optimality of these algorithms among the class of bounded space algorithms was proved in [16]. As
in previous sections, the main difference between these algorithms and our algorithms is in the way
that small items are packed. As in previous sections, our algorithms have the exact best possible com-
petitive ratio for a given set of bins and cardinality constraints, this with a constant number of open
bins that can be easily computed (as a function of the bins sizes and constraints). The algorithms for
the classical problem get close to the best possible competitive ratio as the number of open bins grows
without bound.

In order to define our general algorithmCARDINALITY CONSTRAINED VARIABLE HARMONIC

(CCVH) we use some definitions. Let the bins sizes bes1 < . . . sm = 1. Let their cardinality
constraints bek1, . . . , km (respectively). We define a set of critical sizes for each bin in the following
way. Let Ti = { si

j |1 ≤ j ≤ ki} andT =
⋃

1≤i≤m
Ti. Let |T | = M and the members ofT be

1 = t1 > t2 > . . . > tM . The type of a sizetr is defined to a valuei(r) such thattr ∈ Ti(r) (ties are
broken arbitrarily). In this case the order oftr is `(r) ≤ ki such thattr = si(r)

`(r) .
We again classify items into intervals whose right endpoint is a critical size. This associates an

item with an type and order. Afterwards we pack an item according to its type and order (here as well
as in the previous sections, the exact size does not influence packing decisions). Each bin will contain
items of a single interval.

SinceM = |T | ≤
m∑

i=1
ki, there is a bounded number of pairs of type and order. For the classifi-

9

cation of items, we partition the interval(0, 1] into sub-intervals. The “small” interval is(0, tM]. The
other intervals are(tj+1, tj] for j = 1, . . . , M − 1. Each bin will contain only items from one pair of
type and order. Items in the sub-interval whose right endpoint istr are packed into bins of sizesi(r).
The items in this interval are packed`(r) to a bin, thus keeping the cardinality constraints. Note that
at mostM − m bins are open simultaneously, since a bin which received the full amount of items
(according to its type) is closed.

The differences with algorithms for the classic variable sized bin packing problem are as follows.
The condition for an item to be “small” (i.e. in the “small” interval) is determined by the cardinality
constraints. Items cannot be packed using Next Fit due to these constraints. Moreover, in [16] the
smallest items are packed into bins of size1. In that case it is actually possible to pack the small items
into any type of bin. Here the type of bin for the small items must besi(M) (if there exists another
sizei′ such thattM ∈ T ′i , that size can be used for the small items as well).

The following theorem is used in [16] to prove upper bounds on the competitive ratio of algorithms
for variable sized bins.

Theorem 7 Consider a bin packing algorithm. Letw be a weight measure. Assume that for every
output of the algorithm, the cost of all the bins used by the algorithmALG is bounded byX(σ) + c

for some constantc, whereX(σ) is the sum of weights of all items in the sequence according to weight
measurew. Denote byWi the maximum amount of weight that can be packed into a single bin of size
si of an offline algorithm according to measurew. Then the competitive ratio of the algorithm is
upper bounded bymax

1≤i≤m

{
Wi
si

}
.

We assign weights to items in the following way. A weight of an itemx is again denoted by
w(x). An item of interval(0, tM] receives weight

si(M)

`(M) (note that`(M) = ki(M)). An item of

interval(tj+1, tj] receives weight
si(j)

`(j) . Each closed bin of interval(0, tM] is of sizesi(M), it receives
`(M) items and thus the weight of items packed in it is equal to its size. Each closed bin of interval
(tj+1, tj] is of sizesi(j). It receives̀ (j) items and thus the weight of items packed in it is equal to its
size. Therefore the cost of the algorithm differs from the total weight of all items by the cost of all
open bins, which is clearly bounded byM −m.

We can now use Theorem 7 to prove the following theorem.

Theorem 8 For a given set of bins sizes and cardinality constraints, the algorithm CVH is an optimal
online algorithm.

Proof. Let s = si be the bin size which maximizes the expressionmax
1≤i≤m

{
Wi
si

}
. Let k = ki be

the cardinality constraint of this bin size. We allow the bin to contain items of size0 and we give
them the weight

si(M)

`(M) as the weight of other very small items. Assume therefore that a bin which
contains a maximum amount of weight has exactlyk items. Letb1, . . . , bk be their sizes. LetN be a
large enough integer. Consider an offline packing withN bins of sizes identically packed with items
b1, . . . , bk. The cost of this algorithm isNs.

