Preemptive online scheduling with reordering

Gyorgy Dosa Leah Epstein

Abstract

We consider online preemptive scheduling of jobs, arriving one by oneyn adentical parallel
machines. A buffer of a fixed siz& > 0, which assists in partial reordering of the input, is available
to be used for the storage of at mdstunscheduled jobs. We study the effect of using a fixed sized
buffer (of an arbitrary size) on the supremum competitive ratio over all numbers of machines (the overall
competitive ratio), as well as the effect on the competitive ratio as a function of

We find a tight bound on the competitive ratio for amy This bound is% for even values ofn
and slightly lower for odd values of:.. We show that a buffer of siz&(m) is sufficient to achieve
this bound, but usind(= o(m) does not reduce the best overall competitive ratio which is known for
the case without reordering;= . We further consider the semi-online variant where jobs arrive sorted
by non-increasing processing time requirements. In this case it turns out to be possible to achieve a
competitive ratio of 1. In addition, we find tight bounds as a function of the buffer size and the number
of machines for this semi-online variant. Related results for non-preemptive scheduling were recently
obtained by EnglerOzmen and Westermann.

1 Introduction

Scheduling of jobs arriving one by one @ver lis)) is a basic model in online scheduling [17]. The system
consists of a set of: identical machines that can process a sequence of arriving jobs. Eaghwhblzh has
a processing timp; associated with it (also callesizg), needs to be assigned upon arrival. The completion
time, or load, of a machine is the total time needed to process the jobs assigned to it, including idle time
in which the machine is waiting for a job to be executed (if idle time exists). The goal is to minimize the
maximum completion time of any machine, also known agntl&espan

We consider online and semi-online preemptive scheduling of jobs. An arriving job can be split into
parts, which need to be assigned to non-overlapping time slots, possibly on different machines. Idle time is
allowed, and each machine can process at most one job at each time. In the online scenario, a job must be
treated before the next job is revealed. For an algorithmve denote its cost byl as well. An optimal
offline algorithm that knows the complete sequence of jobs in advance, as well as its cost, are denoted by
OPT. In this paper we measure the performance quality of algorithms using the (absolute) competitive ratio,
which is the most common measure for the performance evaluation of online algorithms. The competitive
ratio of A is the infimumR such that for any inputd < R - OPT.

We consider a model where a reordering buffer, of a fixed Kize 0, is available. This buffer can store
up to K unassigned jobs and thus assists in partial reordering of the input. Upon the arrival of a job, it is
possible to either assign it completely to machines and time slots, or otherwise it is possible to store it in

*Department of Mathematics, University of Pannonia, VeszprHungarydosagy@almos.vein.hu
TDepartment of Mathematics, University of Haifa, 31905 Haifa, Ish@el@math.haifa.ac.il

the buffer rather than assigning it. If the buffer already cont&ingbs, at least one of these jobs must be
assigned to the machines in order to make room for the new job, or else the new job must be assigned.

Non-preemptive scheduling (i.e., the case where a job cannot be split into parts and it must be processed
continuously on one machine), with a reordering buffer, was previously studied in several papers [3, 6, 12,
13, 19]. The main research question in these papers was to find the effect of using a reordering buffer on the
competitive ratio, that is, finding the lowest competitive ratio which can be achieved if the online algorithm
is supplied with a buffer, and whether this competitive ratio is achievable only in the limit, or whether there
exists a size of a buffer which allows to achieve this bound. This competitive ratio can then be compared
to the best possible competitive ratio which can be achieved without a buffer. Clearly, an offline algorithm
can be seen as an algorithm which uses an unbounded buffer. Limiting the online algorithm to a fixed sized
buffer still means in most cases that the algorithm cannot perform as well as an optimal offline algorithm.
Consequently, the competitive ratio for every valuerofs of interest, as well as thaverall competitive
ratio, which is the supremum competitive ratio over all values:of

In all (non-preemptive) variants studied in the past, a finite length buffer already allows to achieve the
best competitive ratio. In particular, for two identical machines, a buffer oflsigsufficient, as was proved
by Kellerer et al. [12] and independently by Zhang [19]. Feidentical machines, Engletzmen and
Westermann [6] showed that a buffer of si2ém) is sufficient. For the more general case of uniformly
related machines, where machines may have different speeds, it was shown [3] that for two machines, a
buffer of size2 allows to achieve the best competitive ratio. In fact, for some speed ratios between the two
machines, a buffer of size 1 is sufficient, while for some other speed ratios, a buffer of size 1 provably does
not allow to achieve the best bound. Note that it was shown by [6] that a buffer ofisizd reduces the
competitive ratio for uniformly related machines below the lower bound of the case without reordering. In
this paper we answer analogous questions for preemptive scheduling.

Preemptive online scheduling without reordering was studied by Chen, van Vliet, and Woeginger [2]
(see also [1, 14, 16]). They designed an algorithm of the best possible competitive ratio for any number

m

of machinesn. This competitive ratio is a monotonically increasing functiomqu, which
implies an overall competitive ratio ef5 ~ 1.58. A number of papers generalized this result for uniformly
related machines [4, 7, 9, 10, 18].

We study an additional variant where it is known in advance that jobs arrive sorted by size, in a non-
increasing order. This common semi-online variant of preemptive semi-online scheduling was analyzed by
Seiden, Sgall and Woeginger for identical machines [15]. The overall tight bound on the competitive ratio
shown by [15] is”—g/g ~ 1.366. Semi-online preemptive scheduling on uniformly related machines was
considered in [5, 8].

Our results. We give a fairly complete study of the casemfidentical machines. We find a tight bound

on the competitive ratio for general inputs for any number of machines)Ve show that a buffer of size

[-2] is sufficient to achieve this bound. In fact, reordering via the usage of a buffer allows to reduce the
tight competitive ratio t(g for evenm, and togri’;”‘il < % for oddm, whereass’ = o(m) does not reduce

the overall competitive ratio, which remainés, as in [2]. Surprisingly, we find that the best competitive
ratio, as a function ofn, is not monotone, and the overall competitive ratié.isNote that this value is the

tight competitive ratio forn = 2, the only case where a buffer is not necessary. This is different from the
non-preemptive problem, where for = 2 the usage of a buffer reduces the best competitive ratio from

% to % [6, 12, 19]. As a motivation for using this specific size of bufﬂéﬁg—zy we show that form = 6
machines, where our general result uses a buffer of size 2, a buffer of size 1 leads to a larger competitive

ratio. We show tight bounds G}fg ~ 1.35714 on the competitive ratio for this case.

We further consider the semi-online variant where jobs arrive sorted by non-increasing processing time
requirements. In this case we show that a buffer of size 1 is sufficient to achieve a competitive ratio of
1, whereas a buffer of size — 2 is not sufficient. That is, the combination of a reordering buffer with jobs
arriving in a sorted order is as good as receiving the entire set of jobs in advance. We show that the tight
bound for this last case, where the buffer has a size-e®, is 1+m. Finally, we find tight bounds for

. . . .- .. 2m(m+u)
all buffer sizesl, 2, ..., m — 3, in these cases, the competitive I’atl(l)gliglfz(Kil TR commtore

(where
1 takes integer values, ard is the size of the buffer).

Our algorithms are based on a unified approach where largest jobs are kept in the buffer, and the created
schedule is as imbalanced as possible to keep the less loaded machines free to receive new jobs. Using
the master algorithm with different parameters results in distinct algorithms for the different cases. The
lower bounds are based on a unified approach where one sequence is used, and all the considered inputs are
subsequences of this sequence. This approach is general and allows the usage of several types of inputs for
the different cases. These general approaches were used in the past for preemptive scheduling problems, but

some important adaptations were required to be able to deal with the existence of a buffer.

2 Algorithms

2.1 The master algorithm

All our algorithms have a common structure which is explained in this section. These algorithms avoid the
usage of idle time, and try to assign as much work as possible to the more loaded machines, while keeping
K jobs is the buffer (or a smaller number of jobs, if the input sequence has terminated and the jobs left in
the buffer are being assigned). ketenote the number of jobs (which is not known to the online algorithm

in advance).

The algorithm can be used for ay < m (we will see later that larger values &f are not useful). In
addition to the number of machines and the size of the buffei, the master algorithm uses a parameter
R, which is the required competitive ratio. In the cdse= 0, the algorithm reduces to that used by [2].

We note that in the case of identical machines, idle time gives no advantage. The schedule obtained at
some time can be fully expressedrasnumbers, where theth number is the total length of intervals in
which ¢ machines are active. In order to assign a job, it is necessary to decide how to partitiormit into
parts, where theg-th part indicates the length of time in which it is assigned to run in parallgbtber jobs.

We next explain using induction that how to keep a schedule without idle time. The initial empty schedule
clearly satisfies this property. Assume that the schedule at a given time does not contain idle time. Assume
that a part of size; is supposed to be assigned to run in parallel taher jobs (for0 < j < m —1). In

order to assign the next job without idle time as well, sort the machines by non-decreasing load. A part of
the job which is supposed to run in parallelj@ther jobs is assigned at the earliest possible time to the

m — j-th machine in the sorted order. If it is possible to assign a part ofcsitterun in parallel to exactly

j other jobs, then the time at which tlw: — j)-th machine is not active but the: — j + 1)-th machine is

active is at least of length;. Thus the new job is assigned in a valid way, without introducing idle time.

After initialization, and as long as at maAt jobs have arrived, all jobs are stored in the buffer. If the
input consists of at mogk jobs, then each job is assigned to a separate machine, to run on this machine
non-preemptively, starting from time 0, which results in an optimal solution. Otherwise,faftel jobs
have arrived, and as long as jobs keep arriving, the algorithm keeps thegest jobs seen so far in the
buffer. After jobs stop arriving, the algorithm keeps removing a smallest job from the buffer and assigning

it using the same algorithm, until all jobs have been assigned. The loads after the assignijelns afe
denoted byL! < L} < ... < L! . Note that these are the loads after the arrivahaf{ K + i,n} jobs.
Specifically, if K + i < n, then these are the loads after the arrivakof- i jobs, out of whichi are stored
in the buffer. Otherwise, i\ + i > n, these are the loads after all jobs have arrivedand: of them are
in the buffer. We alsous@; = ;" L?i, i.e.,Q; is the total size of the assigned jobs aft@bs have been
assigned. This amountincludes all scheduled jobs in both of the described casesT;ldgnote the cost of
OPT at this time, aftei jobs have been assigned. This value takes into account the prefidadf + i, n}
jobs, i.e., all jobs that arrived by this time.

