
Online scheduling with a buffer on related machines

György Dósa∗ Leah Epstein†

Abstract

Online scheduling with a bufferis a semi-online problem which is strongly related to the basic online
scheduling problem. Jobs arrive one by one and are to be assigned to parallel machines. A buffer of a
fixed capacityK is available for storing at mostK input jobs. An arriving job must be either assigned
to a machine immediately upon arrival, or it can be stored in the buffer for unlimited time. A stored job
which is removed from the buffer (possibly, in order to allocate a space in the buffer for a new job) must
be assigned immediately as well. We study the case of two uniformly related machines of speed ratio
s ≥ 1, with the goal of makespan minimization.

Two natural questions can be asked. The first question is whether this model is different from stan-
dard online scheduling, that is, is any size of bufferK > 0 already helpful to the algorithm, compared
to the caseK = 0. The second question is whether there exists a constantK, so that a larger buffer is no
longer beneficial to an algorithm, that is, increasing the size of the buffer above this threshold would not
change the best competitive ratio further. Previous work [15, 19, 5] shows that in the cases = 1, already
K = 1 allows to design a43 -competitive algorithm, which is best possible for anyK ≥ 1, whereas the
best possible ratio forK = 0 is 3

2 . Similar results have been show for multiple identical machines [5].
We answer both questions affirmatively, and show that a buffer of sizeK = 2 is sufficient to achieve

the a competitive ratio which matches the lower bound forK → ∞ for any s > 1. In fact, we show
that a buffer of sizeK = 1 can evidently be exploited by the algorithm for anys > 1, but for a range of
values ofs, it is still weaker than a buffer of size 2. On the other hand, in the cases ≥ 2, a buffer of size
K = 1 already allows to achieve optimal bounds.

1 Introduction

Scheduling of jobs arriving one by one (also calledover list) is a basic model in online scheduling [18]. The
system consists of a set of processors that can process a sequence of arriving jobs. Each jobj, which has
a processing timepj associated with it (also called size), needs to be assigned to a processor upon arrival.
The processors areuniformly related, in the sense that a processori had a speedsi, and the time to process
job j on machinei is pj

si
. The completion time, or load, of a machine is the total time needed to process

the jobs assigned to it (i.e., the total processing time, divided by the speed), and the goal is to minimize the
maximum load of any machine, also called themakespan.

We consider online algorithms. For an algorithmA, we denote its cost byA as well. An optimal offline
algorithm that knows the complete sequence of jobs in advance, as well as its cost are denoted byOPT. In
this paper we consider the (absolute) competitive ratio. The competitive ratio ofA is the infimumR such
that for any input,A ≤ R · OPT. If the competitive ratio of an online algorithm is at mostC, then we say
that it isC-competitive.

This model is strict in the sense that decisions need to be done without sufficient information on the
future. Lower bounds on the competitive ratio already for identical speed machines [10, 1, 11] often make
use of one large job that arrives when the assignment is very balanced, for that, the exact assignment of all

∗Department of Mathematics, University of Pannonia, Veszprém, Hungary,dosagy@almos.vein.hu .
†Department of Mathematics, University of Haifa, 31905 Haifa, Israel.lea@math.haifa.ac.il .

1



jobs which arrived so far must be fixed. A natural way to possibly overcome this is the usage of lookahead.
This means that the scheduler needs to assign a job while seeing a prefix of the future jobs in the sequence,
where the prefix is of some fixed length` ≥ 1. It is not difficult to see, however, that for any constant`,
lookahead is not useful, since it is possible to augment the sequence by many jobs of size zero.

Several semi-online models, which allow the usage of various types of information on future jobs, have
been introduced. Some relevant models are as follows. Zhang and Ye [20] studied a model, in which it is
known in advance that the largest job is last, and the scheduler is notified when this last job arrives (see also
[9]). Some models assume a priori knowledge on the input already in the beginning of the input sequence,
such as the total size of all jobs [15, 2, 3], bounds on possible job sizes [14], the cost of an optimal schedule
[4, 6], or other properties of the sizes, e.g., an arrival in a sorted order [13, 17, 7].

The variant we study in this paper is one where the scheduler is given a constant length buffer, that can
be used for temporary storage of jobs. Specifically, letK ≥ 1 be an integer. The buffer may contain up
to K jobs at any time. Upon arrival of a job, the scheduler can do one of the following actions. The first
one is assignment of the new job to a machine. The second one is removal of a job from the buffer, and the
assignment of this removed job to some machine. This latter action can be repeated several times without
additional arrivals of jobs. The last action is the insertion of the new job into the buffer, if it was not assigned
to a machine. This can be done if the buffer contains at mostK − 1 jobs at this time. Thus, at every time
there may be at mostK + 1 jobs which arrived already, but not were assigned yet.

This model was first studied for the case of two identical speed machines by Kellerer et al. [15], and by
Zhang [19]. In both papers, an algorithm of competitive ratio4

3 , which usesK = 1 was designed. It was
shown in [15] that this competitive ratio is best possible for anyK > 1, that is, using a larger buffer cannot
be beneficial. Note that forK = 0, and identical machines, the best possible competitive ratio is3

2 [12, 10].
We compare our results with the caseK = 0 ands > 1 (see [8]). In this case, the tight competitive ratio is
2s+1
s+1 if s ≤

√
5+1
2 ≈ 1.618, ands+1

s if s ≥
√

5+1
2 .

The case ofm related machines was studied by Englert,Özmen and Westermann [5]. They designed a
2 + ε-competitive algorithm with a buffer size ofm. In the same paper, [5], the case ofm identical speed
machines was studied extensively, and tight bounds on the competitive ratio for every value ofm were
found. These bounds are achievable with a buffer of sizeΘ(m) (see also [16], for previous results on the
case of multiple identical speed machines).

In this paper, we consider two related machines. We denote the speed ratio between the speeds of the
two machines bys ≥ 1, and assume without loss of generality that the speed of the first machine (also called
theslowmachine) is 1, and the speed of the second machine (also called thefastmachine) iss. The number
of jobs (which is unknown until all jobs have arrived) is denoted byn.

We introduce some notations. Timet is considered to be the time at which thet-th jobs has arrived,
but was not considered yet. We definePt to be the total size of all jobs that have arrived by that time,

that is, of the firstt jobsPt =
t∑

j=1
pj . We denote the cost (i.e., makespan) of an optimal schedule for the

subsequence of the firsti jobs (that is, of the firsti jobs, without leaving any jobs in the buffer) byOPTi. We
haveOPT = OPTn. Let Mi = max

1≤j≤i
pj .

We use the following lower bounds onOPTi. The standard lower bounds areOPTi ≥ Mi
s andOPTi ≥

Pi
s+1 . We letLB1

i = Mi
s andLB2

i = Pi
s+1 .

A third lower bound which is useful in some cases is developed as follows. Let1 ≤ m(i) ≤ i be
such thatpm(i) = Mi. Let M ′

i = max
1≤j≤i,j 6=m(i)

pj . If both jobs of sizesMi andM ′
i (which are the two

largest jobs in the sequence) are assigned to the same machine, thenOPTi ≥ Mi+M ′
i

s . Otherwise, at least
one of them is assigned to the first machine and soOPTi ≥ min{Mi,M

′
i} = M ′

i . Therefore, we let

LB3
i = min{M ′

i ,
Mi+M ′

i
s }. Since in most cases the first two lower bounds are sufficient, we letLBi =

2



max{LB1
i , LB2

i }.
We letLi

1 andLi
2 denote the total processing time (on the relevant machine) of jobs assigned to the first

machine and second machine, respectively, at timei, that is, afteri jobs have arrived, but before thei-th job
was dealt with. The completion times of these machines at that time areLi

1 andLi
2. Note that the final cost

of an algorithm is not computed using just the loads at then + 1-th time,Ln+1
1 and Ln+1

2
s , but we need to

take into account the assignment to machines of the jobs stored in the buffer.

We show that the best possible competitive ratio for an arbitrary value ofK is (s+1)2

s2+s+1
for 1 < s ≤

√
5+1
2 ,

s2

s2−s+1
for

√
5+1
2 ≤ s ≤ 2 and s+2

s+1 for s ≥ 2 . These competitive ratios are achievable already forK = 2,
and in the cases ≥ 2, even forK = 1. We shed some light of the caseK = 1 for s < 2, in particular,
we give tight bounds ofs+2

s+1 on the competitive ratio for
√

2 ≤ s < 2 andK = 1, and relatively close

bounds for1 < s <
√

2. Thus we show that a buffer of sizeK = 1 allows to get reduced competitive ratio
compared to the caseK = 0, for anys > 1.

