
Bin packing with rejection revisited

Leah Epstein

Department of Mathematics, University of Haifa, 31905 Haifa, Israel.
Email: lea@math.haifa.ac.il

Abstract. We consider the following generalization of bin packing. Each
item is associated with a size bounded by 1, as well as a rejection cost,
that an algorithm must pay if it chooses not to pack this item. The cost
of an algorithm is the sum of all rejection costs of rejected items plus the
number of unit sized bins used for packing all other items.
We �rst study the o�ine version of the problem and design an APTAS for
it. This is a non-trivial generalization of the APTAS given by Fernandez
de la Vega and Lueker for the standard bin packing problem. We further
give an approximation algorithm of absolute approximation ratio 3

2
, this

value is best possible unless P = NP.
Finally, we study an online version of the problem. For the bounded
space variant, where only a constant number of bins can be open simul-
taneously, we design a sequence an algorithms whose competitive ratios
tend to the best possible asymptotic competitive ratio. We show that
our algorithms have the same asymptotic competitive ratios as these
known for the standard problem, whose ratios tend to Π∞ ≈ 1.691. Fur-
thermore, we introduce an unbounded space algorithm which achieves a
much smaller asymptotic competitive ratio. All our results improve upon
previous results of Dósa and He.

1 Introduction
In the classical bin packing problem [20, 5, 4], a set (or sequence) of items, which
are positive numbers no larger than 1, are to be packed into unit sized bins.
The sum of items packed into one bin cannot exceed its size and the existing
supply of such bins is unbounded. Each item must be packed into exactly one
bin, minimizing the number of bins used. However, in many applications, it is
possible to refuse to pack an item. This rejection needs to be compensated, and
costs some given amount for each item, which is called the �rejection cost� of the
item. In an application where bins are disks and items are �les to be saved on
these disks, the rejection cost of a �le is the cost of transferring it to be saved
on alternative media. In another application, where bins are storage units, a
rejection cost is paid to a disappointed customer whose goods cannot be stored.

We call the packing problem studied in this paper bin packing with re-
jection. In this problem, an item has both a size and a rejection cost associated
with it. Each item must be either assigned to a bin or rejected. A bin is empty
if no item is assigned to it, otherwise it is used. Unlike the standard problem
where the goal is to minimize the number of used bins, the target function in the

problem with rejection is the sum of the following two amounts. The �rst one
is the sum of all rejection costs of rejected items. The second one is the number
of bins used to pack the accepted items, i.e., items which are not rejected. The
goal is to minimize this sum. Clearly, standard bin packing is a special case of
bin packing with rejection, where all rejection costs are larger than 1.

We denote the set of items by I. For an item i ∈ I, we denote its size by
pi and its rejection cost by ri. In this paper we study both o�ine and online
algorithms for bin packing with rejection. In online environments of the bin
packing problem, we receive the items as a sequence σ. Every element in the
sequence is a pair, giving the size and rejection cost of this element. Thus, we get
a sequence (p1, r1), (p2, r2) . . . (pn, rn), and the set I contains the same elements
as σ. The elements arrive one by one. Upon arrival, an item must be either
assigned or rejected. Such a decision is irrevocable.

The bin packing problem with rejection was introduced and studied by Dósa
and He [8]. They suggested an interesting application for the o�ine version of
the problem which is related to caching. Items are �les which would need to be
used in a local system. Each �le would be needed exactly once at a later time.
A �le can be downloaded in advance to this local system, and stored on local
web servers. The process of downloading a �le from a local server (when it is
actually needed) is fast, but stored �les consume space on the servers. In this
case the incurred cost results from the cost of local servers. The second option
is to download a �le only when it is actually needed, without storing it �rst. In
the last case, a rejection cost occurs which is associated with the communication
cost of downloading the �le from an external server. An algorithm would need
to have a cost as low as possible with respect to the two types of costs.

For an algorithm A, we denote its cost by A as well. The cost of an optimal
o�ine algorithm that knows the complete sequence of vertices is denoted by
OPT. In this paper we mostly consider the asymptotic competitive ratio and
the asymptotic approximation ratio criteria. When we discuss the performance
guarantees of algorithms, we use the term �competitive� for online algorithms
and the term �approximation� for o�ine algorithms. The asymptotic measures
are standard measures of algorithm quality for bin packing problems. For a
given input σ, let A(σ) be cost of algorithm A on σ. Let OPT(σ) be the min-
imum possible cost of serving all items in σ (i.e., the cost of packing a subset
of the items plus the cost of rejecting all other items). The asymptotic approxi-
mation ratio (or asymptotic competitive ratio) for an algorithm A is de�ned to
be RA = lim sup

n→∞
sup

σ

{
A(σ)

OPT(σ) |OPT(σ) = n
}
. We also consider the absolute

approximation ratio in this paper. The absolute approximation ratio (or com-
petitive ratio) of A is the in�mum R such that for any input, A ≤ R · OPT.
If the approximation (competitive) ratio of a polynomial time o�ine (online)
algorithm is at most R, we say that it is a R-approximation (R-competitive),
this applies to both types of approximation and competitive ratios.
Previous work In [8], Dósa and He study four variants of bin packing with
rejection. These are o�ine and online bin packing with respect to the absolute
and the asymptotic measures. For the o�ine problem, the approximation ratios

of the algorithms shown in the paper are 2 and 3
2 , where the latter applies only

to the asymptotic measure. Moreover, it is mentioned that unless P = NP, no
algorithm can have absolute approximation ratio of less than 3

2 (due to a simple
reduction from the partition problem see problem SP12 in [10]). Note that this
holds already for standard bin packing.

For the online problem, they design an algorithm of absolute competitive
ratio 2.618 and an algorithm of asymptotic competitive ratio 1.75 + ε. They
show a lower bound of 2.343 for the �rst online variant, and mention that the
lower bound of 1.5401 for the standard online bin packing problem, due to Van
Vliet [21] is the best lower bound known for the second variant.

As the standard bin packing problem is a special case of the problem with
rejection, we next compare the above results with these known for the standard
bin packing problem. The o�ine bin packing problem admits an APTAS (As-
ymptotic Polynomial Time Approximation Scheme), as was shown by Fernandez
de la Vega and Lueker [7]. This scheme returns for every given value ε > 0 an
algorithm with asymptotic approximation ratio 1+ε. The algorithm has polyno-
mial running time if ε is seen as a constant. Karmarkar and Karp [15] designed
an AFPTAS (Asymptotic Fully Polynomial Time Approximation Scheme) for
the problem. They use a similar (but much more complex) algorithm, to achieve
a running time which also depends on 1

ε polynomially.
As stated above, the absolute approximation ratio of any algorithm can-

not be expected to be better than 3
2 . Several algorithms are known to achieve

this bound. Speci�cally, the simple First-Fit-Decreasing (FFD) algorithm, which
sorts the items according to non-increasing size, and applies First Fit (each item
is packed to the earliest bin where it �ts), is one of these algorithms. This result
is implied by bounds on the performance of FFD, which are given e.g. by [23]
and also proved directly using a simple proof in [19]. Several other algorithms
with the same approximation ratio are known, (see e.g. [25]).