We assume that each machine has an indeili®, ..., m}. We first explain how to assign jobs to
machines in a way that the sorted order of machines does not change, that is, tﬁg imativays the load
of machiney. Later we show how to modify the algorithm so that it uses at most one preemption per job, the
sequence of loads remains as in the first variant of the algorithm, but the sorted order of machines changes
frequently (i.e.,L; is theg-th load in the sorted order of loads, but it does not necessarily belong to machine
9)-

We say that the buffer ilull, if it contains exactlyK jobs. Since the algorithm for the cage< K is
completely defined above, we assume in what follows#that K, i.e., there is at least one case where a job
needs to be assigned while the buffer is full, and we describe the assignment of jobs for the cases where the
buffer is full, or was full at some previous time. This last option means that jobs no longer arrive, and the
jobs which remained in the buffer need to be assigned.

To assign a job, non-overlapping slots are reserved on the machines, and the job is assigned into these
slots, one by one, by a decreasing order of indices of machines, until the job is completely assigned, or
until all slots are full. In each case for which we use this master algorithm with specific parameters, we will
show that the second option never occurs. If one of the used slots is not filled completely, then the earliest
part of this slot is used, so that no idle time is created. The slots fofithel)-th job ever assigned are
[Li,, R - OPT;y1] on machinen, and[L}, L’ ;] on each other maching,< j < m. The slots are clearly
non-overlapping. Note that some of the slots may be empty, if there are at least two consecutive identical
loads.

In order to prove upper bounds, we use two lower bounds on the cost of an optimal solution, which are
the average load, implied by the sum of all jobs (including those in the buffer), and the maximum size of
any job. The algorithm, however, needs to compute the exact valoeBf We exploit the property that
OPT; is in fact equal to the maximum of these two bounds [11]. Therefore, calculating the slot on machine
m for the assignment of a job can be done in constant time.

Clearly, as long as every job is assigned successfully, the competitive ratio of the master algorithm is at
mostR. Therefore, in each case we consider, it is necessary to show that the algorithm never fails. In most
cases we derive a set of invariants which are proved by induction and allow to prove this property. In one case
we use a small number of invariants and a direct proof for the most important invariant rather than induction.
In the latter case, the usage of a similar structure of proof to the former case, i.e., additional similar invariants
together with induction, does not seem to be helpful. Since the algorithm is a generalization of the algorithm
of [2], the main technical contribution here is the design of the correct set of invariants, or the design of a
more direct proof. This is done for each case separately, since the exact valadfetts the execution of
the algorithm and leads to very different schedules in the different cases. Note that for both variants and all
values ofm, the largest jobs are always the jobs which are kept in the buffer. In the case of general inputs, it
is either the case that the new job is stored in the buffer, or that it is the job which is assigned. In the case of
non-increasing sequences, the fiisjobs are kept in the buffer until the sequence ends, and then they are

assigned in an order which is opposite to the order of their arrival.

In previous work on scheduling with a buffer, in many cases, the largest jobs (or largest job, in the case
K = 1) were those which are stored in the buffer. Intuitively, this seems to be the correct approach; the
algorithm is aware of the exact sizes of the largest jobs and takes them into account in the other scheduling
decisions, but it postpones their assignment until the later. Nevertheless, in [3] one of the algorithms of
optimal competitive ratio, which usds = 1, has two cases, where in one of the cases the larger available
job is assigned while the smaller job is stored in the buffer. We note an interesting difference with the
algorithms of [6]. Our algorithm uses the same method of assignment for all jobs, even after no additional
jobs arrive. It is possible in fact to use the same algorithm also in thercasds and avoid cases in the
definition of the algorithm. However, since this case is very simple, so we prefer the current presentation, to
avoid cases in the proof.

Finally, we show how to modify the algorithm to use at most one preemption per job instead of at most
m — 1 preemptions. Assume that machipbas thej-th load before the assignment of a job. If the job is
assigned to slots on machingg + 1,...,m, wherej < m — 1, i.e., it was assigned using at least two
preemptions, then instead of using the slots on machire3, .. ., m, itis possible to assign all these parts
continuously on maching+ 1. Due to the definition of the algorithm, the only idle time in the processing
of the job (but not in the schedule) may occur between the end of the time slot in which it is assigned to
run on maching and the beginning of the time slot on machjhe- 1, since the slot on machingis not
necessarily completely occupied. In this case the assignment of the part to machinains unchanged.
The load of maching + 1 becomes the largest load (i.e., theth load), while the load of a machinge(for
j+ 2 <y < m)becomes th¢y — 1)-th load. If the slot on machingis occupied completely, and< m,
then it is possible to schedule the job on machimen-preemptively and without idle time (jff= m, then
the job is already scheduled non-preemptively). In this case, the resulting load of madldoemes the
m-th load, while the load of machinge(for j + 1 < y < m) becomes th¢y — 1)-th load. In both cases, the
resulting sorted list of loads is the same as before, but the machines having these loads switch places in this
list.

2.2 General inputs

The algorithm uses a buffer of sizé = |Z-1| = [7:2], thatis,K = % — 1 for even values ofn,
and K = 5L for odd values ofin. LetR = 4 if m is even, andR = ;3= if m is odd. Thus the
bound for oddmn is strictly belowg, and achieves it lowest value fot = 3, for which the bound equals to
% ~ 1.28571. Form = 2 the competitive ratio i%, but the size of the buffer which we use is zero, thus the
result of [2] form = 2 already covers this case. By the results of Section 3, this result is best possible, i.e.,
the usage of a buffer does not improve the performance in this case.

We define a set of invariants which must hold after every assignment. Invai(imtl < j < |%]) at

timei is defined by

SNrp<(R-1)- 22
k=1

m—7

The motivation of these invariants comes from a situation where very small jobs of a total siagioe
first, after which some numbgr< [%] of identical jobs of sizem%j arrive. An optimal solution spreads
the small jobs overn — j machines, while the best response of the algorithm would be to usel¢ast
loaded machines. The invariants make sure that in such a case the competitive ratio is not exceeded. Note
that even though such a construction could be a good candidate for a lower bound proof, the lower bound

proof of Section 3 considers an input with a much smaller number of cases.

We use some further definitions and notations. After0 jobs were assigned, no matter whether a new
job arrives, or if no additional jobs arrive, but the buffer is non-empty, let the sorted list of sizes of jobs,
which includes the jobs in the buffer and the new job (if existsypée' < Yt < ... < V/*], where
¢ < K + 1. Ifanew job has just arrived (and thus the buffer is full), and we are about to assign a job, then
¢ = K + 1. We are going to assign the smallest job, thys; = Q; + YO’“. In addition, as explained in

) =1
Section 2.1pPT; 1 = max{Y;], L - (Q; + 3 ¥{™")}, i.e.,0PT;41 is the optimal cost for a schedule for
k=0
all received jobs so far, just befokg " is scheduled. Usingyt! < Y/ foranyl < k < ¢ — 1, we have
OPTi41 > Y™ andoPTyy > L - (Q; + Y5 1), which holds for anyt < j < ¢.

Lemma 1 For a given value of, if after i jobs were assigned the buffer is full, then thth invariant holds
for timei and everyl < j < [%]. If the buffer containg < K jobs at this time, then thg-th invariant
holds for time; and everyl < j < /.

As mentioned above, the main technical difficulty lies in finding the correct invariants. The proof of
Lemma 1 is technical, and is given in Section 4.1. The proof idea is that if machjnes j did not
receive any parts of the+ 1-th assigned job, then there is no change in their loads Lije= L}jl, while
Qi+1 > Q,. Otherwise, except for the most loaded machine, the load of each machine that received a part
of the job, except for possibly the machine of lowest index that received a part, is exactly the previous load
of the next machine, that is, a machithe: m which received a part of the job, but not the last part, satisfies
Lyt = Li .. There are several cases, according to the valye ahd in particular, the casgs= |2
andj < %] are considered separately. In order to prove the invariant,ftor j < | %], the inductive
hypothesis foyj + 1 is used. However, if = | %% |, there is ngj + 1-th invariant, and only thg-th invariant
can be used, so the proof is slightly different from the previous case, and in addition, the two cases of even

m and oddm are not identical, since the value®fis used in an early stage of the proof.

Lemma 2 For everyi + 1 (i > 0), if the invariants hold for timeé (i < n), then the algorithm assigns the
(i 4+ 1)-th job successfully.

Proof. We show that there is enough space for the job, that is, the total size of the slots is no smaller than
the size of the job to be assigned. This gives the following condi®nopPT; 1 — L} > Yo”l.
Using invariant 1 at time,

; Qi
LY<(R-1)-
1—()m_17
and the following bounds on the optimal coseT; 1 > Y andm - oPT, 1 > Q; + Y{ 1, we get
i i+l R Qi ¢+1:R*1‘ ‘ i+1 it1 Mm—R
1t < (R-1) m_1+Y0 — (Qi+Yy")+ Y (m—l)
R-1 m—TR
——— - m - OPTj11 + OPTiqq - () =TR-OPTiy1,
m—1 m—1

foranyR < 2. m
Theorem 12 will show that the obtained bounds are tight within algorithms for a fixed size buffer. We
summarize these bounds in the following.

Theorem 3 An application of the master algorithm, usidg= 5 —1 andR = % for even values of,, and
K="21andR = 34?75‘2“, for odd values ofn, is successful, i.e., results in an algorithm of a competitive
ratio of at mostR.