We show that any bounded space online algorithm is forced to have competitive ratio of at least
k∑

y=1

w(by)

s . The input sequence is sorted so that it consists ofk phases. Phasey hasN identical items

10

of sizeby. Let K be the number of bins that can be open simultaneously. For each bin sizesa, we
compute the maximum number of items of sizeby that can be packed in a closed bin of sizesa. This
number isQ(y, a) = min{ka, b sa

by
c}. Let tj(y) be the upper bound of the interval forby. According

to the above weight definitions,w(by) = tj(y). For1 ≤ a ≤ m, such thatsa ≥ by, let x(y, a) be the
smallest integer such thatby ≤ tx(y,a), andi(x(y, a)) = a.

We charge an item of sizeby, which the online algorithm packs it in a bin of sizesa, with sa
Q(y,a) .

In this way the cost for all items packed in closed bins is exactly the cost of the online algorithm
for the closed bins. We claim that for pairsy, a for which x(y, a) is defined,tx(y,a) = sa

Q(y,a) and
x(y, a) ≤ j(y) hold. If Q(y, a) = ka then sa

by
≥ ka. Thereforesa

ka
≥ by andtx(y,a) = sa

ka
. Otherwise

sa
by
− 1 < Q(y, a) ≤ sa

by
. Therefore sa

Q(y,a)+1 < by and sa
Q(y,a) ≥ by. This is exactly the definition

of tx(y,a). Sincej(y) is the largest index that satisfiestj(y) ≥ by, we get thatx(y, a) ≤ j(y).
We got that an item of sizeby in a bin of sizeba is charged with sa

Q(y,a) = tx(y,a) ≥ tj(y). Let
κ = max

1≤i≤m
{ki}. At mostKκ items are in open bins after phasey, therefore the cost for this phase is at

leastNtj(y)−Kκ = Nw(by)−Kκ. Summing over all phases we get the cost
k∑

y=1
(Nw(by)−Kκ) =

N
k∑

y=1
w(by)−Kkκ. The competitive ratio is therefore at least

k∑
y=1

w(by)

s −Kkκ
sN . This value approaches

k∑
y=1

w(by)

s for large enoughN .

5 Improved Unbounded Space Algorithms for Small Values ofk

5.1 k = 3

In this section we design an algorithm fork = 3. Already the algorithm of [1] has a competitive
ratio lower than the best bounded space algorithm (9

5 = 1.8 which is smaller than11
6). We design

an algorithm which uses a more careful partition into classes and has competitive ratio7
4 = 1.75.

The algorithm is based on the idea of theHARMONIC algorithm, and its generalizations (see [14, 15,
17, 9]). In these generalizations, items of two intervals are combined together in the same bins. We
would like to use a similar approach, however the boundaries of intervals are chosen with accord to
cardinality constraints.

We use the following five intervals.A = (2
3 , 1], B = (1

2 , 2
3], C = (1

3 , 1
2], D = (1

6 , 1
3], E = (0, 1

6].
Items which belong to an intervalI are called items of typeI, typeI items, or simplyI items. Items
of typesA, C andD are packed independently of any other items, one, two and three items per bin,
respectively. Note that it is always possible to combine one item of typeB with two items of typeE.
Therefore, each item of typeE receives a color upon arrival, white or red. White items are packed in
separate bins (three per bin) whereas red items are packed two per bin, and combined with one type
B item. If there exists such an open bin, the red typeE items are added there. Otherwise once a type
B item arrives later, it is added to a bin with two typeE items. The colors are assigned so that anα

fraction of the typeE items are red. We useα = 1
4 . Therefore every fourth typeE item is red, and all

others are white.

11

We define a bin as incomplete in the four following packings.

• A bin with a singleC item.

• A bin with only one or twoD items.

• A bin with one or two whiteE items.

• A bin with a single redE item (and possibly aB item as well).

At every time, the algorithm can have at most four incomplete bins, one for each combination.
Therefore upon termination, except for at most four incomplete bins, all bins can be packed as follows.

• A singleA item.

• Two C items.

• ThreeD items.

• OneB item.

• Two redE items

• Three whiteE items

• OneB item and two redE items.

According to the definition of the algorithm, we never have a situation where one bin has only a
B item, and another bin has two redE items. This is true since a new bin is opened for such items
only if they cannot join a previously opened bin.

