
Resource augmented semi-online bounded space bin packing

Leah Epstein∗

Department of Mathematics, University of Haifa, 31905 Haifa, Israel.

Elena Kleiman†

Department of Mathematics, University of Haifa, 31905 Haifa, Israel.

Abstract

We study on-line bounded space bin-packing in the resource augmentation model of competitive analysis.
In this model, the on-line bounded space packing algorithm has to pack a listL of items with sizes in(0, 1],
into a minimum number of bins of sizeb, b ≥ 1. A bounded space algorithm has the property that it only has
a constant number of active bins available to accept items at any point during processing. The performance
of the algorithm is measured by comparing the produced packing with an optimal offline packing of the list
L into bins of size 1. The competitive ratio then becomes a function of the on-line bin sizeb. Csirik and
Woeginger studied this problem in [3] and proved that no on-line bounded space algorithm can perform better
than a certain boundρ(b) in the worst case. We relax the on-line condition by allowing a complete repacking
within the active bins, and show that the same lower bound holds for this problem as well, and repacking may
only allow to obtain the exact best possible competitive ratio ofρ(b) having constant number of active bins,
instead of achieving this bound in the limit. We design a polynomial time on-line algorithm that uses three
active bins and achieves theexactbest possible competitive ratioρ(b) for the given problem.

1 Introduction

Problem definition. Bin-Packing(BP) is one of the basic problems in theoretical computer science and combi-
natorial optimization. It was first introduced and investigated by Ullman in [25]. In the classical one-dimensional
problem we are given a finite listL = {a1,a2,. . . ,an} of n elements, calleditems, each elementai has a fixed
size in (0,1]. In a slight abuse of notation, we useai to indicate both thei-th element and its size. We have a
potentially infinite supply of unit-capacity containers, calledbins. The problem consists of assigning (packing)
each item to an unique bin such that the sum of sizes of elements in a bin does not exceed the bin capacity and
such that the total number of bins used is as small as possible. Research of bin-packing and its many variants was
motivated by the fact this abstract problem models a large variety of real world problems, such as cutting stock
problems (cutting pieces of variable sizes from standard paper sheets, from standard textile cloth measures, etc.),
machine scheduling problems (minimizing the number of machines necessary for completing all tasks by a given
deadline) and storage allocation problems (allocating spaces on a disc or in a computer memory). The problem
is known to be NP-hard [12], thus research has concentrated on the study and development ofapproximation
algorithms, that is, algorithms which do not guarantee to find an optimal solution for every instance, but attempt
to findnear-optimalpackings in polynomial time. A particular class consists of the so-called on-line algorithms.

A bin-packing algorithm is calledon-line, if it is given the items fromL one at a time, and must assign each
item ai to a bin immediately upon arrival. The assignment must be based solely on its size and the packing
of the previous itemsa1,a2,. . . ,ai−1, without having any information on neither the sizes of the subsequent
items, nor their number. The decisions of the algorithm are irrevocable; An item assigned to a bin must not be
repacked during the execution of the algorithm at later times. Since on-line algorithms do not need to know the

∗Email: lea@math.haifa.ac.il.
†Email: elena.kleiman@gmail.com. This work was submitted as the M.Sc. thesis of the second author.

1



future, they also work in real-time environments where decisions must be made very fast, without delay, and
without complete information. We usually do not put any restrictions on the computational complexity of on-line
algorithms, although efficient algorithms are preferred.

As opposed to on-line algorithms,offlinealgorithms for bin-packing have complete knowledge about the list
of items and can thus apply more advanced strategies for packing.

As an intermediate class between these two classes, one can define semi-on-line algorithms. In contrast to
pure on-line algorithms, these algorithms slightly relax the on-line restriction by allowing to execute certain types
of additional operations in each step, as repacking some finite number of already packed items [9, 10, 16, 17],
preprocessing the items by ordering them with regard to sizes [7] or buffering some items before packing them
[14, 15]. Each bin becomes active (oropen), when it receives its first item, but once it is declared inactive (or
closed), the algorithm no longer considers it for packing and it can never become active again. A bin isempty
if no item is assigned to it. Some on-line algorithms keep all bins into which items have been placed open,
while others allow only a restricted finite number of bins available to accept items at any point during processing.
These latter algorithms are the so-calledbounded spacealgorithms. An on-line bin-packing algorithm is said to
usek-bounded spaceif, for each new itemai, the number of active bins in which it may be packed is at mostk
(k ≥ 1). The bounded space restriction is quite natural, especially so in on-line bin-packing. It models situations
in which bins are exported once they are packed. Thus, the bounded space restriction guarantees the constant
flow of the output bins, and that the packer does not accumulate an enormous amount of bins which are only
given as output at the end of processing.

These latter restrictions (on-line and bounded space) arise in many applications, as in packing trucks at a
loading dock that has positions for a limited number of trucks or in communicating via channels with bounded
buffer size in which information moves in fixed-size blocks that are filled with smaller packets with various sizes.

In this paper, we study algorithms that are on-line, bounded space, and allow full repacking within the current
k active bins. That means, that in addition to the standard actions of bounded space bin-packing, where we are
allowed to: (1) Open a new bin (if the number of active bins is less or equal tok − 1),
(2) Close some active bin (and never open it again),
(3) Pack a new item into some active bin (if the contents of the bin remains below one).

We are also allowed to: (4) Repack the set of active bins as the new item arrives, using the information on
the size of the newly arrived item, i.e. ifB1, ..., Bk denote the active bins (we identify the contents of a bin with
the bin), to form a new partitionB

′
1, ..., B

′
k of the items inside the active bins such that

⋃
Bi =

⋃
B
′
i holds, and

such that the items in each part of the new partition have overall size less than or equal to 1.
To allow action (4) is a natural assumption. As long as an item is in an active bin, the item is available for

the packer to change its position. In the loading dock example, trucks will be partially repacked and items will
be moved from one truck at the loading dock to another in order to increase the number of items packed.
Performance evaluation of on-line bin packing algorithms. Since it is impossible (in general) to produce the
best possible solution when computation occurs on-line, we consider approximation algorithms. Approximation
algorithms have been analyzed from different points of view. In this paper we restrict ourselves to worst-case
analysis. When we discuss the performance of on-line algorithms, we use the termcompetitiveinstead ofap-
proximationwhich is used for offline algorithms. The quality of on-line algorithms is usually evaluated using
competitive analysis. Competitive analysis tries to find the maximum ‘distance’ between the optimal packing
and the packing constructed by the considered algorithm. In the case of bin-packing, the standard metric for
the worst-case performance is the asymptotic worst-case competitive ratio, or simplyasymptotic competitive ra-
tio (ACR). In particular, we want to find an algorithm that incurs cost within a constant factor of the minimum
possible cost (which is denoted by OPT) no matter what the input list is. This constant factor is the ACR.