2.2.1 One special case

We investigate the special case= 6 separately. In this case, the application of the master algorithm with
K = =2 = 2 |eads to a competitive ratio df. We show that a buffer of sizedoes not allow to achieve
the best possible competitive ratig), In this last case/X = 1, we show that the best competitive ratio
which can be achieved R = % ~ 1.3571 > %. To prove the upper bound, the algorithm of Section 2.2
is applied withR = %. Using a different method of analysis we prove the following theorem. The proved
bound is tight, by Theorem 19.

Theorem 4 An application of the master algorithm fat = 6 using K = 1 andR = % is successful.

In this proof we use two invariants. The first one is

A - Q;, 19
%+L%ZR-§=@'Q¢
and the second one is R 0
Li<7_. A:J.
1="5 @i 14

The motivation of both invariants is to show that the loads of machines satisfy the condition that the
least loaded machine is loaded so lightly that it can receive the last job which needs to be assigned without
violating the required competitive ratio. That is, if it turns out that the sequence terminated, and only the
job remaining in the buffer still needs to be assigned, there is a way to assign this job. The second condition
requires the two most loaded machines to be loaded quite heavily, which serves as a tool in proving that the
least loaded machine is loaded lightly. Note that the average load of a macl%h,esie if the machines
were balanced, the load of two machines would have tjéer@i rather than at Ieas}% - Q;. The first
invariant is proved by induction while the second one is proved directly.

Lemma 5 The first invariant holds for any > 0, for which afteri jobs have been assigned, the buffer
contains a job.

Proof. We prove the invariant by induction. Before any jobs are assigned welfaveL = 0 = Q.
Assume that the invariant holds for a given value.oket X, be the size of thé: + 1)-th job which is
ever scheduled. If all parts of the job are assigned to machines 5 and 6, then

; ; ; ; 19 19 19
L%+1+L26+1 =Lg+ Lg+ Xip1 > E'Qi+Xi+1 > 19 (Qi + Xip1) = E'Qzﬁrl)
sinceQ;11 = Q; + Xiq1. _

Otherwise, the slots allocated for this job on the sixth and fifth machines are fillf'$o= R - oPT; 4
andLi™ = L. SinceL{ > Li we haveL:™ > . (LL + L) > £ - Q; = £ - (Qit1 — Xiy1). Recall
that we assume that after the assignment a job remains in the buffer. This job has a size oPgt least
we haveoPT; 1 > § - (Qir1 + Xit1), and consequently™ > 19 - (Qi1 + Xiy1).

Thus

19 19

i i 19 19 19
L 4 Ll > (Q Qi1 + S Xit1) + (874 Qi1 — S0 Xit1) = o Qi+1 -

]
The proof of the next technical lemma can be found in Section 4.2.

Lemma 6 The second invariant holds for ary> 0, for which afteri jobs have been assigned, the buffer
contains a job, as long as the firsjobs ever assigned are assigned successfully.

Lemma 7 For every time + 1 (> 0), if the invariants hold at time, then the algorithm assigns the next
job successfully.

Proof. Let X, be the size of théi + 1)-th job which is ever scheduled. We need to show that the total
size of slots is sufficient, i.eR - OPT;41 — Li > X, ;1. We haveLi < 9% = @it Thys

14
(;2 — Xz' Qi 13 6 13
i+1 +1 X’L’ L +1

L+ X < + = X411 <OPTiy1 - (-5 + —) =R -OPTi41 ,

14 14 14 14
usingoPT;+1 > X; 41 andoPT;;q > % [

Note that it is not assumed in Lemma 7 that there is an additional job in the buffer, thus it holds for the
very last job which is assigned as well. The next corollary completes the proof.

Corollary 8 All jobs are scheduled successfully.

2.3 Non-increasing job sizes

We assume that jobs arrive sorted by non-increasing sizes. We use the master algorithm with the parameters

_ 2m(m+u) _ o _
R = u€{071,2T?2—K—1} ST 2Rt 2 forl < K <m-—1. Inthecase = m — 1, R = 1, so the

algorithm finds an optimal schedule.

Recall that in this semi-online variant the algorithm keeps the Krgbbs (which are the largest jobs)
in the buffer, and that we assume> K. LetZ; > Z, > ... > Zk be the sizes of jobs which are
stored in the buffer. We do not use indices here since there is no change in the contents of the buffer until
the last job arrives. Aften — s jobs are assigned, far < s < K, the buffer contains only the jobs of
sizesZ, Zs, ..., Zs. Let X; denote the size of théth job which is assigned. Sincg; is the size of
the largest job in the sequence, if the buffer contdifsbs after thei-th job is assigned, then we have

l4
OPT; = max{Z1, % (Qi + >_ Zk)}. Thus there exists an integeK f < n+ 1 so thatopT; = Z; for all

k=1
i < fandopPT; > Z; foralli > f.

We next define a set of invariants which must hold after every assignment, and prove Lemma 9 below in
Section 4.3. Invariant at times is defined by

ZL +sz<; R - OPT; .
k=1

The motivation of these invariants comes from the possibilities of assigning the jobs which are stored
in the buffer, if no additional jobs arrive. Every set of largggpbs cannot run in parallel on more than
machines. The invariants consider the load resulting from assigning the laijoéstto the least loaded
machines. Therefore, the indices for which the invariant needs to hold depend on the number of jobs in the
buffer.

To prove theK -th invariant, if the invariant does not hold immediately using induction, we use a direct
proof, similar to the direct proof of Lemma 6.

Lemma 9 For a giveni, let/ denote the number of jobs in the buffer aftgmbs were assigned successfully.
Thej-th invariant holds fori and everyl < j < /.

In order to prove that the invariants hold at some given time, it is necessary to assume that the last
assigned job was assigned successfully. We prove that this is the case if the invariants were true just before
the assignment of this job.

Lemma 10 For every timei + 1 (¢ > 0 andi + 1 < n), if there is at least one job in the buffer, then the
algorithm assigns the next job successfully.

Proof. To prove that the assignment of thie+ 1)-th job ever assigned is successful, we need to show that
the total size of the slots is sufficient. We use the first invariant. There is at least one job in the buffer, so by
Lemma 9, soUi + Z1 < R-0oPT; <R -0PT;41. Since the size of no job in the sequence exceeds the size
Zy,i.e., X1 < Z1,we are donem

Since we have proved that if the invariants hold at a given time, then the next job is assigned successfully,
and if a job was assigned successfully, then the invariants hold after its assignment, we get that all jobs are
assigned successfully.

We have proved the following theorem.

Theorem 11 The application of the master algorithm for< K < m — 1 with

2m(m + p)
R = max
1e{0,1,2,..m—K—-1} 2m2 +2Kp+ p? + p

is successful. In particular, the application of the master algorithm using the paranigtersn — 1 and
R = 1is successful.

By Corollary 20, these bounds are best possible.

3 Lower bounds

In this section we prove the following theorem, which implies the optimality of the results of Section 2.2
(excluding Section 2.2.1). The optimality of the result of Section 2.2.1 is shown later, in Theorem 19, and
the optimality of the result of Section 2.3 will follow from Corollary 20.

Theorem 12 No algorithm for general inputs which uses a fixed size buffer can have a smaller competitive
ratio than% for evenm, and no algorithm which uses a fixed size buffer can have a smaller competitive
ratio than % for oddm. An algorithm which uses a buffer of sizgn) has an overall competitive ratio

of %5, that is, the usage of a buffer of this size is not helpful.

In order to prove lower bounds, we provide a “recipe” for designing lower bounds for the problem. This
method is an adaptation of the method used in [10, 16], which takes into account the existence of a buffer.
We restrict ourselves to inputs which have a specific form. All the considered inputs are prefixes of one
sequence. The sequence consists of a non-negative number of blecks where each block contains
identically sized jobs, and finally, the sequence of blocks may be followedadgitional jobs. Let; be
the number of jobs in théth block, ands; be the size of each such job. We requite> K + 1. Thet
additional jobs arriving after all blocks are callidther jobs. Letg; denote the size of thgth further job,

b

for 1 < j <t. We also require that+ > n; > m. We denote such a sequence, defined for a specific value
=1

of K, byo.

We useoPT; to denote the optimal makespan for the sequence of jobs up to (and includingjithe
further job. In addition, we lePT; ; denote the optimal makespan for the sequence of jobs up to (and
including) thej-th job of thei-th block.

For each block, we define the last; — K optimal costs¢PT; ; for K + 1 < j < n;) ascrucial.

The typical analysis of the behavior of online algorithms on such sequences is based on the property
that an online algorithm must assign the jobs block by block. The difficulty in the analysis, in the case that
a buffer can be used, lies in the option of the algorithm to keep at Kigebs from previous blocks in the
buffer at the time when the jobs of a new block (or the further jobs) start arriving. In order to be able to
assume that the algorithm still processes the jobs sorted by blocks, we neglect the assignment of a number
of jobs of each block which are assigned later. Specifically, we rerhdjabs of each block from the final
output. These are the la&t jobs of each block which are assigned, so as a result, no jobs are present in
the buffer after a block was presented, and the jobs remaining in the schedule are in fact assigned block by
block. We still do not know if they are assigned in the order of arrival, but since all jobs in a block have the
same size, we can assume that this is the case. For further jobs, this is not necessarily true, so we need to
consider an arbitrary order of assignment for these jobs.

More precisely, for the analysis we define a modified sequence, which is based on a specific output of
the online algorithm, as follows. For each blagkemove from the schedule the Idstjobs of this block
(i.e., of sizes;) which were ever assigned. If the execution of the algorithm on the original sequence is
restricted to the modified sequence (and the treatment of the removed jobs is simply neglected), then at the
time of arrival of the first job of a block, and also at the time of arrival of the first further job, the buffer
is empty. This holds since the buffer can contain at midstuch jobs, which are the last assigned jobs of
this block, and thus all these jobs were removed from the schedule. Therefore, the order of assignment is
according to blocks, and the further jobs are assigned last, in some order.

We define a sequence of costsfor 1 < j < m. These costs are upper bounds on the optimal cost at
the time of assignment of the last jobs in the modified sequence.