The algorithm is therefore at one of the following two situations. 1. There are no bins with two
redE items with noB item. 2. There are no bins with oneB item and noE items.

We assign two weights to each item, according to the two scenarios. The weights are assigned
according to types of items. We usew1(I) andw2(I) to denote the weights of typeI items according
to the two weight functions. Let

w1(A) = w2(A) = 1,

w1(B) = 1, w2(B) = 0,

w1(C) = w2(C) =
1
2
,

w1(D) = w2(D) =
1
3
,

w1(E) =
1− α

3
=

1
4
, w2(E) =

1− α

3
+

α

2
=

α + 2
6

=
3
8
.

The weights are defined so that in the first scenario, on average all bins (but at most four) have
a total amount of weight of at least1 packed into them according to the first weight measure, and
otherwise the same property holds according to the second weight measure.

We use the following theorem, see Seiden [17].

12

Theorem 9 Consider a bin packing algorithm. Letw1, w2 be two weight measures. Assume that for
every output of the algorithm, there existsi (i = 1 or i = 2) such that the number of bins used by
the algorithmALG is bounded byXi(σ) + c for some constantc, whereXi(σ) is the sum of weights
of all items in the sequence according to weight measurewi. Denote byWi the maximum amount of
weight that can be packed into a single bin according to measurewi (i = 1, 2). Then the competitive
ratio of the algorithm is upper bounded bymax(W1,W2).

Proof. Given an input, leti be the value that satisfies the theorem for this input. ClearlyOPT (σ) ≥
Xi(σ)

Wi
. We getALG ≤ Xi(σ) + c ≤ WiOPT + c.

To use the theorem, we need to prove that for every inputALG ≤ Xi(σ) + c for somei. We
ignore the (at most four) incomplete bins, which adds at most5 to the constantc. The weight of a bin
is the sum of weights of items assigned to it. In both scenarios, bins with oneA item have weight 1,
bins with twoC items have weight1, and so do bins with threeD items.

We remove from the sequence items of incomplete bins. Denote the amounts ofB items byn(B),
and ofE items byn(E). The number of redE items is denotedn(ER), and the number of whiteE
itemsn(EW), (i.e.,n(E) = n(EW) + n(ER)). According to the color assignments, and since at
most two white items and one red item were removed,3n(ER) ≤ n(EW) ≤ 3n(ER)+6. In the first
scenario, no bins contain redE items only. The total weight ofB andE items isn(B) + n(E)

4 . The

number of bins used for these types isn(B)+ n(EW)
3 ≤ n(B)+ n(E)+2

4 (usingn(EW) ≤ 3n(ER)+6
which gives4n(EW) ≤ 3n(E) + 6). In this case we getALG < X1 + 5. In the second scenario, no
bins contain aB item only. The total weight ofB andE items is3n(E)

8 . The number of bins used for

these types isn(ER)
2 + n(EW)

3 = n(E)
3 + n(ER)

6 ≤ n(E)(1
3 + 1

24) = 3n(E)
8 (using3n(ER) ≤ n(EW)

which gives4n(ER) ≤ n(E)). In this case we getALG < X2 + 4.
Next we analyze the maximum amount of weight that a bin can contain according to the two

weight measures. In both weight measures, if no item has weight1, the total weight of three items
does not exceed32 . Usingw1, the smallest item of weight1 is slightly larger than1

2 . If there is aC
item, then there can be noD item but only aE item. We get therefore1 + 1

2 + 1
4 . If there is noC

item, the worst case is two extraD items. This gives1 + 2
3 . We get thereforeW1 = 7

4 = 1.75. Using
w2, the smallest item of weight1 is slightly larger than23 . There can be noB or C items. The worst
case is two extraE items, and we getW2 = 1 + 2 · 3

8 = 1.75.
We proved the following theorem.

Theorem 10 The competitive ratio of the above algorithm fork = 3 is at most1.75.