We define the asymptotic competitive ratio more formally. For a listL = {a1,a2,. . . ,an} of items with sizes
in (0, 1] and an on-line algorithmA: If A(L) denotes the number of unit-capacity bins used by algorithmA to
pack the input-listL, andOPT (L) denotes the number of bins used in an optimal packing, then the ACR of

2



A, denoted byR∞
A , is given by: R∞

A := lim supk→∞

{
supL

{
A(L)

k

OPT (L) = k

}}
. A more instructive

sufficient condition is the following definition, which states thatR∞
A is the smallest constant such that there

exists a constant0 ≤ K < ∞ for which A(L) ≤ R∞
A · OPT (L) + K for every listL; the asymptotic ratio, a

multiplicative constant, hides the additive constantK. This ratio is of most interest in those applications where
K is small relative toA(L). It is apparent that the smaller the valueR∞

A is, the better the heuristic algorithm
A performs in terms of the worst-case scenario. In other words, the smaller theR∞

A ’s value is, the closer the
heuristic solution is to the optimal one. Hence, we want to minimizeR∞

A as much as possible when we design a
heuristic algorithm. Experience shows that the ACR is the more reasonable measure of performance for a quality
of a bin-packing algorithm as it is robust against anomalies with a small number of bins in the optimum packing,
and it also allows the packing algorithm more freedom while packing the first few bins.
In this paper we will often drop the term “asymptotic” when we mention the asymptotic competitive ratio.
Weighting functions. In our paper we use theweighting functionstechnique, which is a major tool in the
analysis of algorithms for bin packing. This technique was introduced in [11, 19, 25] and subsequently applied
in many other papers (see, for example, [8, 18, 21, 27]). The idea of such weighting functions is simple. An
item is assigned a weight according to its size and its packing in some fixed solution. The weights are assigned
in a way that the cost of an algorithm is close to the total sum of weights. The weight of a bin is the weight of
all items in it. In order to complete the analysis, it is usually necessary to consider the total weight that can be
packed into a single bin of an optimal solution. But, as there is no systematic way to find weighting functions,
the main difficulty in using the approach is finding the appropriate weighting function.
Resource augmentation.This technique for analyzing on-line algorithms was introduced in 1995 by Kalyana-
sundaram and Pruhs in [20]. The resource augmentation model was introduced due to the following drawback
of standard competitive analysis. Competitive analysis compares the performance of an on-line algorithm, which
must pack each item upon arrival, to that of the omniscient and all-powerful optimal offline algorithm that gets the
entire input as a set. The main idea behind the resource augmentation technique is to give the on-line algorithm
additional power so it would have fairer chance in competing against the powerful offline adversary advantage,
by giving him better resources than the optimal offline algorithm to which it is compared. In bin-packing appli-
cations, the extra resource we give the online algorithm is additional bin space. In order to illustrate this idea for
packing applications, we use again the loading dock example: as we need to pack the trucks online, and know
that most probably the packing will not be optimal, we can consider taking a larger truck, hoping that the extra
space would cover up for the waste, and allow us to shift more items. The motivation is to preclude pathological
examples that may drive the worst-case competitive ratio; with resource augmentation we derive improved, more
realistic and meaningful competitive ratios. During the last few years the resource augmentation technique has
become a very popular tool, and it has been applied to many problems in scheduling (see [4],[22, 2]), in paging
(see [1], [5]), and in combinatorial optimization(see [20]). LetL = {a1,a2,. . . ,an} be a list of items in(0, 1].
The offline optimumOPT1(L) is the minimum number of unit-sized bins into which the items inL can fit. We
investigate the behavior of on-line bounded space bin-packing algorithms that pack the listL into bins of size
b ≥ 1. This larger bin sizeb is the augmented resource of the on-line algorithm; the offline algorithm has to work
with bins of size 1. For an on-line algorithmA and a bin sizeb, we denote byAb(L) the number of bins of size
b that algorithmA uses in packing the items inL. The asymptotic worst-case competitive ratio of algorithmA

for bin sizeb, denoted byR∞
A (b), is defined asR∞

A (b) := lim supk→∞

{
supL

{
Ab(L)

k

OPT1(L) = k

}}
. The

competitive ratio then becomes a function of the on-line bin sizeb.
Preliminaries. In this section we define the sequence{tbi}∞i=1, that was originally introduced by Csirik and
Woeginger in [3], and will be essential in the definition and in the analysis of our algorithm.

Given b ≥ 1, we associate with it an infinite sequenceT (b) = {tb1, tb2, . . .} of positive integers, defined as
follows:

tb1 = b1 + bc and rb
1 =

1
b
− 1

tb1
, (1)

3



tbi+1 =
⌊
1 +

1
rb
i

⌋
and rb

i+1 = rb
i −

1
tbi+1

, i = 1, 2, . . . . (2)

The intuition behindT (b) is to find a sequence of positive integers, such that the next integer at each point is
picked greedily to be minimal, and the sum of their reciprocals is less than1

b . In this interpretation, the value
rb
i represents the difference between1

b and the sum accumulated so far, after adding the reciprocal value of the
integertbi to the sum. This means thatrb

i > 0, and

rb
i =

1
b
−

i∑

j=1

1
tbj

. (3)

Note that the next inequality directly follows from the definitions in (1) and (2):

rb
i−1 ≤

1
tbi − 1

. (4)

We now mention several facts on the sequenceT (b) that will be used later. First, we observe that for everyb ≥ 1
the corresponding sequenceT (b) = {tb1, tb2, . . .} is growing rapidly.

Lemma 1. For everyb ≥ 1 :
(i) The values oftbi are strictly increasing as a function ofi.
(ii) The values oftbi satisfytbi > b.

Lemma 2. For everyb ≥ 1 the elements of the sequence{tb1, tb2, . . .} satisfy:

tbi+1 ≥ tbi(t
b
i − 1) + 1 for all i ≥ 1. (5)

Csirik and Woeginger [3] used this sequence to define the function

ρ(b) =
∞∑

i=1

1
tbi − 1

. (6)

ρ(b) is a strictly decreasing function ofb (see Figure 1 in [3]). Note thatρ(1) = h∞ ≈ 1.69103.

Lemma 3. The infinite sum in the righthand side of (6) converges for every value ofb ≥ 1.