Consider first the sequence of all crucial optimal costs of all blocks (i.e., all optimal costs, neglecting
the first K optimal costs of each block). #f> K, this sequence is followed by the optimal costst; for
K +1 < j <t andfinally,K times the cosoprT,. It ¢ < K, then the last values are timesopPT;. The
lastm costs in this sequence are denoted’pyCo, . . ., C,,. Note that the lastin{m, ¢, K + 1} values in
this sequence ar@PT;, which is the optimal cost of the entire input sequence.

We consider the relation between thevalues and the optimal costs at the time of assignment of jobs.
Letay,aq,...,ay, be the lastn jobs of the modified sequence ever assigned.>3fm then all those jobs
are further jobs. Otherwise, the lasbf those jobs are further jobs. Lét; denote the optimal cost (of the
input that already arrived, for the original sequence) at the time of assignment /e next prove the
relationO; < C; for all m values ofj.

Consider the time at which a jaob, which is thek-th assigned job of a given block is assigned. If
n; > k + K, then in the original sequence, no jobs of future blocks, or further jobs have arrived until this
time, and at mosk additional jobs of the same block have arrived. Therefore, an upper bound the optimal
cost can be computed based on the jobs all previous blocks; anfl” jobs of the current block, i.e., this
upper bound i®PT; . k.

Consider next the situation whetds thek-th assigned further job. If the sequence contains more than
K further jobs arriving after, at mostK jobs can be stored in the buffer, so at the time of assignment of the
k-th assigned further job (which is not necessarily thil arriving further job), at most + K further jobs
have arrived. Therefore, an upper bound the optimal cost can be computed based on the jobs all previous

10

blocks, and the first + K further jobs, i.e., this upper bound @ T, . Clearly, ifk + K > t then an
upper bound can be computed based on the entire input.

Lemma 13 For everyl < j <m, O; <(;j.

Proof. Assume first that < m. Consider first the lastjobs ever assigned. Since after each block the buffer
is empty, these jobs are exactly thieirther jobs. We prove®); < C;form —t+1 < j <m.

If ¢t < K + 1, thenclearlyO; < C; form —t+1 < j < m, sinceC; = OPT; by definition of theC;
values, an®PT; is the optimal cost of the entire input.

If t > K + 2, then similarly,C; = opT, for m — K < j < m, and we need to consider the case
m—t+1<j<m-—K — 1. Consider the time wheh — 1 further jobs were already assigned (for
1<k <t— K —1), and thek-th job needs to be assigned. Since the buffer contains at Mgsls, and
k — 1 further jobs were assigned, then at mbst K further jobs have arrived, and the optimal cost is at
MOStOPT,; k = Cp—4k- ThusO; < C; for the required values of.

Next, if ¢ # m, consider a jola; of block, i.e., this job is thej-th jobs out of the lastn assigned jobs
in the modified sequence, and theh assigned job of blockso thatk + K < n;. The cosC; was defined
to be the optimal cost of the input up to thh block, includingk + K jobs of blocki, i.e. it iSOPT; iy k-
Since at most + K jobs of this block could arrive by the time that is assigned, we g&?; < C;.

If £ > m, the the last assigned jobs are all further jobs. ifn < K +1,thenC; = oPT, for1 < j < m,
and we are done. Otherwise, the proof is similar to the ¢ase2 < ¢t < m, but we are only interested in
the times of assignment of the jobs, . .., a,,_x_1, SO the firstt — m further jobs (according to the time
of assignment) are not consideresl.

Theorem 14 Given a sequence as defined above. The competitive ratio of any algorithm which uses a
buffer of sizeK is at least

Proof. Consider the modified schedule. LEt(for i = 1,...,m) denote the makespan of the algorithm
wheni — 1 jobs out of the jobs of the modified sequence still need to be assigned. Consider the time axis
of the schedule and let denote the maximum time in the final schedule of the modified sequence at which
at least machines are still active, far < ¢ < m. If there is no such time for somethen we letr; = 0.
Clearly,7y > 7 > ... > 7, must hold. We show thaf; > 7;. Fori = 1 this is clear. Next, remove the
jobsa,,am—_1,...,a1, ONe by one, in this order (which is opposite to the order which they were assigned).

After the removal of a set of thé — 1 > 0 jobs which were assigned last (jobs,, ..., am_r¢12),
the maximum completion time is at least since the activity on the machines at the point in timevas
affected (by the removal) on at mast- 1 machines, and at least one machine remains active atrtime
Thereforel, > .

Let R be the competitive ratio of the algorithm. Thills < R - O,,—;4+1 for everyl < j < m. By
Lemma 13,0,,_ j+1 < Cm —j+1, SOTj; < RCpy—j4+1. Let W be the sum of all jobs sizes in the modified
input, i.e., W = Z qj + Z(n, K) - s; and letr,,+1 = 0. We next claim thatV < % T. Consider

k=1
the time mterval between tlme§+1 andr, for somel < k < m. During this time, at each point in time,

11

there are at mosi active machines. Thus the total size of parts of job processed during this time interval is
at mostk - (1, — 7,+1). Therefore (using;,+1 = 0),

<Y k(= Thp) =D kT — > ke Thar = Zk Tk_z —1) =) m< YT

k=1 k=1 k=1 k=1 k=1 k=1
m m m

sincer;, < T}, foranyl < k < m. Therefore we hav®/’ < > T, < > R-Cp—ky1 = », R-C;. The
k=1 k=1 j=1

lower bound follows.m

We use Theorem 14 to prove all the lower bounds in the section. We start with a lower bound for general
inputs. The lower bound is simple and it only uses a single block before the further jobs. This lower bound
can be used for different values A&f.

We define a class of lower bound sequenggsvhich is used below. This type of sequence contains a
block of very small jobs, antl< m further jobs. LetV be a large integer, and lét= % The first block of
o1 containsK' N jobs of sizeﬁ = % The number of further jobs, and their sizes are defined separately
for each case.

Lemma 15 For any fixed value of, the competitive ratio of any algorithm which uses a buffer of &ize
is at least3 for evenm and at Ieast% for oddm.

Proof. The main idea of this lower bound is that a large humber of tiny jobs of a total sizeagive.
Since the jobs are small, the buffer has no effect, and the algorithm has to distribute almost all jobs among
the machines. Since jobs are tiny, preemption is not helpful. After the assignment of almost all small jobs
takes place, roughl¥ large jobs arrive. Each large job has a size of rou%])so if these jobs arrive, it is
revealed that the small jobs were supposed to occupy only half of the machines unﬁl.timis either the
case that sufficiently many machines are not busy at sufficiently early times, in which case the assignment
of the small jobs has a relatively completion time, or otherwise, after the assignment of larger jobs, the
maximum completion time is sufficiently large. These two possible scenarios result in a lower boiimd of
on the competitive ratio. lfn is odd, the lower bound is slightly lower.

We uses; andt = [%] further jobs of S|z% The size of further jobs was chosen so that in an
optimal assignment of the complete sequence, each further job is assigned to a dedicated machine, while the
other jobs are spread evenly on the other machines. In this schedule, all machines have ?%kjad of

For evenn, the total size of jobs in the modified sequenceis), C; < % forl <j <%, andC; < %
for 5 +1 < j < m. This gives a lower bound 0517 For small enough, this value tends té.

LA 7_1’_* =
For odd values ofn, the total size of jobs in the modified sequence is § + mT“ - —2-,C; < Lfor
_§4+ mtl
1<j <2 andC; < 2 for 2 < j < m. This gives a lower bound of 1; +&{ s—. For small
2 m 2 m—1
7o) 4 _ _4
enough§, the lower bound tends tt%n—1)2+n5m(m+1) = 3m’§+1.l

We next analyze the lower bound resulting from sequences of thestype

Lemma 16 Lett < m. The competitive ratio of any algorithm which uses a buffer of Kize ¢ is at least

t

)

—K
met 4 Z OPT;+kx + K - OPT;

12

whereg; is the size of thg-th further job in the sequencse, and the valuePT; is the optimal cost of the
sequence up to theth further job.

Proof. We use Theorem 14. The total size of the jobs of the modified sequemhce ds+ }t: g;- We have
i=1

C;=o0PTform—K+1<j<mCj=0PTjg-mpform—t+1<;j<m-K,andC; < L for
1<j<m—t. m

We next consider a special casesgf where the list of further jobs consists &f+ 1 identical jobs, fol-
lowed by a sequence of jobs with increasing sizes. The sequence is constructed so that an optimal schedule
for the sequence up to thi& + 1)-th further job is flat, that is, each further job is assigned to a dedicated
machine, and the other jobs are spread evenly on the other machines, giving the same load to each ma-
chine. The additional further jobs form an increasing sequence of sizes, which allows exactly a flat optimal
schedule.

Corollary 17 The competitive ratio of any algorithm which uses a buffer of Eize [T”T_?} is at least

mt

(t+tK —tm—Km) -mE-1. (m—-1)tK-14+(K+m) -mt-1~
foranyK +1<t<m—1.

Proof. We apply Lemma 16 with +1 <t <m — 1. LetQ; =1+ Z G-
=1

Weuseq = go = -+ = g1 = —%—. ThUSQg41 = 1+ LFH - = 1 S00PTx =
1

m—K-—1")
We letg; = (;25) K-t.g forj = K+2,K+3,...,t. Thusgq > 1 > --- > ¢ and

q; = (-*1)gj—1, or equivalently(m — 1)g; = m - q;_1,for K +2 < j < t.

We next prove by induction that fat +1 < j <t¢,Q; = m-gq;, or equivalently(); 1 = (m—1)-g; (the
equivalence follows from sino®; = Q1 + ¢;). Forj = K + 1we haveQg 11 = —%— = M - qx 41
Forj > K +2we haveQ,;_1 = m-gj_1, thereforeQ; = m-q¢j—1 +¢; = (m—1)-¢; +¢; = m-qj, since
(m —1)gj =m - gj-1.

