
Preemptive online scheduling with reordering

György Dósa∗ Leah Epstein†

Abstract

We consider online preemptive scheduling of jobs, arriving one by one, onm identical parallel
machines. A buffer of a fixed sizeK > 0, which assists in partial reordering of the input, is available
to be used for the storage of at mostK unscheduled jobs. We study the effect of using a fixed sized
buffer (of an arbitrary size) on the supremum competitive ratio over all numbers of machines (the overall
competitive ratio), as well as the effect on the competitive ratio as a function ofm.

We find a tight bound on the competitive ratio for anym. This bound is4
3 for even values ofm

and slightly lower for odd values ofm. We show that a buffer of sizeΘ(m) is sufficient to achieve
this bound, but usingK = o(m) does not reduce the best overall competitive ratio which is known for
the case without reordering,ee−1 . We further consider the semi-online variant where jobs arrive sorted
by non-increasing processing time requirements. In this case it turns out to be possible to achieve a
competitive ratio of 1. In addition, we find tight bounds as a function of the buffer size and the number
of machines for this semi-online variant. Related results for non-preemptive scheduling were recently
obtained by Englert,̈Ozmen and Westermann.

1 Introduction

Scheduling of jobs arriving one by one (orover list) is a basic model in online scheduling [17]. The system
consists of a set ofm identical machines that can process a sequence of arriving jobs. Each jobj, which has
a processing timepj associated with it (also calledsize), needs to be assigned upon arrival. The completion
time, or load, of a machine is the total time needed to process the jobs assigned to it, including idle time
in which the machine is waiting for a job to be executed (if idle time exists). The goal is to minimize the
maximum completion time of any machine, also known as themakespan.

We consider online and semi-online preemptive scheduling of jobs. An arriving job can be split into
parts, which need to be assigned to non-overlapping time slots, possibly on different machines. Idle time is
allowed, and each machine can process at most one job at each time. In the online scenario, a job must be
treated before the next job is revealed. For an algorithmA, we denote its cost byA as well. An optimal
offline algorithm that knows the complete sequence of jobs in advance, as well as its cost, are denoted by
OPT. In this paper we measure the performance quality of algorithms using the (absolute) competitive ratio,
which is the most common measure for the performance evaluation of online algorithms. The competitive
ratio ofA is the infimumR such that for any input,A ≤ R · OPT.

We consider a model where a reordering buffer, of a fixed sizeK > 0, is available. This buffer can store
up toK unassigned jobs and thus assists in partial reordering of the input. Upon the arrival of a job, it is
possible to either assign it completely to machines and time slots, or otherwise it is possible to store it in

∗Department of Mathematics, University of Pannonia, Veszprém, Hungary,dosagy@almos.vein.hu .
†Department of Mathematics, University of Haifa, 31905 Haifa, Israel.lea@math.haifa.ac.il .

1

the buffer rather than assigning it. If the buffer already containsK jobs, at least one of these jobs must be
assigned to the machines in order to make room for the new job, or else the new job must be assigned.

Non-preemptive scheduling (i.e., the case where a job cannot be split into parts and it must be processed
continuously on one machine), with a reordering buffer, was previously studied in several papers [3, 6, 12,
13, 19]. The main research question in these papers was to find the effect of using a reordering buffer on the
competitive ratio, that is, finding the lowest competitive ratio which can be achieved if the online algorithm
is supplied with a buffer, and whether this competitive ratio is achievable only in the limit, or whether there
exists a size of a buffer which allows to achieve this bound. This competitive ratio can then be compared
to the best possible competitive ratio which can be achieved without a buffer. Clearly, an offline algorithm
can be seen as an algorithm which uses an unbounded buffer. Limiting the online algorithm to a fixed sized
buffer still means in most cases that the algorithm cannot perform as well as an optimal offline algorithm.
Consequently, the competitive ratio for every value ofm is of interest, as well as theoverall competitive
ratio, which is the supremum competitive ratio over all values ofm.

In all (non-preemptive) variants studied in the past, a finite length buffer already allows to achieve the
best competitive ratio. In particular, for two identical machines, a buffer of size1 is sufficient, as was proved
by Kellerer et al. [12] and independently by Zhang [19]. Form identical machines, Englert,̈Ozmen and
Westermann [6] showed that a buffer of sizeO(m) is sufficient. For the more general case of uniformly
related machines, where machines may have different speeds, it was shown [3] that for two machines, a
buffer of size2 allows to achieve the best competitive ratio. In fact, for some speed ratios between the two
machines, a buffer of size 1 is sufficient, while for some other speed ratios, a buffer of size 1 provably does
not allow to achieve the best bound. Note that it was shown by [6] that a buffer of sizem − 1 reduces the
competitive ratio for uniformly related machines below the lower bound of the case without reordering. In
this paper we answer analogous questions for preemptive scheduling.

Preemptive online scheduling without reordering was studied by Chen, van Vliet, and Woeginger [2]
(see also [1, 14, 16]). They designed an algorithm of the best possible competitive ratio for any number
of machinesm. This competitive ratio is a monotonically increasing function ofm, mm

mm−(m−1)m , which
implies an overall competitive ratio ofee−1 ≈ 1.58. A number of papers generalized this result for uniformly
related machines [4, 7, 9, 10, 18].

We study an additional variant where it is known in advance that jobs arrive sorted by size, in a non-
increasing order. This common semi-online variant of preemptive semi-online scheduling was analyzed by
Seiden, Sgall and Woeginger for identical machines [15]. The overall tight bound on the competitive ratio
shown by [15] is1+

√
3

2 ≈ 1.366. Semi-online preemptive scheduling on uniformly related machines was
considered in [5, 8].
Our results. We give a fairly complete study of the case ofm identical machines. We find a tight bound
on the competitive ratio for general inputs for any number of machines,m. We show that a buffer of size
dm−2

2 e is sufficient to achieve this bound. In fact, reordering via the usage of a buffer allows to reduce the

tight competitive ratio to43 for evenm, and to 4m2

3m2+1
< 4

3 for oddm, whereasK = o(m) does not reduce
the overall competitive ratio, which remainsee−1 , as in [2]. Surprisingly, we find that the best competitive
ratio, as a function ofm, is not monotone, and the overall competitive ratio is4

3 . Note that this value is the
tight competitive ratio form = 2, the only case where a buffer is not necessary. This is different from the
non-preemptive problem, where form = 2 the usage of a buffer reduces the best competitive ratio from
3
2 to 4

3 [6, 12, 19]. As a motivation for using this specific size of buffer,dm−2
2 e, we show that form = 6

machines, where our general result uses a buffer of size 2, a buffer of size 1 leads to a larger competitive
ratio. We show tight bounds of19

14 ≈ 1.35714 on the competitive ratio for this case.

2

We further consider the semi-online variant where jobs arrive sorted by non-increasing processing time
requirements. In this case we show that a buffer of sizem− 1 is sufficient to achieve a competitive ratio of
1, whereas a buffer of sizem− 2 is not sufficient. That is, the combination of a reordering buffer with jobs
arriving in a sorted order is as good as receiving the entire set of jobs in advance. We show that the tight
bound for this last case, where the buffer has a size ofm−2, is1+ 1

m2+m−1
. Finally, we find tight bounds for

all buffer sizes1, 2, . . . , m− 3, in these cases, the competitive ratio is max
1≤µ≤m−K−1

2m(m+µ)
2m2+2Kµ+µ2+µ

(where

µ takes integer values, andK is the size of the buffer).
Our algorithms are based on a unified approach where largest jobs are kept in the buffer, and the created

schedule is as imbalanced as possible to keep the less loaded machines free to receive new jobs. Using
the master algorithm with different parameters results in distinct algorithms for the different cases. The
lower bounds are based on a unified approach where one sequence is used, and all the considered inputs are
subsequences of this sequence. This approach is general and allows the usage of several types of inputs for
the different cases. These general approaches were used in the past for preemptive scheduling problems, but
some important adaptations were required to be able to deal with the existence of a buffer.

2 Algorithms

2.1 The master algorithm

All our algorithms have a common structure which is explained in this section. These algorithms avoid the
usage of idle time, and try to assign as much work as possible to the more loaded machines, while keeping
K jobs is the buffer (or a smaller number of jobs, if the input sequence has terminated and the jobs left in
the buffer are being assigned). Letn denote the number of jobs (which is not known to the online algorithm
in advance).

The algorithm can be used for anyK ≤ m (we will see later that larger values ofK are not useful). In
addition to the number of machinesm and the size of the bufferK, the master algorithm uses a parameter
R, which is the required competitive ratio. In the caseK = 0, the algorithm reduces to that used by [2].

We note that in the case of identical machines, idle time gives no advantage. The schedule obtained at
some time can be fully expressed asm numbers, where thei-th number is the total length of intervals in
which i machines are active. In order to assign a job, it is necessary to decide how to partition it intom

parts, where thej-th part indicates the length of time in which it is assigned to run in parallel toj other jobs.
We next explain using induction that how to keep a schedule without idle time. The initial empty schedule
clearly satisfies this property. Assume that the schedule at a given time does not contain idle time. Assume
that a part of sizecj is supposed to be assigned to run in parallel toj other jobs (for0 ≤ j ≤ m − 1). In
order to assign the next job without idle time as well, sort the machines by non-decreasing load. A part of
the job which is supposed to run in parallel toj other jobs is assigned at the earliest possible time to the
m− j-th machine in the sorted order. If it is possible to assign a part of sizecj to run in parallel to exactly
j other jobs, then the time at which the(m− j)-th machine is not active but the(m− j + 1)-th machine is
active is at least of lengthcj . Thus the new job is assigned in a valid way, without introducing idle time.

After initialization, and as long as at mostK jobs have arrived, all jobs are stored in the buffer. If the
input consists of at mostK jobs, then each job is assigned to a separate machine, to run on this machine
non-preemptively, starting from time 0, which results in an optimal solution. Otherwise, afterK + 1 jobs
have arrived, and as long as jobs keep arriving, the algorithm keeps theK largest jobs seen so far in the
buffer. After jobs stop arriving, the algorithm keeps removing a smallest job from the buffer and assigning

3

it using the same algorithm, until all jobs have been assigned. The loads after the assignment ofi jobs are
denoted byLi

1 ≤ Li
2 ≤ . . . ≤ Li

m. Note that these are the loads after the arrival ofmin{K + i, n} jobs.
Specifically, ifK + i ≤ n, then these are the loads after the arrival ofK + i jobs, out of whichK are stored
in the buffer. Otherwise, ifK + i > n, these are the loads after all jobs have arrived andn− i of them are
in the buffer. We also useQi =

∑m
k=1 Li

k, i.e.,Qi is the total size of the assigned jobs afteri jobs have been
assigned. This amount includes all scheduled jobs in both of the described cases. LetOPTi denote the cost of
OPT at this time, afteri jobs have been assigned. This value takes into account the prefix ofmin{K + i, n}
jobs, i.e., all jobs that arrived by this time.

We assume that each machine has an index in{1, 2, . . . , m}. We first explain how to assign jobs to
machines in a way that the sorted order of machines does not change, that is, the loadLi

g is always the load
of machineg. Later we show how to modify the algorithm so that it uses at most one preemption per job, the
sequence of loads remains as in the first variant of the algorithm, but the sorted order of machines changes
frequently (i.e.,Li

g is theg-th load in the sorted order of loads, but it does not necessarily belong to machine
g).