Previous work. The bin-packing problem holds a special place, both in the history of approximation algorithms
and in the history of on-line problems and has been studied extensively since the early 1970’s. Various heuristic
algorithms with guaranteed bounds on their performance were proposed for the classical problem. The demands
for on-line and bounded space algorithms arise in a wide variety of real-world applications, consequently, the
problem was analyzed thoroughly in the 1980’s and the 1990’s. Among bounded space algorithms, those of
harmonic-typeplay an important role. First such algorithm was formulated by Lee and Lee in [21]. Their
sequences of algorithms Harmonic(k) are based on a special nonuniform partition of the interval(0, 1] into k
subintervals. To each of these subintervals there corresponds a single active bin and only items belonging to
this subinterval are packed into this bin. If some item does not fit into its assigned bin, this bin is closed and a
new bin is used. In [27] Woeginger presents a sequence of algorithms Simplified Harmonic(k), that work very
similarly to the Harmonic(k) algorithms, but use more complicated partition of the interval(0, 1], one based on a
Golomb sequences studied in [13]. (Note that it is the same sequence introduced in the above section, for the case
b = 1). The asymptotic worst-case ratios of these algorithms approachh∞ as the number of active bins tends
to infinity; but none of the known bounded space algorithms reaches this bound while using a finite number of
active bins. On the negative side, Lee and Lee proved in [21] that no on-line approximation algorithm can have
a competitive ratio less than the constanth∞ ≈ 1.69103 using bounded space. The best on-line algorithm so far

4



was developed by Seiden and has ACR 1.58889 [24]. This algorithm, called Harmonic++ belongs to the class of
Super Harmonic Algorithms, defined in [24]. The best on-line algorithms [21, 23] known prior to it, belong to
this class as well. The best known lower bound 1.5401 for the ACR of on-line algorithms has been given by van
Vliet [26], while the lower bound of any Super Harmonic type algorithm is 1.58333 [23]. From this lower bound
we can conclude that in order to get a solution which is very close to optimal, the algorithm cannot be online in
the usual sense, and we should consider a semi-online model which allows a small amount of modifications to the
solution produced by the algorithm (and thus partly lose its online quality). The first semi-online algorithm was
given by Galambos [7] for the bounded space version of the classical bin-packing problem where only a bounded
number of bins are open while packing. This algorithm uses two “buffer-bins” for temporary storing of items.
The idea was further developed by Galambos and Woeginger in [9], where they present an on-line algorithm
REP3 and demonstrate that the boundh∞ can be reached with three active bins, if the algorithm is allowed to
repack the items within the three active bins (i.e. to move items from one active bin to another).

Bin-packing with resource augmentation was first studied by Csirik and Woeginger in [3]. They gave on-line
bounded space bin-packing algorithms for everyb ≥ 1, whose worst case ratio in this model comes arbitrary close
to theρ(b) bound. Moreover, they proved that for everyb ≥ 1 no on-line bounded space algorithm can perform
better thanρ(b) in the worst case, thus showing that the optimal asymptotic competitive ratio for the on-line
bounded space algorithms with resource augmentationb is a strictly decreasing functionρ(b) of b. Unbounded
space resource augmented bin-packing was studied in [6].
Our results and organization of the paper. In this paper we study the on-line bounded space bin-packing prob-
lem with limited repacking allowed, in the resource augmentation model of competitive analysis. Unfortunately,
theρ(b) lower bound of Csirik and Woeginger carries over to this problem, too, as we prove in Section 4. We
extend the ideas in [9] for the resource augmented environment; We design, for everyb ≥ 1, an on-line algorithm
for resource augmented bounded space bin-packing problem called RESOURCE AUGMENTED REP3(b) (or
shortly RAR3(b)), which is allowed to repack a constant number of active bins (three active bins to be precise)
and has exact worst-case competitive ratio ofρ(b), and so show that in a resource augmented environment, al-
lowing the repacking of finite number of bins, allows us to reach the exact optimal worst-case ratio instead of
achieving it in the limit.

The main tool we apply is weighting functions technique, which we introduced above. The weighting func-
tion we use in a generalized version of the one used in [27]. In order to adapt it to fit our purposes, we use an
alternative definition to the resource augmented bin-packing problem; We compare an on-line algorithm which
uses bins of size1 to an optimal offline algorithm whose bins are of size1

b . We assume that all item sizes are
bounded by1

b (i.e. the sizes of the items are scaled into the interval(0, 1
b ]). This definition is equivalent to the

one mentioned above.
The paper is organized as follows. In Section 2 we present the weighting function we use and define our

algorithm RAR3(b), Section 3 is dedicated to a proof of its correctness. In Section 4 we analyze its worst-case
asymptotic behavior.

2 The algorithm RAR3(b)

Classification of the items. Recall that all the items have sizes in the interval(0, 1
b ]. We classify the items

according to the following partition of the interval(0, 1
b ]. The partition of(0, 1

b ] changes according to different
values ofb.

For b ∈ [1, 1.2) the partition of
(
0 , 1

b

]
is as follows: B1 =

(
1
tb1

, 1
b

]
, and for i ≥ 2, Bi =

(
1
tbi

, 1
tbi−1

]
,

Ci =
(

1
tbi+1

, 1
tbi

]
andDi =

(
1

tbi+1−1
, 1

tbi+1

]
. Note that in this case, by the definitions of the sequence in (2),tb1 = 2,

tb2 = 3 andtb3 ≥ 7. Thus, the results from [9] forb = 1 hold, with few modifications, for this case as well, and
we only need to consider the caseb ≥ 1.2.

For b ≥ 1.2 the partition of(0 , 1
b ] is as follows:B1 =

(
1
tb1

, 1
b

]
, for i ≥ 2, Bi =

(
1
tbi

, 1
tbi−1

]
and fori ≥ 1,

5



Ci =
(

1
tbi+1

, 1
tbi

]
andDi =

(
1

tbi+1−1
, 1

tbi+1

]
.

From definition of the sequencetbi and by inequality (5), we can see that the above partition of the interval
(0, 1

b ] is well defined for anyb ≥ 1. The Bi, Ci and Di-type intervals do not overlap, and cover the entire interval.
Definition of the weights. Let us define our weighting functionW (x) : (0, 1

b ] → R+.

W (x) =





x + 1
tb1(tb1−1)

for 1
tb1

< x ≤ 1
b and i = 1 (tb1 − 1 ≤ b < tb1)

x + 1
tbi (t

b
i−1)

for 1
tbi

< x ≤ 1
tbi−1

and i ≥ 2
tbi+1

tbi
· x for 1

tbi+1−1
< x ≤ 1

tbi
and i ≥ 1

This weighting function is similar to the weighting function in [27].
Itis not difficult to prove the following properties of our weighting function.