Sinceq; = % for j > K + 1, we get that in this caserT; = ¢;. Forj < K +1,Q; < m - ¢; and
thereforeoPT; = ¢;. We have

¢ m O\ K1 1
1 i = = . — . [_
+Zq Qe=m-q=m (m—l) K — 1

On the other hand,

t—K m—t t m t—K—1 1
—_— OPT, K -oPT; = —— OPTi+ K- —— —
- +Z i+K + t= + i T <m—1) K1
i=1 i=K+1
t t—K—1
m—1 m g1 1 m 1
- - o - 4 K./ -
m +, (m—l) m—K—1+ m—1 m—K -1
i=K+1

This results in a lower bound of

m.(%)t—f(—l
(m—t)~($—K—1) + K- (m)ff}{fl +(m—1)- (%)th —(m—1)
mt
T o m—t) m—K—1) - mE 1l (m— 1)K T+ K omtl+mt —mK - (m— 1)K
t
m

(t+tK —tm— Km)-m&=1.(m—1)t=K-1 4 (K +m)-mt-1

on the competitive ratio.
For the casd{ = 1,t = m — 2 this results in a lower bound of

mm

Bm—m?2—4)-m?2 - (m—-1)"4*+(m+1)-mm-1~

[]

We next show as a corollary of the lower bound above that using a buffer ef(sigegives a competitive
ratio which tends tg.%; for m — oo. Thus, the size of the buffer must be a linear functionah order to
improve over the upper bound of the case where no buffer is used.

Corollary 18 Any algorithm using a buffer of siz¢m) has an overall competitive ratio of at least; .

Proof. Usingt = m — 1, we have a lower bound of

mm—l

2m—K-—-1-—m2) - mK-1.(m—-1)""2-K 4+ (K +m) - mm2

(%)mfl

_K_1—m?2
2m—K—-1-m? (mnil)K_l + K;Lm i (m)m—l
which tends to%; for largem and K = o(m). =

This completes the proof of Theorem 12. We now turn to proving the additional lower bounds of this
section. In the construction of the sequence of the following proof, two blocks are used before the further
jobs.

Theorem 19 Any algorithm withK' = 1 andm > 5 has a competitive ratio of at leagt: %"_‘31;;22"121;31”12 o
which gives a lower bound d# for m = 6.

Proof. Consider an input with two blocks, for. > 5 and K’ = 1. The first block consists again of very
small jobs, of total sizé (similarly to the first block ob). The next block contains, — 3 > 2 jobs, each
of size _L.. There are two further jobs which have a size%%?2 (which is larger than the size of each

job of the block). The total size of jobs in the modified sequené&isSmt2 — 5.

(17—2)2
We haveC,, = Cym1 = (o, FOr3 < j <m —2,C; = & - (4= + 1), and finallyC; = C> = L.
Thus
m m—4
j=1 g9=1
2 (m—=1)(m—4) N (m—4)(m—3) 2(2m—5) 3m®—11m*+ 18m — 24
m m(m — 2) 2m(m — 2) (m —2)? 2m(m — 2)?

Afm3—12m2+4m
3m3—11m2+18m—24"

Using Theorem 14, we get a lower bound Form = 6, the resulting lower bound
is 1} ~ 1.3571. m

Note that the lower bound for the case = 6, K = 1 resulting from Corollary 17 (with = 4) is
only % ~ 1.3472. The lower bound forn = 7 given by Theorem 19 i%i—g ~ 1.3716216, which is an
improvement over the lower bound which is implied of Corollary 17 as well.

Next, we consider the case of non-increasing job sizes and prove the following.

Corollary 20 For the case of non-increasing job sizes,de K < m — 2. The competitive ratio of any

. . Qm(m-i-,u) . . .
algorithm is at Ieas%gugln?fl{il Ty e (whereu takes integer values). SpecificallyAif < m—2,

then no algorithm can compute an optimal solution. For> m — 1, no algorithm can have a competitive
ratio below1. Thus, the algorithms of Section 2.3 are best possible both in terms of competitive ratio and
the size of the used buffer.

Proof. If K > m — 1, a sequence which consists of a single job shows that the competitive ratio cannot
be belowl. Let1 < K < m — 2 and fix an integer value gf, wherel < y < m — K — 1. We use
b = 0 andn = m + p and use jobs of size 1. We haeeT; = 1 for i < m, andOPT,,4+; = mti for

m
m+1 <i <m+ p. Inthe sequencé, .. .,Cy,, the lastK values arePT,,,,, and the previous: — K
values arepPT, k41, . - . , OPTyy,. We get the values (m — K — p times), b mt2 - mii—] gng

T’%“ (K + 1times). Using Theorem 14 we find that the resulting value of the lower bound is

m—+ U

p=1 .
(m—K—u)+2m7“+(K+1)-mTw
1=

2m - (m + p)

2m-(m—K—,u,)+2~%Zl(m+i)+2-([(+1)-(m—i—u)

2m - (m + p)
2m2 —2mK —2mp+2-(n—1) - m+p-(p—1)+2Km+2m + 2Ku+ 2u
2m - (m + p)
2m2 +2Kpu + p2 +p

Note that using: = 0 yields a lower bound of, and using: > m — K yields a lower bound which is
no larger than the cage= m — K — 1, since for each increase fyin the value ofy, i.e., usingy’ = p + 1
the numerator grows b¥m while the denominator grows B/K + 2u + 2 > 2(m — 1) + 2 > 2m, which
does not increase the value of the lower boumd.

4 Proofs of technical lemmas

4.1 Proof of Lemmal

We prove the claim by induction an Fori = 0, L} = 0 for all k, and@; = 0 imply that all invariants hold.
Assume now that all invariants hold for a given timend consider the invariants for time- 1. If none of
machined, 2, ..., | 2| received any parts of thg -+ 1)-th assigned job, thehjt! = Li for1 < k < [2Z],

and thus all the invariants hold for timiet 1, since@;+1 > @;. Otherwise, lel < z < L%J denote the
minimum index of a machine which received a non-zero part of the job. Similarly to the above, for any
k < z, ijl = L¢, and thus for any < z, the j-th invariant holds at timé. We need to prove thg-th

15

invariantforj = z,z +1,..., [%], if K jobs remain in the buffer (i.ei,+ 1 + K < n), and otherwise for
j=z2z+1,... ¢ if the number of jobs in the buffer after the assignmerftis K.

Note that for evemn, if i + K = n, then at time all %3 invariants hold, while after th@ + 1)-th job is
assigned, it is required that only the invariants fot % — 2 hold. Our proof would result in the invariants
for j < 5 — 1 holding, that is, one invariant which can be proved would not be necessary Howenas, if
odd, after the(i + 1)-th job is assigned, it is required that only the invariantsjfetr .= — 1 hold, which
is exactly what is proved here.

After the assignment, since the slots of machinesl, z + 2, ..., m were fully used, the loads of these
machines satisfyl.*! = L%,), forz+1 < j < m—1, andLj' = R - 0PT;1. Therefore, for any
z < j < %], the following inequality holds:

J m m—1
- - .
E L™ = Qipi— E L = Qipr — E Ljy1 — R - OPTi1y
k=1

k=j+1 k=j+1
m J+1
= Qit1— Z L —R-0OPTi11 = Qiy1 — Qi + ZLZ‘ — R - OPTi41
k=j+2 k=1
J+1
= V{7 +) Lp—R-OPTy .
k=1

Case 1. j < [F]. Inthis casen — j — 1 > 0 holds, and we can use the invariantjof- 1 at time

i. This invariant holds since either the buffer is full after the assignment ofithel)-th job, and thus it

was also full before it, or otherwise the buffer contained at Ig¢astl jobs before the assignment. We have
i+l ;) . -
2 L, <(R-1)- % Thus itis sufficient to prove

}/g+1+(7€—1)'(—R'OPTH_l—(R—l) I QZ+1<O

m—j5—1 m—j

Sub-case 1.1. If Q; < (m —j — 1) - Y/, then we us®pPT;1 > Yo andQ; 11 = Q; + Y™ to get

i1, R=1)-0G+1)-Q; . (R—=1)-7-Qin1
Yyt + — —R-OPT41 — —
= b <1 m=7)T o pm—i-1
(R — (R — 1y L vt
< Yoi“-(l—R—j;R_jl)erﬂg?ijl))—(R ml)_;o (=(m—=34)=j+m)=0.

Sincem — j — 1 > 0, the coefficient of); in the second expression is positive, so the substitution is
valid.
Sub-case 1.2. If Q; > (m — j — 1) - Y™, then we us®PT; 1 > L - (Q; + (j + 1) - Y1) (since there
are/ > j + 1 jobs stored in the buffer), ar@; 1 = Q; + YJ“. It suffices to prove that
: +1 1 , : i (Qi + Yyt
AR N A R I EC R PEA L et

m—j—1 ‘m m—j

16

or equivalently,

vty R 2L < <R+(R_1?j'j)-Qi+<R'%H)+(R_l).’j> Y

m—j—ll m m — m—j

Then it is easy to see that the coeﬂ‘icieniYg’fH on the right hand side is less thaysince ifm is even,
thenR =4/3,j <% —1land

)+ 1] 2 2 3
RAT oy M2)2 i ro1= SR <
m m—j m m/2 2
Otherwise, ifm is odd, therR = ;42— j < m=1 — 1 and
41] 1 -1
R'i—f—(R—l)‘L < R.ﬂ+(7€_1).m
m m—j 2m m-+1
(m+1)?+2m-(m—1) m—1
- R _
2m(m+1) m+1
_ 4m? 3m*+1 m-1 _ 2m m-1_
S 3m2+1 2m-(m+1) m+1 m+1 m+1

It follows that in the next expression, which we would like to prove, the coefficiemgéf iS nonnegative:
R R—-1)-j , R (R-1)-j + 1
<1—'(j+1)—().j> Y < <+().‘7—(R—1)']+.> - Q;.
m m—j m m—j m—j5—1

Then no matter whether the coefficient in the right hand side is positive or not, it suffices to prove (by
substitutingQ; > (m — j — 1) - Yy) that

(1—5-(j+1)—w>§(R+(Rl).'j—(7€—1)'M)‘(m—j—l)v

m—j m m—j m—j—1
or equivalently,

(R-1)-j

(R-1)-J
. pr—

-2 Gy = < B - 1)+ =g =)~ (R=1)-(+1),

which is equivalent to

9

41 o — i — 1 .
I+ (R-1)-(j+1) <R M IHITL o gy delm gD+
m m—
which is finally equivalent to the following condition which clearly holds.
R-1)-7J+R<R+(R—-1)-7.