We say that the buffer isfull, if it contains exactlyK jobs. Since the algorithm for the casen ≤ K is
completely defined above, we assume in what follows thatn > K, i.e., there is at least one case where a job
needs to be assigned while the buffer is full, and we describe the assignment of jobs for the cases where the
buffer is full, or was full at some previous time. This last option means that jobs no longer arrive, and the
jobs which remained in the buffer need to be assigned.

To assign a job, non-overlapping slots are reserved on the machines, and the job is assigned into these
slots, one by one, by a decreasing order of indices of machines, until the job is completely assigned, or
until all slots are full. In each case for which we use this master algorithm with specific parameters, we will
show that the second option never occurs. If one of the used slots is not filled completely, then the earliest
part of this slot is used, so that no idle time is created. The slots for the(i + 1)-th job ever assigned are
[Li

m,R · OPTi+1] on machinem, and[Li
j , L

i
j+1] on each other machine,1 ≤ j < m. The slots are clearly

non-overlapping. Note that some of the slots may be empty, if there are at least two consecutive identical
loads.

In order to prove upper bounds, we use two lower bounds on the cost of an optimal solution, which are
the average load, implied by the sum of all jobs (including those in the buffer), and the maximum size of
any job. The algorithm, however, needs to compute the exact value ofOPTi. We exploit the property that
OPTi is in fact equal to the maximum of these two bounds [11]. Therefore, calculating the slot on machine
m for the assignment of a job can be done in constant time.

Clearly, as long as every job is assigned successfully, the competitive ratio of the master algorithm is at
mostR. Therefore, in each case we consider, it is necessary to show that the algorithm never fails. In most
cases we derive a set of invariants which are proved by induction and allow to prove this property. In one case
we use a small number of invariants and a direct proof for the most important invariant rather than induction.
In the latter case, the usage of a similar structure of proof to the former case, i.e., additional similar invariants
together with induction, does not seem to be helpful. Since the algorithm is a generalization of the algorithm
of [2], the main technical contribution here is the design of the correct set of invariants, or the design of a
more direct proof. This is done for each case separately, since the exact value ofR affects the execution of
the algorithm and leads to very different schedules in the different cases. Note that for both variants and all
values ofm, the largest jobs are always the jobs which are kept in the buffer. In the case of general inputs, it
is either the case that the new job is stored in the buffer, or that it is the job which is assigned. In the case of
non-increasing sequences, the firstK jobs are kept in the buffer until the sequence ends, and then they are

4

assigned in an order which is opposite to the order of their arrival.
In previous work on scheduling with a buffer, in many cases, the largest jobs (or largest job, in the case

K = 1) were those which are stored in the buffer. Intuitively, this seems to be the correct approach; the
algorithm is aware of the exact sizes of the largest jobs and takes them into account in the other scheduling
decisions, but it postpones their assignment until the later. Nevertheless, in [3] one of the algorithms of
optimal competitive ratio, which usesK = 1, has two cases, where in one of the cases the larger available
job is assigned while the smaller job is stored in the buffer. We note an interesting difference with the
algorithms of [6]. Our algorithm uses the same method of assignment for all jobs, even after no additional
jobs arrive. It is possible in fact to use the same algorithm also in the casen ≤ K and avoid cases in the
definition of the algorithm. However, since this case is very simple, so we prefer the current presentation, to
avoid cases in the proof.

Finally, we show how to modify the algorithm to use at most one preemption per job instead of at most
m − 1 preemptions. Assume that machinej has thej-th load before the assignment of a job. If the job is
assigned to slots on machinesj, j + 1, . . . ,m, wherej < m − 1, i.e., it was assigned using at least two
preemptions, then instead of using the slots on machinesj + 2, . . . ,m, it is possible to assign all these parts
continuously on machinej + 1. Due to the definition of the algorithm, the only idle time in the processing
of the job (but not in the schedule) may occur between the end of the time slot in which it is assigned to
run on machinej and the beginning of the time slot on machinej + 1, since the slot on machinej is not
necessarily completely occupied. In this case the assignment of the part to machinej remains unchanged.
The load of machinej + 1 becomes the largest load (i.e., them-th load), while the load of a machiney (for
j + 2 ≤ y ≤ m) becomes the(y − 1)-th load. If the slot on machinej is occupied completely, andj < m,
then it is possible to schedule the job on machinej non-preemptively and without idle time (ifj = m, then
the job is already scheduled non-preemptively). In this case, the resulting load of machinej becomes the
m-th load, while the load of machiney (for j + 1 ≤ y ≤ m) becomes the(y− 1)-th load. In both cases, the
resulting sorted list of loads is the same as before, but the machines having these loads switch places in this
list.

2.2 General inputs

The algorithm uses a buffer of sizeK = bm−1
2 c = dm−2

2 e, that is,K = m
2 − 1 for even values ofm,

andK = m−1
2 for odd values ofm. Let R = 4

3 if m is even, andR = 4m2

3m2+1
if m is odd. Thus the

bound for oddm is strictly below4
3 , and achieves it lowest value form = 3, for which the bound equals to

9
7 ≈ 1.28571. Form = 2 the competitive ratio is43 , but the size of the buffer which we use is zero, thus the
result of [2] form = 2 already covers this case. By the results of Section 3, this result is best possible, i.e.,
the usage of a buffer does not improve the performance in this case.

We define a set of invariants which must hold after every assignment. Invariantj (for 1 ≤ j ≤ bm
2 c) at

time i is defined by
j∑

k=1

Li
k ≤ (R− 1) · j ·Qi

m− j
.

The motivation of these invariants comes from a situation where very small jobs of a total size ofx arrive
first, after which some numberj ≤ bm

2 c of identical jobs of size x
m−j arrive. An optimal solution spreads

the small jobs overm − j machines, while the best response of the algorithm would be to use thej least
loaded machines. The invariants make sure that in such a case the competitive ratio is not exceeded. Note
that even though such a construction could be a good candidate for a lower bound proof, the lower bound

5

proof of Section 3 considers an input with a much smaller number of cases.
We use some further definitions and notations. Afteri ≥ 0 jobs were assigned, no matter whether a new

job arrives, or if no additional jobs arrive, but the buffer is non-empty, let the sorted list of sizes of jobs,
which includes the jobs in the buffer and the new job (if exists) beY i+1

0 ≤ Y i+1
1 ≤ . . . ≤ Y i+1

`−1 , where
` ≤ K + 1. If a new job has just arrived (and thus the buffer is full), and we are about to assign a job, then
` = K + 1. We are going to assign the smallest job, thusQi+1 = Qi + Y i+1

0 . In addition, as explained in

Section 2.1,OPTi+1 = max{Y i+1
`−1 , 1

m · (Qi +
`−1∑
k=0

Y i+1
k)}, i.e.,OPTi+1 is the optimal cost for a schedule for

all received jobs so far, just beforeY i+1
0 is scheduled. UsingY i+1

0 ≤ Y i+1
k for any1 ≤ k ≤ `− 1, we have

OPTi+1 ≥ Y i+1
0 andOPTi+1 ≥ 1

m · (Qi + jY i+1
0), which holds for any1 ≤ j ≤ `.

Lemma 1 For a given value ofi, if after i jobs were assigned the buffer is full, then thej-th invariant holds
for time i and every1 ≤ j ≤ bm

2 c. If the buffer contains̀ < K jobs at this time, then thej-th invariant
holds for timei and every1 ≤ j ≤ `.

As mentioned above, the main technical difficulty lies in finding the correct invariants. The proof of
Lemma 1 is technical, and is given in Section 4.1. The proof idea is that if machines1, . . . , j did not
receive any parts of thei + 1-th assigned job, then there is no change in their loads, i.e.,Li

k = Li+1
k , while

Qi+1 ≥ Qi. Otherwise, except for the most loaded machine, the load of each machine that received a part
of the job, except for possibly the machine of lowest index that received a part, is exactly the previous load
of the next machine, that is, a machinek < m which received a part of the job, but not the last part, satisfies
Li+1

k = Li
k+1. There are several cases, according to the value ofj, and in particular, the casesj = bm

2 c
andj < bm

2 c are considered separately. In order to prove the invariant forj, for j < bm
2 c, the inductive

hypothesis forj + 1 is used. However, ifj = bm
2 c, there is noj + 1-th invariant, and only thej-th invariant

can be used, so the proof is slightly different from the previous case, and in addition, the two cases of even
m and oddm are not identical, since the value ofR is used in an early stage of the proof.

Lemma 2 For everyi + 1 (i ≥ 0), if the invariants hold for timei (i < n), then the algorithm assigns the
(i + 1)-th job successfully.

Proof. We show that there is enough space for the job, that is, the total size of the slots is no smaller than
the size of the job to be assigned. This gives the following condition:R · OPTi+1 − Li

1 ≥ Y i+1
0 .

Using invariant 1 at timei,

Li
1 ≤ (R− 1) · Qi

m− 1
,

and the following bounds on the optimal cost:OPTi+1 ≥ Y i+1
0 andm · OPTi+1 ≥ Qi + Y i+1

0 , we get

Li
1 + Y i+1

0 ≤ (R− 1) · Qi

m− 1
+ Y i+1

0 =
R− 1
m− 1

· (Qi + Y i+1
0) + Y i+1

0 · (m−R
m− 1

)

≤ R− 1
m− 1

·m · OPTi+1 + OPTi+1 · (m−R
m− 1

) = R · OPTi+1 ,

for anyR ≤ 2.
Theorem 12 will show that the obtained bounds are tight within algorithms for a fixed size buffer. We

summarize these bounds in the following.

Theorem 3 An application of the master algorithm, usingK = m
2 −1 andR = 4

3 for even values ofm, and

K = m−1
2 andR = 4m2

3m2+1
, for odd values ofm, is successful, i.e., results in an algorithm of a competitive

ratio of at mostR.

6

2.2.1 One special case

We investigate the special casem = 6 separately. In this case, the application of the master algorithm with
K = m−2

2 = 2 leads to a competitive ratio of43 . We show that a buffer of size1 does not allow to achieve
the best possible competitive ratio,4

3 . In this last case,K = 1, we show that the best competitive ratio
which can be achieved isR = 19

14 ≈ 1.3571 > 4
3 . To prove the upper bound, the algorithm of Section 2.2

is applied withR = 19
14 . Using a different method of analysis we prove the following theorem. The proved

bound is tight, by Theorem 19.

Theorem 4 An application of the master algorithm form = 6 usingK = 1 andR = 19
14 is successful.

In this proof we use two invariants. The first one is

Li
5 + Li

6 ≥ R · Qi

3
=

19
42
·Qi

and the second one is

Li
1 ≤

R− 1
5

·Qi =
Qi

14
.

The motivation of both invariants is to show that the loads of machines satisfy the condition that the
least loaded machine is loaded so lightly that it can receive the last job which needs to be assigned without
violating the required competitive ratio. That is, if it turns out that the sequence terminated, and only the
job remaining in the buffer still needs to be assigned, there is a way to assign this job. The second condition
requires the two most loaded machines to be loaded quite heavily, which serves as a tool in proving that the
least loaded machine is loaded lightly. Note that the average load of a machine isQi

6 , so if the machines
were balanced, the load of two machines would have been14

42 · Qi rather than at least19
42 · Qi. The first

invariant is proved by induction while the second one is proved directly.

Lemma 5 The first invariant holds for anyi ≥ 0, for which afteri jobs have been assigned, the buffer
contains a job.