Observation 4. For anyb ≥ 1:

(i) W (x) is nondecreasing in(0, 1
b ].

(ii) For i ≥ 1 andx ≤ 1
tbi

, W (x)
x ≤ tbi+1

tbi
holds.

(iii) For i ≥ 1 andx > 1
tbi+1−1

, W (x)
x ≥ tbi+1

tbi
holds.

Lemma 5. For anyb ≥ 1: given an item of sizex ≤ 1
tb2−1

, let ` be an integer such thatx ∈ (
1

`+1 , 1
`

]
. Then, for

any item of sizey > 1
`+1 , W (y)

y ≥ `+2
`+1 holds.

Proof. Itemx can be a Bi-, Ci- or Di- item. We discuss these cases separately.
If x ∈ Bj , for somej ≥ 2, then ` = tbj − 1 ⇒ tbj = ` + 1. For anyy > 1

tbj−1
, by Observation 4(iii),

W (y)
y ≥ tbj−1+1

tbj−1
= 1 + 1

tbj−1
> 1 + 1

tbj
=

tbj+1

tbj
= `+2

`+1 , astbj−1 < tbj for any j ≥ 2. For anyy ∈ Bj , again by

Observation 4(iii),W (y)
y ≥ tbj+1

tbj
= `+2

`+1 .

If x ∈ Cj , for somej ≥ 2, then` = tbj . If y > 1
tbj−1

, by Observation 4(iii),W (y)
y ≥ tbj−1+1

tbj−1
= 1 + 1

tbj−1
>

1 + 1
tbj

> 1 + 1
tbj+1

=
tbj+2

tbj+1
= `+2

`+1 , astbj−1 < tbj for anyj ≥ 2.

If y ∈ Bj∪Cj , again by Observation 4(iii),W (y)
y ≥ tbj+1

tbj
= 1 + 1

tbj
> 1 + 1

tbj+1
=

tbj+2

tbj+1
= `+2

`+1 , astbj > 0 for any

j ≥ 2.
If x ∈ Dj , for somej ≥ 2, then` ≥ tbj + 1 ⇒ ` + 1 ≥ tbj + 2 and` + 1 ≤ tbj+1 − 1. From this, we get
`+2
`+1 = 1 + 1

`+1 ≤ 1 + 1
tbj+2

.

If y > 1
`+1 ≥ 1

tbj+1−1
, by Observation 4(iii) W (y)

y ≥ tbj+1

tbj
= 1 + 1

tbj
> 1 + 1

tbj+2
≥ `+2

`+1 , astbj > 0 for anyj ≥ 2.

The resource augmented repacking algorithm. In this section we define the RESOURCE AUGMENTED
REP3(b) algorithm (RAR3(b) for short), forb ≥ 1. Our algorithm is a generalization of the algorithm REP3

introduced in [9] forb = 1. It uses a well knownFirst-Fit Decreasingheuristic (FFD) with a small modification.
Given a list of items, the original FFD first sorts the items in non-increasing order according to sizes, and then
appliesFirst-Fit (FF) algorithm that goes through the sorted list and places each item in turn into the lowest
indexed bin where it fits. A new bin is opened only in the case an item does not fit into any non-empty bin. Our
algorithm always keeps three active bins that we call BIN1, BIN2 and BIN3. RAR3(b) proceeds as follows:

(1) Get a new itemx and putx into an empty active bin.

6



(2) Remove all items from the three active bins.

(3) Sort the items by a non-increasing order of their sizes.

(4) Scan the sorted list.

(4.1) If x is aBi-item for somei ≥ 1 and there is a set of(tbi − 1) Bi-items (includingx), remove these
items from the list and pack them using one active bin.

(4.2) If x is aCi-item for somei ≥ 1 and there is a set oftbi Ci-items (includingx), remove these items
from the list and pack them using one active bin.

(4.3) Apply FF on the items in the list.

(5) Compute the weight of each active bin, close any bins having a total weight at least 1 and open new bins
instead of them. Go to Step (1).

3 Proof of correctness

The crucial step of the algorithm RAR3(b) is Step (4). The main part of this section is devoted to establishing the
fact that Step (4) is always possible, and that after Step (4) either at least one bin is empty or at least one bin has
weight greater or equal to one, thus being closed after Step (5) and an empty bin is open instead of it. Thus, Step
(1) is well defined. To do this, we prove the following theorems.
Similarly to [9], we call agood packingto a packing with an empty bin, and agood subsetof items is a subset of
weight greater or equal one and of size at most one. The following holds:

Lemma 6. For anyb ≥ 1 andi ≥ 1:

(i) (tbi − 1) Bi-items compose a good subset.

(ii) tbi Ci-items compose a good subset.

Theorem 7. Let BIN1, BIN2 and BIN3 be three active bins. Then we can either repack the bins by FFD to
produce a packing with an empty bin or we can find a subset of items with weight at least one and size at most
one. Such a subset is either the contents of a bin in the FFD-packing, or found in Step (4.1) or Step (4.2).

Proof. We assume that it is neither possible to produce a good packing (a packing with an empty bin), nor to
find a good subset of items (a subset of weight greater or equal one and of size at most one), and we derive a
contradiction from this. Since we assumed that there neither exists a good packing nor a good subset, in the
produced FFD-packing neither BIN3 will be empty, nor will there be a bin with weight greater or equal one.
We will prove a number of combinatorial properties of the FFD-packing. Our purpose is to show that by assuming
the above, we get that BIN3 can not possibly contain any of theBi-, Ci- or Di- items, and thus FFD-packing is a
good packing as it leaves an empty bin.

First, we consider the caseb ≥ 1.2, and the corresponding partition of(0, 1
b ]. The proof is split into several

claims.
Claim 1a.

(i) For b ∈ [1.2, 2) : In the FFD-packing, no bin contains aB1-itemx.

(ii) For other values of b(b ≥ 2): In the FFD-packing, neither BIN2 nor BIN3 contains anyB1-itemx.

7



Proof. (i) If such an itemx exists, thenW (x) = x + 1
tb1(tb1−1)

> 1
2 + 1

2·1 = 1 sincetb1 = 2. So everyB1-item

has weight of at least 1, and any subset of items containing this item would form a good subset. We derive a
contradiction.
(ii) Assume by contradiction that aB1-item x was put by the packing into BIN2 or BIN3. Sincex was not put
into BIN1 and we apply FFD, BIN1 must containbbc = tb1 − 1 B1-items, which form a good subset by Lemma
6(i) for i = 1. Again, the contents of BIN1 will form a good subset, in contradiction to our assumption.
Claim 2a. For any value ofb ≥ 1.2: In the FFD-packing, neither BIN2 nor BIN3 contains anyDi-itemx, i ≥ 1.
Proof. Assume the opposite: that either BIN2 or BIN3 contains aDi-item x. Sincex was not put into BIN1,

BIN1 is at least tbi
tbi+1

full with items of size greater than 1
tbi+1−1

(sincex ∈ ( 1
tbi+1−1

, 1
tbi+1

], and we apply FFD).