Case 2. j = 7, this case needs to be considered onlyifs even, andy — 1 jobs remain in the buffer
after the assignment. We prove this case separately as follows.

2 . m .
The invariant forj for time i is) L, < (R — 1) - Q;, and therefore) L > (2-R) - Q;.
k=1 k=241
. . . m . m_q Pl .
SinceLlerl < Lin,y < ... < Ly, we have Y L, > 2 -(2-R)-Q;. Weget) L, <
2 2 k=142 2 k=1

(2.2-R)+R—1)-Qi.

17

Therefore, it is enough to prove
: 2
YE)H_I+(E'(2—R)+R—1>'QZ’—R-OPTZ‘+1—(R—l)-QH_l <0.
We useoPT; 41 > L (Q;+ 2 -Y; ™) (since in addition to the job of siZ&] T which is being assigned,

the buffer containd = 7 — 1 jobs of at least its size)f); 11 = Q; + YO’”rl andR = % to get that it is
enough to consider

, i+1 A
Y8+1+<i'(2_7z)+7€—1>'@i R'(%*@)—m—m(@iw&“)

; 3R 1
— Y’H—l' 9 _ ~ Q- (4— _
5 (2>+m Qi (4—3R)

Case 3. j = -, this case needs to be considered only.ifs odd, and”.* jobs remain in the buffer
after the assignment.

m—1

2 .
The invariant forj for timeiis) L; < (R—-1)-

m—1

o m?-1 m—1 L
mf%nfl : QZ ~ 3m241 m+1 Qz — 3m2+1 QZa

k=1 2
m 2
; 2_om+1 o 2(m +m) . ; . .
and therefore Zm:H Ly > (1- %) CQi = T Q. SlnceL’m2+1 < LZmQHJrl <...< L,
=L
m+1
m < mil 1 2(m2+m) 2
i 5 _ m—1 m(m+1)) 2m(m—1) i
we have Z Lk? Z T . 3m2+1 : Q'L — m+1 ° 3m2+1 : Q’L — T 3m2+1 Ql We get Z L
k= m+1+1 2
2m(m—1) _ m24+2m+1)
(1 - m2+1) Qz - m3m27_21 'Qz-

Therefore, it is sufficient to prove

2
w1 M-+ 2m+1 ‘ ' m—1 ‘ .
vy —|—W-QZ—R-OPTZ_H—(7?,—1)-7'@14-1SO, ie.,
2 2 2
- +2m+1 4m m-—1
yitl moremT S .OPT.q —
o 3m? +1 @i 3m2 +1 T m-|—1 Qi1 <

We useQ;1 = Q; + Yy andopPTiyy > L - (Q; + =L - Yy T) to get that

2 2 2
. +2m +1 4dm, m* —2m +1
Y""'l m— . . OPT; =T, X
0 + 3m2+1 Q’L 3m2+1 i+1 3 2+1 QZ+1
2
. +2m+1 4dm m—l—l . m* —2m+1 .
<yitt M . Lyl A(O: + yit!
=40 + 3m2+1 Ql 3m2+1 (Q’L+ 0) 3m2+1 (Q’L+ 0)
B 1_2m~(m+1)_m—2m+1 Y”l—i—m 242m+1—4m— (m? —2m + 1) Qi = 0
N 3m2+1 3m2+1 0 3m2+1 L

4.2 Proof of Lemma 6

We start with a short outline of the proof. We need to prove an invariant which states that the first machine
is loaded relatively lightly. Thus, we only need to consider situations where this machine actually received
some parts of jobs. We consider the following three times. The last time at which this machine received a
part of a job, which means that the slot on the second machine was occupied completely at this time. The
time strictly earlier, when the second machine received a part of a job (and the slot of the third machine is
occupied completely), and a time strictly before this time when the third machine received a part of a job.

18

Since we already have an invariant regarding the total load of machiaed6, we follow the steps of the
algorithm starting from the time mentioned above, at which in fact the slot on the fourth machine was used
completely. These three times in the execution are seen as key times, for which bounds on the optimal cost
are calculated with respect to loads, and with respect to the largest job size, which is the size of the job in
the buffer at this time. There are several cases, based on the relation between the sizes of at most six jobs,
which are the three jobs mentioned above, and the jobs stored in the buffer at the times of their assignment.

To prove the invariant for a given value fifwhere a job is stored in the buffer aftejobs have been
assigned, we note thatlf’i = 0 we are done, thus we assumﬁe> 0.

Let A be a job which is just have been assigned by the algorithm. Consider the smallest index of a
machinek (0 < k < 6) that received a non-empty part df (¢ = 0 if the job is larger than the slots
allocated for it). We say that jod overflows machinej for all machinesj such thatc < j < 6. That is,

A overflows maching if the slot allocated ford on machingj was fully used. Since ailjobs, which were
assigned so far, were assigned successfully, no job could overflow mdchide say that the load of the
m-th machine (i.e. the load of machi6g is full aftert jobs were assigned, if it equals to the maximum
allowed load, i.e., it is equal t® - OoPT;. This condition holds if the-th job ever assigned overflows the
machinem = 6.

We present additional definitions which have a major role in the proof.vi.&k the last job among
the firsti assigned jobs, in the order of assignment of jobs (which is not necessarily the order of arrival of
jobs) which overflows machin Such a job must exist, otherwise, machingould have remained empty.

Let v2 be the last jolstrictly before vs (in the order of assignment) that overflows mactir{and possibly
also machin&). This job must exist because otherwise machiveould have been empty at the time of
assignment obs, andvs could not overflow it. Finally, let; be the last jolstrictly before vs that overflows
machine4. Similarly to the above, this job also must exist.

Furthermore, we denote hy; the job stored in the buffer at the time whenis being assigned, (for
eachk = 1,2,3). The jobus exists since the buffer contains a job aftgobs were assigned. We abuse
notation to letu;, andv;, denote also the sizes of these jobs. For apjdet Q(p) denote the sum of sizes of
jobs assigned strictly befoge Let oPT(p) denote the optimal cost at the time of assignment @hcluding
the job stored in the buffer, if exists). For simplicity of notation, wellgt= L;ﬂ for1 <j <6.

Consider the moment when is assigned and recall that it overflows machin&rom this fact it follows
that just after the assignment of, the load of machind will be equal to the previous load of machibge
the load of machiné will be equal to the previous load of machifieand the load of maching will be
full. Using Lemma 5 for the time just befokg is assigned, we have the following lower bound on the sum
of the loads of the last three machines just affteis assignedsd - Q(v1) + 15 - OPT(v1).

Sinceu, is the last job befores that overflows maching, each job assigned strictly after and strictly
beforev, does not overflow maching This means that all parts of these jobs are assigned only to the last
three machines. Denote the sum of the sizes of these jdyyThen, just befores is assigned, the sum
of the loads of the last three machines is at least

19

19
E . Q(Ul) + ﬁ . OPT(’Ul) + Sio .

Let us consider the moment when is assigned, and recall that it overflows mach8neSimilarly to the
previous case, just after the assignmentfthe loads of each maching3 < j < 5) will be equal to the
previous load of maching+ 1, and the load of machingwill be again full, that means that the total load
of the last four machines is at least

19

19 19
— — - OPT — - OPT :
D Q(v1) + ¥ (v1) + S12 + 7 (v2)

19

Then the jobs assigned betwegnandvs, not including these jobs (denote the total size of those jobs
by S»3) are assigned completely to the last four machines, and we get that just bei®essigned, the sum
of the loads of the last four machines is at least

19 19 19
— . — . OPT — . OPT .
19 Q(v1) + 7 OPT(v1) + S12 + 11 OPT(v2) + Sas

Consider the moment when is assigned, and recall that it overflows macHinéVe get that just afters
is assigned, the total load of the last five machines is at least:

19 19 19 19
. —Z . oPTI —Z . OPT —~ . oPT(v3) .
12 Q(v1) + 11 (v1) + S12 + 1 (v2) + Sag + 11 (v3)

Finally, let S34 denote the total size of all jobs assigned strictly afteup to thei-th assigned job. After
assigning the those remaining jobs up to b job, we get that since no further job overflows machine
the total load of the last five machines satisfies

Lo+ L3+ Ly+ Ls+ Lg

19 19 19 19
> —. — - OPT — - OPT — - OPT .
> 5 Q(v1)+14 o (v1)+812+14 o (v2)+523+14 OPT(v3) + S34

For simplicity of notation, let) = Q(v;). We have the next inequalities:

Q+U1+U1 }
77“1)

OPT(v1) = max{

6
S
OPT(UQ)—ma,X{Q+U1+ é2+v2+u2,uz},
S S
OPT(Ug):maX{Q+v1+ 12+v§+ 23+vg+u3’u3}'

In the technical part of the proof, instead of the maximum values on the right hand side of these bounds
onopPT(vg), we will use convex combinations of the two terms in each maximum. We alsg use;. We
need to show that

1
Ly Sﬁ-(Q+U1+512+02+S23+03+534) :

Now we separately treat several cases as follows.
Case 1. v5 < uy andwvs < ug. Then, (also using; < u; andvs < ug), we get

Lo+ L3+ Ls+ Ls+ Lg
19 57 19 + v+ v 19 19
242.Q+42.<.le+.v1_|_.02>+5’12

57 6 57 57
57 44 Q + v1 + vg + v3 13
+42'<57' 6 +57‘U3>+523

57'<57.Q+U1+U2+21)3 0

+@ E 6 +57"U3>+534

39 39

39 39
> 2 Q4 o uy oo ug o+ Sig + Sas + Saa
Z 1 Q+42 U1+42 1)2—1-42 vg + S12 + Sog + S34

20

It follows that
Li=Q+v1+ Si2+ vy + Sa3 +v3+ S3a — (La+ Lz + Ly + Ls + Lg)