As for the online problem, the currently best known upper bound on the
asymptotic competitive ratio is 1.58889 due to Seiden [18], this problem has
been extensively studied. Previous results include a sequence of improvements
as follows.

The online bin packing problem was �rst investigated by Ullman [20]. He
showed that the First Fit algorithm has performance ratio 17

10 . This result was
then published in [13]. Johnson [14] showed that the Next Fit algorithm has
performance ratio 2. Yao [22] designed an algorithm called Revised First Fit
and showed that it has performance ratio 5

3 .
Lee and Lee developed theRefined Harmonic algorithm, which they showed

to have a performance ratio of 273
228 < 1.63597. The next improvements wereMod-

ified Harmonic and Modified Harmonic 2. Ramanan, Brown, Lee and Lee
showed that the �rst algorithm has competitive ratio of at most 538

333 < 1.61562
and claimed that the second algorithm has competitive ratio of at most 239091

148304 <
1.61217 [17].

There is much less study of the absolute competitive ratio, and the existent
study focuses on the performance of First Fit. Simchi-Levi [19] proved an upper

bound of 1.75 on the absolute competitive ratio. A lower bound of 5
3 is given by

Zhang [24].
An important version of online bin packing (which is not studied in [8]) is

the bounded space model. Bounded space algorithms can only have a constant
number of bins available to accept items at any point during processing. The
available bins are also called �open bins�. The bounded space assumption is
a quite natural one. Essentially the bounded space restriction guarantees that
output of packed bins is steady, and that the packer does not accumulate an
enormous backlog of bins which are only output at the end of processing. For
the classical bin packing problem, Lee and Lee [16] presented an algorithm called
Harmonic, which partitions items into m > 1 classes and uses bounded space
of at most m − 1 open bins. For any ε > 0, there is a number m such that the
Harmonic algorithm that uses m classes has a performance ratio of at most
(1 + ε)Π∞ [16], where Π∞ ≈ 1.69103 is the sum of series (see Section 3.2).
They also showed there is no bounded space algorithm with a performance ratio
below Π∞. The algorithms mentioned above Refined Harmonic, Modified
Harmonic and Modified Harmonic 2 are all unbounded space adaptations
of Harmonic. Note that the 1.75 upper bound of Dósa and He [8] does not use
bounded space, as it uses First Fit as a sub-routine. However, it is achieved by a
sequence of algorithms, whose sequence of competitive ratios tends to 1.75 from
above.

There has been a fair amount of research on variants of well known problem,
where a notion of rejection is introduced. Such studies include research on vari-
ants of various important scheduling problems (see [2, 12, 1, 9]). Since scheduling
is strongly related to bin packing, this gives another motivation to the study of
the bin packing problem with rejection.
Our results We �rst study the o�ine problem. We design an APTAS for bin
packing with rejection problem which uses techniques from [7] but also from [11]
and [3]. For a given value of ε, the APTAS has cost of at most (1 + ε)OPT+ 1.

Next, we design an algorithm with absolute approximation ratio 3
2 . To do

that, we use the APTAS using a constant value of ε, combined with adaptations
of the APTAS and and additional arguments for cases where the value OPT
is small. Note that here the costs do not always take integer values unlike in
standard bin packing. Our (1 + ε)-approximation (in the asymptotic case) and
3
2 -approximation (in the absolute case) improve the previous results of [8] for
the two measures which are 3

2 and 2 respectively.
We continue with a study of the online problem. To be able to prove upper

bounds for online algorithms, we generalize the notion of weighting [20, 18] to
algorithms which allow rejection. We establish the best asymptotic competitive
ratio for bounded space algorithms, and show it is the same as for the problem
without rejection. For this, we adapt the Harmonic algorithm of Lee and Lee
[16] to be able to handle the notion of rejection. We show that the adapted
algorithms still have the same asymptotic competitive ratios, and thus, achieve
the best possible performance. Finally we show an improved unbounded space
algorithm which is a modi�cation of Modified Harmonic which can handle re-

jections. Both our algorithms, the rejective variants ofHarmonic andModified
Harmonic achieve better asymptotic competitive ratios than the algorithm of
[8]. Their ratios are approximately 1.69103 and 1.61562, whereas the algorithm
of [8] has a competitive ratio 1.75 + ε.

2 O�ine bin packing with rejection
2.1 An APTAS
To design an APTAS, we use methods similar to the well known APTAS for the
classical bin packing problem, given by Fernandez de la Vega and Lueker [7].
The adaptation we design here has some similarities with [3], however there are
many di�erences due to the di�erent natures of the problems. In order to be
able to deal with rejection costs, we also use methods similar to ones used for
scheduling, as in [11].

We assume that without loss of generality, each rejection cost ri satis�es
ri < 1. We can make this assumption since an item of rejection cost at least 1,
that is rejected in some solution, can be placed in a bin of its own instead, and
the solution cost does not increase. We also assume OPT ≥ 1. In order to be
able to assume this, note that if OPT < 1 this means that all jobs are rejected,
since any solution which uses at least one bin has cost of at least 1. Therefore,
we can compute the sum of all rejection costs. If this sum is smaller than 1 we
output this solution and otherwise, we run the APTAS. We can always check
the solution which rejects all jobs and output it if it turns out to be better than
the result of the APTAS. This will be useful to get a better approximation for
small values of OPT which is done later.

As in [7], a �rst partition is done into �large items� and �small items�. Let δ
be a function of ε de�ned later. We require of δ to be an inverse of an integer.
An item j is considered to be large if both rj ≥ δ and pj ≥ δ. All other items
are small. We denote the multiset of large items by L and the multiset of small
items by M . We have I = L ∪M .

The �rst step is to construct a set of possible packings of the large items. For
each such packing of large items only, we add the other items in a near optimal
way. The number of packings of large items would be polynomially bounded,
yet, packings are enumerated in a way that a packing, which is close enough for
our purposes to an optimal packing (restricted to large items only), is tested.

Let N be the number of large items in the input (N = |L|). If the number of
large items is relatively small, that is N < 1

δ4 , we simply enumerate all possible
solutions for these large items (these are partial packings of the large items where
the unpacked items are rejected) into at most N bins. Since a packing contains
at most N bins, and each item can be either placed into one of these bins or
rejected, there are at most (N + 1)N ≤ (1

δ4)
1

δ4 possible packings. Note that in
this process with opened bins but possibly some of them remained empty. The
set of bins remaining empty after this process are removed from the packing.
We would like to add empty bins later and to test all possible amounts of empty
bins, such bins are added to the packing to accommodate small items.