By Observation 4(iii), fory > 1
tbi+1−1

, W (y)
y ≥ tbi+1

tbi
holds. But now, the total weight of BIN1 is at least:

tbi
tbi+1

· tbi+1

tbi
= 1, and the contents of BIN1 would be a good subset, in contradiction to the assumption.

Claim 3a.
¦ For b ≥ 3 (tb1 ≥ 4):
In the FFD-packing, neither BIN2 nor BIN3 contains anyBi-itemx, i ≥ 2.
¦ For b ∈ [2, 3) (tb1 = 3, tb2 ≥ 7):
In the FFD-packing, neither BIN2 nor BIN3 contains anyBi-itemx, i ≥ 3.
For values ofb that satisfytb2 ≥ 9, neither BIN2 nor BIN3 containsB2-item.
For values ofb that satisfytb2 ∈ {7, 8}, BIN2 and BIN3 together contain at most oneB2-item.
¦ For b ∈ [1.2, 2) (tb1 = 2, tb2 ≥ 4):
In the FFD-packing, neither BIN2 nor BIN3 contains anyBi-itemx, i ≥ 3.
For values ofb that satisfytb2 ≥ 6, neither BIN2 nor BIN3 contains anyB2-item.
For values ofb that satisfytb2 ∈ {4, 5}, BIN2 and BIN3 both contain at most oneB2-item. Proof. Assume, by
contradiction, that for somei there is aBi-item x in BIN2 (without loss of generality). We denote byX the
overall size of all items in BIN1 that are larger than theBi-items. By Observation 4(iii), the total weight of

these items is at least
tbi−1+1

tbi−1
X . Let β be the number ofBi-items in BIN1, and letB denote their overall size.

So W(BIN1)≥ tbi−1+1

tbi−1
X + B + β

tbi (t
b
i−1)

. Using the fact that by the assumptionW (BIN1)< 1 must hold, as the

contents of BIN1 is not a good subset, we get:

tbi−1 + 1
tbi−1

X + B +
β

tbi(t
b
i − 1)

< 1. (7)

As theBi-item x ≤ 1
tbi−1

did not fit into BIN1, we know thatX + B >
tbi−2

tbi−1
. We subtract the last inequality

multiplied by(tbi−1 + 1) from (7) multiplied bytbi−1 to get:

βtbi−1

tbi(t
b
i − 1)

< tbi−1 −
tbi − 2
tbi − 1

(tbi−1 + 1) + B (8)

In addition, we know that everyBi-item in BIN1 has size at most 1
tbi−1

and there are exactlyβ such items, this

impliesB ≤ β
tbi−1

. Plugging this into inequality (8) and simplifying the resulting inequality yields:

β >
tbi − tbi−1 − 2

tbi − tbi−1

· tbi = tbi −
2tbi

tbi − tbi−1

(9)

If the righthand side of (9) is at leasttbi − 3, that means thatβ is at leasttbi − 2. Together with the itemx in BIN2,
there are at least (tbi − 1) Bi-items. By Lemma 6(i) those (tbi − 1) Bi-items form a good subset. Thus we derive
a contradiction.

8



So, we have to check for which values ofi the righthand side of (9) is at leasttbi −3, and the above holds:tbi −
2tbi

tbi−tbi−1
≥ tbi − 3 ⇒ tbi − 3tbi−1 ≥ 0 If we apply (5) to the last inequality, we gettbi − 3tbi−1 ≥ tbi−1(t

b
i−1 − 1) +

1− 3tbi−1 = (tbi−1)
2 − 4tbi−1 + 1 ≥ 0. So,tbi−1 ≥ 3.73 must hold, i.e.tbi−1 ≥ 4 (astbi is a sequence of integers).

We would like to find the value ofi starting from which this holds for the different values ofb. We split the proof
to several subcases, in accordance to the value ofb, and treat them separately. There are three cases we need to
consider:b ∈ [1.2, 2), b ∈ [2, 3) andb ≥ 3. We now treat these cases one by one.

¦ For b ≥ 3: In the caseb ≥ 3, tb1 ≥ 4, and{tbi} is an increasing sequence, so fori − 1 ≥ 1 ⇒ i ≥ 2 there
are noBi-items in BIN2 or in BIN3.

¦ For b ∈ [1.2, 2): By the definition of the{tbi} sequence in (2), for values ofb in this interval: tb1 = 2,
rb
1 = 1

b − 1
2 andtb2 = b1+ 1

rb
1
c = b1+ 1

1
b
− 1

2

c = b1+ 1
2−b
2b

c = b1+ 2b
2−bc = b2+b

2−bc. Sinceb2+b
2−bc is non-decreasing

for b ∈ [1.2, 2), tb2 ≥ 4 holds. Also{tbi} is an increasing sequence. So fori − 1 ≥ 2 ⇒ i ≥ 3, according to
previous considerations, there are noBi-items in BIN2 or in BIN3.

It is left to consider theB2 ∈ ( 1
tb2

, 1
tb2−1

] items. As to the casei = 2: According to (9),β > tb2− 2tb2
tb2−tb1

= tb2− 2tb2
tb2−2

holds. We check which values ofb satisfytb2 − 2tb2
tb2−2

≥ tb2 − 3. This is equivalent totb2 ≥ 6. So, for values ofb

that satisfytb2 ≥ 6, BIN2 and BIN3 can not contain aB2-item.
But we showed that forb ∈ [1.2, 2) tb2 ≥ 4 holds. So it is left for us to check what happens for values ofb in this
interval that satisfytb2 = 4 or tb2 = 5.

In the casetb2 = 4: the righthand side of (9) is:tb2 − 2tb2
tb2−2

= 0, and this yieldsβ ≥ 1. So there is at least one

B2-item in BIN1. If there are two or moreB2-items in both BIN2 and BIN3, it means that in total there are at
least threeB2-items in the set, and according to Lemma 6(i) fori = 2, three of those items form a good subset,
and we get a contradiction. So BIN2 and BIN3 contain together at most one such item.