5.2 k = 4, 5, 6

In this section we introduce a general algorithm and analyze it for three values ofk. The algorithm is
a generalization of the algorithm fork = 3 with additional options. The intervals (also called classes)
are defined as follows. The interval of largest items isA = (1 − 1

k , 1]. The next interval, of smaller
large items isB = (1

2 , 1− 1
k]. IntervalsC2, . . . , Ck−1 areCi = (1

i+1 , 1
i]. IntervalsE1, . . . , Ek−1 are

defined to beEi = (1
k(i+1) ,

1
ki] for i < k − 1 andEk−1 = (0, 1

k(k−1)].
We use parametersαi for intervalsEi. An αi fraction of the items of intervalEi are colored red

and all others are colored white. All these values are rational, so ifαi = pi
qi

is a minimal rational

13

representation ofαi, then the input items of this intervals are partitioned into sets ofqi items, out of
which, the firstqi − pi are colored white, and the nextpi are colored red.

The packing is done as follows. Items of classCi are packedi per bin. White items of classesEi

are packedk per bin. Red items of classEi are packedi per bin. This means that a bin never contains
more thank−1 red items, and they occupy a space of at most1

k . These items can always be combined
with typeB items. Basically, items of classB are packed one per bin, but when possible, they are
combined with one of the typesEi. When we need to open a bin for redEi items for somei, we first
check whether there exists a bin with only a classB item, and if so the red items are added to that bin.
Otherwise a new bin is opened for them. When an item of classB arrives, we try to add it into a bin
of red items that still did not receive aB item, and open a new bin if it does not exist.

A bin is complete if it received its full amount of items, or if it contains aB item or if it contains
the full amount of red items (possibly without aB item). We can neglect bins that are not complete,
since their amount is at most3k − 4. This amount is caused by at mostk − 1 bins for intervalsCi for
1 ≤ i ≤ k − 1, k − 1 bins for white items ofk − 1 types, andk − 2 bins for red items ofk − 2 types
(a bin with a redE1 item cannot be incomplete). As in the algorithm fork = 3, only one of the two
situations can occur. Either there are no complete bins with red items without a classB item, or there
are no bins with a classB item and no red items.

We define weights as follows. Assign two weights to each item, according to the two scenarios.
The weights are assigned according to types of items. We again usew1(I) andw2(I) to denote the
weights of typeI items according to the two weight functions. Letw1(A) = w2(A) = 1, w1(B) =
1, w2(B) = 0, w1(Ci) = w2(Ci) = 1

i , w1(Ei) = 1−αi
k , w2(Ei) = 1−αi

k + αi
i = i+(k−i)αi

ik .
The weights are defined so that in the first scenario, on average all bins (neglecting the bins which

are not complete) have a total amount of weight of at least1 packed in them according to the first
weight measure, and otherwise the same property holds according to the second weight measure.

To use Theorem 9, we need to prove the conditions of the theorem hold.

Lemma 11 For every inputσ, ALG(σ) ≤ Xi(σ) + c holds for somei.

Neglecting the incomplete bins (which affect only the constantc), we would like to show thatALG ≤
Xi + c. For both weight measures cases, bins with oneA item have weight 1, and bins withi
classC items have weight1. Denote the numbers ofB items byn(B), and ofEi items byn(Ei).
The number of redEi items is denotedn(ERi), and the number of whiteEi itemsn(EWi), (i.e.,
(n(Ei) = n(EWi) + n(ERi)).

According to the color assignments, letαi = pi
qi

(a minimal rational representation ofαi). Then
αi(n(Ei)−(qi−pi)) ≤ n(ERi) ≤ αin(Ei), and(1−αi)n(Ei) ≤ n(EWi) ≤ (1−αi)n(Ei)+qi−pi.
In the first scenario, no complete bins contain redEi items only. The total weight ofB and Ei

items for all i is n(B) +
k−1∑
i=1

1−αi
k · n(Ei). The number of bins used for these types isn(B) +

k−1∑
i=1

n(EWi)
k ≤ n(B) + ·

k−1∑
i=1

(1−αi
k n(Ei) + qi−pi

k). In this case we getALG < X1 + c1, wherec1

depends on the number of neglected incomplete bins which is constant (for a given choice of the
pi, qi values). In the second scenario, no bins contain aB item only. The total weight ofB andE

items is
k−1∑
i=1

i+(k−i)αi

ik · n(Ei). The number of bins used for these types is
k−1∑
i=1

(
n(EWi)

k + n(ERi)
i

)
≤

14

k−1∑
i=1

(1−αi)n(Ei)+qi−pi

k + αin(Ei)
i =

k−1∑
i=1

n(Ei)
i+(k−i)αi

ki + qi−pi
k . In this case we getALG < X2 + c2,

wherec2 is a constant which depends on the number of incomplete bins, and on the values chosen for
qi, pi, 1 ≤ i ≤ k − 1.