For the case where N ≥ 1
δ4 , we perform a rounding of the rejection costs of all

items in L. We de�ne intervals [δ+iδ2, δ+(i+1)δ2) for i = 0, . . . , ∆ = 1
δ2 − 1

δ −1.
For every item j ∈ L, we de�ne r′j to be the left endpoint of the interval to which
rj belongs (i.e., it is the value of rj , rounded down to the closest value δ + iδ2).
Let I ′ be the adapted input. Let A(I ′) be the cost of a solution of an algorithm
A for the rounded input, and let A′(I ′) be the cost of the same solution on the
original items. Then we can show the following.

Lemma 1. A′(I ′) ≤ (1 + δ)A(I ′) and OPT (I ′) ≤ OPT (I)

Proof. To show OPT (I ′) ≤ OPT (I) we note that given a solution to I, we
convert it into a solution to I ′ by replacing the rejection costs by the rounded
ones, and the cost can only decrease.

To show A′(I ′) ≤ (1 + δ)A(I ′), note that each rejection cost decreases by
at most an additive factor of δ2 in the rounding procedure. However, since all
(rounded and original) rejection costs are at least δ, each rejection cost increases
by a factor of at most 1 + δ when the rounded rejection costs are replaced by
the original ones.

For 0 ≤ i ≤ ∆, let Ni be the number of items with rounded rejection cost
δ + iδ2, and let ai,1 ≥ . . . ≥ ai,Ni be (the sizes of) these items. Note that

N =
∆∑

i=0

Ni.
We can consider only the sizes of items for each i, since they all have the

same rejection cost δ + iδ2. Therefore, in this case we can identify between items
and their sizes. For a given 1 ≤ i ≤ ∆, denote the multi-set of item sizes by Bi.

We perform a linear grouping on each one of the multi-sets of large items
Bi = {ai,1, . . . , ai,Ni}. Let m = 1

δ2 . We partition the sorted set of large items
into m consecutive sequences Si,j (j = 1, . . . ,m) of ki = dNi

m e = dNiδ
2e items

each (to make the last sequence be of the same cardinality, we de�ne ai,t = 0
for t > Ni). I.e., Si,j = {ai,(j−1)ki+1, . . . , ai,(j−1)ki+ki

} for j = 1, 2, . . . , m. For
j ≥ 2, we de�ne a modi�ed sequence Ŝi,j which is based on the sequence Sj as
follows. Ŝi,j is a multiset which contains exactly ki items of size ai,(j−1)ki+1, i.e.,
all items are rounded up to the size of the largest element of Si,j . The set Si,1 is
not rounded and therefore Ŝi,1 = Si,1. Let L′i be the union of all multisets Ŝi,j

(L′i =
m⋃

j=1

Ŝi,j) and L′ =
∆⋃

i=0

L′i and let L′′i =
m⋃

j=2

Ŝi,j , L′′ =
∆⋃

i=0

L′′i .

We �nd solutions for the two sets L1 =
∆⋃

i=0

Si,1 = L′−L′′ and L′′ separately.
The items of L1 are packed each in a separate bin. The input L′′ is treated as
follows. This input contains at most T = (m− 1)(∆ + 1) < 1

δ4 di�erent type of
items (where two items are of the same type if they are of the same size and
have the same rounded rejection cost).

We enumerate all possible packings of the L′′ items into i bins, where 0 ≤
i ≤ N . The input L′′ contains at most T distinct sizes of elements. We are
interested in computing all solutions of a bin packing instance with a constant

number of distinct large types. Let (b1, ρ1), . . . , (bT , ρT) be the set of types, where
δ ≤ bj ≤ 1 is the size of items of type (bj , ρj) and δ ≤ ρj ≤ 1 is its (rounded)
rejection cost. We represent a multiset of items by a vector J = (u1, . . . , uT),
where uj is the number of items of type (bj , ρj). Let N̂ = (n1, . . . , nT) denote
an input. A pattern is a vector of non-negative integers such that the multiset of
items represented by it can �t in a single bin, i.e. q is a pattern if

T∑
i=j

qjbj ≤ 1.

Let Q be the set of all patterns. A packing can be described by specifying for
every q ∈ Q, the number of bins yq that are packed using pattern q.

As noted above, we remove empty bins from the packing, therefore an empty
pattern (for which qi = 0 for 1 ≤ i ≤ T), may be considered to be a legal pattern,
but is useless. The di�erence between nj and the number of items of type (bj , ρj)
that are packed in the packing are rejected items.

We now argue that |Q| ≤ (T + 1)
1
δ . A bin can contain at most 1

δ items. To
show the bound, we can represent each bin by a list of length 1

δ . In this list we
�rst provide an complete enumeration of all items of this bin, if any slots remain
empty, we �ll them with �null�. There are T +1 options for each item in the list,
since an item can be absent as well as of any size among the T possible sizes.
This gives an upper bound of (T + 1)

1
δ on the number of patterns |Q|.

A vector y ∈ N0
Q speci�es a valid packing of an input N̂ into ` bins if and

only if the following constraints hold.
∑

q∈Q

yq = `, and for all 1 ≤ j ≤ T,
∑

q∈Q

qjyq ≤ nj (1)

Since for each 1 ≤ j ≤ T , there are nj−
∑

q∈Q

qjyq items of this type which remain

unpacked. The rejection cost of each of them is ρj and thus the cost of the entire

packing including rejection costs of rejected items is ` +
T∑

j=1

ρj(nj −
∑

q∈Q

qjyq).

Since ` ≤ N , we are only interested in vectors y where each component
is in the set {0, . . . , N}. Thus, the number of vectors y to be enumerated is
polynomially bounded.

For every packing, constructed for large items, we do the following. Consider
all non-empty bins packed with large items. If the packing was created for the
original items (in the case where N is small), the packing is not changed.

Otherwise, keep the bins of L1 items unchanged. Note that a vector y de�nes
a packing of the L′′ items completely, these are linearly grouped items, and not
the input items. After the process of packing is completed, including the packing
of small items that are packed in the next step, we can replace the items of Ŝi,j

in the packing by items of Si,j . Clearly, the items of Si,j are never larger than
the items of Ŝi,j , and so the resulting packing is feasible.

Let ` be the number of bins in the packing. Since the �nal packing cannot
contain more than n non-empty bins, we perform the following for all the fol-
lowing values of d, d = `, . . . , n. Thus, d will be the number of used bins in the
resulting packing. For each bin, which is already packed with some large items,

compute the empty space in it (that is 1 minus the sum of sizes of all items
assigned to it). Denote the empty spaces in bins z = 1, . . . , d by xz. We de�ne
xz = 1 for ` < z ≤ d. To assign the small items (all items of M), construct the
following integer program. Let n′ = n − N be the number of small items, and
{(c1, r1), . . . , (cn′ , rn′)} be pairs of sizes and rejection costs of these items. For
1 ≤ z ≤ d + 1 and 1 ≤ j ≤ n′, let Xj,z be an indicator variable. If z ≤ d, the
value of Xj,z is 1 if item j is assigned to bin z and 0 otherwise. If z = d + 1 the
value Xj,z is 1 if item j is rejected and 0 otherwise.