2 Algorithms for the caseK = 1

We start with the case where the buffer has a single slot. Note that if an algorithm can use a buffer of size
K > 0, the algorithm is forced to assign some job only afterK + 1 jobs have arrives.

2.1 A simple algorithm

The first arriving job can be stored in the buffer until a second job arrives. Upon the arrival of a second job,
either the job in the buffer or the new job should be assigned. The algorithm keeps one job in the buffer
at all times (possibly replacing this job with the new arriving job), as long as jobs keeps arriving. At the
time when it is known that no further jobs will arrive, the job in the buffer must be assigned. The following
algorithm always stores a job of largest size in the current input in the buffer, that is, at timei + 1, a job of
sizeMi is in the buffer. The algorithm uses a parameterC(s) > 1.
Algorithm Largest-Last(LL)
1. Store the first job in the buffer. LetL1

2 = L2
2 = 0, P1 = p1 andM1 = p1.

2. For each arriving job of indext act as follows.

2.1. Let Pt = Pt−1 + pt, Mt = max{Mt−1, pt}. Consider the new job of indext and the job in the buffer.
Let Xt ≥ Yt be their sizes. Store the job of sizeXt in the buffer.

2.2. If L1
t + Yt ≤ C(s) · LBt then assign the job of sizeYt to the first machine and letL1

t+1 = L1
t + Yt,

L2
t+1 = L2

t . Otherwise assign it to the second machine and letL1
t+1 = L1

t , L2
t+1 = L2

t + Yt
s .

3. The last job which remains in the buffer is assigned to the second machine.

We analyze the algorithm for1 < s <
√

2. Note that in this range,(s+1)2

s2+s+1
< 2(s+1)

s+2 < s+2
s+1 .

Theorem 1 Algorithm LL with the parameterC(s) = 2(s+1)
s+2 has a competitive ratio ofC(s) for any

1 < s ≤ √
2. No other choice of parameterC(s) can lead to a smaller competitive ratio.

Proof. We prove the upper bound first. Assume that the statement is not true. We consider a minimal
counter example (in terms of the number of jobs), and assume by scaling thatOPT = 1. Note that by the
definition of the algorithm, assigning a job to the first machine can never cause the algorithm to violate the
competitiveness, thus we assume that the final load of the second machine exceeds2(s+1)

s+2 , i.e., the total size

of jobs assigned to it exceeds2s(s+1)
s+2 . No job has size of more thans, therefore, at least two jobs were

3



assigned to the second machine. LetZ be the last job ever assigned to the second machine by Step 2. We
consider two cases.

If Z is assigned to the second machine at a time when the job of sizeXn, which is the last job assigned
to the second machine, did not arrive yet. SinceZ is assigned by step 2, there exists a time at which a job
of sizeXt is stored in the buffer, andZ is the job of sizeYt which is going to be assigned. At this time,
L1

t + Yt > 2(s+1)
s+2 LBt, andLBt ≥ Pt

s+1 , wherePt = L1
t + sL2

t + Yt + Xt. Since the job of sizeXn arrives
later, we havePn ≥ Pt + Xn.

The total size of jobs assigned to the second machine issL2
t + Yt + Xn = Pt − L1

t − Xt + Xn <

Pt −Xt + Xn − 2(s+1)
s+2 LBt + Yt ≤ Pt + Xn − 2Pt

s+2 = s
s+2Pt + Xn ≤ s

s+2Pn + 2
s+2Xn ≤ s(s+1)

s+2 LBn +
2s

s+2LBn = s2+3s
s+2 OPT < 2s(s+1)

s+2 .
If Z is assigned to the second machine at a time whenXn is already present in the buffer. We assume

that Z is the job of sizeYn. Otherwise, ifZ is the job of sizeYt for somet < n, then we get that
after the assignment of this job, at least one job is assigned to the first machine, but the final load of the

second machine issL
2
t +Yt+Xn

s . Therefore, removing the jobs of sizesYt+1, . . . , Yn−1 results in a smaller
example in which the second machine has the same load, i.e., a smaller counter example. SinceZ is
assigned to the second machine, we haveL1

n + Yn > 2(s+1)
s+2 LBn and since this is a counter example, then

sL2
n + Yn + Xn > 2s(s+1)

s+2 ≥ 2s
s+2Pn. Taking the sum and usingLBn ≥ Pn

s+1 , we getPn + Yn > 2s+2
s+2 Pn

andXn ≥ Yn > s
s+2Pn. On the other hand,Pn ≥ L1

n + Yn + Xn > 2
s+2Pn + s

s+2Pn = Pn, which leads to
a contradiction.

We next prove that the analysis of the performance is tight, and that using a different parameter cannot
reduce the competitive ratio. UsingC(s) < 1 implies a competitive ratio of at leasts+1

s , as follows.
Consider a sequence which contains two jobs of sizes1 ands. LB2 = 1, and thereforeLL assigns both jobs
to the second machine. IfC(s) ≥ 1, the sequence consists of four jobs, of sizes2− s2, s, s2 + s, s2 + s. An
optimal assignment of these jobs is to assign the first job to the first machine, the second job to the second
machine, and one additional job to each machine. This gives a makespan ofs + 2. Note thatLB2 ≥ 1 and
LB3 ≥ 2. Since2− s2 < 1 < s, and2− s2 + s < 2, both the first job and the second job are assigned to
the first machine. If at least one additional job is assigned to the first machine, it achieves the load2s + 2.
Otherwise, the second machine achieves a load of2s(s + 1).

Note that it is possible to prove that this algorithm has a competitive ratio of at mosts+2
s+1 for any√

2 ≤ s ≤ 2, usingC(s) = s+2
s+1 . We omit the proof since we present an additional algorithm later, whose

competitive ratio iss+2
s+1 for anys ≥ 1.

We have showed that a buffer of sizeK = 1 reduces the competitive ratio compared with the best bound
for the caseK = 0, for which the best competitive ratio is2s+1

s+1 .

2.2 A second algorithm

We letC1(s) = s+2
s+1 . We define an additional algorithm, which is optimal in some cases stated below.

Algorithm Small-Large(SL)
1. Store the first job in the buffer. LetL1

2 = L2
2 = 0, P1 = p1 andM1 = p1.

2. For each arriving job of indext act as follows.

2.1 Let Pt = Pt−1 + pt, Mt = max{Mt−1, pt}. Consider the new job of indext and the job in the buffer.
Let Xt ≥ Yt be their sizes.

2.2 If L1
t + Yt ≤ C1(s) · LBt then assign the job of sizeYt to the first machine and store the job of size

Xt in the buffer, and letL1
t+1 = L1

t + Yt, L2
t+1 = L2

t . Otherwise assign the job of sizeXt it to the
second machine and store the job of sizeYt in the buffer, and letL1

t+1 = L1
t , L2

t+1 = L2
t + Xt

s .

4



3. The last job which remains in the buffer is assigned as follows. Letn be the total number of jobs. Assign
the job which is still in the buffer to the first machine if the resulting load would not exceedC1(s) · LBn,
and otherwise assign it to the second machine.

Theorem 2 AlgorithmSL has a competitive ratio of at mostC1(s) for all s ≥ 1. This is best possible for
anys ≥ 2 and anyK ≥ 1, and best possible for

√
2 ≤ s < 2 andK = 1.

Proof. We prove the upper bound first. Assume that the statement is not true. We consider a counter
example, and scale it so that the cost of an optimal solution for this sequence iss+1. Clearly, in the optimal
solution the load of the first machine is at mosts+1, and the load of the second machine is at mosts(s+1),
and the total size of jobs in the sequence is at most(s + 1)2. Let A denote the job which is assigned last,
i.e. the job remaining in the buffer after all jobs have arrived. We consider a specific optimal schedule.