Proof. We prove the invariant by induction. Before any jobs are assigned we haveL0
5 + L0

6 = 0 = Q0.
Assume that the invariant holds for a given value ofi. Let Xi+1 be the size of the(i + 1)-th job which is
ever scheduled. If all parts of the job are assigned to machines 5 and 6, then

Li+1
5 + Li+1

6 = Li
5 + Li

6 + Xi+1 ≥ 19
42
·Qi + Xi+1 >

19
42
· (Qi + Xi+1) =

19
42
·Qi+1 ,

sinceQi+1 = Qi + Xi+1.
Otherwise, the slots allocated for this job on the sixth and fifth machines are full, soLi+1

6 = R · OPTi+1

andLi+1
5 = Li

6. SinceLi
6 ≥ Li

5 we haveLi+1
5 ≥ 1

2 · (Li
5 + Li

6) ≥ 19
84 · Qi = 19

84 · (Qi+1 −Xi+1). Recall
that we assume that after the assignment a job remains in the buffer. This job has a size of at leastXi+1, so
we haveOPTi+1 ≥ 1

6 · (Qi+1 + Xi+1), and consequentlyLi+1
6 ≥ 19

84 · (Qi+1 + Xi+1).
Thus

Li+1
5 + Li+1

6 ≥ (
19
84
·Qi+1 +

19
84
·Xi+1) + (

19
84
·Qi+1 − 19

84
·Xi+1) =

19
42
·Qi+1 .

The proof of the next technical lemma can be found in Section 4.2.

7

Lemma 6 The second invariant holds for anyi ≥ 0, for which afteri jobs have been assigned, the buffer
contains a job, as long as the firsti jobs ever assigned are assigned successfully.

Lemma 7 For every timei + 1 (i ≥ 0), if the invariants hold at timei, then the algorithm assigns the next
job successfully.

Proof. Let Xi+1 be the size of the(i + 1)-th job which is ever scheduled. We need to show that the total
size of slots is sufficient, i.e.,R · OPTi+1 − Li

1 ≥ Xi+1. We haveLi
1 ≤ Qi

14 = Qi+1−Xi+1

14 . Thus

Li
1 + Xi+1 ≤ Qi+1 −Xi+1

14
+ Xi+1 =

Qi+1

14
+

13
14
·Xi+1 ≤ OPTi+1 · (6

14
+

13
14

) = R · OPTi+1 ,

usingOPTi+1 ≥ Xi+1 andOPTi+1 ≥ Qi+1

6 .
Note that it is not assumed in Lemma 7 that there is an additional job in the buffer, thus it holds for the

very last job which is assigned as well. The next corollary completes the proof.

Corollary 8 All jobs are scheduled successfully.

2.3 Non-increasing job sizes

We assume that jobs arrive sorted by non-increasing sizes. We use the master algorithm with the parameters
R = max

µ∈{0,1,2,...,m−K−1}
2m(m+µ)

2m2+2Kµ+µ2+µ
, for 1 ≤ K ≤ m − 1. In the caseK = m − 1, R = 1, so the

algorithm finds an optimal schedule.
Recall that in this semi-online variant the algorithm keeps the firstK jobs (which are the largest jobs)

in the buffer, and that we assumen > K. Let Z1 ≥ Z2 ≥ . . . ≥ ZK be the sizes of jobs which are
stored in the buffer. We do not use indices here since there is no change in the contents of the buffer until
the last job arrives. Aftern − s jobs are assigned, for0 ≤ s < K, the buffer contains only the jobs of
sizesZ1, Z2, . . . , Zs. Let Xi denote the size of thei-th job which is assigned. SinceZ1 is the size of
the largest job in the sequence, if the buffer contains` jobs after thei-th job is assigned, then we have

OPTi = max{Z1,
1
m · (Qi +

∑̀
k=1

Zk)}. Thus there exists an integer1 ≤ f ≤ n + 1 so thatOPTi = Z1 for all

i < f andOPTi > Z1 for all i ≥ f .
We next define a set of invariants which must hold after every assignment, and prove Lemma 9 below in

Section 4.3. Invariantj at timei is defined by

j∑

k=1

Li
k +

j∑

k=1

Zk ≤ j · R · OPTi .

The motivation of these invariants comes from the possibilities of assigning the jobs which are stored
in the buffer, if no additional jobs arrive. Every set of largestj jobs cannot run in parallel on more thanj

machines. The invariants consider the load resulting from assigning the largestj jobs to the least loadedj
machines. Therefore, the indices for which the invariant needs to hold depend on the number of jobs in the
buffer.

To prove theK-th invariant, if the invariant does not hold immediately using induction, we use a direct
proof, similar to the direct proof of Lemma 6.

Lemma 9 For a giveni, let ` denote the number of jobs in the buffer afteri jobs were assigned successfully.
Thej-th invariant holds fori and every1 ≤ j ≤ `.

8

In order to prove that the invariants hold at some given time, it is necessary to assume that the last
assigned job was assigned successfully. We prove that this is the case if the invariants were true just before
the assignment of this job.

Lemma 10 For every timei + 1 (i ≥ 0 and i + 1 ≤ n), if there is at least one job in the buffer, then the
algorithm assigns the next job successfully.

Proof. To prove that the assignment of the(i + 1)-th job ever assigned is successful, we need to show that
the total size of the slots is sufficient. We use the first invariant. There is at least one job in the buffer, so by
Lemma 9, soLi

1 + Z1 ≤ R · OPTi ≤ R · OPTi+1. Since the size of no job in the sequence exceeds the size
Z1, i.e.,Xi+1 ≤ Z1, we are done.

Since we have proved that if the invariants hold at a given time, then the next job is assigned successfully,
and if a job was assigned successfully, then the invariants hold after its assignment, we get that all jobs are
assigned successfully.

We have proved the following theorem.

Theorem 11 The application of the master algorithm for1 ≤ K ≤ m− 1 with

R = max
µ∈{0,1,2,...,m−K−1}

2m(m + µ)
2m2 + 2Kµ + µ2 + µ

is successful. In particular, the application of the master algorithm using the parametersK = m − 1 and
R = 1 is successful.

By Corollary 20, these bounds are best possible.

3 Lower bounds

In this section we prove the following theorem, which implies the optimality of the results of Section 2.2
(excluding Section 2.2.1). The optimality of the result of Section 2.2.1 is shown later, in Theorem 19, and
the optimality of the result of Section 2.3 will follow from Corollary 20.

Theorem 12 No algorithm for general inputs which uses a fixed size buffer can have a smaller competitive
ratio than 4

3 for evenm, and no algorithm which uses a fixed size buffer can have a smaller competitive

ratio than 4m2

3m2+1
for oddm. An algorithm which uses a buffer of sizeo(m) has an overall competitive ratio

of e
e−1 , that is, the usage of a buffer of this size is not helpful.

In order to prove lower bounds, we provide a “recipe” for designing lower bounds for the problem. This
method is an adaptation of the method used in [10, 16], which takes into account the existence of a buffer.

We restrict ourselves to inputs which have a specific form. All the considered inputs are prefixes of one
sequence. The sequence consists of a non-negative number of blocksb ≥ 0, where each block contains
identically sized jobs, and finally, the sequence of blocks may be followed byt additional jobs. Letni be
the number of jobs in thei-th block, andsi be the size of each such job. We requireni ≥ K + 1. The t

additional jobs arriving after all blocks are calledfurther jobs. Letqj denote the size of thej-th further job,

for 1 ≤ j ≤ t. We also require thatt +
b∑

i=1
ni ≥ m. We denote such a sequence, defined for a specific value

of K, by σ.

9

We useOPTj to denote the optimal makespan for the sequence of jobs up to (and including) thej-th
further job. In addition, we letOPTi,j denote the optimal makespan for the sequence of jobs up to (and
including) thej-th job of thei-th block.

For each blocki, we define the lastni −K optimal costs (OPTi,j for K + 1 ≤ j ≤ ni) ascrucial.
The typical analysis of the behavior of online algorithms on such sequences is based on the property

that an online algorithm must assign the jobs block by block. The difficulty in the analysis, in the case that
a buffer can be used, lies in the option of the algorithm to keep at mostK jobs from previous blocks in the
buffer at the time when the jobs of a new block (or the further jobs) start arriving. In order to be able to
assume that the algorithm still processes the jobs sorted by blocks, we neglect the assignment of a number
of jobs of each block which are assigned later. Specifically, we removeK jobs of each block from the final
output. These are the lastK jobs of each block which are assigned, so as a result, no jobs are present in
the buffer after a block was presented, and the jobs remaining in the schedule are in fact assigned block by
block. We still do not know if they are assigned in the order of arrival, but since all jobs in a block have the
same size, we can assume that this is the case. For further jobs, this is not necessarily true, so we need to
consider an arbitrary order of assignment for these jobs.

More precisely, for the analysis we define a modified sequence, which is based on a specific output of
the online algorithm, as follows. For each blocki, remove from the schedule the lastK jobs of this block
(i.e., of sizesi) which were ever assigned. If the execution of the algorithm on the original sequence is
restricted to the modified sequence (and the treatment of the removed jobs is simply neglected), then at the
time of arrival of the first job of a block, and also at the time of arrival of the first further job, the buffer
is empty. This holds since the buffer can contain at mostK such jobs, which are the last assigned jobs of
this block, and thus all these jobs were removed from the schedule. Therefore, the order of assignment is
according to blocks, and the further jobs are assigned last, in some order.

We define a sequence of costsCj for 1 ≤ j ≤ m. These costs are upper bounds on the optimal cost at
the time of assignment of the lastm jobs in the modified sequence.

Consider first the sequence of all crucial optimal costs of all blocks (i.e., all optimal costs, neglecting
the firstK optimal costs of each block). Ift > K, this sequence is followed by the optimal costsOPTj for
K + 1 ≤ j ≤ t, and finally,K times the costOPTt. It t ≤ K, then the lastt values aret timesOPTt. The
lastm costs in this sequence are denoted byC1, C2, . . . , Cm. Note that the lastmin{m, t, K + 1} values in
this sequence areOPTt, which is the optimal cost of the entire input sequence.

We consider the relation between theCj values and the optimal costs at the time of assignment of jobs.
Let a1, a2, . . . , am be the lastm jobs of the modified sequence ever assigned. Ift > m then all those jobs
are further jobs. Otherwise, the lastt of those jobs are further jobs. LetOj denote the optimal cost (of the
input that already arrived, for the original sequence) at the time of assignment ofaj . We next prove the
relationOj ≤ Cj for all m values ofj.

Consider the time at which a jobx, which is thek-th assigned job of a given blocki, is assigned. If
ni ≥ k + K, then in the original sequence, no jobs of future blocks, or further jobs have arrived until this
time, and at mostK additional jobs of the same block have arrived. Therefore, an upper bound the optimal
cost can be computed based on the jobs all previous blocks, andk + K jobs of the current block, i.e., this
upper bound isOPTi,k+K .

Consider next the situation wherex is thek-th assigned further job. If the sequence contains more than
K further jobs arriving afterx, at mostK jobs can be stored in the buffer, so at the time of assignment of the
k-th assigned further job (which is not necessarily thek-th arriving further job), at mostk + K further jobs
have arrived. Therefore, an upper bound the optimal cost can be computed based on the jobs all previous

10

blocks, and the firstk + K further jobs, i.e., this upper bound isOPTk+K . Clearly, if k + K > t then an
upper bound can be computed based on the entire input.

Lemma 13 For every1 ≤ j ≤ m, Oj ≤ Cj .