We apply the upper bounds on sum of sizes of items in the bins as follows. For

each 1 ≤ z ≤ d,
n′∑

j=1

cj ·Xj,z ≤ xz. We clearly have
d+1∑
z=1

Xj,z ≥ 1 for all 1 ≤ j ≤ n′,

since each item must be either assigned to at least one bin or rejected. If it is
assigned to more than one bin, one of its occurences can be removed without
violating the other constraints. If it is both assigned and rejected, it is again
removed from any bin it is assigned to.

The linear goal function is to minimize the expression
n′∑

j=1

rj ·Xj,d+1. This is

the sum of rejected items, and since the number of used bins is d, the cost of an
algorithm is d plus the sum of rejection costs.

We relax the integrality constraint, and replace it with Xj,z ≥ 0. We are left
with a linear program which clearly has a solution if the original integer program
does. Solving the linear program we can �nd a basic solution. This basic solution
has at most d+n′ non-zero variables (as the number of constraints). Clearly, each
item j has at least one non-zero variable Xj,z and thus we get that the number of
items that are not assigned completely to a bin or completely rejected (i.e., that
have more than one non-zero variable associated with them) is at most d. These
items are not assigned according to the solution found by the linear program.
Since these items are small, for each item, either the rejection cost is at most δ,
or the size it at most δ (or both). Therefore, out of the (at most) d items we still
need to assign, we reject all items with rejection cost of at most δ, and pack the
other items into bins, so that each bin packed in this way, (possibly except for
the last one) contains exactly 1

δ items. Out of the d small items that participate
in this process, let d1 be the number of rejected small items and d − d1 the
number of small items which are packed into bins.

Therefore, the additional cost for these items is at most δd1 + dδ(d− d1)e ≤
δd + 1. As an output, it is possible to choose the solution with smallest cost out
of all resulting solutions.

We next analyze the performance guarantee of the above algorithm. We make
use of the following de�nitions and lemma.

For two multisets A,B, whose elements are pairs of sizes and rejection costs
of items. We say that A is dominated by B and denote A ≤ B if there exists an
injection f : A → B with the following properties. Let a = (pa, ra) ∈ A, and let
f(a) = b = (pb, rb) ∈ B, then pb ≥ pa and rb ≥ ra.

Lemma 2. If A and B are multisets such that A ≤ B, then OPT (A) ≤ OPT (B).

Proof. Any packing for B can be converted into a packing for A using two steps.
First, all items b′ ∈ B for which there is no element a′ ∈ A such that f(a′) = b′

are removed from the instance. This can only decrease the cost because some
bins may become empty, and for some items it is no longer necessary to pay the
rejection cost. A second step replaces each other element b̂ ∈ B by the element
â ∈ A such that f(â) = b̂. By replacing we mean that if b̂ is packed in a bin, then
â is inserted into its location, and if b̂ is rejected then â is rejected. Since in this
situation pâ ≤ pb̂, the resulting packing is feasible. Since râ ≤ rb̂, the rejection
cost cannot increase.

We would like to analyze the minimum cost of any solution we get. To upper
bound the cost of this minimal solution, we actually upper bound the cost of
one speci�c solution, de�ned later. We prove the following theorem.

We prove the following theorem. It can be seen that the running time is
polynomial in the size of the input. The dependence on ε is exponential and
relatively high.

Theorem 1. Algorithm FL is an APTAS.

Proof. The algorithm returns a feasible solution (as all items are either placed
in bins or rejected) in polynomial time. It remains to show the asymptotic per-
formance guarantee of the algorithm. Let J = L′′ ∪M . Compare this set with
the set I ′ of the original items with rounded rejection costs. We can show J ≤ I ′

as follows. Each small item of j is mapped to its occurence in I ′. Each item of
L′′ belongs to some set Ŝi,j for j ≥ 2. We map it to one of the items of Si,j−1,
which are never smaller than ai,(j−1)ki+1. Since the cardinalities of all sets Si,j

for a given value of i are equal, such a mapping is possible. Using Lemmas 2 and
1, we can see that OPT (J) ≤ OPT (I ′) ≤ OPT (I). In the case where no linear
grouping was performed (N ≤ 1

δ4), we simply de�ne J = I ′.
Consider now an optimal solution for the input J and its restriction to large

items only. Let d′ be the number of bins used for this solution. Next, remove
empty bins from the solution. Since we enumerate all possible solutions for L′′

(or for L if no linear grouping is done), the resulting solution is one of these
constructed by the algorithm, and thus the best solution which is given as output
is no worse than the best solution computed for the given assignment of large
items which is based on OPT (J). Among such solutions, consider the one for
which d′ bins are used in total (i.e., the solution where the number of bins to be
used by the linear program is d′).

Since the value of a fractional solution for packing the small items in no
larger than the value of an integral solution, namely, no larger than OPT (J),
we can get an upper bound on the cost of the output as follows.

As written above, replacing the fractional solution by an integral one results
in an additional cost of at most δd+1. In OPT (J), there are d′ used bins and thus
OPT (J) ≥ d′. Thus the additional cost is at most δOPT(J)+1 ≤ δOPT(I)+1.

If linear grouping is done, then the cost of packing L1 is at most
∆∑

i=0

ki =

∆∑
i=1

dδ2Nie ≤ Nδ2 +(∆+1) ≤ Nδ2 + 1
δ2 . Since N ≥ 1

δ4 in this case, and there are

N items whose size and rejection cost are at least δ, we have OPT (I) ≥ δN ≥ 1
δ3 .

We get that the additional cost here is at most 2δOPT(I).
We can now complete the analysis for both cases (large or small N). From

Lemma 1 we know that the cost of changing the rejection cost of rejected items
to the real rejection costs may increase the cost of a solution by a factor of
at most 1 + δ. Thus the total cost of our solution is at most (using δ ≤ 1)
(1 + δ)((1 + 3δ)OPT (I) + 1) ≤ OPT (I)(1 + 7δ) + 1 + δ ≤ OPT (I)(1 + 8δ) + 1,
since OPT (I) ≥ 1. Taking δ ≤ ε

8 gives us the desired approximation. We get a
solution of cost at most (1+ε)OPT+1, using an algorithm whose running time
is polynomial in n.

As mentioned earlier, the bin packing problem with rejection, if analyzed by
the absolute approximation ratio, cannot have an approximation algorithm with
approximation ratio smaller than 3

2 (unless P = NP). In the sequel, we design
an algorithm with this (probably best possible) absolute approximation ratio.

Consider �rst the two cases OPT < 1 and OPT ≥ 2.25. We can include the
outputs of these algorithms in the set of solutions out of which we choose one
with smallest cost.

In the �rst case we showed that we can get an optimal algorithm, if one of
the possible solutions we check is the one which rejects all items. For the second
case, if we apply the APTAS with ε = 1

20 we get a solution of cost at most
21
20OPT + 1 ≤ OPT(21

20 + 4
9) < 3

2OPT.
Therefore, we need to design algorithms which perform better in the case

1 ≤ OPT < 2.25. In this case, OPT uses at most two bins. The solution where
OPT uses zero bins in already obtained by the simple solution which rejects all
items. We are thus left with the case of one or two bins. The sum of rejection
costs is therefore less than 1.25.