Note that by the definition of the algorithm, assigning a job to the first machine would never cause the
algorithm to violate the competitiveness, thus we assume that the final load of the second machine, after
all jobs have been assigned, is more thanC1(s)(s + 1) = s + 2. Therefore, the final load of the first
machine is less than(s + 1)2 − s(s + 2) = 1. Let Z denote the job which is assigned last to the second
machine (and its size),Z can either be the jobA, or a different job. We next prove thatZ > s + 1.
Let a be the load of the first machine at the time in whichZ is assigned to the second machine. Then
a < 1 since it cannot exceed the final load of the first machine. SinceZ is assigned to the second machine,
a + Z > s+2

s+1L, whereL is the value of the lower bound at the time of assignment. Using the second

lower bound, since the total size of jobs assigned to the second machine exceedss(s + 2), L ≥ a+s(s+2)
s+1

at this time, it follows thata + Z > s+2
s+1

a+s(s+2)
s+1 , from which we get (by usinga < 1), (s + 1)2 Z >

(s + 2) a− (s + 1)2 a+s (s + 2)2 = s (s + 2)2−(
s2 + s− 1

)
a > s (s + 2)2−(

s2 + s− 1
)

= (s + 1)3,
which impliesZ > s + 1.

Let U be the job, which is assigned to the slow machine in the optimal schedule, and is assignedlast to
the second machine by the algorithm. If there is not such job, the total size of jobs assigned to the second
machine cannot exceeds(s + 1), which would be a contradiction. Moreover,U andZ are different jobs,
sinceU ≤ s + 1 andZ > s + 1, furthermore,U andA are different jobs, since ifA is assigned to the
second machine, thenA andZ are the same job. It follows thatU is assigned to the second machine at
some stept, while an additional job is present in the buffer. SinceU is assigned to the second machine,
U is the job of sizeXt, and there exists a job of sizeYt ≤ Xt which is stored in the buffer at this time.
At the termination time of the algorithm, the total size of jobs assigned to the second machine is more
thans(s + 2), but for the optimal solution it is at mosts(s + 1). Therefore, a total size of more thans
must be caused by jobs which are assigned to the first machine in the optimal solution, and therefore, just
after the assignment ofU to the second machine, its loadL2

t+1, satisfiesL2
t+1 > 1. The load of the first

machine at the same time satisfiesL1
t+1 < 1, since the final load of the first machine is less than1. Note that

L1
t+1 + Yt = L1

t + Yt > s+2
s+1LBt ≥ s+2

s+1
L1

t +Yt+s
s+1 must hold, otherwise the job of sizeYt would be assigned

to the first machine at the time of arrival of thet-th job, instead of assigning the job of sizeXt to the second
machine. From this inequality we get thatL1

t + Yt > s(s+2)
s2+s−1

> 1.
We next prove that starting this time, at each timet′ > t (the time just after thet′ − 1-th job has been

assigned), the buffer contains a job of sizebt′ ≤ s + 1, which satisfiesL1
t′ + bt′ > 1. We prove this by

induction. Consider thet′-th job, which has sizept′ . If pt′ < bt′ ≤ s + 1 then there are two options.
If the smaller job is assigned to the first machine, the job in the buffer is not replaced andL1

t′+1 + bt′ >
L1

t′ + bt′ > 1, and otherwise, the job of sizept is stored in the buffer, and similarly to the above argument,
L1

t′ + pt′ > s+2
s+1LBt′ > s+2

(s+1)2
(L1

t′ + pt′ + s), andL1
t′ + pt′ > 1. If pt′ ≥ bt′ , then we claim that the job in

the buffer is not replaced. If it is replaced, then this means that it was assigned to the first machine, but this
would result in a load larger than 1, and we assume that this never happens. We have proved that the last

5



job which is stored in the buffer has size of at mosts + 1, but it is not assigned to the first machine, since its
assignment to the first machine would result in a load larger than 1. Therefore this last job isZ. However,
we showed that this job has size larger thans + 1, which is a contradiction.

We next prove lower bounds for cases wheres ≥ √
2. Note thats+2

s+1 ≤ s holds fors ≥ √
2.

To prove a lower bound fors ≥ 2, let K ≥ 1 be an arbitrary integer size of buffer. The sequence starts
with many very small jobs of sizeε > 0, of total size1+Kε. Denote the loads of first and second machines,
respectively, after the arrival of these jobs byα andβ, whereα + β ≥ 1. The cost of an optimal solution at
this moment is1+Kε

s+1 .
If β ≥ s

s+1 , one further job of sizes arrives. The cost of an optimal solution is no larger than1 + Kε.

The cost of the resulting solution got is at leastmin
{

α + s, β+s
s

}
≥ min

{
s, s+2

s+1

}
= s+2

s+1 . Lettingε tend

to zero implies the lower bound in this case.
Consider next the case whereα > 1

s+1 . Two further jobs arrive, with the sizesY = (s + 1)α, and
X = sY − 1 = s(s+1)α− 1. Note, thatX −Y = (s− 1)Y − 1 = (s− 1)(s+1)α− 1 > s− 2 ≥ 0, i.e.,
X > Y . The cost of an optimal solution is at mostY +Kε, since we can create a solution which assigns the
job of sizeY and a total size of very small jobs ofKε to the first machine, and all other jobs to the second
machine. If at least one of the two big jobs is assigned to the first machine, then the makespan is at least
α + (s + 1)α = (s + 2)α, otherwise both of them are assigned to the second machine, and its load will be
β + X + Y ≥ 1−α + (s + 1)α + s(s + 1)α− 1 = s (s + 2) α, thus in both cases, the makespan is at least
(s + 2)α, and the statement follows by lettingε tend to zero.

We next prove a lower bound for the case
√

2 ≤ s ≤ 2 andK = 1. This lower bound does not hold for
larger values ofK. The first two jobs have sizes1 ands + 1. At this time, sinceK = 1, one job must be
assigned. There are four cases.

If the first job is assigned to the first machine, a third job of sizes2 + s− 1 arrives. An optimal solution
assigns the second job to the first machine, and the other jobs to the second machine, and has a makespan of
s + 1. If at least one additional job is assigned by the algorithm to the first machine, we get a makespan of
at leastmin{s + 2, s2 + s}, which gives a competitive ratio of at leastmin{ s+2

s+1 , s} = s+2
s+1 . Otherwise, the

makespan is at least1
s (s2 + 2s) = s + 2 as well, which proves the lower bound in this case.

If the second job is assigned to the second machine, a third job of size(s + 1)2 arrives. At this time, the

cost of an optimal solution is(s+1)2

s , by assigning the last job to the second machine, and the other jobs to

the first machine, and sinces + 2 ≤ (s+1)2

s . The competitive ratio is at least1 + s+1
(s+1)2

= 1 + 1
s+1 = s+2

s+1 ,
if the last job is assigned to the second machine, and at leasts otherwise.

If the second job is assigned to the first machine, no further jobs arrive. The cost of an optimal solution
is at mosts+1

s , by using the solution which assigns the first job to the first machine, and the second job to
the second machine. The cost of the algorithm iss + 1. The competitive ratio iss.

If the first job is assigned to the second machine, no further jobs arrive. If the second job is assigned to
the first machine, we get the previous case again. Otherwise, we get a makespan ofs+2

s , and a competitive
ratio of at leasts+2

s+1 .

Note that the last lower bound construction can be used for the intervals ∈ (1,
√

2), and yields a lower
bound ofs.

3 Tight bounds for K ≥ 2

We have shown that using a buffer of size 1 allows to design an algorithm of best possible competitive ratio
for anyK ≥ 1, for s ≥ 2. The same holds fors = 1 by the results of [15, 19]

Therefore, we consider the case1 < s < 2, in this section, and design algorithms which use a buffer of
sizeK = 2, which have the best possible competitive ratio forK ≥ 2.

6



Let C2(s) = (s+1)2

s2+s+1
, if s ≤

√
5+1
2 , and if

√
5+1
2 ≤ s < 2, C2(s) = s2

s2−s+1
. Note thatC2(s) < 4

3 for
1 < s < 2.

The algorithm always keeps the two biggest jobs seen so far in the buffer. In addition toC2(s), it uses a

parameterc2(s) which is defined to bes+1
s2 if s ≤

√
5+1
2 , and otherwise, 1

s2−s
. Note that sinces > 1, c2(s)

is well defined and positive.

Algorithm Three-Jobs(TJ)
Store the first job in the buffer. If the sequence stops, assign this job to the fast machine. Otherwise, store
the second job in the buffer as well. LetX2 ≥ Y2 be the sizes of these two jobs andP2 = X2 + Y2. In
addition, letL1

3 = L2
3 = 0.

For any arriving job of indext ≥ 3 act as follows.

1. Let Pt = Pt−1 + pt.

2. Let Zt ≤ Yt ≤ Xt be the sorted list of sizespt, Yt−1, Xt−1. We haveL1
t + sL2

t + Zt + Yt + Xt = Pt.
The jobs of sizesXt andYt become the contents of the buffer.