Proof. Assume first thatt ≤ m. Consider first the lastt jobs ever assigned. Since after each block the buffer
is empty, these jobs are exactly thet further jobs. We proveOj ≤ Cj for m− t + 1 ≤ j ≤ m.

If t ≤ K + 1, then clearlyOj ≤ Cj for m − t + 1 ≤ j ≤ m, sinceCj = OPTt by definition of theCj

values, andOPTt is the optimal cost of the entire input.
If t ≥ K + 2, then similarly,Cj = OPTt for m − K ≤ j ≤ m, and we need to consider the case

m − t + 1 ≤ j ≤ m − K − 1. Consider the time whenk − 1 further jobs were already assigned (for
1 ≤ k ≤ t −K − 1), and thek-th job needs to be assigned. Since the buffer contains at mostK jobs, and
k − 1 further jobs were assigned, then at mostk + K further jobs have arrived, and the optimal cost is at
mostOPTk+K = Cm−t+k. ThusOj ≤ Cj for the required values ofj.

Next, if t 6= m, consider a jobaj of block i, i.e., this job is thej-th jobs out of the lastm assigned jobs
in the modified sequence, and thek-th assigned job of blocki so thatk + K ≤ ni. The costCj was defined
to be the optimal cost of the input up to thei-th block, includingk + K jobs of blocki, i.e. it is OPTi,k+K .
Since at mostk + K jobs of this block could arrive by the time thataj is assigned, we getOj ≤ Cj .

If t > m, the the last assignedm jobs are all further jobs. Ifm ≤ K+1, thenCj = OPTt for 1 ≤ j ≤ m,
and we are done. Otherwise, the proof is similar to the caseK + 2 ≤ t ≤ m, but we are only interested in
the times of assignment of the jobsa1, . . . , am−K−1, so the firstt −m further jobs (according to the time
of assignment) are not considered.

Theorem 14 Given a sequenceσ as defined above. The competitive ratio of any algorithm which uses a
buffer of sizeK is at least

t∑
j=1

qj +
b∑

i=1
(ni −K) · si

m∑
k=1

Ck

.

Proof. Consider the modified schedule. LetTi (for i = 1, . . . , m) denote the makespan of the algorithm
wheni − 1 jobs out of the jobs of the modified sequence still need to be assigned. Consider the time axis
of the schedule and letτi denote the maximum time in the final schedule of the modified sequence at which
at leasti machines are still active, for1 ≤ i ≤ m. If there is no such time for somei then we letτi = 0.
Clearly,τ1 ≥ τ2 ≥ . . . ≥ τm must hold. We show thatTi ≥ τi. For i = 1 this is clear. Next, remove the
jobsam, am−1, . . . , a1, one by one, in this order (which is opposite to the order which they were assigned).

After the removal of a set of thè− 1 > 0 jobs which were assigned last (jobsam, . . . , am−`+2),
the maximum completion time is at leastτ`, since the activity on the machines at the point in timeτ` was
affected (by the removal) on at most` − 1 machines, and at least one machine remains active at timeτ`.
ThereforeT` ≥ τ`.

Let R be the competitive ratio of the algorithm. ThusTj ≤ R · Om−j+1 for every1 ≤ j ≤ m. By
Lemma 13,Om−j+1 ≤ Cm−j+1, soTj ≤ RCm−j+1. Let W be the sum of all jobs sizes in the modified

input, i.e.,W =
t∑

j=1
qj +

b∑
i=1

(ni −K) · si and letτm+1 = 0. We next claim thatW ≤
m∑

k=1

Tk. Consider

the time interval between timesτk+1 andτk for some1 ≤ k ≤ m. During this time, at each point in time,

11

there are at mostk active machines. Thus the total size of parts of job processed during this time interval is
at mostk · (τk − τk+1). Therefore (usingτm+1 = 0),

W ≤
m∑

k=1

k · (τk − τk+1) =
m∑

k=1

k · τk −
m∑

k=1

k · τk+1 =
m∑

k=1

k · τk −
m∑

k=1

(k − 1) · τk =
m∑

k=1

τk ≤
m∑

k=1

Tk ,

sinceτk ≤ Tk for any1 ≤ k ≤ m. Therefore we haveW ≤
m∑

k=1

Tk ≤
m∑

k=1

R · Cm−k+1 =
m∑

j=1
R · Cj . The

lower bound follows.
We use Theorem 14 to prove all the lower bounds in the section. We start with a lower bound for general

inputs. The lower bound is simple and it only uses a single block before the further jobs. This lower bound
can be used for different values ofK.

We define a class of lower bound sequencesσ1 which is used below. This type of sequence contains a
block of very small jobs, andt < m further jobs. LetN be a large integer, and letδ = 1

N . The first block of
σ1 containsKN jobs of size 1

KN = δ
K . The number of further jobs, and their sizes are defined separately

for each case.

Lemma 15 For any fixed value ofK, the competitive ratio of any algorithm which uses a buffer of sizeK

is at least43 for evenm and at least 4m2

3m2+1
for oddm.

Proof. The main idea of this lower bound is that a large number of tiny jobs of a total size of1 arrive.
Since the jobs are small, the buffer has no effect, and the algorithm has to distribute almost all jobs among
the machines. Since jobs are tiny, preemption is not helpful. After the assignment of almost all small jobs
takes place, roughlym2 large jobs arrive. Each large job has a size of roughly2

m , so if these jobs arrive, it is
revealed that the small jobs were supposed to occupy only half of the machines until time2

m . It is either the
case that sufficiently many machines are not busy at sufficiently early times, in which case the assignment
of the small jobs has a relatively completion time, or otherwise, after the assignment of larger jobs, the
maximum completion time is sufficiently large. These two possible scenarios result in a lower bound of4

3

on the competitive ratio. Ifm is odd, the lower bound is slightly lower.
We useσ1 and t = dm

2 e further jobs of size 1
bm

2
c . The size of further jobs was chosen so that in an

optimal assignment of the complete sequence, each further job is assigned to a dedicated machine, while the
other jobs are spread evenly on the other machines. In this schedule, all machines have a load of1

bm
2
c .

For evenm, the total size of jobs in the modified sequence is2−δ, Cj ≤ 1
m for 1 ≤ j ≤ m

2 , andCj ≤ 2
m

for m
2 + 1 ≤ j ≤ m. This gives a lower bound of 2−δ

m
2
· 1
m

+m
2
· 2
m

. For small enoughδ, this value tends to43 .

For odd values ofm, the total size of jobs in the modified sequence is1− δ + m+1
2 · 2

m−1 , Cj ≤ 1
m for

1 ≤ j ≤ m−1
2 , andCj ≤ 2

m−1 for m+1
2 ≤ j ≤ m. This gives a lower bound of

1−δ+ m+1
m−1

m−1
2
· 1
m

+m+1
2
· 2
m−1

. For small

enoughδ, the lower bound tends to 4m2

(m−1)2+2m(m+1)
= 4m2

3m2+1
.

We next analyze the lower bound resulting from sequences of the typeσ1.

Lemma 16 Let t < m. The competitive ratio of any algorithm which uses a buffer of sizeK < t is at least

1 +
t∑

i=1
qi

m−t
m +

t−K∑
i=1

OPTi+K + K · OPTt

,

12

whereqj is the size of thej-th further job in the sequenceσ1, and the valueOPTj is the optimal cost of the
sequence up to thej-th further job.

Proof. We use Theorem 14. The total size of the jobs of the modified sequence is1 − δ +
t∑

i=1
qi. We have

Cj = OPTt for m −K + 1 ≤ j ≤ m, Cj = OPTj+K−m+t for m − t + 1 ≤ j ≤ m −K, andCj ≤ 1
m for

1 ≤ j ≤ m− t.
We next consider a special case ofσ1, where the list of further jobs consists ofK +1 identical jobs, fol-

lowed by a sequence of jobs with increasing sizes. The sequence is constructed so that an optimal schedule
for the sequence up to the(K + 1)-th further job is flat, that is, each further job is assigned to a dedicated
machine, and the other jobs are spread evenly on the other machines, giving the same load to each ma-
chine. The additional further jobs form an increasing sequence of sizes, which allows exactly a flat optimal
schedule.

Corollary 17 The competitive ratio of any algorithm which uses a buffer of sizeK ≤ dm−2
2 e is at least

mt

(t + tK − tm−Km) ·mK−1 · (m− 1)t−K−1 + (K + m) ·mt−1
.

for anyK + 1 ≤ t ≤ m− 1.

Proof. We apply Lemma 16 withK + 1 ≤ t ≤ m− 1. Let Qj = 1 +
j∑

i=1
qi.

We useq1 = q2 = · · · = qK+1 = 1
m−K−1 . ThusQK+1 = 1 + K+1

m−K−1 = m
m−K−1 , so OPTK+1 =

1
m−K−1 .

We let qj = (m
m−1)j−K−1 · q1 for j = K + 2,K + 3, . . . , t. Thus qt ≥ qt−1 ≥ · · · ≥ q1 and

qj = (m
m−1)qj−1, or equivalently,(m− 1)qj = m · qj−1, for K + 2 ≤ j ≤ t.

We next prove by induction that forK+1 ≤ j ≤ t, Qj = m·qj , or equivalently,Qj−1 = (m−1)·qj (the
equivalence follows from sinceQj = Qj−1 + qj). Forj = K + 1 we haveQK+1 = m

m−K−1 = m · qK+1.
Forj ≥ K + 2 we haveQj−1 = m · qj−1, thereforeQj = m · qj−1 + qj = (m− 1) · qj + qj = m · qj , since
(m− 1)qj = m · qj−1.

Sinceqj = Qj

m for j ≥ K + 1, we get that in this caseOPTj = qj . For j < K + 1, Qj < m · qj and
thereforeOPTj = qj . We have

1 +
t∑

i=1

qi = Qt = m · qt = m ·
(

m

m− 1

)t−K−1

· 1
m−K − 1

.

On the other hand,

m− t

m
+

t−K∑

i=1

OPTi+K + K · OPTt =
m− t

m
+

t∑

i=K+1

OPTi + K ·
(

m

m− 1

)t−K−1

· 1
m−K − 1

=
m− t

m
+

t∑

i=K+1

(
m

m− 1
)i−K−1 · 1

m−K − 1
+ K ·

(
m

m− 1

)t−K−1

· 1
m−K − 1

=
m− t

m
+

t−K∑

j=1

(
m

m− 1
)j−1 · 1

m−K − 1
+ K ·

(
m

m− 1

)t−K−1

· 1
m−K − 1

=
m− t

m
+

1
m−K − 1

·
(

(m
m−1)t−K − 1

m
m−1 − 1

+ K ·
(

m

m− 1

)t−K−1
)

.

13

This results in a lower bound of

m · (m
m−1)t−K−1

(m−t)·(m−K−1)
m + K · (m

m−1)t−K−1 + (m− 1) · (m
m−1)t−K − (m− 1)

=
mt

(m− t) · (m−K − 1) ·mK−1 · (m− 1)t−K−1 + K ·mt−1 + mt −mK · (m− 1)t−K

=
mt

(t + tK − tm−Km) ·mK−1 · (m− 1)t−K−1 + (K + m) ·mt−1

on the competitive ratio.
For the caseK = 1, t = m− 2 this results in a lower bound of

mm

(3m−m2 − 4) ·m2 · (m− 1)m−4 + (m + 1) ·mm−1
.