1
< — - (Q+vr+v2+w3) .
14
Case 2. v3 < uy andvs > us. Then in the second maximum we cannot substitigtey v3. On the other
hand, from the condition follows, that is already have been assigned when we are just assiggitigus

Sog IS not empty, andss > us > vo. We also applyus > vo andu; > vp to get

L2+L3+L4+L5+L62g.Q
Z(?W £‘01+E)27-vg>+512
+i;.<§;.¢2+v16+2‘w+:7.02)+523
+451;'(?;.Q+vl+26'v2+2'v3+§(;-v3>+534
:%.Q+%-v1+%.uz+%.v3+512+523+334‘

Then it follows that

Li=Q+vi+ Si2+va+ Saz+wv3+ 534 — (Lo + Ly + Ly + Ls + L)
3 3
<

fQ—i-fv—i-Ev%-iv
=42 42 P T P T g0 B

1
ﬁ'(Q+U1+vz+523+Us)-

Case 3. vy > u1 andvs > uq. Similarly to the previous case, we ha¥g, > u1 > v1 andSag > ug > vs.
In addition, we applys > v to get

<

19

L2+L3+L4+L5+L62@'Q
+Z;~(§§~Q22vl+§7-v1>+5m
_i_i;<§?.Q+2vg+2v2+;§_02)+523
Z%'Q+%'U1+%'U2+%'03+S12+323+534-

Then it follows that

Li=Q+vi+ Si2+vs+ Saz+wv3+ 534 — (Lo + Ly + Ly + Ls + L)

<i Q—l—gv—i-gv%-iv

= 42 42 Ty R T g0 B
1

Sﬂ'(Q+U1+S1z+U2+523+U3)-

21

Case 4. vy > uy andvz < uso. Sinceu; is already have been assigned when we are just assigsitigus
S12 is not empty, and1o > uqp > v1. We also apply; > vq, andus > vs to get

19
Ly+Ls+Lat+Ls+Le= 5 Q

+Z-<§;-Q22U1+57'01>+512
_i_i;<567'Q+201gv2+03+;’3,v2+£.v3>+523
+i;<§;'Q+2v1+6v2+2.v3+507.v3>+534
2%-Q—i—%-vﬁ—%-02—1—%'1)34—5124-5234-534-

Then it follows that

L1 =Q+ v + S12+ vy + Sog +v3 + S34 — (La + L3 + Ly + L5 + Lg)
3 6

3 3 1
S Q+421)1+42 v2+42 U3_14 (Q +v1 + S12 + v2 + v3)

4.3 Proof of Lemma 9

To prove the claim, use induction in all cases, except for one case where we need to prove the invariant for
j = K. In this case we perform an analysis similar to that of the proof of Lemma 6 in the sense that we
consider certain times at which machines received parts of jobs. In this case, since we are dealing with an
arbitrary number of machines, the number of key times is a function,afiamely it ism — K. On the
other hand, if the buffer contains jobs after the assignment of a job, then these are exactly the ldfgest
jobs in the input, that is, the firgt jobs of the input. This reduces the number of cases in the bounds on the
optimal cost, since the size of the largest job is sinfply The cases here depend on the first time at which
the lower bound on the value of the optimal cost excegds

We prove the claim by induction an Fori = 0, L: = 0 holds for allk, and we geti Z; <j-Z1 <

j+R - OPTy, SINCEOPTy > Z1. =

Assume now that the required invariants hold for samel > 0. Let /¢ be the number of jobs in the
buffer after the-th job has been assigned. By Lemma 10 this job was assigned successfully.

If none of machinesg, 2, ...,/ received any parts of the assigned job, tli[%'n: L}jl forl <k <Y,
and thus all the invariants hold forsinceorPT; > OPT;_;. Otherwise, letl < z < ¢ denote the minimum
index of a machine which received a non-zero part of the job. Similarly to the above, for any,
Li = Li~', and thus for any < z, the j-th invariant holds at timé — 1.

We therefore need to prove the invariants at tifar z < 7 < /. We have: < ¢ < K <m — 1. If after
the assignment of thieth job, the buffer containé = K jobs, we will consider the cage= K separately.
In this latter case the buffer contain&djobs before this assignment as well. The assigned job is not one of
the initial K jobs, which are still stored in the buffer.

We first consider the case< j < min{/, K —1}. We havei L+ i Zp=Q;i— f L+ i Z.

k=1 k=1 k=j+1 k=1
After the assignment of thieth job, the new load of machine< p <m —1is L;jrll, and the new load of
machinem is R - OPT;. Sincej > z, we can use this equality fgr+ 1 < k < m.

22

Note that the number of jobs in the buffer before the assignment is atjlgast If the number of jobs
in the buffer after the-th assignment ig(, then the buffer was full also before the assignment and using
j < K the last property holds. Otherwise, the assigned job was from the buffer and the number of jobs
before the assignment wés- 1. Therefore, in both these cases we can us¢thel)-th invariant for time
1 — 1.
We get at most

m J j+1 7
Qi— > Li'-R-OPL+> Zt=Qi—Qi1+» L' —R-0PT+) 7%
k=j+2 k=1 k=1 k=1
J+1 J
SXi"F(j‘Fl)'R'OPTi_l—ZZk—R-OPTi—I—ZZk Sj'R'OPTZ'+Xi—Zj+1
k=1 k=1

(sinceopPT;_; < oPT). Ifitleftto showX; < Z;.,. If X; is not one of thex first jobs in the sequence,
then this is clear. Otherwise, since we are dealing with machitige buffer contains at leagtjobs to be
assigned later. Therefore, the current job has a sif&jn, ..., Z,,—1}, and thusX; < Z;,.

We next consider the cage= K, for which we need to prove

K K
Y L+ Z,<K-R-OPT;. 1)
k=1 k=1

For a jobp, we use the notationsPT(p) and Q(p) as in the proof of Lemma 6. In addition, we let

L; = L; Sincez < K, thei-th assigned job overflows machi#+ 1. We denote this job by,, x, and

define a sequence of — K jobs as follows. The job; is the last job assigned strictly before the joly,

which overflows machine: — j + 1. For a jobv;, we again lety, denote both the job and its size.

Foreveryl < j <m — K — 1, We letS; ;; denote the total size of jobs assigned strictly afteand
strictly beforev;;1. We prove by induction that at the time just after thejolis assigned, the sum of loads
of machinesn — j +1,...,mis at least

R - OPT(Ul) + 51,2 +R- OPT(UQ) + 5273 + ...+ Sj;l’j +R- OPT(U]').

To prove this, we start with the base cgse 1. Sincev; overflows machinen, its load just after the
assignment of; must beR - OPT'(v1).

Assume next that the claim holds for somesuch that < j < m — K + 1. To prove the property for
v;+1, consider the jobs assigned strictly afterand strictly beforey; ;.

By definition, sincev; was the last job assigned strictly befarg ; that overflows maching: — j + 1,
all parts each job which is assigned strictly afterand strictly before;; are assigned to machines —
j+1,...,m. Therefore, at the time just befosg, ; is assigned, the total load of machines-j+1,...,m
is their total load just after the assignmentgfplus S; ;1 1, thatis, it is at least

R - OPT(Ul) + 5172 + R - OPT(UQ) + 5273 + ...+ ijl,j + R - OPT(UJ) + Sj,jJrl-

Consider now the moment a whielh,; is assigned. Since it overflows machine- j, the load of each
machinem — j < t < m — 1 becomes the previous load of machine 1, and the load of machine.
becomeskopPT(vj41). Therefore, just after the assignmentgf ;, the total load of machines —j,...,m
is at least

R - OPT(’Ul) + 5172 +R- OPT(UQ) + 5273 + ...+ Sj_l’j +R- OPT(U]') + Sj,j+1 +R- OPT(Uj+1) ,

23

as required.
We get that when théeth jobs,v,, k, has been just assigned, it holds that

> Lp>=R-OPT(v1) + S12+R-OPT(v2) + Sa3+ ... + Sm-k—1,m-k + R - OPT(vm_g).
k=K+1
We use the notation8 = 7; + ... + Zx and@ = Q(v1). Then we have the next inequalities for #ll

J

Q+Z+vi+ > (Sk—1k+ v)

OPT(vj) = max h=2 VA 2
m
m—K) K m m
LetS = 51’2 + 5273 + ...+ Sm—K—l,m—Ky andV = Z Vj. Slncez Lj = Z Lj — Z Lj =
J=1 J=1 J=1 j=K+1
m
Q+V+S— > Lj; andoPT; = OPT(v,—k), to prove (1), it suffices to prove that the following holds
j=K+1

Q+Z+V+S<R-(K- -0PT(vm_k)—+ OPT(v1) + OPT(v2) 4+ ... + OPT(Upm_k)) + S,
or equivalently,
Q+Z+V <R-(K-0PT(vn_k)+ OPT(v1) + OPT(v2) + ...+ OPT(Uy—k)) - (3)

We next replace the valuesT(v;) on the right hand side by the bounds of (2). Note that omitting the
Sk—1,% terms from the formulas, we get a stronger statement, and we will prove this stronger statement. Let
MAX (v;) denote the modified values oPT(v;) after deleting the termS;,_; ;. Thus we will show that

Q+Z+V <R (K- -MAX(Um—k) + MAX (v1) + MAX (v2) + ... + MAX (Uy—K)) 4)

holds.

If MAX (v,—x) = Z1 then we show that statement (4) holds trivially. We @et Z + ZZ;K v <
m - Z1, which impliesQ + Z + 71, vy <m- Zy forall 1 < j <m — K, and in particulagz; > 2tV
Thus,MAX (v1) = MAX (v2) = ... = MAX (U,—k) = Z1, and we needtoprov@ + V + Z <R -m - Z1,
which holds for anyR > 1.