Consider �rst the case where OPT has a single bin. Consider the set Y of
all items whose rejection costs are larger than 1

2 . Clearly, in a solution we are
interested in, at most two jobs of Y can be rejected. Therefore, we can enumerate
all possible subsets of at most two jobs from Y in polynomial time (O(n2)). For
each such subset, we create an optimal fractional solution as done above. Given
such a subset X such that |X| ≤ 2, the complement set Y −X is clearly packed
completely into the single bin. We check whether so far the solution is feasible
(i.e., the items in Y − X indeed �t into one bin), if so, and given this partial
solution, we use a linear program as described above to assign all other jobs
(either into the single bin, or to be rejected). We get a solution where at most
one item is split between rejection and packing into the bin. We reject this item
getting an additional cost of at most 1

2 .
If OPT < 2.25 then there exists a choice of X for which the cost of the

fractional packing is in the interval [1, 2.25). Thus the cost of the solution we get
is at most OPT + 1

2 ≤ 3
2OPT.

Next, consider the case where OPT has two bins. In an optimal solution
there are no rejected items whose rejection cost is larger than 1

4 . Thus, all these
items should be assigned to bins. This gives a linear program similar to the
above, however items which may not be rejected, do not have a variable Xj,d+1

(i.e., de�ne Xj,d+1 = 0 and omit this variable), where is our case, d = 3. We use
the linear program, and get a solution where at most two items are split in some
way. We reject these two items getting an additional cost of at most 1

2 .
If OPT < 2.25 then the cost of the fractional packing is in the interval

[1, 2.25). Thus the cost of the solution we get is again at mostOPT+ 1
2 ≤ 3

2OPT.
We proved the following theorem.

Theorem 2. There exists a polynomial o�ine approximation algorithm, whose
absolute approximation ratio is 3

2 .

3 Online bin packing with rejection

3.1 A method for analyzing online bin packing algorithms with
rejection

In this section we develop a scheme which is useful for analyzing bin packing
algorithms with rejection. It is possible to apply the method both to o�ine and
online algorithms, however, in this paper we only use it for online algorithms.
The method is based on weighting, and is similar to the method used already
by Ullman [20] (see also [16, 18]). We describe the basic method brie�y as our
method generalizes it.

The essence of this method is to assign weights to items. The weights must
be assigned so that the cost of the algorithm, i.e. the number of used bins is
roughly the sum of weights. A small deviation is allowed when dealing with the
asymptotic competitive ratio, thus an additive constant does not degrade the
performance of an algorithm. As the next step, the problem of upper bounding
the asymptotic competitive ratio is reduced into that of �nding the maximum
sum of weights of items which can �t into a single bin. In some cases, a constant
number k of distinct weighting functions are de�ned to handle several major
behaviors of the algorithm (resulting from speci�c inputs). For each outcome of
the algorithm, at least one of the k weighting functions needs to have the above
property regarding the cost of the algorithm. In this case, an upper bound on
the competitive ratio is the maximum between the k maximum sums of weights
in a single bin for the k weight functions. The method in [18] is more complex
and generalizes the above method.

Surprisingly, the method can be generalized to deal with weights which are
not related only to the cost of packing items (i.e., numbers of bins) but to
rejection costs as well.

Let A be an online algorithm and let C be a desired competitive ratio. Let
w1, . . . , wk be a set of functions wi : (0, 1] → R+

0 (where R+
0 denotes the set of

non-negative real numbers). For an item j, we denote its weight with respect to
weight function wi by wi

j .

Theorem 3. A value C is an upper bound on the asymptotic competitive ratio
of algorithm A if the following conditions hold.
1. For every item j, and for every weight function wi, we have that wi

j ≤ Crj,
that is, for every weight function, the weight assigned to each item is no larger
than C times its rejection cost.
2. There exists a constant µ, such that for every input, there exists a value
1 ≤ i ≤ k such that A ≤

n∑
j=1

wi
j + µ.

3. For every set of items J such that
∑
j∈J

pj ≤ 1, and every 1 ≤ i ≤ k, we have
∑
j∈J

wi
j ≤ C.

Proof. Given an input I of n items, let i and µ be such that A ≤
n∑

j=1

wi
j + µ.

For any algorithm B (including an optimal o�ine algorithm OPT) Let Brej

be the set of items rejected by B and let Bacc be the set of items accepted by
B. Furthermore, let Bnacc be the number of bins opened by B. We denote by
Bacc(i), the set of items assigned by B to its ith bin, for 1 ≤ i ≤ Bnacc.

A ≤
n∑

j=1

wi
j + µ ≤

∑

j∈OPTrej

wk
j +

∑

j∈OPTacc

wk
j + µ ≤

∑

j∈OPTrej

C · rj

+
∑

j∈OPTacc

wk
j + µ = C ·

∑

j∈OPTrej

rj +
Bnacc∑

i=1

∑

j∈Bacc(i)

wk
j + µ ≤ C ·

∑

j∈OPTrej

rj

+
Bnacc∑

i=1

C + µ = C ·
∑

j∈OPTrej

rj + CBnacc + µ .

Consider now the solution of OPT. Let We have OPT =
∑

j∈OPTrej

rj +

Bnacc. Therefore, C is an upper bound on the asymptotic competitive ratio of
the algorithm.

3.2 Algorithm Rejective Harmonic

We now de�ne our adaptation of the Harmonick algorithm of Lee and Lee [16].
The algorithm is calledRejective Harmonick (RejHk). The fundamental idea
of �harmonic-based� algorithms is to �rst classify items by size, and then pack an
item according to its class (as opposed to letting the exact size in�uence packing
decisions). We use a similar classi�cation, but after classi�cation is applied, we
further use a decision rule (based on a threshold) to identify whether the item
should be packed or rejected.

For the classi�cation of items, we partition the interval (0, 1] into sub-intervals.
We use k − 1 sub-intervals of the form (1

i+1 , 1
i] for i = 1, . . . , k − 1 (intervals

1, . . . , k − 1) and one �nal sub-interval (0, 1
k] (interval k). Each packed bin will

contain only items from one sub-interval. Items in sub-interval i that are not
rejected, are packed i to a bin for i = 1, . . . , k − 1 (except for possibly the very
last bin dedicated to this interval). The items in interval k that are not rejected
are packed using the greedy algorithm Next Fit. This algorithm keeps a single
open bin and packs items of interval k that are not rejected to this bin until some
item does not �t. Then a new bin is opened for interval k, and the previous bin
is never used again. For 1 ≤ i ≤ k − 1, a bin which received the full amount of
items (according to its type) is closed, therefore a total of at most k− 1 bins are
open or active simultaneously (one per interval, except for (1

2 , 1] which does not
need an active bin).