We next show as a corollary of the lower bound above that using a buffer of sizeo(m) gives a competitive
ratio which tends to e

e−1 for m →∞. Thus, the size of the buffer must be a linear function ofm in order to
improve over the upper bound of the case where no buffer is used.

Corollary 18 Any algorithm using a buffer of sizeo(m) has an overall competitive ratio of at leastee−1 .

Proof. Usingt = m− 1, we have a lower bound of

mm−1

(2m−K − 1−m2) ·mK−1 · (m− 1)m−2−K + (K + m) ·mm−2

=
(m

m−1)m−1

2m−K−1−m2

(m−1)2
· (m

m−1)K−1 + K+m
m · (m

m−1)m−1
,

which tends to e
e−1 for largem andK = o(m).

This completes the proof of Theorem 12. We now turn to proving the additional lower bounds of this
section. In the construction of the sequence of the following proof, two blocks are used before the further
jobs.

Theorem 19 Any algorithm withK = 1 andm ≥ 5 has a competitive ratio of at least 4m3−12m2+4m
3m3−11m2+18m−24

,
which gives a lower bound of19

14 for m = 6.

Proof. Consider an input with two blocks, form ≥ 5 andK = 1. The first block consists again of very
small jobs, of total size1 (similarly to the first block ofσ1). The next block containsm− 3 ≥ 2 jobs, each
of size 1

m−2 . There are two further jobs which have a size of2m−5
(m−2)2

(which is larger than the size of each

job of the block). The total size of jobs in the modified sequence is2m2−6m+2
(m−2)2

− δ.

We haveCm = Cm−1 = 2m−5
(m−2)2

. For3 ≤ j ≤ m − 2, Cj = 1
m · (j−1

m−2 + 1), and finallyC1 = C2 = 1
m .

Thus

m∑

j=1

Cj =
2
m

+ 2 · 2m− 5
(m− 2)2

+
m−4∑

g=1

m + g − 1
m(m− 2)

=
2
m

+
(m− 1)(m− 4)

m(m− 2)
+

(m− 4)(m− 3)
2m(m− 2)

+
2(2m− 5)
(m− 2)2

=
3m3 − 11m2 + 18m− 24

2m(m− 2)2
.

14

Using Theorem 14, we get a lower bound of4m3−12m2+4m
3m3−11m2+18m−24

. Form = 6, the resulting lower bound
is 19

14 ≈ 1.3571.
Note that the lower bound for the casem = 6, K = 1 resulting from Corollary 17 (witht = 4) is

only 648
481 ≈ 1.3472. The lower bound form = 7 given by Theorem 19 is203

148 ≈ 1.3716216, which is an
improvement over the lower bound which is implied of Corollary 17 as well.

Next, we consider the case of non-increasing job sizes and prove the following.

Corollary 20 For the case of non-increasing job sizes, let0 ≤ K ≤ m − 2. The competitive ratio of any
algorithm is at least max

1≤µ≤m−K−1

2m(m+µ)
2m2+2Kµ+µ2+µ

(whereµ takes integer values). Specifically, ifK ≤ m−2,

then no algorithm can compute an optimal solution. ForK ≥ m− 1, no algorithm can have a competitive
ratio below1. Thus, the algorithms of Section 2.3 are best possible both in terms of competitive ratio and
the size of the used buffer.

Proof. If K ≥ m − 1, a sequence which consists of a single job shows that the competitive ratio cannot
be below1. Let 1 ≤ K ≤ m − 2 and fix an integer value ofµ, where1 ≤ µ ≤ m − K − 1. We use
b = 0 andn = m + µ and use jobs of size 1. We haveOPTi = 1 for i ≤ m, andOPTm+i = m+i

m , for
m + 1 ≤ i ≤ m + µ. In the sequenceC1, . . . , Cm, the lastK values areOPTm+µ, and the previousm−K

values areOPTµ+K+1, . . . , OPTm+µ. We get the values1 (m−K − µ times),m+1
m , m+2

m , . . . , m+µ−1
m , and

m+µ
m (K + 1 times). Using Theorem 14 we find that the resulting value of the lower bound is

m + µ

(m−K − µ) +
µ−1∑
i=1

m+i
m + (K + 1) · m+µ

m

=
2m · (m + µ)

2m · (m−K − µ) + 2 ·
µ−1∑
i=1

(m + i) + 2 · (K + 1) · (m + µ)

=
2m · (m + µ)

2m2 − 2mK − 2mµ + 2 · (µ− 1) ·m + µ · (µ− 1) + 2Km + 2m + 2Kµ + 2µ

=
2m · (m + µ)

2m2 + 2Kµ + µ2 + µ
.

Note that usingµ = 0 yields a lower bound of1, and usingµ ≥ m−K yields a lower bound which is
no larger than the caseµ = m−K − 1, since for each increase by1 in the value ofµ, i.e., usingµ′ = µ + 1
the numerator grows by2m while the denominator grows by2K + 2µ + 2 ≥ 2(m− 1) + 2 ≥ 2m, which
does not increase the value of the lower bound.

4 Proofs of technical lemmas

4.1 Proof of Lemma 1

We prove the claim by induction oni. Fori = 0, Li
k = 0 for all k, andQi = 0 imply that all invariants hold.

Assume now that all invariants hold for a given timei, and consider the invariants for timei + 1. If none of
machines1, 2, . . . , bm

2 c received any parts of the(i+1)-th assigned job, thenLi+1
k = Li

k for 1 ≤ k ≤ bm
2 c,

and thus all the invariants hold for timei + 1, sinceQi+1 ≥ Qi. Otherwise, let1 ≤ z ≤ bm
2 c denote the

minimum index of a machine which received a non-zero part of the job. Similarly to the above, for any
k < z, Li+1

k = Li
k, and thus for anyj < z, thej-th invariant holds at timei. We need to prove thej-th

15

invariant forj = z, z + 1, . . . , bm
2 c, if K jobs remain in the buffer (i.e.,i + 1 + K ≤ n), and otherwise for

j = z, z + 1, . . . , `, if the number of jobs in the buffer after the assignment is` < K.
Note that for evenm, if i + K = n, then at timei all m

2 invariants hold, while after the(i + 1)-th job is
assigned, it is required that only the invariants forj ≤ m

2 − 2 hold. Our proof would result in the invariants
for j ≤ m

2 − 1 holding, that is, one invariant which can be proved would not be necessary. However, ifm is
odd, after the(i + 1)-th job is assigned, it is required that only the invariants forj ≤ m−1

2 − 1 hold, which
is exactly what is proved here.

After the assignment, since the slots of machinesz + 1, z + 2, . . . , m were fully used, the loads of these
machines satisfyLi+1

j = Li
j+1, for z + 1 ≤ j ≤ m − 1, andLi+1

m = R · OPTi+1. Therefore, for any
z ≤ j ≤ bm

2 c, the following inequality holds:

j∑

k=1

Li+1
k = Qi+1 −

m∑

k=j+1

Li+1
k = Qi+1 −

m−1∑

k=j+1

Li
k+1 −R · OPTi+1

= Qi+1 −
m∑

k=j+2

Li
k −R · OPTi+1 = Qi+1 −Qi +

j+1∑

k=1

Li
k −R · OPTi+1

= Y i+1
0 +

j+1∑

k=1

Li
k −R · OPTi+1 .

Case 1. j < bm
2 c. In this casem − j − 1 > 0 holds, and we can use the invariant ofj + 1 at time

i. This invariant holds since either the buffer is full after the assignment of the(i + 1)-th job, and thus it
was also full before it, or otherwise the buffer contained at leastj + 1 jobs before the assignment. We have
j+1∑
k=1

Li
k ≤ (R− 1) · (j+1)·Qi

m−j−1 . Thus it is sufficient to prove

Y i+1
0 + (R− 1) · (j + 1) ·Qi

m− j − 1
−R · OPTi+1 − (R− 1) · j ·Qi+1

m− j
≤ 0.

Sub-case 1.1. If Qi < (m− j − 1) · Y i+1
0 , then we useOPTi+1 ≥ Y i+1

0 andQi+1 = Qi + Y i+1
0 to get

Y i+1
0 +

(R− 1) · (j + 1) ·Qi

m− j − 1
−R · OPTi+1 − (R− 1) · j ·Qi+1

m− j

≤ Y i+1
0 ·

(
1−R− j · (R− 1)

m− j

)
+ Qi · m · (R− 1)

(m− j)(m− j − 1)

≤ Y i+1
0 ·

(
1−R− j · (R− 1)

m− j
+

m · (R− 1)
m− j

)
=

(R− 1) · Y i+1
0

m− j
(−(m− j)− j + m) = 0 .

Sincem − j − 1 > 0, the coefficient ofQi in the second expression is positive, so the substitution is
valid.
Sub-case 1.2. If Qi ≥ (m− j − 1) · Y i+1

0 , then we useOPTi+1 ≥ 1
m · (Qi + (j + 1) · Y i+1

0) (since there
are` ≥ j + 1 jobs stored in the buffer), andQi+1 = Qi + Y i+1

0 . It suffices to prove that

Y i+1
0 + (R− 1) · (j + 1) ·Qi

m− j − 1
≤ R · 1

m
· (Qi + (j + 1) · Y i+1

0) + (R− 1) · j · (Qi + Y i+1
0

)

m− j
,

16

or equivalently,

Y i+1
0 + (R− 1) · j + 1

m− j − 1
·Qi ≤

(R
m

+
(R− 1) · j

m− j

)
·Qi +

(R · (j + 1)
m

+
(R− 1) · j

m− j

)
· Y i+1

0 .

Then it is easy to see that the coefficient ofY i+1
0 on the right hand side is less than1, since ifm is even,

thenR = 4/3, j ≤ m
2 − 1 and

R · j + 1
m

+ (R− 1) · j

m− j
< R · m/2

m
+ (R− 1) · m/2

m/2
= R/2 +R− 1 =

3
2
R− 1 ≤ 1 .

Otherwise, ifm is odd, thenR = 4m2

3m2+1
, j ≤ m−1

2 − 1 and

R · j + 1
m

+ (R− 1) · j

m− j
< R · m + 1

2m
+ (R− 1) · m− 1

m + 1

= R(m + 1)2 + 2m · (m− 1)
2m (m + 1)

− m− 1
m + 1

=
4m2

3m2 + 1
· 3m2 + 1
2m · (m + 1)

− m− 1
m + 1

=
2m

m + 1
− m− 1

m + 1
= 1 .

It follows that in the next expression, which we would like to prove, the coefficient ofY i+1
0 is nonnegative:

(
1− R

m
· (j + 1)− (R− 1) · j

m− j

)
· Y i+1

0 ≤
(R

m
+

(R− 1) · j
m− j

− (R− 1) · j + 1
m− j − 1

)
·Qi.

Then no matter whether the coefficient in the right hand side is positive or not, it suffices to prove (by
substitutingQi ≥ (m− j − 1) · Y i+1

0) that

(
1− R

m
· (j + 1)− (R− 1) · j

m− j

)
≤

(R
m

+
(R− 1) · j

m− j
− (R− 1) · (j + 1)

m− j − 1

)
· (m− j − 1) ,

or equivalently,

1− R
m
· (j + 1)− (R− 1) · j

m− j
≤ R

m
· (m− j − 1) +

(R− 1) · j
m− j

· (m− j − 1)− (R− 1) · (j + 1) ,

which is equivalent to

1 + (R− 1) · (j + 1) ≤ R · m− j − 1 + j + 1
m

+ (R− 1) · j · (m− j − 1) + j

m− j
,

which is finally equivalent to the following condition which clearly holds.