In the casetb2 = 5: the righthand side of (9) is:tb2 − 2tb2
tb2−2

∼ 1.66, and this yieldsβ ≥ 2. So there are at least

two B2-items in BIN1. If there are two or moreB2-items in BIN2 and BIN3 together, it means that in total there
are at least fourB2-items in the set, and according to Lemma 6(i) fori = 2, four of those items form a good
subset, and we get a contradiction. So BIN2 and BIN3 contain together at most one such item.

¦ For b ∈ [2, 3): According to the definition of the{tbi} sequence in (2), for values ofb in this interval:
tb1 = 3, rb

1 = 1
b − 1

3 andtb2 = b1 + 1
rb
1
c = b1 + 1

1
b
− 1

3

c = b1 + 1
3−b
3b

c = b3+2b
3−b c. Sinceb3+2b

3−b c is non-decreasing

for b ∈ [2, 3), tb2 ≥ 7 holds, and{tbi} is an increasing sequence. So fori − 1 ≥ 2 ⇒ i ≥ 3, according to
previous considerations, there are noBi-items in BIN2 or in BIN3. It is left for us to check the casei = 2: the

righthand side of (9) is:tb2− 2tb2
tb2−tb1

= tb2− 2tb2
tb2−3

. We would like to know for which values ofb, β ≥ tb2− 3, that is

tb2 − 2tb2
tb2−3

≥ tb2 − 3, and for these values we get that there are not anyB2-items in BIN2 or in BIN3. So, we get

that for values ofb in [2, 3) that satisfytb2 ≥ 9, the above holds.
We showed that forb ∈ [2, 3) tb2 ≥ 7 holds. We also showed that for values ofb that satisfytb2 ≥ 9 there are no
Bi-items in BIN2 or in BIN3.

So, it is left for us to examine what happens for values ofb in this interval that satisfytb2 = 7 or tb2 = 8.

In the casetb2 = 7: the righthand side of (9) is:tb2 − 2tb2
tb2−3

= 3.5, and this yieldsβ ≥ 4. So there are at least

four B2-items in BIN1. If there are two or moreB2-items in both BIN2 and BIN3, it means that in total we have
at least sixB2-items in the set, and according to Lemma 6(i) fori = 2, six of those items form a good subset,
and we get a contradiction. So BIN2 and BIN3 together contain at most one such item.

In the casetb2 = 8: the righthand side of (9) is:tb2 − 2tb2
tb2−3

= 4.8, and this yieldsβ ≥ 5. So there are at least

five B2-items in BIN1. If there are two or moreB2-items in BIN2 and BIN3 together, it means that altogether we
have at least sevenB2-items in the set, and according to Lemma 6(i) fori = 2, seven of those items form a good
subset, and we get a contradiction. So BIN2 and BIN3 contain together at most one such item.

9



Claim 4a. For b ≥ 1.2: In the FFD-packing, neither BIN2 nor BIN3 contains anyC1-itemx.
Proof. We will split the proof to two subcases.

For b ∈ [1.2, 2): Assume the opposite, that there is aC1-item in BIN2 (without loss of generality). We
have proved in Claim 1a that in this case no bin contains anyB1-item. Consequently, theC1-item x is the
largest possible item in these three bins. Asx did not fit into BIN1, BIN1 must contain twoC1-items (since
C1 ∈ ( 1

tb1+1
, 1

tb1
], and forb ∈ [1.2, 2) tb1 = 2 holds). According to Lemma 6(ii) fori = 1, these twoC1-items in

BIN1 define a good subset, so BIN1 contains a good subset, an existence of which contradicts our assumption.
So the contrary holds.

For b ≥ 2: Assume that there is aC1-item in BIN3. That means that there aretb1 C1-items in BIN2 (since
we have proved in Claim 1a that forb ≥ 2 there are not anyB1-items in BIN2, we do FFD andx did not fit into
BIN2). According to Lemma 6(ii) fori = 1, thesetb1 C1- items in BIN2 form a good subset, so BIN2 contains a
good subset-again we derive a contradiction. So, there are noC1-items in BIN3. Regarding BIN2; sinceb ≥ 2,
BIN1 may contain aB1-item. Assume that there is aC1-item x in BIN2. If BIN 1 contains noB1-items, we can
argue analogously to above (only now it is the contents of BIN1 that will form a good subset). Hence, we may
assume that BIN1 does contain someB1-item. We have assumed that BIN3 is not empty (otherwise we produce
a packing with an empty bin, in contrary to the assumption). Letα be an item that arrived at BIN3. We discussed
the case whereα is aC1-item above. So assumeα is not aC1-item. Then any item that arrives at BIN3 can be
at most aB2-item (because we proved that there can not be anyB1 andD1 items in BIN3), and thus has size at
most 1

tb2−1
. Since we showed in Claim 2a that there are noDi items in BIN3 for i ≥ 1, BIN3 can contain onlyBi

andCi,i ≥ 2 items. Soα has to be one of those. There is a positive integer`, for whichα ∈ ( 1
`+1 , 1

` ], ` ≥ tb2− 1.
Sinceα did not fit into BIN1, BIN1 is full by more than1− 1

` with items of size more than1
`+1 . Let these items

beq1, q2, ..., qm, q1 ∈ B1. Because we used FFD,q1 ≥ q2 ≥ ... ≥ qm ≥ α holds. By Theorem 5, we may claim
that for a integer̀ and an item of size greater than1`+1 , the ratio between its weight and its size is at least`+2

`+1 .
So, the total weight of the items in BIN1 is at least

m∑

i=1

W (qi) = q1 +
1

tb1(t
b
1 − 1)

+
m∑

i=2

W (qi) ≥ q1 +
1

tb1(t
b
1 − 1)

+
(

1− 1
`
− q1

)
` + 2
` + 1

= 1− 2
`(` + 1)

− 1
` + 1

q1 +
1

tb1(t
b
1 − 1)

But ` ≥ tb2 − 1 ≥ tb1(t
b
1 − 1) holds (by Lemma 2). Alsoq1 ≤ 1

tb1−1
(sinceq1 is aB1 item), andq1 ≤ 1

b ≤ 1
2 since

tb1−1 ≤ b andb ≥ 2, soW (BIN1) ≥ 1− 2
`(`+1) − 1

2(`+1) + 1
` = 1− 4+`−2`−2

2`(`+1) = 1− 2−`
2`(`+1) . We want to know

when W(BIN1)≥ 1, i.e. when 2−`
2`(`+1) ≤ 0. 2`(` + 1) ≥ 0 for any positive integer̀, and2 − ` ≤ 0 for ` ≥ 2.