We next de�ne the thresholds for acceptance or rejection of a new item.
Given an item a ∈ I, let 1

sa
be the right endpoint of the sub-interval 1 ≤ sa ≤ k

to which pa belongs. If sa < k, item a is rejected if ra ≥ 1
sa
, and otherwise a

is accepted and packed according to the algorithm above. If sa = k, item a is
rejected if ra ≥ k

k−1pa, and otherwise a is accepted and packed according to the
algorithm above.

As a �rst step of analyzing the algorithm, we assign weights to items. We
will use the method introduced in the previous section for the analysis. The
assignment is similar to the proof of [16], however, unlike the proof in [16], our
weights are a function of both the sizes and rejection costs. We use a single
weight function w, and the weight of item a ∈ I is denoted wa.

In order to use the method, we need to assign the weights so that the three
conditions in Theorem 3 hold. We do the assignment so that the cost of the
algorithm satis�es RejHk ≤

∑
a∈I

wa + k − 1.
An item a which is rejected by the algorithm gets weight ra. An item a which

is accepted gets weight 1
sa
, if sa < k and k

k−1pa, if sa = k. Thus each item of
sub-intervals 1, . . . , k − 1 gets weight min{ra, 1

sa
} and each item of sub-interval

k gets weight min{ra, k
k−1pa}.

For the analysis, we use the following well known sequence πi, i ≥ 1, which
often occurs in bin packing. Let π1 = 2, πi+1 = πi(πi − 1) + 1 and let Π∞ =
∞∑

i=1

1
πi−1 ≈ 1.69103. This sequence is presented in [16]. It is not di�cult to

show that 1 −
t∑

i=1

1
πi

= 1
πi+1−1 . It is shown in [16] that the sequence of asymp-

totic competitive ratios of the algorithms Harmonick tends to Π∞ as k grows,
and that no bounded space algorithm can have an asymptotic competitive ratio
smaller than Π∞. We show that the generalization RejHk has the same prop-
erties. Clearly, the lower bound for the problem with rejection follows from the
lower bound on the special case without rejection.
Theorem 4. The asymptotic competitive ratio of RejHk tends to Π∞ as k
grows. No algorithm can have a smaller asymptotic competitive ratio.
Proof. As mentioned above, the lower bound follows directly from the lower
bound in [16] as standard online bin packing is a special case of online bin packing

with rejection (where all rejection costs are in�nite). Therefore, we focus on the
proof of the upper bound.

For every k, we need to show that all conditions of Theorem 3 hold for the
value Π∞ + εk, where εk → 0 as k grows. The �rst condition of the theorem
trivially holds since wj ≤ rj for every item.

We analyze an algorithm A = RejHk. Let Acacc(i) be the set of accepted
items of sub-interval i for 1 ≤ i ≤ k. Each bin for interval i (1 ≤ i ≤ k − 1) can
contain exactly i items, and since we have a single open bin for this interval at
any time, each such bin except for possibly the last one, contains exactly this
amount. Each bin for interval k is occupied by items of total size of at least
k−1

k (except for possibly the last one), since a new bin is opened when an item
(which has size at most 1

k) does not �t into it. We use the same notations as in
the proof of Theorem 3 and get,

A ≤
∑

a∈Arej

ra +
k−1∑

i=1

⌈ |Acacc(i)|
i

⌉
+

∑

a∈Acacc(k)

pa
k

k − 1

≤
∑

a∈Arej

ra + |Acacc(1)|+
k−1∑

i=2

(|Acacc(i)|
i

+ 1
)

+
∑

a∈Acacc(k)

pa
k

k − 1
+ 1

≤
∑

a∈Arej

wa +
k∑

i=1

(
∑

a∈Acacc(i)

wa) + (k − 1) =
∑

a∈I

wa + k − 1 .

Next, we need to upper bound the sum of weights of a set of items which can
�t into a single bin. Since the weight of an item a never exceeds 1

sa
, for an item

of size pa = x, x ∈ (1
sa+1 , 1

sa
] (sa < k) and does not exceed k

k−1x, if x ≤ 1
k , we

can use the result of [16], which states an upper bound which tends to Π∞ on
the sum of weights in this case. A proof of this property also appears in [6]. For
completeness, we include a proof.

Let t be a maximal integer such that πt ≤ k. We claim that the total weight
packed in a single bin is upper bounded by

t∑
i=1

1
πi−1 + 1

πt+1−1 · k
k−1 =

t+1∑
i=1

1
πi−1 +

1
(πt+1−1)·(k−1) . Since t is maximal, we have πt+1 > k and thus πt+1 − 1 ≥ k.
Therefore the upper bound is at most Π∞+ 1

(k−1)2 . This will imply that the limit
of asymptotic competitive ratios of RejHk tends to Π∞ or to a smaller value. We
can exclude the possibility of a smaller value due to the lower bound of Π∞ on
the limit of asymptotic competitive ratios of any bounded space algorithm, and
thus of RejHk. Therefore proving the upper bound above is a su�cient condition.

Consider a sequence χ and assume by contradiction that the total weight of
this sequence is larger than

t∑
i=1

1
πi−1 + 1

πt+1−1 · k
k−1 .

Claim. For i = 1 . . . t, χ must contain an item of size in the interval (1
πi

, 1
πi−1].

Proof. We prove the claim by induction, showing at every step that an additional
item ai such that rai ∈ (1

πi
, 1

πi−1] belongs to χ.

Assume that we already proved that χ contains items of sizes from intervals
(1

πv
, 1

πv−1] for v = 1, . . . , i − 1. The weights of these items are at most 1
πv−1 ,

and thus the sum of weights of the other items in the bin is strictly larger than
t∑

v=i

1
πv−1 + 1

πt+1−1 · k
k−1 . The sum of sizes of items which are already proved to

exist is strictly larger than
i−1∑
v=1

1
πv

= 1 − 1
πi−1 . Thus, the sum of other items

is strictly smaller than 1
πi−1 . If an item of size in (1

πi
, 1

πi−1] exists as well, we
are done with the inductive step. Otherwise, all other items are no larger than
1
πi
. The ratio of weight to size of such items never exceeds the factor πi

πi−1 .
Thus, the weight of all additional items is strictly smaller than πi+1

πi
· 1

πi−1 =
1

πi−1 + 1
πi(πi−1) = 1

πi−1 + 1
πi+1−1 . We get that the total sum of all items is no

larger than
i+1∑
v=1

1
πv−1 . For every value of i, this is smaller than the sum of weights

we assumed. Contradiction.

Given the set of t items which must occur, their sum of weights is
t∑

i=1

1
πi−1 .

The sum of all other items is strictly less than 1 −
t∑

i=1

1
πi

= 1
πt+1−1 . All these

items are smaller than 1
k , thus their total weight is smaller than k

k−1 · 1
πt+1−1 .

We get that the total is smaller than assumed which is a contradiction.
We proved all properties and therefore by Theorem 3, we establish the com-

petitive ratio.
Consider an optimal o�ine algorithm OPT. For this algorithm, denote by

ROPT the set of rejected items and by AOPT the set of accepted items. Let
BOPT denote the number of used bins.