(R− 1) · j +R ≤ R+ (R− 1) · j .

Case 2. j = m
2 , this case needs to be considered only ifm is even, andm2 − 1 jobs remain in the buffer

after the assignment. We prove this case separately as follows.

The invariant forj for time i is

m
2∑

k=1

Li
k ≤ (R − 1) · Qi, and therefore

m∑
k=m

2
+1

Li
k ≥ (2 − R) · Qi.

SinceLi
m
2

+1 ≤ Li
m
2

+2 ≤ . . . ≤ Li
m, we have

m∑
k=m

2
+2

Li
k ≥

m
2
−1

m
2

· (2 − R) · Qi. We get

m
2

+1∑
k=1

Li
k ≤

(2
m · (2−R) +R− 1) ·Qi.

17

Therefore, it is enough to prove

Y i+1
0 + (

2
m
· (2−R) +R− 1) ·Qi −R · OPTi+1 − (R− 1) ·Qi+1 ≤ 0 .

We useOPTi+1 ≥ 1
m · (Qi + m

2 ·Y i+1
0) (since in addition to the job of sizeY i+1

0 which is being assigned,
the buffer containsK = m

2 − 1 jobs of at least its size),Qi+1 = Qi + Y i+1
0 andR = 4

3 to get that it is
enough to consider

Y i+1
0 +

(
2
m
· (2−R) +R− 1

)
·Qi − R ·

(
Qi

m
+

Y i+1
0

2

)
− (R− 1) · (Qi + Y i+1

0)

= Y i+1
0 ·

(
2− 3R

2

)
+

1
m
·Qi · (4− 3R) = 0 .

Case 3. j = m−1
2 , this case needs to be considered only ifm is odd, andm−1

2 jobs remain in the buffer
after the assignment.

The invariant forj for time i is

m−1
2∑

k=1

Li
k ≤ (R− 1) ·

m−1
2

m−m−1
2

· Qi = m2−1
3m2+1

· m−1
m+1 ·Qi = (m−1)2

3m2+1
·Qi,

and therefore
m∑

k=m+1
2

Li
k ≥ (1 − m2−2m+1

3m2+1
) · Qi =

2(m2+m)
3m2+1

· Qi. SinceLi
m+1

2

≤ Li
m+1

2
+1
≤ . . . ≤ Li

m,

we have
m∑

k=m+1
2

+1

Li
k ≥

m+1
2
−1

m+1
2

· 2(m2+m)
3m2+1

·Qi = m−1
m+1 · 2m(m+1)

3m2+1
·Qi = 2m(m−1)

3m2+1
·Qi. We get

m+1
2∑

k=1

Li
k ≤

(1− 2m(m−1)
3m2+1

) ·Qi = m2+2m+1
3m2+1

·Qi.

Therefore, it is sufficient to prove

Y i+1
0 +

m2 + 2m + 1
3m2 + 1

·Qi −R · OPTi+1 − (R− 1) · m− 1
m + 1

·Qi+1 ≤ 0, i.e.,

Y i+1
0 +

m2 + 2m + 1
3m2 + 1

·Qi − 4m2

3m2 + 1
· OPTi+1 − m2 − 1

3m2 + 1
· m− 1
m + 1

·Qi+1 ≤ 0

We useQi+1 = Qi + Y i+1
0 andOPTi+1 ≥ 1

m · (Qi + m+1
2 · Y i+1

0) to get that

Y i+1
0 +

m2 + 2m + 1
3m2 + 1

·Qi − 4m2

3m2 + 1
· OPTi+1 − m2 − 2m + 1

3m2 + 1
·Qi+1

≤ Y i+1
0 +

m2 + 2m + 1
3m2 + 1

·Qi − 4m

3m2 + 1
· (Qi +

m + 1
2

· Y i+1
0)− m2 − 2m + 1

3m2 + 1
· (Qi + Y i+1

0

)

=
(

1− 2m · (m + 1)
3m2 + 1

− m2 − 2m + 1
3m2 + 1

)
· Y i+1

0 +
m2 + 2m + 1− 4m− (

m2 − 2m + 1
)

3m2 + 1
·Qi = 0.

4.2 Proof of Lemma 6

We start with a short outline of the proof. We need to prove an invariant which states that the first machine
is loaded relatively lightly. Thus, we only need to consider situations where this machine actually received
some parts of jobs. We consider the following three times. The last time at which this machine received a
part of a job, which means that the slot on the second machine was occupied completely at this time. The
time strictly earlier, when the second machine received a part of a job (and the slot of the third machine is
occupied completely), and a time strictly before this time when the third machine received a part of a job.

18

Since we already have an invariant regarding the total load of machines5 and6, we follow the steps of the
algorithm starting from the time mentioned above, at which in fact the slot on the fourth machine was used
completely. These three times in the execution are seen as key times, for which bounds on the optimal cost
are calculated with respect to loads, and with respect to the largest job size, which is the size of the job in
the buffer at this time. There are several cases, based on the relation between the sizes of at most six jobs,
which are the three jobs mentioned above, and the jobs stored in the buffer at the times of their assignment.

To prove the invariant for a given value ofi, where a job is stored in the buffer afteri jobs have been
assigned, we note that ifLi

1 = 0 we are done, thus we assumeLi
1 > 0.

Let A be a job which is just have been assigned by the algorithm. Consider the smallest index of a
machinek (0 ≤ k ≤ 6) that received a non-empty part ofA (k = 0 if the job is larger than the slots
allocated for it). We say that jobA overflowsmachinej for all machinesj such thatk < j ≤ 6. That is,
A overflows machinej if the slot allocated forA on machinej was fully used. Since alli jobs, which were
assigned so far, were assigned successfully, no job could overflow machine1. We say that the load of the
m-th machine (i.e. the load of machine6) is full after t jobs were assigned, if it equals to the maximum
allowed load, i.e., it is equal toR · OPTt. This condition holds if thet-th job ever assigned overflows the
machinem = 6.

We present additional definitions which have a major role in the proof. Letv3 be the last job among
the firsti assigned jobs, in the order of assignment of jobs (which is not necessarily the order of arrival of
jobs) which overflows machine2. Such a job must exist, otherwise, machine1 would have remained empty.
Let v2 be the last jobstrictly before v3 (in the order of assignment) that overflows machine3 (and possibly
also machine2). This job must exist because otherwise machine2 would have been empty at the time of
assignment ofv3, andv3 could not overflow it. Finally, letv1 be the last jobstrictly before v2 that overflows
machine4. Similarly to the above, this job also must exist.

Furthermore, we denote byuk the job stored in the buffer at the time whenvk is being assigned, (for
eachk = 1, 2, 3). The jobu3 exists since the buffer contains a job afteri jobs were assigned. We abuse
notation to letuk andvk denote also the sizes of these jobs. For a jobp, let Q(p) denote the sum of sizes of
jobs assigned strictly beforep. Let OPT(p) denote the optimal cost at the time of assignment ofp (including
the job stored in the buffer, if exists). For simplicity of notation, we letLj = Li

j for 1 ≤ j ≤ 6.
Consider the moment whenv1 is assigned and recall that it overflows machine4. From this fact it follows

that just after the assignment ofv1, the load of machine4 will be equal to the previous load of machine5,
the load of machine5 will be equal to the previous load of machine6, and the load of machine6 will be
full. Using Lemma 5 for the time just beforev1 is assigned, we have the following lower bound on the sum
of the loads of the last three machines just afterv1 is assigned:19

42 ·Q(v1) + 19
14 · OPT(v1).

Sincev1 is the last job beforev2 that overflows machine4, each job assigned strictly afterv1 and strictly
beforev2 does not overflow machine4. This means that all parts of these jobs are assigned only to the last
three machines. Denote the sum of the sizes of these job byS12. Then, just beforev2 is assigned, the sum
of the loads of the last three machines is at least

19
42
·Q(v1) +

19
14
· OPT(v1) + S12 .

Let us consider the moment whenv2 is assigned, and recall that it overflows machine3. Similarly to the
previous case, just after the assignment ofv2, the loads of each machinej (3 ≤ j ≤ 5) will be equal to the
previous load of machinej + 1, and the load of machine6 will be again full, that means that the total load
of the last four machines is at least

19
42
·Q(v1) +

19
14
· OPT(v1) + S12 +

19
14
· OPT(v2) .

19

Then the jobs assigned betweenv2 andv3, not including these jobs (denote the total size of those jobs
by S23) are assigned completely to the last four machines, and we get that just beforev3 is assigned, the sum
of the loads of the last four machines is at least

19
42
·Q(v1) +

19
14
· OPT(v1) + S12 +

19
14
· OPT(v2) + S23.

Consider the moment whenv3 is assigned, and recall that it overflows machine2. We get that just afterv3

is assigned, the total load of the last five machines is at least:

19
42
·Q(v1) +

19
14
· OPT(v1) + S12 +

19
14
· OPT(v2) + S23 +

19
14
· OPT(v3) .

Finally, let S34 denote the total size of all jobs assigned strictly afterv3 up to thei-th assigned job. After
assigning the those remaining jobs up to thei-th job, we get that since no further job overflows machine2,
the total load of the last five machines satisfies

L2 + L3 + L4 + L5 + L6

≥ 19
42
·Q(v1) +

19
14
· OPT(v1) + S12 +

19
14
· OPT(v2) + S23 +

19
14
· OPT(v3) + S34.

For simplicity of notation, letQ = Q(v1). We have the next inequalities:

OPT(v1) = max
{

Q + v1 + u1

6
, u1

}
,

OPT(v2) = max
{

Q + v1 + S12 + v2 + u2

6
, u2

}
,

OPT(v3) = max
{

Q + v1 + S12 + v2 + S23 + v3 + u3

6
, u3

}
.

In the technical part of the proof, instead of the maximum values on the right hand side of these bounds
on OPT(vk), we will use convex combinations of the two terms in each maximum. We also usevi ≤ ui. We
need to show that

L1 ≤ 1
14
· (Q + v1 + S12 + v2 + S23 + v3 + S34) .

Now we separately treat several cases as follows.
Case 1. v2 ≤ u1 andv3 ≤ u2. Then, (also usingv1 ≤ u1 andv3 ≤ u3), we get

L2 + L3 + L4 + L5 + L6

≥ 19
42
·Q +

57
42
·
(

19
57
· Q + v1 + v2

6
+

19
57
· v1 +

19
57
· v2

)
+ S12

+
57
42
·
(

44
57
· Q + v1 + v2 + v3

6
+

13
57
· v3

)
+ S23

+
57
42
·
(

57
57
· Q + v1 + v2 + 2v3

6
+

0
57
· v3

)
+ S34

≥ 39
42
·Q +

39
42
· v1 +

39
42
· v2 +

39
42
· v3 + S12 + S23 + S34 .

20

It follows that

L1 = Q + v1 + S12 + v2 + S23 + v3 + S34 − (L2 + L3 + L4 + L5 + L6)

≤ 1
14
· (Q + v1 + v2 + v3) .