Since` ≥ tb2 − 1, andtb2 ≥ 6 for any b ≥ 2, ` ≥ 5, and the above holds. So, W(BIN1)≥ 1, thus the contents
of BIN1 form a good subset in contradiction to our assumption. We conclude that BIN2 does not contain any
C1-item, either.
Claim 5a. For b ∈ [1.2, 2) that satisfytb2 ∈ {4, 5}, and forb ∈ [2, 3) that satisfytb2 ∈ {7, 8}:
In the FFD-packing the bin BIN3 does not contain anyB2-itemy.
Proof. We have proved for these values ofb (among others) that BIN2 and BIN3 do not contain anyB1, C1 or
D1 item. Consequently, theB2-itemy is the largest possible item in these two bins. We also proved in Claim 3a,
that for the mentioned values ofb, the bins BIN2 and BIN3 together contain at most oneB2-item. So FFD puts
this singleB2-item into BIN2.
Claim 6a.
For anyb ∈ [1.2, 3) : In the FFD-packing, BIN3 cannot contain anyCi-itemx with i ≥ 3.
For b ≥ 3 : In the FFD-packing BIN3 cannot contain anyCi-itemx with i ≥ 2.
Proof. Assume by contradiction that BIN3 contains someCi-item x. We denote byY the overall size of items
in BIN2 that are larger than theCi-items. All of these items are at leastCi−1-items. That is true starting with

10



i ≥ 3, since there are noDi−1 andBi, i ≥ 3 items in BIN2. That does not always hold fori = 2 though,
as forb ∈ [1.2, 3) there may be aB2-item in BIN2. By Observation 4(iii), the total weight of these items is at

least
(tbi−1+1)

tbi−1

Y . Let γ be the number ofCi-items in BIN2, and denote their overall size byC. SoW (BIN2)≥
(tbi−1+1)

tbi−1
Y + tbi+1

tbi
C. Since by the assumption the contents of BIN2 is not a good subset,W (BIN2)< 1 holds, and

this yields:
(tbi−1 + 1)

tbi−1

Y +
tbi + 1

tbi
C < 1. (10)

Since theCi-item x ≤ 1
tbi

did not fit into BIN2, we haveY + C >
tbi−1

tbi
. We multiply the last inequality by

(tbi−1 + 1) and the inequality (10) by the factortbi−1. Subtracting one inequality from the other gives:

(
tbi−1 − tbi

tbi

)
C <

tbi−1 − tbi + 1
tbi

.

We divide both sides of the inequality by(tbi−1 − tbi). Note thattbi−1 < tbi (by Lemma 1).

C >
tbi−1 − tbi + 1

tbi−1 − tbi
= 1 +

1
tbi−1 − tbi

= 1− 1
tbi − tbi−1

. (11)

Moreover,C ≤ γ
tbi

holds (since size of eachCi-item is at most1
tbi

and there areγ of those). Combining this with

the inequality (11), we derive:

γ > tbi −
tbi

tbi − tbi−1

. (12)

If the righthand side of (12) is larger thantbi − 2, that means we have at least(tbi − 1) Ci-items in BIN2, and at
least oneCi-item in BIN3. Together that givestbi Ci-items in the set. By Lemma 6(ii) thosetbi Ci-items construct
a good subset, and thus we derive a contradiction as wanted.

So, we want to check for which values ofi the inequalitytbi− tbi
tbi−tbi−1

> tbi−2 ⇒ tbi−2tbi−1 > 0 holds. If we apply

Lemma 2 to the above inequality, we get:tbi −2tbi−1 ≥ tbi−1(t
b
i−1−1)+1−2tbi−1 = (tbi−1)

2− tbi−1 +1−2tbi−1 =
(tbi−1)

2 − 3tbi−1 + 1 > 0. So we get thattbi−1 > 2.61 must hold, i.e.tbi−1 ≥ 3.
But for b ≥ 1.2, tb2 ≥ 4 holds, and{tbi} is an increasing sequence. So this holds starting withi − 1 ≥ 2 ⇒

i ≥ 3. Thus forb ∈ [1.2, 3) there are noCi-items withi ≥ 3 in BIN3.
For b ≥ 3, tb1 ≥ 4 already, and there are noB2-items in BIN2. So the above holds starting withi = 2, and

BIN3 cannot contain anyC2-item.
Claim 7a. For b ∈ [1.2, 3): In the FFD-packing, BIN3 cannot contain anyC2-itemx.
Proof. Recall that in this case there can be aB2-item in BIN2.
Assume, by contradiction, that BIN3 contains someC2-item x. Note that in Claim 5a we showed that BIN3

does not containB2-items. If BIN2 does not contain aB2-item, it must containtb2 C2-items. This is because the
C2-items are the largest items that can be in BIN2, since we have proved that BIN2 cannot contain anyB1, C1 or
D1 item, and sincex did not fit in it. By Lemma 6(ii) fori = 2, thosetb2 C2-items form a good subset, and thus
we derive a contradiction. So BIN3 cannot contain aC2-item
Hence, we may assume that BIN2 does contain someB2-itemy (and by Claims 3a and 5a it is the onlyB2-item
in BIN2). In Claim 3a we showed that this is possible only for those values ofb in interval [1.2, 2) which satisfy
tb2 = 4 or tb2 = 5, or for values ofb in interval[2, 3) which satisfytb2 = 7 or tb2 = 8 (in the other cases we proved
there cannot beB2-item in BIN2). We split the proof to consider each one of these options separately.

(A)(1) For values ofb in [1.2, 2) that satisfy tb2 = 4: B2 = (1
4 , 1

3 ], C2 = (1
5 , 1

4 ]
Similarly as in the proof of Claim 3a, we denote byX the overall size of all items in BIN1 that are larger than

11



theB2-items (i.e. larger than13 ). By Observation 4(iii), the total weight of these items is at leasttb1+1

tb1
X = 3

2X ,

tb1 = 2.
Let the number ofB2-items in BIN1 beβ, and denote their overall size byB. ThenW (BIN1) < 1 (that holds by
the assumption) implies:

3
2
X + B +

β

tb2(t
b
2 − 1)

=
3
2
X + B +

β

12
< 1. (13)

As theC2-item x ≤ 1
4 did not fit into BIN1, it is at least34 full, so we haveX + B > 3

4 . We subtract the last

inequality multiplied by3
2 from (13). This yieldsB > 1

4 + β
6 . Finally, we plug inB ≤ β

3 (there areβ B2−items,

each of size smaller than13 ), and derive: β
3 > 1

4 + β
6 =⇒ β > 3

2 , i.e β ≥ 2. Altogether (both in BIN1 and
BIN2), there are at least threeB2-items, and according to Lemma 6(i) fori = 2, those three items form a good
subset. So, again we detected a good subset of items in the set.