Therefore, lett < o < m — K be the minimal index for which holds thatax (v,) > Z;. The next
inequalities follow from the definition a:

Q+Z+U1+’l}2+...—|—?}a_1
m
Q+Z+vi+va+...+v0-1+Va
m

< 7, and (5)

> Zl, (6)

where the first inequality holds only if > 1. Now let us substitute the valuesx (v;) in the right hand
side of (4). We would like to show that

mzf(Q‘FZ-FUl—F...—FUj+K‘Q—|—Z+vl+...+vm_K

m m

a—1
Q+2Z+V < R-Zzlwz.
7j=1 j=a

- (N

24

Let us denotd. = m — a + 1. From the conditiorl < o« < m — K itfollows thatK + 1 < L < m. Then
inequality (7) can be rewritten as

R-L
Q+Z+V§R'(a—1)-Zl+T'(Q+Z+v1+...+va) (8)
R-(L—-1 R-(L-2 R-(K+1
+¥UQ+1+¥UQ+2++QUTR—K
m m m

We prove (8) by distinguishing two cases as follows:
Case 1. R -L > m. The condition means that the coefficient @ + Z + v1 + ... 4+ v,) is at
leastl. Then we decrease both sizes @y + Z + v1 + ... + v,). Then the remainder(,% -1)-
(Q+Z+v1+...+v,) on the right hand side is non-negative, using the definitioa @nd inequal-
ity (6), we estimate this remainder from below ()% —1) - m - Z, so the coefficient ofZ; becomes
R-(a—1)+R-L-m=(R—-1)-m>0.

Thus it suffices to prove that

va+1+...+vm_K§(R—1)-m~Z1
LR R (L—2) R (K +1)

Vgl +———— Vg2 + ... + ————— Unp_K.
m m

If w > 1, then all coefficients of,; on the right hand side are no smaller than those of the left hand

side, and in addition, the coefficient 4f is non-negative, so we are done. Otherwise, siRcel. > m,
there exists avalue’ > candL’ = m — o’ +1 forwhichR-L' > mandR - (L' — 1) < m. ltis sufficient
to consider the sum of all coefficients on the right hand side (neglecting thasg of. . . , v,/) and show
that it is no smaller than the sum of coefficients on the left hand side (neglecting thoge0f. ., v,
here as well). The claim will follow by using the fact that is the maximum job size, and the fact that all
coefficients are non-negative.

Thus we need to show that

R(L-1) R-(L-2), | R-(K+l)

By reordering we get

L'+ K)- - K—-d) .
2m—K—O/§R-m+E‘(+ K) (;n a),l.e.,
m

Qm.(Qm_K_o/)gR-[2m2+(L/+K)-(m—K—a’)]

substitutingl = m —a +1andL’ = m — o/ + 1, we get

2m- (2m - K —d/) <R-[2m*+(m—d' +1+K)- (m-K —d)] .

25

We next substitute, = m — K — o/, i.e. o’ = m — K — p, (then from the condition < o/ <m — K it
follows that0 < p < m — K — 1), and we get

2m - (m+p) <R-[2m*+(m—(m—K—p)+1+K) -y
that is, 2m - (m+p) <R - [2m?*+ 2K +p+1) - p
and finally 2me(mtp) g

2m?2 + 2K +pu+1) - p

which is one of the terms in the definition & if © > 1. If 4 = 0 then this condition clearly holds as well.
Note that the proof is valid fot: = 1, since (5) was not used explicitely.

Case 2. R-L < m. Notethatifa =1wegetL =m—a+1=m,thenR-L =R -m > m, thus
a > 1, and (5) can be used. The condition means that the coeffici¢tt &f Z + v; + ... + v,) is strictly
smaller tharl. Then inequality (8) can be rewritten as

R-L
Q+Z+V§R-(a—1)-Zl+7-(Q+Z+v1+...+va_1)
R-L R-(L-1) R-(L—2) R-(K+1)
+ Vgt ————— Vpp1+ ————— Vgq2t e ————— Uk
m m m

We again decrease both sizes(6y+ Z + v + ...+ v4—1). Since the coefficient of this expression
on the right hand size is strictly smaller thirthe new coefficieni% —1of(Q+Z+vi+...+v4-1),
is negative. We use inequality (5), thatis, Z; > Q + Z + v1 + ... + vo—1. As aresult, the coefficient
of Z; decreases by: - (1 — %) =m —R-L,and become§R — 1) - m > 0.

Thus it suffices to prove that

Vot it m-rx <(R-1)-m-2Z;

R-L R-(L—1) R (L —2) R- (K +1)
Vgt e gl e Vgga e e U
m m m

+

Here the coefficient of eacty on the right hand side is smaller thanso it is only needed to show that
the sum of the coefficients in the left hand side (ihis— K — « + 1) is not greater than the sum of the
coefficients in the right hand side. Thus we would like to show that

R.L+R-(i—1)+R~(TLn—2)+W+R~(fi+1)
:R.m—m+%[L+(L—1)+...+(K+1)]

L+K+1)-(m—K— 1
:R'm—m+E~(K+ (72n ot)
m

m—K—-a+1<(R-1)-m+

By reordering we get

2m—K—a—|—1§’R.m+Z.<L+K+12)'(L_K)7

orequivalenty 2m-(2m—-K —a+1)<R-[2m*+(L+K+1)-(L—-K)] .

Next, substitutingl. = m — o + 1, we get
2m-(2m—K —a+1)<R-[2m*+(m—a+K+2) - (m— K —a+1)]

26

and finally substitutings = m— K —a+1,i.e.a = m— K —u+1, then from the conditiof < o < m—K
it follows that1 < ;4 <m — K — 1, and we get

2m-(m+p) <R-[2m*+(m—(m—K —p+1)+ K +2)-p]
that is, 2m-(m+,u,)§7€[2m2—|—(2K—|—u—|—1)-u]
and finally 2mo(mtp) g

2m?2 + 2K +pu+1)-p
which holds due to the definition &.

5 Conclusion

We studied preemptive scheduling with reordering and showed that a buffer & 8izgis necessary and
sufficient to achieve the best competitive ratios for both general sequences and for non-increasing sequences.
All the algorithms do not use idle time, which is not helpful in the case of identical machines.
One direction for future research is to find the tight competitive ratio for everyipair of a buffer size
and number of machines. This goal is already achieved here for the case of non-increasing job sequences.
An additional direction is to generalize the results for uniformly related machines. Note that the methods
of [5], which allow to design algorithms of optimal competitive ratio for many semi-online variants, do not
supply a solution for the model studied here. It is not difficult to see that for two uniformly related machines,
similarly to two identical machines, a buffer would not reduce the competitive ratio. We conjecture that for
anym > 2 and any speed combination, the usage of a reordering buffer can decrease the competitive ratio.
The algorithms considered here are deterministic. Allowing randomization would not be helpful since
even though the lower bounds are stated deterministically, all the lower bounds of Section 3 can be extended
for randomized algorithms by considering expected loads of machines rather than the loads.

References

[1] B. Chen, A. van Vliet, and G. J. Woeginger. Lower bounds for randomized online scheduliog.
mation Processing Letter§1(5):219-222, 1994.

[2] B. Chen, A. van Vliet, and G. J. Woeginger. An optimal algorithm for preemptive on-line scheduling.
Operations Research Letters3(3):127-131, 1995. Also in ESA 1994.

[3] Gy. Dbsa and L. Epstein. Online scheduling with a buffer on related machioesnal of Combina-
torial Optimization To appear, DOI: 10.1007/s10878-008-9200-y.

[4] T. Ebenlendr, W. Jawor, and J. Sgall. Preemptive online scheduling: Optimal algorithms for all speeds.
Algorithmicg 53(4):504-522, 2009.

[5] T. Ebenlendr and J. Sgall. Semi-online preemptive scheduling: One algorithm for all variants. In
Proc. of the 26th Annual Symposium on Theoretical Aspects of Computer Science (STAG52@89)
349-360, 2009.

[6] M. Englert, D.Ozmen, and M. Westermann. The power of reordering for online minimum makespan
scheduling. IrProc. 48th Symp. Foundations of Computer Science (FO@ges 603-612, 2008.

27

[7] L. Epstein. Optimal preemptive on-line scheduling on uniform processors with non-decreasing speed
ratios. Operations Research Lette29(2):93-98, 2001. Also in STACS 2001.

[8] L. Epstein and L. M. Favrholdt. Optimal preemptive semi-online scheduling to minimize makespan
on two related machine©perations Research Lettef30(4):269-275, 2002.

[9] L. Epstein, J. Noga, S. S. Seiden, J. Sgall, and G. J. Woeginger. Randomized online scheduling on two
uniform machinesJournal of Schedulingd(2):71-92, 2001.

[10] L. Epstein and J. Sgall. A lower bound for on-line scheduling on uniformly related maclpesa-
tions Research Letter@6(1):17—-22, 2000.

[11] E. Horwath, E. C. Lam, and R. Sethi. A level algorithm for preemptive scheduliogrnal of the
ACM, 24(1):32-43, 1977.

[12] H. Kellerer, V. Kotov, M. G. Speranza, and Zs. Tuza. Semi online algorithms for the partition problem.
Operations Research Letteizl(5):235-242, 1997.

[13] S. Li, Y. Zhou, G. Sun, and G. Chen. Study on parallel machine scheduling problem with buffer.
In Proc. of the 2nd International Multisymposium on Computer and Computational Sciences (IM-
SCCS2007)pages 278-281, 2007.

[14] S. Seiden. Preemptive multiprocessor scheduling with rejeclio@oretical Computer Scienc262(1-
2):437-458, 2001.

[15] S. Seiden, J. Sgall, and G. Woeginger. Semi-online scheduling with decreasing jolOpeeations
Research Letter27(5):215-221, 2000.

[16] J. Sgall. A lower bound for randomized on-line multiprocessor schedulimfgrmation Processing
Letters 63(1):51-55, 1997.

[17] J. Sgall. On-line scheduling. In A. Fiat and G. Woeginger, editordjne Algorithms - The State of
the Art chapter 9, pages 196—-231. Springer, 1998.

[18] J. Wen and D. Du. Preemptive on-line scheduling for two uniform proces&psrations Research
Letters 23(3-5):113-116, 1998.

[19] G. Zhang. A simple semi on-line algorithm fét2//C\,.x With a buffer. Information Processing
Letters 61(3):145-148, 1997.

28