Case 2. v2 ≤ u1 andv3 > u2. Then in the second maximum we cannot substituteu2 by v3. On the other
hand, from the condition follows, thatu2 is already have been assigned when we are just assigningv3, thus
S23 is not empty, andS23 ≥ u2 ≥ v2. We also applyu2 ≥ v2 andu1 ≥ v1 to get

L2 + L3 + L4 + L5 + L6 ≥ 19
42
·Q

+
57
42
·
(

36
57
· Q + v1 + v2

6
+

19
57
· v1 +

2
57
· v2

)
+ S12

+
57
42
·
(

57
57
· Q + v1 + 2 · v2

6
+

0
57
· v2

)
+ S23

+
57
42
·
(

27
57
· Q + v1 + 2 · v2 + 2 · v3

6
+

30
57
· v3

)
+ S34

=
39
42
·Q +

39
42
· v1 +

36
42
· v2 +

39
42
· v3 + S12 + S23 + S34 .

Then it follows that

L1 = Q + v1 + S12 + v2 + S23 + v3 + S34 − (L2 + L3 + L4 + L5 + L6)

≤ 3
42
·Q +

3
42
· v1 +

6
42
· v2 +

3
42
· v3

≤ 1
14
· (Q + v1 + v2 + S23 + v3) .

Case 3. v2 > u1 andv3 > u2. Similarly to the previous case, we haveS12 ≥ u1 ≥ v1 andS23 ≥ u2 ≥ v2.
In addition, we applyu2 ≥ v2 to get

L2 + L3 + L4 + L5 + L6 ≥ 19
42
·Q

+
57
42
·
(

48
57
· Q + 2v1

6
+

9
57
· v1

)
+ S12

+
57
42
·
(

45
57
· Q + 2v1 + 2v2

6
+

12
57
· v2

)
+ S23

+
57
42
·
(

27
57
· Q + 2v1 + 2v2 + 2v3

6
+

30
57
· v3

)
+ S34

≥ 39
42
·Q +

36
42
· v1 +

36
42
· v2 +

39
42
· v3 + S12 + S23 + S34 .

Then it follows that

L1 = Q + v1 + S12 + v2 + S23 + v3 + S34 − (L2 + L3 + L4 + L5 + L6)

≤ 3
42
·Q +

6
42
· v1 +

6
42
· v2 +

3
42
· v3

≤ 1
14
· (Q + v1 + S12 + v2 + S23 + v3) .

21

Case 4. v2 > u1 andv3 ≤ u2. Sinceu1 is already have been assigned when we are just assigningv2, thus
S12 is not empty, andS12 ≥ u1 ≥ v1. We also applyu1 ≥ v1, andu2 ≥ v2 to get

L2 + L3 + L4 + L5 + L6 ≥ 19
42
·Q

+
57
42
·
(

57
57
· Q + 2v1

6
+

0
57
· v1

)
+ S12

+
57
42
·
(

6
57
· Q + 2v1 + v2 + v3

6
+

32
57
· v2 +

19
57
· v3

)
+ S23

+
57
42
·
(

57
57
· Q + 2v1 + v2 + 2 · v3

6
+

0
57
· v3

)
+ S34

≥ 39
42
·Q +

36
42
· v1 +

39
42
· v2 +

39
42
· v3 + S12 + S23 + S34 .

Then it follows that

L1 = Q + v1 + S12 + v2 + S23 + v3 + S34 − (L2 + L3 + L4 + L5 + L6)

≤ 3
42
·Q +

6
42

v1 +
3
42
· v2 +

3
42
· v3 ≤ 1

14
· (Q + v1 + S12 + v2 + v3) .

4.3 Proof of Lemma 9

To prove the claim, use induction in all cases, except for one case where we need to prove the invariant for
j = K. In this case we perform an analysis similar to that of the proof of Lemma 6 in the sense that we
consider certain times at which machines received parts of jobs. In this case, since we are dealing with an
arbitrary number of machines, the number of key times is a function ofm, namely it ism − K. On the
other hand, if the buffer containsK jobs after the assignment of a job, then these are exactly the largestK

jobs in the input, that is, the firstK jobs of the input. This reduces the number of cases in the bounds on the
optimal cost, since the size of the largest job is simplyZ1. The cases here depend on the first time at which
the lower bound on the value of the optimal cost exceedsZ1.

We prove the claim by induction oni. For i = 0, Li
k = 0 holds for allk, and we get

j∑
k=1

Zi ≤ j · Z1 ≤
j · R · OPT0, sinceOPT0 ≥ Z1.

Assume now that the required invariants hold for somei − 1 ≥ 0. Let ` be the number of jobs in the
buffer after thei-th job has been assigned. By Lemma 10 this job was assigned successfully.

If none of machines1, 2, . . . , ` received any parts of the assigned job, thenLi
k = Li−1

k for 1 ≤ k ≤ `,
and thus all the invariants hold fori, sinceOPTi ≥ OPTi−1. Otherwise, let1 ≤ z ≤ ` denote the minimum
index of a machine which received a non-zero part of the job. Similarly to the above, for anyk < z,
Li

k = Li−1
k , and thus for anyj < z, thej-th invariant holds at timei− 1.

We therefore need to prove the invariants at timei for z ≤ j ≤ `. We havez ≤ ` ≤ K ≤ m− 1. If after
the assignment of thei-th job, the buffer contains̀ = K jobs, we will consider the casej = K separately.
In this latter case the buffer containedK jobs before this assignment as well. The assigned job is not one of
the initialK jobs, which are still stored in the buffer.

We first consider the casez ≤ j ≤ min{`,K−1}. We have
j∑

k=1

Li
k +

j∑
k=1

Zk = Qi−
m∑

k=j+1

Li
k +

j∑
k=1

Zk.

After the assignment of thei-th job, the new load of machinez < p ≤ m− 1 is Li−1
p+1, and the new load of

machinem isR · OPTi. Sincej ≥ z, we can use this equality forj + 1 ≤ k ≤ m.

22

Note that the number of jobs in the buffer before the assignment is at leastj + 1. If the number of jobs
in the buffer after thei-th assignment isK, then the buffer was full also before the assignment and using
j < K the last property holds. Otherwise, the assigned job was from the buffer and the number of jobs
before the assignment was` + 1. Therefore, in both these cases we can use the(j + 1)-th invariant for time
i− 1.

We get at most

Qi −
m∑

k=j+2

Li−1
k −R · OPTi +

j∑

k=1

Zk = Qi −Qi−1 +
j+1∑

k=1

Li−1
k −R · OPTi +

j∑

k=1

Zk

≤ Xi + (j + 1) · R · OPTi−1 −
j+1∑

k=1

Zk −R · OPTi +
j∑

k=1

Zk ≤ j · R · OPTi + Xi − Zj+1

(sinceOPTi−1 ≤ OPTi). If it left to showXi ≤ Zj+1. If Xi is not one of theK first jobs in the sequence,
then this is clear. Otherwise, since we are dealing with machinej, the buffer contains at leastj jobs to be
assigned later. Therefore, the current job has a size in{Zj+1, . . . , Zm−1}, and thusXi ≤ Zj+1.

We next consider the casej = K, for which we need to prove

K∑

k=1

Li
k +

K∑

k=1

Zk ≤ K · R · OPTi . (1)

For a jobp, we use the notationsOPT(p) andQ(p) as in the proof of Lemma 6. In addition, we let
Lj = Li

j . Sincez ≤ K, thei-th assigned job overflows machineK + 1. We denote this job byvm−K , and
define a sequence ofm−K jobs as follows. The jobvj is the last job assigned strictly before the jobvj+1,
which overflows machinem− j + 1. For a jobvk we again letvk denote both the job and its size.

For every1 ≤ j ≤ m−K − 1, We letSj,j+1 denote the total size of jobs assigned strictly aftervj and
strictly beforevj+1. We prove by induction that at the time just after the jobvj is assigned, the sum of loads
of machinesm− j + 1, . . . , m is at least

R ·OPT (v1) + S1,2 +R ·OPT (v2) + S2,3 + . . . + Sj−1,j +R ·OPT (vj).

To prove this, we start with the base casej = 1. Sincev1 overflows machinem, its load just after the
assignment ofv1 must beR ·OPT (v1).

Assume next that the claim holds for somej, such that1 ≤ j ≤ m−K + 1. To prove the property for
vj+1, consider the jobs assigned strictly aftervj and strictly beforevj+1.

By definition, sincevj was the last job assigned strictly beforevj+1 that overflows machinem− j + 1,
all parts each job which is assigned strictly aftervj and strictly beforevj+1 are assigned to machinesm −
j+1, . . . , m. Therefore, at the time just beforevj+1 is assigned, the total load of machinesm−j+1, . . . , m

is their total load just after the assignment ofvj plusSj,j+1, that is, it is at least

R ·OPT (v1) + S1,2 +R ·OPT (v2) + S2,3 + . . . + Sj−1,j +R ·OPT (vj) + Sj,j+1.

Consider now the moment a whichvj+1 is assigned. Since it overflows machinem− j, the load of each
machinem − j ≤ t ≤ m − 1 becomes the previous load of machinet + 1, and the load of machinem
becomesROPT(vj+1). Therefore, just after the assignment ofvj+1, the total load of machinesm−j, . . . , m

is at least

R ·OPT (v1) + S1,2 +R ·OPT (v2) + S2,3 + . . . + Sj−1,j +R ·OPT (vj) + Sj,j+1 +R · OPT(vj+1) ,

23

as required.
We get that when thei-th jobs,vm−K , has been just assigned, it holds that

m∑

k=K+1

Lk ≥ R ·OPT (v1) + S1,2 +R ·OPT (v2) + S2,3 + . . . + Sm−K−1,m−K +R ·OPT (vm−K).

We use the notationsZ = Z1 + . . . + ZK andQ = Q(v1). Then we have the next inequalities for allj:

OPT (vj) = max





Q + Z + v1 +
j∑

k=2

(Sk−1,k + vk)

m
,Z1





. (2)

Let S = S1,2 + S2,3 + . . . + Sm−K−1,m−K , andV =
m−K∑
j=1

vj . Since
K∑

j=1
Lj =

m∑
j=1

Lj −
m∑

j=K+1

Lj =

Q + V + S −
m∑

j=K+1

Lj , andOPTi = OPT(vm−K), to prove (1), it suffices to prove that the following holds

Q + Z + V + S ≤ R · (K · OPT(vm−K) + OPT(v1) + OPT(v2) + . . . + OPT(vm−K)) + S ,

or equivalently,

Q + Z + V ≤ R · (K · OPT(vm−K) + OPT(v1) + OPT(v2) + . . . + OPT(vm−K)) . (3)

We next replace the valuesOPT(vi) on the right hand side by the bounds of (2). Note that omitting the
Sk−1,k terms from the formulas, we get a stronger statement, and we will prove this stronger statement. Let
MAX (vi) denote the modified values ofOPT(vi) after deleting the termsSk−1,k. Thus we will show that

Q + Z + V ≤ R · (K · MAX (vm−K) + MAX (v1) + MAX (v2) + . . . + MAX (vm−K)) (4)

holds.
If MAX (vm−K) = Z1 then we show that statement (4) holds trivially. We getQ + Z +

∑m−K
k=1 vk ≤

m ·Z1, which impliesQ+Z +
∑j

k=1 vk ≤ m ·Z1 for all 1 ≤ j ≤ m−K, and in particularZ1 ≥ Q+Z+V
m .

Thus,MAX (v1) = MAX (v2) = . . . = MAX (vm−K) = Z1, and we need to proveQ + V + Z ≤ R ·m · Z1,
which holds for anyR ≥ 1.