Next we would like to analyze the maximum amount of weight that a bin can contain according
to the two weight measures. We do that separately fork = 4, 5, 6. We always assume that there
are exactlyk items in each bin. This is done by allowing items of size0 that belong to the class
Ek−1. Note also that we will have ranges of sizes where weights are fixed to be monotonically non-
decreasing functions of size, therefore in these cases, we do not need to consider options where a
single item can be replaced by a smaller one.

The casek = 4. We are aiming at the competitive ratioR(4) = 71
38 ≈ 1.86842. Define the following

values. α1 = 1
19 , α2 = 3

19 , α3 = 9
19 . This implies the weights,w1(E1) = 9

38 , w1(E2) = 8
38 ,

w1(E3) = 5
38 , w2(Ei) = 11

38 for i = 1, 2, 3.
We compute the maximum amount of weight in a single bin with respect tow2 first. If no item in

the bin is of classA, then the largest weight of any item can be1
2 . However, a bin can contain at most

two such items. All other items have weights of at most1
3 . This gives a total of at most53 < R(4).

Next, if a classA item is present, all other others are of classesE1, E2, E3. They all have identical
weight. At most three more items can exist, thus we get the total weight1 + 3 · 11

38 = R(4).
Next, we compute the maximum weight with respect tow1. If no item of weight1 is present,

then all weights are upper bounded by the weights of the same items with respect tow2 and therefore
this case is covered by the calculation done forw2. Otherwise, an item of weight1 occupies a space
of more than1

2 . If an item of classC2 exists, it occupies a space of more than1
3 , and the two other

items are of typesE1, E2, E3. Moreover, there is room for only one item of either classE1 or E2

(these items are larger than112). Since weights are monotone for all sizes, the worst case is one item
of each classB, C2, E1, E3 whose sum of weights is1 + 1

2 + 9
38 + 5

38 = R(4). If there is no item
of C2, there are three other items, only one of them can be aC3 item, and which gives the worst case
1 + 1

3 + 2 · 9
38 < 69

38 < R(4).

The casek = 5. We are aiming at the competitive ratioR(5) = 771
398 ≈ 1.93719. Define the

following values.α1 = 9
199 , α2 = 24

199 , α3 = 54
199 , α4 = 114

199 . This implies the following weights.
w1(E1) = 76

398 , w1(E2) = 70
398 , w1(E3) = 58

398 , w1(E4) = 34
398 , w2(Ei) = 94

398 for i = 1, 2, 3 and
w2(E4) = 91

398 .
We compute the maximum amount of weight in a single bin with respect tow2 first. If no item

in the bin is of classA, then the largest weight of any item can be1
2 . However, a bin can contain at

most two such items, and at most three items larger than1
4 (two of which may be of size larger than

1
3). The weight of three items larger then1

4 is therefore at most2 · 1
2 + 1

3 . All other items have weight
of at most14 , which gives a total of at most43 + 2 · 1

4 = 11
6 < R(5). Next, if a classA item is present,

all other others are of classesE1, E2, E3, E4. Four more items are present, but at least one of them
must be in classE4. Items inE1, E2, E3 all have weight 47

199 , thus we get the total weight of at most
1 + 3 · 47

199 + 91
398 = R(5).

Next, we compute the maximum weight with respect tow1. If no item of weight1 is present, then
again all weights are bounded from above by the weights of the same items with respect tow2 and
therefore this case is covered by the calculation done forw2. Otherwise, an item of weight1 occupies

15

a space of more than12 .
If an item of classC2 exists, it occupies a space of more than1

3 , and the three other items are of
typesE1, E2, E3, E4. Moreover, if there is a classE1 item, then there is no classE2 item and at most
one classE3 item. This gives a total weight of1 + 1

2 + 38
199 + 29

199 + 17
199 = 765

398 < R(5). If there is no
classE1 item, then if we have a classE2 item, we can have another item of either classE2 or E3, and
a classE4 item, which gives the weight of at most1 + 1

2 + 2 · 35
199 + 17

199 = R(5). Finally if there is
noE1 andE2 items, then the weight is at most1 + 1

2 + 3 · 29
199 = R(5).