3. The job of sizeZt is assigned as follows.

(a) If Yt > (C2(s)− 1)Pt, then assign the job of sizeZt to the second machine, letLt+1
1 = Lt

1 and
Lt+1

2 = Lt
2 + Zt

s .

(b) If L1
t +Yt ≥ c2(s)

(
sL2

t + Zt

)
, then assign the job of sizeZt to the second machine, letLt+1

1 =
Lt

1 andLt+1
2 = Lt

2 + Zt
s .

(c) Otherwise assign the job of sizeZt to the first machine, letLt+1
1 = Lt

1 + Zt andLt+1
2 = Lt

2.

After all jobs have arrived, letn be the number of jobs. We consider all four assignment of the remaining
two jobs and choose the one with minimum makespan. Specifically, the four assignments are as follows. In
the first assignment, the job of sizeXn is assigned to the fast machine and the job of sizeYn to the slow
machine. In the second assignment, the job of sizeYn is assigned to the fast machine and the job of sizeXn

to the slow machine. In the third assignment, both jobs are assigned to the fast machine and in the fourth
assignment, both jobs are assigned to the slow machine.

We prove the following theorem.

Theorem 3 TJ has a competitive ratio ofC2(s) for any1 < s < 2, which is best possible for anyK ≥ 2.

Proof. If the sequence consists of a single job, then the assignment is optimal. If it consists of two jobs, then
all possible assignments are considered, which results in an optimal solution as well. We therefore assume
that at least one job was assigned by Step 3.

Suppose that the statement is not true and consider an instance what violates it. We scale this instance so
that the makespan of an optimal solution is1. Then in the optimal solution the total sizes of jobs assigned to
the the first machine and second machine (respectively) are at most1 and at mosts. The total sum of the jobs
is therefore at mosts + 1. By our assumption on the instance, the algorithm terminates with a makespan of
more thanC2(s). If the competitive ratio is violated, this means that either the first machine receives a total
size of jobs of more thanC2(s) or that the second machine receives a total size of jobs of at mostsC2(s)

We first claim that a makespan of more thanC2(s) cannot be created as long as jobs are being assigned
by Step 3. We consider three cases. If a job of sizeZt is assigned in Step 3(a), then the total size of
jobs in the buffer is at leastXt + Yt ≥ 2Yt ≥ 2(C2(s) − 1)Pt. Assume thatL2

t+1 > C2(s). We have
sL2

t+1 = sL2
t +Zt ≤ Pt−Xt−Yt ≤ (3−2C2(s))Pt ≤ (3−2C2(s))Pn ≤ (3−2C2(s))(s+1) , which gives

(3− 2C2(s))(s + 1) > sC2(s), that is equivalent toC2(s) < 3s+3
3s+2 . This is impossible for1 < s ≤

√
5+1
2 ,

7



sinceC2(s) − 1 = s
s2+s+1

> 1
3s+2 , and for

√
5+1
2 < s < 2, sinceC2(s) − 1 = s−1

s2−s+1
> 1

3s+2 for

s >
√

3
2 ≈ 1.225.

If a job of sizeZt is assigned in Step 3(b), then by the assignment condition,c2(s)(sL2
t + Zt) ≤

Pt − sL2
t − Zt − Xt. Therefore(c2(s) + 1)(sL2

t + Zt) ≤ Pt ≤ Pn ≤ s + 1. ThussL2
t+1 ≤ s+1

c2(s)+1 .

For 1 < s ≤
√

5+1
2 , we get s+1

c2(s)+1 = s2(s+1)
s2+s+1

≤ s(s+1)2

s2+s+1
= sC2(s), and for

√
5+1
2 < s < 2, we have

s+1
c2(s)+1 = (s+1)(s2−s)

s2−s+1
< s3

s2−s+1
= sC2(s).

If a job of sizeZt is assigned in Step 3(c), then by the assignment condition,L1
t +Yt < c2(s)(Pt−L1

t −
Yt − Xt). Therefore, usingZt ≤ Yt ≤ Xt, (c2(s) + 1)(L1

t + Zt) ≤ (c2(s) + 1)(L1
t + Yt) ≤ c2(s)Pt ≤

c2(s)Pn ≤ c2(s)(s+1). ThusL1
t+1 ≤ c2(s)(s+1)

c2(s)+1 . For1 < s ≤
√

5+1
2 , we getc2(s)(s+1)

c2(s)+1 = (s+1)2

s2+s+1
= C2(s),

and for
√

5+1
2 < s < 2, we havec2(s)(s+1)

c2(s)+1 = s+1
s2−s+1

< s2

s2−s+1
= C2(s), by s2 > s + 1.

We consider the assignment of the last two jobs. Denote the sizes of jobs, which remain in the buffer
after the job of sizeZn has been assigned, byY ∗ = Yn andX∗ = Xn. All other jobs are called regular.
As shown above, at the time just before the assignment of the jobs of sizeY ∗ andX∗, the makespan is
no larger thanC2(s). If by assigning one or two of the last two jobs to the first machine, the load of the
first machine exceedsC2(s), this means that the total size of jobs assigned to the second machine does not
exceeds + 1− C2(s). On the other hand, if by assigning one or two jobs of the last two jobs to the second
machine, the load of the second machine exceedsC2(s), this means that the load of the first machine does
not exceeds + 1− sC2(s). Note thatC2(s) < s+1

s in both cases, thuss + 1− sC2(s) > 0.
We claim that we can assume that prior to the assignment of the last two jobs, the loads of the first

machine and the second machine respectively do not exceeds + 1 − sC2(s) and s+1−C2(s)
s , respectively.

We already showed that these loads do not exceedC2(s). If the first load is at leasts + 1 − sC2(s), then
assigning both last jobs to the second machine would result in a load of less thanC2(s). If the second load
is at leasts+1−C2(s)

s , then assigning both last jobs to the first machine would result in a load of less than
C2(s).

For the last two jobs, we define a notion of beingbig or small as follows. A job is calledbig, if assigning
it (temporarily) to the first machine, the load of the first machine would exceedC2(s), otherwise it is called
small. It follows that each big job has a size of more than(s + 1)(C2(s) − 1). Recall that the two jobs
remaining in the buffer at the end of the process are the two largest jobs among all jobs. We consider three
cases, according to the number of small jobs and the number of big jobs.

Case 1. If both remaining jobs are small, we consider two options. If by assigning the job of sizeX∗

to the first machine, its load becomes larger thans + 1 − sC2(s), then assigning the job of sizeY ∗ to the
second machine would result in a total size of jobs of at mostPn− (s + 1− sC2(s)) = sC2(s). Otherwise,
we haveY ∗ ≤ X∗ ≤ s + 1− sC2(s). Thus, assigning both these jobs to the first machine would result in a
load of at most2(s + 1 − sC2(s)). Assume by contradiction2(s + 1 − sC2(s)) > C2(s), or equivalently,

C2(s)(2s + 1) < 2(s + 1). For1 < s ≤
√

5+1
2 , we haveC2(s)− 1 = s

s2+s+1
> 1

2s+1 . For
√

5+1
2 < s < 2,

we haveC2(s)− 1 = s−1
s2−s+1

> 1
2s+1 , which leads to a contradiction.

Case 2. Next, suppose that there is exactly one big job, then this must be the job of sizeX∗ and the job
of sizeY ∗ is a small job. We consider the assignment of the big job to the second machine and the small job
to the first machine. In this assignment, the load of the first machine does not exceedC2(s) and therefore
the load of the second machine must be more thanC2(s). By our assumption on the instance,X∗ ≤ s. Thus
sL2

n+1 > sC2(s) −X∗ ≥ sC2(s) − s > 0, sinceC2(s) > 1 for 1 < s < 2. Therefore at least one regular
job was assigned to the second machine. Consider the moment during the execution of the algorithm when
the last such job was assigned to the second machine, and assume that this was the job of sizeZt. There are
two cases considered according to whether it was assigned to the second machine in Step 3(a) or 3(b).