Then OPT = BOPT +
∑

a∈ROPT
ra ≥ BOPT +

∑
a∈ROPT

wa. Therefore, in order

to prove an asymptotic competitive ratio C, it is enough to prove
∑

a∈AOPT
wa ≤

C · BOPT. To prove this, it is enough to consider every bin of OPT separately,
and to show that the sum of weights of items in this bin is at most C. Finally, to
show this, we upper bound the sum of weights of items that can �t in a single
bin.

To summarize the technique used here, we assign weights to items, so that
the cost of an algorithm is roughly the sum of weights. Then we reduce the
problem into that of �nding the maximum sum of weights of items in a single
bin. This method is often used in bin packing problems, and was already used
in [20]. Surprisingly, the method here is applied even though the weights are
not related only to packing items but to rejection costs as well.

3.3 Algorithm Rejective Modified Harmonic
In this section we show how to design improved algorithms which are unbounded
space. As an example, we adapt one of the best algorithms known for online bin

packing to allow rejection. This algorithmModified Harmonic was introduced
by Ramanan et al. [17]. We give a short description of this algorithm.

As Harmonic, Modified Harmonic also classi�es items by size, and packs
items according to classes. A disadvantage of Harmonic is in the packing of
items of the sub-interval I1 = (1

2 , 1]. These items are packed one per bin, possibly
wasting a lot of space in each single bin. To avoid this large waste of space,
Modified Harmonic and other later algorithms (see [18]) use two extra interval
endpoints, of the form 1

2 < ∆ < 1 and 1 − ∆. Then, some small items can be
combined in one bin together with an item of size in (1

2 ,∆]. Items larger than
∆ (i.e., in the interval I1

1) are still packed one per bin as in Harmonic. These
algorithms furthermore use parameters αi (i = 2, . . . , n− 1) which represent the
fraction of items of intervals Ii = (1

i+1 , 1
i] which are supposed to be combined

with an item of size in I2
1 = (1

2 ,∆]. For i = 2 α2 is the fraction of items in
the interval I2

2 = (1
3 , 1 −∆]. This fraction of items, when they arrive, is either

immediately combined with such a large item (if this large item was not combined
with items of di�erent intervals yet), or else space is reserved for the larger item.
Once such a large item arrives, it is inserted into a space reserved for it. The
remaining bins with items of interval Ii (or I2

2 , for i = 2) still contain i items
per bin. Moreover, items of the interval I1

2 = (1 −∆, 1
2] are not combined with

larger items and are packed in pairs. The items of the last interval In = (0, 1
n]

are not combined with larger items and are packed using Next Fit.
Modified Harmonic (MH) is de�ned using four intervals of items in (1

3 , 1]
as above, 35 intervals Ii for i = 3, ..., 37 and one last interval I38 = (0, 1

38]. It
uses ∆ = 419

684 .

α2 =
1
9
; α3 =

1
12

; α4 = α5 = 0; αi =
37− i

37(i + 1)
, for 6 ≤ i ≤ 36 and α37 = 0.

The results of [17] imply that the asymptotic performance ratio of Modified
Harmonic is at most 538

333 < 1.61562. (In the original de�nition, ∆ was used to
denote 1−∆.) Note that for every interval Ii (or I2

2 , for i = 2) for which smaller
items that are possible to be combined with a larger item in a bin, we compute
the maximum amount mi of such items that can �t into the bin, leaving an empty
space of size at least ∆. In this calculation, a maximum size of item is taken into
account. Thus we get m2 = m3 = 1, m6 = m7 = 2, m8 = m9 = m10 = 3,
m11 = m12 = 4, m13 = m14 = m15 = 5, m16 = m17 = m18 = 6, m19 = m20 = 7,
m21 = m22 = m23 = 8, m24 = m25 = 9, m26 = m27 = m28 = 10, m29 = m30 =
11, m31 = m32 = m33 = 12, m34 = m35 = m36 = 13.

In the analysis we ignore incomplete bins which did not receive the full
amount of items they are supposed to get. These are bins with items of size
in (0, 1

2], that were not supposed to be combined with larger items, and bins
with items of these sizes that are supposed to be combined with a larger item,
but did not get mi items. The number of such incomplete bins is bounded by a
constant since we do not open a new bin until the previous one receives the full
amount of items. However, a bin which received an item of size in I2

1 but did not
receive smaller items, or a bin which has space reserved for am item of size in I2

1 ,

that never arrived, cannot be ignored since their amount can be arbitrary. We
note however, that after removing incomplete bins, there cannot be both types
of bins mentioned above, and we either need to deal with �waiting� bins with an
items of size in I2

1 , or �waiting� bins with space reserved for such an item.
We de�ne a version of Modified Harmonic which allows rejection, and call

it Rejective Modified Harmonic (MHR). This algorithm has a decision rule
for every interval. Upon arrival of an item, it is either rejected, or assigned by
MH, where items that were rejected are simply ignored by this sub-routine that
runs MH.

We therefore only need to de�ne a rejection rule for every interval. Let x be
an item, we consider all possible cases. If x ∈ I1

1 = (∆, 1], x is rejected if rj ≤ 1
and otherwise accepted. If x ∈ I2

1 = (1
2 ,∆], x is rejected if rj ≤ 2

3 and otherwise
accepted. If x ∈ I1

2 = (1−∆, 1
2], x is rejected if rj ≤ 1

2 and otherwise accepted. If
x ∈ I2

1 = (1
3 , ∆], x is rejected if rj ≤ 4

9 and otherwise accepted. If x ∈ I3 = (1
4 , 1

3],
x is rejected if rj ≤ 11

36 and otherwise accepted. If x ∈ Ii = (1
i+1 , 1

i], for the
following values of i; i = 4, 5, 37, x is rejected if rj ≤ 1

i and otherwise accepted.
If x ∈ Ii = (1

i+1 , 1
i] for 6 ≤ i ≤ 36, x is rejected if rj ≤ 37(i+1)

38 and otherwise
accepted. If x ∈ I38 = (0, 1

38], x is rejected if rj ≤ 38·pj

37 and otherwise accepted.
We assign two sets of weights w1 and w2 to items as follows. The proof is

similar to the proof in [17], with di�erences resulting from rejections. A rejected
item has w1

j = w2
j = rj . An accepted item j of an interval Ii for i = 4, 5, 37 is

assigned weight w1
j = w2

j = 1
i . An item of interval I1

1 gets weight w1
j = w2

j = 1.
An item of interval I2

1 gets weight w1
j = 1, w2

j = 2
3 . An item of interval I1

2 gets
weight w1

j = w2
j = 1

2 . An item of interval I2
2 gets weight w1

j = 4
9 , w2

j = 5
9 . An

item of interval I3 gets weight w1
j = 11

36 , w2
j = 7

18 . An item of interval Ii for
6 ≤ i ≤ 36 gets weight w1

j = 38
37(i+1) , w2

j = w1
j + 37−i

37mi(i+1) . An item of interval
I38 gets weight w2

j = w1
j = 38·pj

37 .
These weights are de�ned as in [17] except for rejected items and items in the

interval I2
1 for which we de�ned w2

j = 2
3 . Note that weights and rejection rules

are de�ned in a way that for a rejected item, its weight is never larger than the
weight min{w1

j , w2
j} that an item j would have received if had a larger rejection

cost and were accepted.
In order to analyze the competitive ratio and show it is at most C1 = 538

333 <
1.61562 (as for the original algorithm), we show that all conditions of Theorem
3 hold. The second condition holds due to the following. The proof of [17] shows
that the condition holds in the case where no items are rejected, and for an item
j in the interval I2

1 , the second weight function is de�ned by w2
j = 0. Since the

weight of rejected items is exactly their rejection cost, and the weights we de�ne
are never smaller than the weights in [17], the condition follows.