If no item of classC2 exists, but there is a classC3 item, we have the following options. If there
is aC4 item as well, then the occupied area is already more than0.95 so the other two items are of
classesE4 and this gives weight of at most1 + 1

3 + 1
4 + 2 · 17

199 < 699
398 < R(5). If there is noC4

item, then the largest weight of the additional three items can be38
199 each, which bounds the weight

by 1 + 1
3 + 3 · 38

199 < 759
398 < R(5).

If no items of classesC2, C3 exist, there can be at most twoC4 items and other items have weight
at most 38

199 , which together bounds the weight by1 + 2 · 1
4 + 2 · 38

199 < 749
398 < R(5).

The casek = 6. We are aiming at the competitive ratioR = 287
144 ≈ 1.99306. Define the following

values.α1 = 2
48 = 1

24 , α2 = 5
48 , α3 = 10

48 = 5
24 , α4 = 20

48 = 5
12 , α5 = 30

48 = 5
8 . This implies the

following weights.w1(E1) = 46
288 , w1(E2) = 43

288 , w1(E3) = 38
288 , w1(E4) = 28

288 , w1(E5) = 18
288 ,

w2(Ei) = 58
288 for i = 1, 2, 3, 4 andw2(E5) = 54

288 = 3
16 .

We compute the maximum amount of weight in a single bin with respect tow2 first. If no item
in the bin is of classA, then a bin can contain at most two such items larger than1

3 , or at most three
items larger than14 or at most four items larger than15 . The worst case gives two items of classC2,
one ofC3 and one ofC4. The two other items have weight of at most29

144 (since 1
5 < 29

144), which
gives a total of at most2 · 1

2 + 1
3 + 1

4 + 2 · 29
144 = 286

144 < R(6). Next, if a classA item is present, all
other others are of classesEi, 1 ≤ i ≤ 5. Five more items are present, but at least one of them must
be in classE5. Items inE1, E2, E3, E4 all have weight 29

144 , thus we get the total weight of at most
1 + 4 · 29

144 + 27
144 = R(6).

Next, we compute the maximum weight with respect tow1. If no item of weight1 is present,
then again all weights are upper bounded by the weights of the same items with respect tow2 and
therefore this case is covered by the calculation done forw2. Otherwise, an item of weight1 occupies
a space of more than12 . Consider the other contents of the bin. We replace an item of classCi with
an item of size 1

i+1 (without changing its weight). Similarly we replace an item of classEi with an
item of size 1

6(i+1) for i < k − 1 and with an item of size0 if i = 5. We only decreased sizes of
items therefore they all fit into the bin. We define the expansion of an item of sizex of weightw to be

r(x,w) = w− 1
16

x , and forx = 0, the expansion is0. Note that the weight of a set ofi items, of total
sizeS and of maximum expansions is at mostSs + i

16 .
The expansions for classesC2, . . . , C5 are 189

144 = 1.3125, 156
144 ≈ 1.08333, 135

144 = 0.9375, 33
40 =

0.825 (respectively). The expansions for classesE1, . . . , E5 are 7
6 ≈ 1.166667, 25

16 = 1.5625, 5
3 ≈

1.66667, 150
144 ≈ 1.041667, 0 (respectively).

Let e2 ande3 be the amounts of items of classesE2 andE3. If there is no classC2 item, we can
bound the weight as follows. There arei − e2 − e3 other items, therefore the weight is bounded by
1 + e2

43
288 + e3

19
144 + 5−e1−e2

16 + (1
2 − e2

18 − e3
24) · 7

6 = 91
48 + 19

864e2 + 18
864e3. If e2 + e3 ≤ 4 we get at

most 857
432 < R(6). Otherwise, ife1 + e2 = 5 we do not have any other items except for an item of

16

weight1 and five items of weight43
288 or 38

288 , which gives a total of at most503
288 < R(6).

If there is an item of classC2 the empty space left is less than1
6 . This means thati = e2 + e3 ≤ 3

ande2 ≤ 2. We get a total weight of at most1.5 + e2
43
288 + e3

19
144 + 4−e2−e3

16 + (1
6 − e2

18 + e3
24) · 7

6 =
35
18 + 19

864e2 + 18
864e3. If e2 + e3 ≤ 2 we can bound the weight by859

432 < R(6). We are left with the
casese2 = 2, e3 = 1, e2 = 1, e3 = 2, e2 = 0, e3 = 3. In the first two cases, only an item of classE5

can be added to the bin. In the last case, an item of classE4 or E5 can be added. Therefore we need
to consider two cases, where the four small items are of classesE2, E2, E3, E5 andE3, E3, E3, E4.
We get total weights1.5 + 2 · 43

288 + 19
144 + 1

16 = R(6), and1.5 + 3 · 19
144 + 14

144 = R(6).
We summarize with the following theorem.