Subcase 2a. The job of sizeZt is assigned to the second machine in Step 3(a). We show that the job

8



of sizeYt will be later assigned to the first machine. If it becomes a regular job, this holds since the job of
sizeZt is the last job regular job which assigned to the second machine. Otherwise, it is the job of sizeY ∗

and we assume that it is assigned to the first machine in the last step.
If the job of sizeXt does not become the job of sizeX∗, then the job of sizeXt also will be either

assigned later to the first machine as a regular job, or if it becomes the job of sizeY ∗ is it assigned to the
same machine as well. In this case the final load of the first machine is therefore at leastXt + Yt > 2Yt ≥
2(C2(s)− 1)Pt. It follows thatsL2

t + Zt ≤ Pt −Xt − Yt ≤ (3− 2C2(s))Pt. On the other hand, we have
sL2

n+1 + X∗ = sL2
t + Zt + X∗ ≥ sC2(s), or sL2

t + Zt ≥ sC2(s) − s. Thus the final load of the first

machine including all jobs would be more than2(C2(s)−1)Pt ≥ 2s(C2(s)−1)2

3−2C2(s) . By our assumption, this load

is smaller thans+1− sC2(s). We getC2(s) < s+3
s+2 . If 1 < s ≤

√
5+1
2 , thenC2(s)−1 = s

s2+s+1
> 1

s+2 . If√
5+1
2 < s < 2, thenC2(s)−1 = s−1

s2−s+1
> 1

s+2 (which holds fors > 3
2 ). Therefore, we get a contradiction.

We next consider the case where the job of sizeXt becomes the job of sizeX∗. In this case, the total
load of the second machine would remain at mostPt − Yt ≤ Pt(1 − (C2(s) − 1)) ≤ (2 − C2(s))Pn ≤
(2 − C2(s))(s + 1). If 1 < s ≤

√
5+1
2 , then(2 − C2(s))(s + 1) = (s2+1)(s+1)

s2+s+1
= C2(s) s2+1

s+1 < sC2(s).

If
√

5+1
2 < s < 2, then(2 − C2(s))(s + 1) = (s2−2s+2)(s+1)

s2−s+1
= C2(s) s3−s2+2

s2 < sC2(s), sinces >
√

2.
Therefore, we get a contradiction.

Subcase 2b. The job of sizeZt is assigned to the second machine in Step 3(b). Therefore, by the
assignment condition, at this momentL1

t + Yt ≥ c2(s)
(
sL2

t + Zt

)
holds. Since the final load of the second

machine, excluding the job of sizeX∗, satisfiessL2
t + Zt = sL2

n+1 > sC2(s) − s, we get that the final
load of the first machine is at leastL1

t + Y ∗ ≥ L1
t + Yt ≥ sc2(s)(C2(s)− 1), and thus, the final load of the

second machine is at mosts+1−sc2(s)(C2(s)−1)
s .

If 1 < s ≤
√

5+1
2 , thensc2(s)(C2(s) − 1) = s+1

s2+s+1
, ands + 1 − s+1

s2+s+1
= s(s+1)2

s2+s+1
= sC2(s). If√

5+1
2 < s < 2, thensc2(s)(C2(s)− 1) = 1

s2−s+1
, ands + 1− 1

s2−s+1
= s3

s2+s+1
= sC2(s). Therefore, we

get a contradiction.
Case 3. There are two big jobs at the end of the algorithm, whose sizes areY ∗ andX∗. We would

like to show that the ratio between the total size of jobs assigned to the first machine and the the total size
of jobs assigned to the second machine is at mostc2(s) just after all regular jobs have been assigned. If no
regular jobs are ever assigned to the first machine we are done.

Otherwise, consider the moment when the last regular job of sizeZt is assigned to the first machine.
Then by the assignment rule,L1

t + Yt < c2(s)
(
sL2

t + Zt

)
holds, from which it follows thatL1

t + Zt <
c2(s)

(
sL2

t + Yt

)
sinceZt ≤ Yt holds for allt ≤ n. The job of sizeYt cannot be the big job of sizeY ∗

sincePt ≤ Pn ≤ s + 1, andYt ≤ (C2(s) − 1)Pt ≤ (C2(s) − 1)(s + 1), but a big job has a size of more
than(C2(s) − 1)(s + 1). Thus, the job of sizeYt is assigned the second machine as a regular job at some
time t′ > t. Furthermore, all other further jobs that are assigned as regular jobs are assigned to the second
machine as well, so just before assigning the jobs of sizesY ∗ andX∗, the load of the first machine is no
larger thanc2(s) times the total size of jobs on the second machine.

The sum of sizes of all regular jobs (i.e., all jobs excluding the jobs of sizesY ∗ andX∗) is at most
s + 1− 2Y ∗.

The load of the first machine, after all regular jobs are assigned, is therefore at mostc2(s)
c2(s)+1(s+1−2Y ∗).

Since both last jobs are big, assigning the job of sizeY ∗ to the first machine would increase its load to more
thanC2(s), we have c2(s)

c2(s)+1(s + 1− 2Y ∗) + Y ∗ > C2(s).

If 1 < s ≤
√

5+1
2 , then c2(s)

c2(s)+1(s+1−2Y ∗)+Y ∗−C2(s) = s+1
s2+s+1

(s+1−2Y ∗)+ s2+s+1
s2+s+1

Y ∗− (s+1)2

s2+s+1
=

Y ∗ s2−s−1
s2+s+1

> 0 leads to a contradiction sinceY ∗ > 0 ands2 ≤ s + 1.

If
√

5+1
2 < s < 2, then c2(s)

c2(s)+1(s+1−2Y ∗)+Y ∗−C2(s) = 1
s2−s+1

(s+1−2Y ∗)+ s2−s+1
s2−s+1

Y ∗− s2

s2−s+1
=

9



(Y ∗ − 1) s2−s−1
s2+s+1

> 0. We consider the third lower bound onOPT. If the two large jobs are assigned to the
second machine in an optimal solution, then2Y ∗ ≤ Y ∗ + X∗ ≤ s, and thereforeY ∗ ≤ s

2 ≤ 1. Otherwise,
the job assigned to the first machine has size of at most 1, so againY ∗ ≤ 1. Therefore, we get a contradiction
sinceY ∗ ≤ 1 ands2 ≥ s + 1.

We next prove matching lower bounds. Consider the interval1 < s ≤
√

5+1
2 , and letK ≥ 1 be an

arbitrary integer size of buffer. We give a sequence for which any algorithm has a competitive ratio of at

least (s+1)2

s2+s+1
= 1 + s

s2+s+1
.

The sequence starts with many very small jobs of sizeε > 0, of total size1. Denote the total size of
jobs assigned to the first and second machines, respectively, after the arrival of these jobs byα andβ, where
α + β ≥ 1 −Kε. The cost of an optimal solution at this moment is1s+1 . Therefore, ifα ≥ s+1

s2+s+1
then

the lower bound follows. Moreover, ifβ ≥ s2+s
s2+s+1

, the lower bound is implied as well. Thus suppose that

α ≤ s+1
s2+s+1

, andβ ≤ s2+s
s2+s+1

, i.e. 1
s2+s+1

−Kε ≤ α ≤ s+1
s2+s+1

and s2

s2+s+1
−Kε ≤ β ≤ s2+s

s2+s+1
. One

further job of sizes arrives. The cost of an optimal solution becomes1.
The machine which receives the last job would have a larger completion time than the other machine.
If the second machine receives this job, then the makespan isβ+s

s = 1 + β
s ≥ 1 + s

s2+s+1
− Kε

s .

If the first machine receives this job, then the makespan isα + s ≥ 1
s2+s+1

− Kε + s = s3+s2+s+1
s2+s+1

≥
s2+2s+1
s2+s+1

−Kε = (s+1)2

s2+s+1
−Kε.

In both cases the statement follows from lettingε tend to zero.
Consider the interval

√
5+1
2 < s < 2, and letK ≥ 1 be an arbitrary integer size of buffer. We give a

sequence for which any algorithm has a competitive ratio of at leasts2

s2−s+1
(note that s2

s2−s+1
< s+2

s+1 ≤ s in
this range). The first phase is as in the previous case, and the valuesα andβ are defined similarly.

Assume first thatβ ≥ s2−s
s2−s+1

−Kε, then one last job of sizes arrives. The makespan in this case is at
least

min
{

α + s,
β + s

s

}
≥ min

{
s, 1 +

β

s

}
≥ min

{
1 +

1
s
, 1 +

β

s

}
= 1 +

β

s
≥ s2

s2 − s + 1
− Kε

s
.