To prove the �rst condition, note that for each item j, either its weight is
equal to its rejection cost, or its rejection cost is at least its weight w1

j . Thus
we need to show for every item that w2

j ≤ C1w
1
j . We only need to consider cases

in which the two weights are not the same. For an item j in the interval I2
1 we

have w2
j

w1
j

= 1.5. For an item j in the interval I2
2 we have w2

j

w1
j

= 1.25. For an

item j in the interval I3 we have w2
j

w1
j

= 14
11 . For an item j in the interval Ii for

6 ≤ i ≤ 36 we have w2
j

w1
j

= 1+ 37−i
38mi

. This value is maximized for i = 6, since mi is

monotonically increasing. For i = 6 we have mi = 2 and thus w2
j

w1
j
≤ 1 + 31

76 < 3
2 .

To prove the last condition of Theorem 3, we note again that weights of
rejected items are never larger than their weights according to each weight func-
tion, and thus we need to consider the weight functions as they are de�ned. Items
for which the weights are de�ned as in [17], the proof follows from the result in
that paper. Thus we need to consider only w2 and only sets of items that can
�t in a bin and which contain an item of size in I2

1 . Denote this large item by
x. Such a bin can contain in addition only items smaller than 1

2 . In order to
give an upper bound on the total weight of items in the bin, we �nd an upper
bound on the ratio w2

j

pj
for items no larger than 1

2 . We can see that this ratio is
no larger than 5

3 for items in (1
6 , 1

2], no larger than 38
37 for items in (0, 1

37], and
no larger than 38

37 + 37−i
37mi

. Again, this ratio is maximized for i = 6 and is smaller
than 3

2 . Thus an upper bound on the total weight in the bin with respect to w2

is 2
3 + 1

2 · 5
3 = 3

2 .
Since all conditions hold for C1 = 538

333 we establish the following theorem.

Theorem 5. The competitive ratio of Rejective Modified Harmonic is at
most C1 = 538

333 .

References
1. N. Bansal, A. Blum, S. Chawla, and K. Dhamdhere. Scheduling for �ow-time with

admission control. In Proc. of the 11th Annual European Symposium on Algorithms
(ESA2003), pages 43�54, 2003.

2. Y. Bartal, S. Leonardi, A. Marchetti-Spaccamela, J. Sgall, and L. Stougie. Mul-
tiprocessor scheduling with rejection. SIAM Journal on Discrete Mathematics,
13(1):64�78, 2000.

3. A. Caprara, H. Kellerer, and U. Pferschy. Approximation schemes for ordered
vector packing problems. Naval Research Logistics, 92:58�69, 2003.

4. E. G. Co�man, M. R. Garey, and D. S. Johnson. Approximation algorithms for
bin packing: A survey. In D. Hochbaum, editor, Approximation algorithms. PWS
Publishing Company, 1997.

5. J. Csirik and G. J. Woeginger. On-line packing and covering problems. In A. Fiat
and G. J. Woeginger, editors, Online Algorithms: The State of the Art, pages
147�177, 1998.

6. J. Csirik and G. J. Woeginger. Resource augmentation for online bounded space
bin packing. Journal of Algorithms, 44(2):308�320, 2002.

7. W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved within 1+ε
in linear time. Combinatorica, 1:349�355, 1981.

8. G. Dósa and Y. He. Bin packing problems with rejection penalties and their dual
problems. Information and Computation, 204(5):795�815, 2006.

9. D. W. Engels, D. R. Karger, S. G. Kolliopoulos, S. Sengupta, R. N. Uma,
and J. Wein. Techniques for scheduling with rejection. Journal of Algorithms,
49(1):175�191, 2003.

10. M. R. Garey and D. S. Johnson. Computers and intractability. W. H. Freeman
and Company, New York, 1979.

11. D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for
scheduling problems: theoretical and practical results. Journal of the ACM,
34(1):144�162, 1987.

12. H. Hoogeveen, M. Skutella, and G. J. Woeginger. Preemptive scheduling with rejec-
tion. In Proc. of the 8th Annual European Symposium on Algorithms (ESA2000),
pages 268�277, 2000.

13. D. S. Johnson, A. Demers, J. D. Ullman, Michael R. Garey, and Ronald L. Graham.
Worst-case performance bounds for simple one-dimensional packing algorithms.
SIAM Journal on Computing, 3:256�278, 1974.

14. David S. Johnson. Fast algorithms for bin packing. Journal of Computer and
System Sciences, 8:272�314, 1974.

15. N. Karmarkar and R. M. Karp. An e�cient approximation scheme for the one-
dimensional bin-packing problem. In Proceedings of the 23rd Annual Symposium
on Foundations of Computer Science (FOCS'82, pages 312�320, 1982.

16. C. C. Lee and D. T. Lee. A simple online bin packing algorithm. Journal of the
ACM, 32(3):562�572, 1985.

17. P. Ramanan, D. J. Brown, C. C. Lee, and D. T. Lee. Online bin packing in linear
time. Journal of Algorithms, 10:305�326, 1989.

18. S. S. Seiden. On the online bin packing problem. Journal of the ACM, 49(5):640�
671, 2002.

19. D. Simchi-Levi. New worst-case results for the bin-packing problem. Naval Res.
Logist., 41(4):579�585, 1994.

20. J. D. Ullman. The performance of a memory allocation algorithm. Technical
Report 100, Princeton University, Princeton, NJ, 1971.

21. A. van Vliet. An improved lower bound for online bin packing algorithms. Infor-
mation Processing Letters, 43(5):277�284, 1992.

22. A. C. C. Yao. New algorithms for bin packing. Journal of the ACM, 27:207�227,
1980.

23. M. Yue. A simple proof of the inequality FFD(L) ≤ (11/9)OPT (L) + 1, ∀ L, for
the FFD bin-packing algorithm. Acta. Math. Appl. Sinica, 7:321�331, 1991.

24. G. Zhang. Private communication.
25. G. Zhang, X. Cai, and C.K. Wong. Linear time approximation algorithms for bin

packing. Operations Research Letters, 26:217�222, 2000.