Theorem 12 The competitive ratios of the above algorithm are at most71
38 ≈ 1.86842 for k = 4,

771
398 ≈ 1.93719 for k = 5 and 287

144 ≈ 1.99306 for k = 6.

6 Conclusion

The main open question is whether an algorithm with competitive ratio strictly better than2 can be
designed for all values ofk. In this paper we showed that such an algorithm cannot be bounded space
(unlessk ≤ 3). We note that the methods used in this paper for small values ofk cannot be extended
for largerk.

References

[1] L. Babel, B. Chen, H. Kellerer, and V. Kotov. Algorithms for on-line bin-packing problems with
cardinality constraints.Discrete Applied Mathematics, 143(1-3):238–251, 2004.

[2] A. Caprara, H. Kellerer, and U. Pferschy. Approximation schemes for ordered vector packing
problems.Naval Research Logistics, 92:58–69, 2003.

[3] E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms for bin packing: A
survey. In D. Hochbaum, editor,Approximation algorithms. PWS Publishing Company, 1997.

[4] J. Csirik. An online algorithm for variable-sized bin packing.Acta Informatica, 26:697–709,
1989.

[5] J. Csirik and G. J. Woeginger. On-line packing and covering problems. InA. Fiat and G. J.
Woeginger, editors,Online Algorithms: The State of the Art, pages 147–177, 1998.

[6] J. Csirik and G. J. Woeginger. Resource augmentation for online bounded space bin packing.
Journal of Algorithms, 44(2):308–320, 2002.

[7] L. Epstein and R. van Stee. On variable-sized multidimensional packing. InProc. of the 12th
Annual European Symposium on Algorithms (ESA2004), pages 287–298, 2004.

[8] L. Epstein and R. van Stee. Online bin packing with resource augmentation. InProceedings of
the 2nd Workshop on Approximation and Online Algorithms (WAOA 2004), pages 48–60, 2004.

17

[9] L. Epstein and R. van Stee. Optimal online bounded space multidimensional packing. InProc. of
15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’04), pages 207–216, 2004.

[10] D. K. Friesen and M. A. Langston. Variable sized bin packing.SIAM Journal on Computing,
15:222–230, 1986.

[11] H. Kellerer and U. Pferschy. Cardinality constrained bin-packing problems.Annals of Opera-
tions Research, 92:335–348, 1999.

[12] K. L. Krause, V. Y. Shen, and H. D. Schwetman. Analysis of several task-scheduling algorithms
for a model of multiprogramming computer systems.Journal of the ACM, 22(4):522–550, 1975.

[13] K. L. Krause, V. Y. Shen, and H. D. Schwetman. Errata: “Analysis of several task-scheduling al-
gorithms for a model of multiprogramming computer systems”.Journal of the ACM, 24(3):527–
527, 1977.

[14] C. C. Lee and D. T. Lee. A simple online bin packing algorithm.Journal of the ACM, 32(3):562–
572, 1985.

[15] P. Ramanan, D. J. Brown, C. C. Lee, and D. T. Lee. Online bin packing in linear time.Journal
of Algorithms, 10:305–326, 1989.

[16] S. S. Seiden. An optimal online algorithm for bounded space variable-sized bin packing.SIAM
Journal on Discrete Mathematics, 14(4):458–470, 2001.

[17] S. S. Seiden. On the online bin packing problem.Journal of the ACM, 49(5):640–671, 2002.

[18] S. S. Seiden, R. van Stee, and L. Epstein. New bounds for variable-sized online bin packing.
SIAM Journal on Computing, 32(2):455–469, 2003.

[19] J. D. Ullman. The performance of a memory allocation algorithm. Technical Report 100, Prince-
ton University, Princeton, NJ, 1971.

[20] A. van Vliet. An improved lower bound for online bin packing algorithms.Information Process-
ing Letters, 43(5):277–284, 1992.

[21] G. J. Woeginger. Improved space for bounded-space online bin packing.SIAM Journal on
Discrete Mathematics, 6:575–581, 1993.

[22] A. C. C. Yao. New algorithms for bin packing.Journal of the ACM, 27:207–227, 1980.

18