Consider next the case whereα > 1
s2−s+1

. Then let two further jobs arrive, where the sizes of the

jobs areY = s2−s+1
s−1 α andX = sY − 1. Note thatX − Y = (s− 1)Y − 1 = (s− 1) s2−s+1

s−1 α − 1 =(
s2 − s + 1

)
α− 1 > 0, from which we getY < X.

An optimal solution would be to assignY to the first machine, and the other jobs to the second machine,
which gives a makespan ofY . If at least one of the two last jobs is assigned to the first machine by the
algorithm, then the makespan is at leastα + Y = (1 + s2−s+1

s−1 )α = s2

s−1α, which gives the required

competitive ratio sinceOPT = s2−s+1
s−1 α. Otherwise both of them are assigned to the second machine, and

the total size of jobs assigned to the second machines will beβ + Y + X = 1−α−Kε + (s + 1)Y − 1 =
(s + 1) s2−s+1

s−1 α−α−Kε = s3+2−s
s−1 α−Kε, thus the makespan tends to at leasts2+2/s−1

s−1 α ≥ s2

s−1α again
(for ε → 0).

References

[1] S. Albers. Better bounds for online scheduling.SIAM Journal on Computing, 29, 1999.

[2] E. Angelelli, A. Nagy, M. G. Speranza, and Zs. Tuza. The on-line multiprocessor scheduling problem with
known sum of the tasks.Journal of Scheduling, 7(6):421–428, 2004.

[3] E. Angelelli, M. G. Speranza, and Zs. Tuza. Semi-online scheduling on two uniform processors.Theoretical
Computer Science, 393(1-3):211–219, 2008.

10



[4] Y. Azar and O. Regev. Online bin stretching.Theorectial Computer Science, 268:17–41, 2001.

[5] M. Englert, D.Özmen, and M. Westermann. The power of reordering for online minimum makespan scheduling.
In Proc. 48th Symp. Foundations of Computer Science (FOCS), 2008. To appear.

[6] L. Epstein. Bin stretching revisted.Acta Informatica, 39(2):97–117, 2003.

[7] L. Epstein and L. M. Favrholdt. Optimal non-preemptive semi-online scheduling on two related machines.J.
Algorithms, 57(1):49–73, 2005.

[8] L. Epstein, J. Noga, S. S. Seiden, J. Sgall, and G. J. Woeginger. Randomized Online Scheduling on Two Uniform
Machines.Journal of Scheduling, 4(2):71–92, 2001.

[9] L. Epstein and D. Ye. Semi-online scheduling with “end of sequence” information.Journal of Combinatorial
Optimization, 14(1):45–61, 2007.

[10] U. Faigle, W. Kern, and G. Turan. On the performance of online algorithms for partition problems.Acta
Cybernetica, 9:107–119, 1989.

[11] T. Gormley, N. Reingold, E. Torng, and J. Westbrook. Generating adversaries for request-answer games. In
Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 564–565,
2000.

[12] R. L. Graham. Bounds for certain multiprocessing anomalies.Bell System Technical J., 45:1563–1581, 1966.

[13] R.L. Graham. Bounds on multiprocessing timing anomalies.SIAM J. Appl. Math, 17:416–429, 1969.

[14] Y. He and G. Zhang. Semi on-line scheduling on two identical machines.Computing, 62(3):179–187, 1999.

[15] H. Kellerer, V. Kotov, M. G. Speranza, and Zs. Tuza. Semi online algorithms for the partition problem.Opera-
tions Research Letters, 21:235–242, 1997.

[16] S. Li, Y. Zhou, G. Sun, and G. Chen. Study on parallel machine scheduling problem with buffer. InProc. of the
2nd International Multisymposium on Computer and Computational Sciences (IMSCCS2007), pages 278–281,
2007.

[17] S. Seiden, J. Sgall, and G. Woeginger. Semi-online scheduling with decreasing job sizes.Operations Research
Letters, 27(5):215–221, 2000.

[18] J. Sgall. On-line scheduling. In A. Fiat and G. Woeginger, editors,Online Algorithms - The State of the Art,
chapter 9, pages 196–231. Springer, 1998.

[19] G. Zhang. A simple semi on-line algorithm forP2//Cmax with a buffer. Information Processing Letters,
61:145–148, 1997.

[20] G. Zhang and D. Ye. A note on on-line scheduling with partial information.Computers& Mathematics with
Applications, 44(3-4):539–543, 2002.

A The caseK = 1 and 1 < s <
√

2

We consider the range for which the previous bounds are not tight, which iss ∈ (1,
√

2). We conjecture

that neither the lower bound ofmax{s, (s+1)2

s2+s+1
} nor the upper bound of2(s+1)

s+2 are tight. We motivate this
conjecture by considering several special cases. A case for which a better upper bound can be achieved

(s = 4
3 ), a case wheres < (s+1)2

s2+s+1
(s = 6

5 ), and an upper bound higher than(s+1)2

s2+s+1
can be achieved, and a

case wheres > (s+1)2

s2+s+1
, and an upper bound higher thans can be achieved.

11



A.1 Algorithm

We define a new algorithm. The algorithm uses a parameterC(s) > s. We later analyze it fors = 4
3 .

Algorithm Two-Conditions(TC)
1. Store the first job in the buffer. LetL1

2 = L2
2 = 0, P1 = p1.

2. For each arriving job of indext act as follows.

2.1 Let Pt = Pt−1 + pt. LetPt = Pt−1 + pt, Mt = max{Mt−1, pt}. Consider the new job of indext and
the job in the buffer. LetXt ≥ Yt be their sizes. The job of sizeXt is stored in the buffer.

2.2 Consider the following conditions.

• sL2
t + Yt ≤ s(C(s)− 1)Pt

• sL2
t + Yt + Xt ≤ s · C(s) · LBt

If both conditions hold, then assign the job of sizeYt to the second machine, and letL1
t+1 = L1

t ,
L2

t+1 = L2
t + Yt

s .

2.3 Otherwise, assign it to the first machine and letL1
t+1 = L1

t + Yt, L2
t+1 = L2

t .

3. The last job which remains in the buffer is assigned to the second machine.
We show that the algorithm performs slightly better thanLL for s = 4

3 , which was shown to have a
competitive ratio of exactly 1.4 for this value ofs.

Theorem 4 For s = 4
3 , the competitive ratio of the algorithm usingC(s) = γ ≈ 1.3907364 is at mostγ,

whereγ is the solution of7x3 − 4x2 + 10x− 25 = 0.

Proof. Note thats = 4
3 < γ < 1.4 = 2(s+1)

s+2 < s+1
s = 7

4 , therefores + 1 − sγ > 0. We also use

γ > (s+1)2

s2+s+1
= 49

37 , γ ≥ 2s+1
2s = 11

8 andγ ≥ 3s+2
s+3 = 18

13 . Suppose that the statement is not true and consider

an instance what violates it. Assume thatOPT = 1, then we haveLn
1 + sLn

2 + Xn + Yn = Pn ≤ s + 1 = 7
3 .

Due to the definition of the algorithm, the competitive ratio can be violated either by the last job assigned
to the second machine, or by some job which is assigned to the first machine. Assume first that the violation
is caused by the last assigned job. Consider the situation at the time when the last job assigned to the
second machine. If this machine contains no jobs at all, clearly the load of this machine does not exceed
1, sinceXn ≤ s. Otherwise, consider the previous job assigned to the second machine. Let the time of
assignment bet′. We claim that the job of sizeXt′ and the last job which remains in the buffer are not the
same job, otherwise by the definition of the algorithm, the total size of jobs assigned to the second machine
is sL2

n + Yt′ + Xt′ ≤ s · γ · LBt′ ≤ sγOPT = sγ.
We get that the job of sizeXt′ is assigned to the first machine at some later time. Therefore,L1

n ≥
L1

t′+Xt′ . Since the job of sizeYt′ is assigned to the second machine, then by the first condition,sL2
t′+Yt′ ≤

s(γ−1)Pt′ , and due to the violation of competitive ratio,sL2
n+Xn = sL2

t′+Yt′+Xn > sγ. UsingXn ≤ s
we gets(γ − 1)Pt′ > sγ − s andPt′ > 1.

We havesL2
t′ + Yt′ ≤ s(γ − 1)Pt′ , i.e.,Pt′ = sL2

t′ + Yt′ + L1
t′ + Xt′ ≤ s(γ − 1)Pt′ + L1

t′ + Xt′ , or
L1

t′ + Xt′ ≥ Pt′(s + 1 − sγ) ≥ s + 1 − sγ. We get that the total size of all jobs is at leastPt′ + Xn =
(L1

t′ + Xt′) + (sL2
t′ + Yt′ + Xn) > s + 1− sγ + sγ = s + 1, which is a contradiction.