Therefore, let1 ≤ α ≤ m − K be the minimal index for which holds thatMAX (vα) > Z1. The next
inequalities follow from the definition ofα:

Q + Z + v1 + v2 + . . . + vα−1

m
≤ Z1, and (5)

Q + Z + v1 + v2 + . . . + vα−1 + vα

m
> Z1, (6)

where the first inequality holds only ifα > 1. Now let us substitute the valuesMAX (vj) in the right hand
side of (4). We would like to show that

Q+Z +V ≤ R·
α−1∑

j=1

Z1 +R·



m−K∑

j=α

Q + Z + v1 + . . . + vj

m
+ K · Q + Z + v1 + . . . + vm−K

m


 . (7)

24

Let us denoteL = m− α + 1. From the condition1 ≤ α ≤ m−K it follows thatK + 1 ≤ L ≤ m. Then
inequality (7) can be rewritten as

Q + Z + V ≤ R · (α− 1) · Z1 +
R · L

m
· (Q + Z + v1 + . . . + vα) (8)

+
R · (L− 1)

m
· vα+1 +

R · (L− 2)
m

· vα+2 + . . . +
R · (K + 1)

m
· vm−K .

We prove (8) by distinguishing two cases as follows:
Case 1. R · L ≥ m. The condition means that the coefficient of(Q + Z + v1 + . . . + vα) is at
least1. Then we decrease both sizes by(Q + Z + v1 + . . . + vα). Then the remainder,(R·Lm − 1) ·
(Q + Z + v1 + . . . + vα) on the right hand side is non-negative, using the definition ofα and inequal-
ity (6), we estimate this remainder from below by

(R·L
m − 1

) · m · Z1, so the coefficient ofZ1 becomes
R · (α− 1) +R · L−m = (R− 1) ·m ≥ 0.

Thus it suffices to prove that

vα+1 + . . . + vm−K ≤ (R− 1) ·m · Z1

+
R · (L− 1)

m
· vα+1 +

R · (L− 2)
m

· vα+2 + . . . +
R · (K + 1)

m
· vm−K .

If R·(K+1)
m ≥ 1, then all coefficients ofvj on the right hand side are no smaller than those of the left hand

side, and in addition, the coefficient ofZ1 is non-negative, so we are done. Otherwise, sinceR · L ≥ m,
there exists a valueα′ ≥ α andL′ = m−α′+1 for whichR·L′ ≥ m andR· (L′−1) < m. It is sufficient
to consider the sum of all coefficients on the right hand side (neglecting those ofvα+1, . . . , vα′) and show
that it is no smaller than the sum of coefficients on the left hand side (neglecting those ofvα+1, . . . , vα′

here as well). The claim will follow by using the fact thatZ1 is the maximum job size, and the fact that all
coefficients are non-negative.

Thus we need to show that

m−K − α′ ≤ (R− 1) ·m + +
R · (L′ − 1)

m
+
R · (L− 2)

m
+ . . . +

R · (K + 1)
m

= R ·m−m +
R
m
· [(L′ − 1

)
+ . . . + (K + 1)

]

= R ·m−m +
R
m
· (L′ + K) · (m−K − α′)

2
.

By reordering we get

2m−K − α′ ≤ R ·m +
R
m
· (L′ + K) · (m−K − α′)

2
, i.e.,

2m · (2m−K − α′
) ≤ R · [2m2 + (L′ + K) · (m−K − α′

)]

substitutingL = m− α + 1 andL′ = m− α′ + 1, we get

2m · (2m−K − α′
) ≤ R · [2m2 + (m− α′ + 1 + K) · (m−K − α′

)]
.

25

We next substituteµ = m −K − α′, i.e. α′ = m −K − µ, (then from the condition1 ≤ α′ ≤ m −K it
follows that0 ≤ µ ≤ m−K − 1), and we get

2m · (m + µ) ≤ R · [2m2 + (m− (m−K − µ) + 1 + K) · µ]

that is, 2m · (m + µ) ≤ R · [2m2 + (2K + µ + 1) · µ]

and finally
2m · (m + µ)

2m2 + (2K + µ + 1) · µ ≤ R

which is one of the terms in the definition ofR if µ > 1. If µ = 0 then this condition clearly holds as well.
Note that the proof is valid forα = 1, since (5) was not used explicitely.
Case 2. R · L < m. Note that ifα = 1 we getL = m − α + 1 = m, thenR · L = R ·m ≥ m, thus
α > 1, and (5) can be used. The condition means that the coefficient of(Q + Z + v1 + . . . + vα) is strictly
smaller than1. Then inequality (8) can be rewritten as

Q + Z + V ≤ R · (α− 1) · Z1 +
R · L

m
· (Q + Z + v1 + . . . + vα−1)

+
R · L

m
· vα +

R · (L− 1)
m

· vα+1 +
R · (L− 2)

m
· vα+2 + . . . +

R · (K + 1)
m

· vm−K .

We again decrease both sizes by(Q + Z + v1 + . . . + vα−1). Since the coefficient of this expression
on the right hand size is strictly smaller than1, the new coefficientR·Lm − 1 of (Q + Z + v1 + . . . + vα−1),
is negative. We use inequality (5), that is,m · Z1 ≥ Q + Z + v1 + . . . + vα−1. As a result, the coefficient
of Z1 decreases bym · (1− R·L

m

)
= m−R · L, and becomes(R− 1) ·m ≥ 0.

Thus it suffices to prove that

vα + . . . + vm−K ≤ (R− 1) ·m · Z1

+
R · L

m
· vα +

R · (L− 1)
m

· vα+1 +
R · (L− 2)

m
· vα+2 + . . . +

R · (K + 1)
m

· vm−K .

Here the coefficient of eachvj on the right hand side is smaller than1, so it is only needed to show that
the sum of the coefficients in the left hand side (it ism − K − α + 1) is not greater than the sum of the
coefficients in the right hand side. Thus we would like to show that

m−K − α + 1 ≤ (R− 1) ·m +
R · L

m
+
R · (L− 1)

m
+
R · (L− 2)

m
+ . . . +

R · (K + 1)
m

= R ·m−m +
R
m
· [L + (L− 1) + . . . + (K + 1)]

= R ·m−m +
R
m
· (L + K + 1) · (m−K − α + 1)

2
.

By reordering we get

2m−K − α + 1 ≤ R ·m +
R
m
· (L + K + 1) · (L−K)

2
,

or equivalently 2m · (2m−K − α + 1) ≤ R · [2m2 + (L + K + 1) · (L−K)
]

.

Next, substitutingL = m− α + 1, we get

2m · (2m−K − α + 1) ≤ R · [2m2 + (m− α + K + 2) · (m−K − α + 1)
]

26

and finally substitutingµ = m−K−α+1, i.e. α = m−K−µ+1, then from the condition2 ≤ α ≤ m−K

it follows that1 ≤ µ ≤ m−K − 1, and we get

2m · (m + µ) ≤ R · [2m2 + (m− (m−K − µ + 1) + K + 2) · µ]

that is, 2m · (m + µ) ≤ R [
2m2 + (2K + µ + 1) · µ]

and finally
2m · (m + µ)

2m2 + (2K + µ + 1) · µ ≤ R

which holds due to the definition ofR.

5 Conclusion

We studied preemptive scheduling with reordering and showed that a buffer of sizeΘ(m) is necessary and
sufficient to achieve the best competitive ratios for both general sequences and for non-increasing sequences.
All the algorithms do not use idle time, which is not helpful in the case of identical machines.

One direction for future research is to find the tight competitive ratio for every pairK, m of a buffer size
and number of machines. This goal is already achieved here for the case of non-increasing job sequences.

An additional direction is to generalize the results for uniformly related machines. Note that the methods
of [5], which allow to design algorithms of optimal competitive ratio for many semi-online variants, do not
supply a solution for the model studied here. It is not difficult to see that for two uniformly related machines,
similarly to two identical machines, a buffer would not reduce the competitive ratio. We conjecture that for
anym > 2 and any speed combination, the usage of a reordering buffer can decrease the competitive ratio.

The algorithms considered here are deterministic. Allowing randomization would not be helpful since
even though the lower bounds are stated deterministically, all the lower bounds of Section 3 can be extended
for randomized algorithms by considering expected loads of machines rather than the loads.

References

[1] B. Chen, A. van Vliet, and G. J. Woeginger. Lower bounds for randomized online scheduling.Infor-
mation Processing Letters, 51(5):219–222, 1994.

[2] B. Chen, A. van Vliet, and G. J. Woeginger. An optimal algorithm for preemptive on-line scheduling.
Operations Research Letters, 18(3):127–131, 1995. Also in ESA 1994.

[3] Gy. Dósa and L. Epstein. Online scheduling with a buffer on related machines.Journal of Combina-
torial Optimization. To appear, DOI: 10.1007/s10878-008-9200-y.

[4] T. Ebenlendr, W. Jawor, and J. Sgall. Preemptive online scheduling: Optimal algorithms for all speeds.
Algorithmica, 53(4):504-522, 2009.

[5] T. Ebenlendr and J. Sgall. Semi-online preemptive scheduling: One algorithm for all variants. In
Proc. of the 26th Annual Symposium on Theoretical Aspects of Computer Science (STACS2009), pages
349–360, 2009.

[6] M. Englert, D.Özmen, and M. Westermann. The power of reordering for online minimum makespan
scheduling. InProc. 48th Symp. Foundations of Computer Science (FOCS), pages 603–612, 2008.

27

[7] L. Epstein. Optimal preemptive on-line scheduling on uniform processors with non-decreasing speed
ratios.Operations Research Letters, 29(2):93–98, 2001. Also in STACS 2001.

[8] L. Epstein and L. M. Favrholdt. Optimal preemptive semi-online scheduling to minimize makespan
on two related machines.Operations Research Letters, 30(4):269–275, 2002.

[9] L. Epstein, J. Noga, S. S. Seiden, J. Sgall, and G. J. Woeginger. Randomized online scheduling on two
uniform machines.Journal of Scheduling, 4(2):71–92, 2001.

[10] L. Epstein and J. Sgall. A lower bound for on-line scheduling on uniformly related machines.Opera-
tions Research Letters, 26(1):17–22, 2000.

[11] E. Horwath, E. C. Lam, and R. Sethi. A level algorithm for preemptive scheduling.Journal of the
ACM, 24(1):32–43, 1977.

[12] H. Kellerer, V. Kotov, M. G. Speranza, and Zs. Tuza. Semi online algorithms for the partition problem.
Operations Research Letters, 21(5):235–242, 1997.

[13] S. Li, Y. Zhou, G. Sun, and G. Chen. Study on parallel machine scheduling problem with buffer.
In Proc. of the 2nd International Multisymposium on Computer and Computational Sciences (IM-
SCCS2007), pages 278–281, 2007.

[14] S. Seiden. Preemptive multiprocessor scheduling with rejection.Theoretical Computer Science, 262(1-
2):437–458, 2001.

[15] S. Seiden, J. Sgall, and G. Woeginger. Semi-online scheduling with decreasing job sizes.Operations
Research Letters, 27(5):215–221, 2000.

[16] J. Sgall. A lower bound for randomized on-line multiprocessor scheduling.Information Processing
Letters, 63(1):51–55, 1997.

[17] J. Sgall. On-line scheduling. In A. Fiat and G. Woeginger, editors,Online Algorithms - The State of
the Art, chapter 9, pages 196–231. Springer, 1998.

[18] J. Wen and D. Du. Preemptive on-line scheduling for two uniform processors.Operations Research
Letters, 23(3-5):113–116, 1998.

[19] G. Zhang. A simple semi on-line algorithm forP2//Cmax with a buffer. Information Processing
Letters, 61(3):145–148, 1997.

28