Assume next that at some timet, a job of sizeYt is assigned to the first machine and violates the
competitive ratio. We can in fact assume thatt = n, since removing some jobs and scaling the input if
necessary may only increase the competitive ratio. Therefore,L1

n+Yn > γ andsL2
n+Xn = Pn−L1

n−Yn <
Pn − γ ≤ s + 1− γ. ThusYn ≤ Xn < Pn − γ ≤ s + 1− γ impliesL1

n > γ − Yn ≥ 2γ − s− 1 > 0, since
γ > s > 1. Therefore, the first machine contains at least one job in addition to the job of sizeYn.

12



We analyze the conditions which led to the assignment of the job of sizeYn to the first machine. The
first condition must hold sincesL2

n + Xn < Pn − γ ≤ s(γ − 1)Pn. To prove the last inequality, assume

by contradiction thatPn − γ > s(γ − 1)Pn or equivalentlyPn(s + 1) > γ(sPn + 1). Usingγ > (s+1)2

s2+s+1

we getPn(s2 + s + 1) > (s + 1)(sPn + 1) or Pn > s + 1 which is a contradiction. Thus, it must be the
case that the second condition does not hold, i.e.,Pn − L1

n = sL2
n + Yn + Xn > sγ · LBn ≥ sγ Pn

s+1 , or
L1

n < Pn(1− sγ
s+1) ≤ s + 1− sγ.

SinceL1
n + Yn > γ we haveXn ≥ Yn > (s + 1)(γ − 1). Therefore,sLn

2 = Pn − Ln
1 − Yn −Xn ≤

s+1−γ−(s+1)(γ−1) = 2s+2−(s+2)γ. Note that in an optimal schedule, each one of the two jobs of sizes
Yn andXn must be assigned to different machines, sinceXn+Yn > 2(s+1)(γ−1) ≥ 2(s+1)· s

s2+s+1
> s,

sinces2 < s+1. Note that the first machine must actually contain at least three jobs. Otherwise, if it contains
two jobs, then the first job assigned to it has a size of more than2γ − s − 1 and it must be assigned to one
of the machine in an optimal solution together with a job of size more than(s + 1)(γ − 1). We get a total
size of more than(s + 3)γ − 2(s + 1) ≥ s, by the value ofγ, which leads to a contradiction.

Denote the sizes of the two jobs assigned to the first machine before the last job byYt andYt′ , where
t′ < t < n. Consider first the job of sizeXt. If this job is not one of the two jobs of sizesXn andYn, then
it is eventually assigned to the second machine in step 2.2, andsL2

n ≥ sL2
t + Xt. Due to the choice of the

time t, we haveL1
n = L1

t + Yt. We test the two conditions at the time of assignment of the job of sizeYt.
Assume that the first condition does not hold. Then we have(s+1−sγ)(sL2

t +Yt) > s(γ−1)(L1
t +Xt).

UsingsL2
t + Yt ≤ sL2

t + Xt ≤ L2
n ≤ s + 1− γ −Xn andL1

t + Xt ≥ L1
t + Yt = L1

n > γ − Yn ≥ γ −Xn

we get(s + 1 − sγ)(s + 1 − γ −Xn) > s(γ − 1)(γ −Xn). Simplifying, we get(s + 1)2 − γ(s2 + s +
1) + Xn(2sγ − 2s − 1) > 0. We haveγ ≥ 2s+1

2s , so usingXn ≤ s + 1 − γ we get(s + 1)2 − γ(s2 +
s + 1) + (s + 1 − γ)(2sγ − 2s − 1) > 0. Simplifying the last expression givess + 1 < (s + 3 − 2γ)γ,
or 6γ2 − 13γ + 7 < 0, which does not hold forγ > 4

3 and leads to a contradiction. Assume next that the
second property does not hold. We getsL2

t + Yt + Xt > s · γ ·LBt ≥ sγ
s+1Pt = sγ

s+1(sL2
t + L1

t + Yt + Xt),
i.e., (s + 1 − sγ)(sL2

t + Xt) + (s + 1)Yt > sγ(L1
t + Yt). SincesL2

n ≥ sL2
t + Xt ≥ Yt, we have

(s + 1 − sγ)(sL2
t + Xt) + (s + 1)Yt ≤ (2s + 2 − sγ)sL2

n ≤ (2s + 2 − sγ)(s + 1 − γ − Xn). Using
L1

t + Yt = L1
n > γ − Xn, we get(2s + 2 − sγ)(s + 1 − γ − Xn) > sγ(γ − Xn). Simplifying we

get 2(s + 1)2 − γ(s + 2)(s + 1) > 2Xn(s + 1 − sγ) > 2(s + 1)(γ − 1)(s + 1 − sγ). This results in
32γ2 + 94γ − 154 < 0, which does not hold forγ > 4

3 , thus we reach a contradiction.
Therefore we are left with the case where the job of sizeXt is one of the jobs of sizesXn andYn, thus

Xt ≥ (s + 1)(γ − 1), and there is another job of at least this size to arrive. ThusPt ≤ Pn − Yn. We have
Pt = L1

n + sL2
n + Yt + Xt. We again check which condition led to the assignment of the job of sizeYt to

the first machine.
Assume that the first condition does not hold. We getPt −Xt ≥ sL2

n + Yt > s(γ − 1)Pt and therefore
Xt < Pt(s + 1− sγ) ≤ (s + 1− sγ)(Pn − Yt). We get(s + 1)(γ − 1)(s + 2− sγ) ≤ Yt(s + 2− sγ) ≤
(s+1−sγ)Pn ≤ (s+1−sγ)(s+1). Simplifying, we getsγ2−γ(3s+2)+2s+3 ≥ 0, or4γ2−18γ+17 ≥ 0,
which does not hold forγ > 1.35.

Therefore it must be the case that the second condition does not hold, we gets + 1 − γ −Xn + Yt ≥
sL2

n+Yt ≥ sL2
t +Yt > s·γ·LBt−Xt ≥ (γ−1)Yn, usingLBt ≥ Xt

s . ThusYt > γ(γ−1)(s+1)+γ−s−1 =
(s + 1)γ2 − sγ − (s + 1).

Note thatYt + Yn > (s + 1)γ2 − sγ − (s + 1) + (s + 1)(γ − 1) = (s + 1)γ2 + γ − 2(s + 1) > 1, and
2Yt + Yn > 2(s + 1)γ2 − 2sγ − 2(s + 1) + (s + 1)(γ − 1) = 2(s + 1)γ2 + (1− s)γ − 3(s + 1) > s, so
the three jobs of sizesYt, Yn andXn are the three largest jobs, out of which two must be assigned to the fast
machine in an optimal solution. These two cannot be the jobs of sizesYn andXn. ThusYt + Yn ≤ s, and
thereforeL1

t = L1
n − Yt > γ − Yn − Yt > γ − s.

Recall that a job of sizeYt′ is the last job which was assigned to the first machine before the job of size
Yt. We consider the job of sizeXt′ . If this job is not one of the three largest jobs, then it is assigned to the

13



fast machine at step 2.2 and we havesL2
n ≥ sL2

t′ +Xt′ andL1
n = L1

t′ +Yt′ +Yt. We test the two conditions
at the time of assignment of the job of sizeYt′ .

Assume that the first condition does not hold. Then we have(s+1−sγ)(sL2
t′+Yt′) > s(γ−1)(L1

t′+Xt′).
UsingsL2

t′ +Yt′ ≤ sL2
t′ +Xt′ ≤ sL2

n ≤ s+1−γ−Xn ≤ s+1−γ− (s+1)(γ−1), L1
t′ +Yt′ +Yt +Yn =

L1
n > γ andYt + Yn ≤ s gives(s + 1− sγ)(2s + 2− (s + 2)γ) > s(γ − 1)(γ − s). Simplifying, we get

(s2 + s)γ2 − 2γ(s + 1)2 + (s2 + 4s + 2) > 0, which does not hold.
Next, assume that the second condition does not hold. We useLBt′ ≥ Pt′

s+1 and get(s + 1− sγ)(sL2
t′ +

Xt′) + (s + 1)Yt′ > sγ(L1
t′ + Yt′) = sγL1

t > sγ(γ − s). SinceYt′ ≤ sL2
t′ + Xt′ ≤ sL2

n − Xn ≤
s + 1 − γ − (s + 1)(γ − 1), we get(2s + 2 − sγ)(s + 1 − γ − (s + 1)(γ − 1)) > sγ(γ − s). The left
hand side is equal to approximately0.08684 whereas the right hand side is equal to approximately0.10644,
which leads to a contradiction.

Thus the job of sizeXt′ is one of the three largest jobs, and we haveYt′ ≤ s − Yn − Yt ≤ s − (s +
1)γ2−γ +2(s+1) if the job of sizeYt′ is assigned to the fast machine in an optimal solution, and otherwise
Yt′ ≤ 1 − Yn ≤ 1 − (s + 1)(γ − 1). The first bound is larger, therefore we useYt′ ≤ s − Yn − Yt ≤
s− (s + 1)γ2 − γ + 2(s + 1) ≈ 0.096525.

At this time, the jobYt′ is assigned to the first machine, therefore at least one of the two conditions does
not hold. Assume by contradiction that the first condition does not hold. We havesL2

t′ ≤ sL2
n − Xn ≤

s + 1− γ − (s + 1)(γ − 1), andXt′ ≥ Yt ≥ (s + 1)γ2 − sγ − (s + 1). ThussL2
t′ + Yt′ ≤ 0.127131 and

Xt′ ≥ 0.32536276. We get(7
3 − 4

3γ)(sL2
t′ + Yt′) > 4

3(γ − 1)(Xt′ + L1
t′), which does not hold.

Assume by contradiction that the second condition does not hold. UsingsγLBt′ ≥ γXt′ , we get
sL2

t′ + Yt′ > (γ − 1)Xt′ . However, the bounds on the two values are equal (by the definition ofγ), which
is a contradiction as well.

Since none of the options is possible, we conclude that the counter example does not exist.

A.2 Improved lower bounds for some small values ofs

We consider two values ofs, namelys = 4
3 ands = 6

5 and show slightly higher lower bounds than those
shown in the body of the paper. The lower bound fors = 6

5 shown in the body of the paper is approximately
1.3296, and the lower bound which was shown fors = 4

3 is 4
3 .

Theorem 5 The competitive ratio of any algorithm which uses a buffer of sizeK = 1 is at least43 for s = 6
5 .

The competitive ratio of any algorithm which uses a buffer of sizeK = 1 is at least1.37 for s = 4
3 .

Proof. We first consider the cases = 6
5 . Let 0 < ε < 1

16500 be a number such that1
ε is an integer.

The sequence starts with many very small jobs of sizeε > 0, of total size1. Denote the total size of
jobs assigned to the first and second machines, respectively, after the arrival of these jobs byα andβ, where
1− ε ≤ α + β ≤ 1. At this time,OPT = 1

1+s = 5
11 and therefore, in order not to achieve a competitive ratio

of at least43 , it follows thatα < 4
3 · 5

11 = 20
33 , andβ < 6

5 · 20
33 = 24

33 . Thus 9
33 ≤ α < 20

33 .
If the next and last job has a size of6

5 , then after its arrivalOPT = 1. Assigning this job to to the slow
machine would create a makespan of at least9

33 + 6
5 > 4

3 , thus the last job must be assigned to the fast
machine. However, in order not to achieve a competitive ratio of4

3 , the load of the second machine must be
lower than4

3 · 6
5 , thusβ < 1

3 · 6
5 = 2

5 must hold, which implies35 = 99
165 ≤ α < 20

33 = 100
165 .

Assume that the job of size65 does not arrive after all, and instead two jobs of sizesX = 3 andY = 9
5

arrive. At this timeOPT = 1+1.8+3
2.2 = 5.8

2.2 = 29
11 ≈ 2.6364, by assigning the job of sizeX to the fast

machine, the job of sizeY to the slow machine, and spreading the small jobs to allow the two machines
equal completion times.

At this time, at least one of the two larger jobs must be assigned to one of the machines. We consider
several cases. If the job of sizeX is assigned to the slow machine, then the makespan will be at least

14



α + 3 ≥ 3.6 > 4
3 OPT since4

3 · 29
11 ≈ 3.5152. Similarly, if at this time, the job of sizeY is assigned to the

fast machine, then either the job of sizeX will be assigned to the slow machine, and the previous proof can
be used, or the load of the fast machine would becomeβ + X + Y > 4.8, whereas43 · 6

5 · 29
11 < 4.8.

Consider the case that the job of sizeY is assigned to the slow machine. Then an additional job of
sizeX ′ = 3.11 arrives, which is the last job. At this momentOPT = 4.05, by assigning a job of sizeX,
a job of sizeY , and a total of 0.06 of the small jobs to the fast machine, and all other jobs to the slow
machine. Next, if one of the two remaining jobs is assigned to the slow machine, then we get a load of at
leastα + 1.8 + 3 ≥ 5.4 = 4

3 OPT, and otherwise both these jobs are assigned to the fast machine and its load
will be β + 6.11 ≥ 13

33 + 6.11 > 6
5 · 4

3 OPT, and the lower bound holds.
Thus only one case remains, where one job of sizeY and one job of sizeX had arrived, and the job of

sizeX = 3 is assigned to the fast machine. In this case an additional job of sizeY = 1.8 arrives, and two
such jobs are present. One such job must be assigned to one of the machines.

Suppose that a job of sizeY is assigned to the slow machine. Then a final job of sizeZ = 6
5(1+3+1.8+

1.8) = 9.12 arrives. We haveOPT = 7.6. The makespan will be at leastmin
{

α + 1.8 + Z, β+3+Z
1.2

}
≥

min
{

0.6 + 1.8 + 9.12, 13/33+3+9.12
1.2

}
≈ 10.42 > 4

3 · 7.6.

Finally, consider the case where the job of sizeY is assigned to the fast machine. A third job of size
Y = 1.8 arrives, which results in two pending jobs of this size. At this momentOPT = 47

11 , where in an
optimal solution two jobs of sizeY are assigned to the slow machine, the other two jobs are are assigned to
the fast machine, and the small jobs are spread to let the two machines have equal loads.

If an additional job of sizeY is assigned to the fast machine, then the total size of jobs assigned to it is
β + 3 + 1.8 + 1.8 > 6.99 > 6

5
4
3

47
11 . Otherwise, a job of sizeY is assigned to the slow machines, and the

last job of sizeU = 6
5(1 + 3 + 1.8 + 1.8 + 1.8) = 11.28 arrives andOPT = 9.4. The makespan will be at

leastmin
{

α + 1.8 + U, β+3+1.8+U
1.2

}
≥ min

{
0.6 + 1.8 + 11.28, 13/33+3+1.8+11.28

1.2

}
= 13.68 > 4

3 · 9.4.

We have thus showed that in all possible cases the lower bound holds as required.
To prove a lower bound fors = 4

3 , Let 4
3 < c ≤ 1.4 the value of the lower bound which is proved. The

sequence starts as in the previous case, with the possibility that an additional job of size4
3 may arrive. In

this case, the resulting bounds onα are1− c
3 ≤ α < 3c

7 . We next have a job of sizeX and a job of sizeY ,
whereY < X, and the values ofX andY are chosen so thats(Y + 1) ≤ X andY ≤ (s− 1)X + s.

At this time there are three possible inputs. In the first input the sequence stops, in the second input
an additional job of sizeX arrives, and in the third input, a job of sizeZ = s(sX + s + 1) arrives. We
give bounds onOPT in the three cases. In the first case, it is possible to assign the job of sizeX to the fast
machine, and the other jobs to the slow machine. SinceY + 1 ≤ X

s , we getOPT≤ X
s . In the second case,

it is possible to assign jobs of sizesX andY to the fast machine, and all other jobs to the slow machine.
SinceY +X

s ≤ X + 1, we haveOPT≤ X + 1. In the third case the large job is assigned to the fast machine
andOPT = sX + s + 1.

If the job of sizeX is assigned to the slow machine or the job of sizeY is assigned to the fast machine,
the first input is used. The makespan is at leastmin{α + X, β+X+Y

s }.
If the job of sizeY is assigned to the slow machine, the second input is used. The makespan is at least

min{α + Y + X, β+2X
s }.

If the job of sizeX is assigned to the fast machine, the third input is used. The makespan is at least
min{α + Z, β+X+Z

s }.
It is not difficult to verify that the choiceX = 8.6 andY = 4.2 yields the required lower bound.

15