(A)(2) For values ofb in [1.2, 2) that satisfy tb2 = 5: B2 = (1
5 , 1

4 ], C2 = (1
6 , 1

5 ]
Once again, we denote byX the overall size of all items in BIN1 that are larger than theB2-items (i.e. larger

than 1
4 in this case). By Observation 4(iii), the total weight of these items is at leasttb1+1

tb1
X = 3

2X , tb1 = 2.

Let the number ofB2-items in BIN1 beβ, denote their overall size byB. ThenW (BIN1) < 1 implies:

3
2
X + B +

β

tb2(t
b
2 − 1)

=
3
2
X + B +

β

20
< 1. (14)

As C2-item x ≤ 1
5 did not fit into BIN1, it is at least45 full, so we have:X + B > 4

5 . We subtract the last

inequality multiplied by3
2 from (14). This yieldsB > 2

5 + β
10 . We plug inB ≤ β

4 (there areβ B2-items, each of

size smaller than14 ), and derive: β
4 > 2

5 + β
10 =⇒ β > 8

3 , i.e β ≥ 3. Altogether, in BIN1 and BIN2 there are
at least fourB2-items, and according to lemma 6(i) fori = 2, those four items form a good subset.

B)(1) For values ofb in [2, 3) that satisfy tb2 = 7: B2 = (1
7 , 1

6 ], C2 = (1
8 , 1

7 ]
Again, we denote byX the overall size of all items in BIN1 that are larger than theB2-items (i.e. larger than16 ).

By Observation 4(iii), the total weight of these items is at leasttb1+1

tb1
X = 4

3X ,tb1 = 3.

Let the number ofB2-items in BIN1 beβ, and denote byB their overall size. ThenW (BIN1) < 1 implies:

4
3
X + B +

β

tb2(t
b
2 − 1)

=
4
3
X + B +

β

42
< 1. (15)

As theC2-itemx ≤ 1
7 did not fit into BIN1, we have:X + B > 6

7 . We subtract the last inequality multiplied by
4
3 from (15). This yieldsB > 3

7 + β
14 . Finally, we plug inB ≤ β

6 (there areβ B2-items, each of size smaller than
1
6 ), and derive: β

6 > 3
7 + β

14 =⇒ β > 9
2 , i.e β ≥ 5. Altogether, there are at least sixB2-items (in BIN1 and

BIN2 together), and according to Lemma 6(i) fori = 2, those six items form a good subset.
B)(2) For values ofb in [2, 3) that satisfy tb2 = 8: B2 = (1

8 , 1
7 ], C2 = (1

9 , 1
8 ]

As before, we denote byX the overall size of all items in BIN1 that are larger than theB2-items (i.e. larger than
1
7 ). By Observation 4(iii), the total weight of these items is at leasttb1+1

tb1
X = 4

3X , tb1 = 3.

Let the number ofB2-items in BIN1 beβ, and denote their overall size byB. ThenW (BIN1) < 1 implies:

4
3
X + B +

β

tb2(t
b
2 − 1)

=
4
3
X + B +

β

56
< 1. (16)

As theC2-itemx ≤ 1
8 did not fit into BIN1, we have:X + B > 7

8 . We subtract the last inequality multiplied by
4
3 from (16). This yieldsB > 1

2 + 3β
56 . Finally, we plug inB ≤ β

7 (there areβ B2-items, each of size smaller

than 1
7 ), and derive: β

7 > 1
2 + 3β

56 =⇒ β > 28
5 , i.e β ≥ 6. Together with the singleB2-item in BIN2, there are

at least sevenB2-items (in BIN1 and BIN2 together), and according to Lemma 6(i) fori = 2, those seven items

12



form a good subset. In all the cases we derived a contradiction to our assumptions by showing the existence of a
good subset. So, the opposite holds.

Summarizing, in Claims 1a through 7a we have shown that forb ≥ 1.2 in the FFD-packing BIN3 can neither
contain aBi-, nor aCi-, nor aDi-item, under our assumptions. Thus, BIN3 is empty, and the FFD-packing is a
good packing. This is the final contradiction, which completes the proof of Theorem 7 for the caseb ≥ 1.2.

As to the caseb ∈ [1, 1.2) and the suitable partition of(0, 1
b ]. Note that in this case, by the definitions of the

sequence in (2),tb1 = 2,tb2 = 3 andtb3 ≥ 7. Thus, the proof from [9] forb = 1 that in the FFD-packing BIN3 can
neither contain aBi-, nor aCi-, nor aDi-item holds, using a small number of modifications.

Recall that our main assumption was a non-existence of a good subset and of a good packing, we saw that
for anyb ≥ 1 the opposite holds, and we can always obtain a good packing or a good subset.

Now, let us show that Step (4) is always executable and well-defined.

Theorem 8. For anyb ≥ 1: The algorithm RAR3(b) can be implemented so that it never gets stuck in Step (4).

Proof. The proof is by induction on the number of packed items. We keep the following invariant: As RAR3(b)
receives a new item to pack, one of the three active bins is empty. Without loss of generality, let this bin be BIN3

and the rest of the items are packed in the remaining two active bins. Obviously, this invariant holds as RAR3(b)
receives the first item. Assume it holds after the packing of itemaj , and consider the moment RAR3(b) receives
aj+1. By inductive assumption, there is a set of items that were packed in the previous step into two of the three
active bins by RAR3(b) and BIN3 is empty at this point. When itemaj+1 arrives, it is put into BIN3 in Step (1).
Then we remove all the items from the bins and sort them in non-increasing order by their size. There are two
possible cases:

(i) The algorithm finds a good subset of(tbi−1) Bi-items ortbi Ci-items, and after we remove theseBi-items
in Step (4.1) orCi-items in Step (4.2) from the set, RAR3(b) packs the remaining items in the set (which are still
sorted in non-increasing order) by FF using two bins in Step (4.3).

(ii) RAR3(b) packs the entire set of items by FF using three bins in Step (4.3).
We discuss these two cases separately. We claim that all items can be packed. (i) If we perform Step (4.1), it

means that the new item that has arrived is aBi-item, thus completes the amount ofBi-items in the list totbi − 1
(otherwise, if the new item is not aBi-item and there are (tbi − 1) Bi-items present in the set we would have
combined them as a good subset in the previous step). If we perform Step (4.2), it means that the new item that
has arrived is aCi-item, thus completes the amount ofCi-items in the list totbi (by similar considerations). In
any case, by Lemma 6 we know that these items form a good subset and fit into a single bin. We put them in
BIN3. Then we go to Step (4.3) and pack the rest of the items in BIN1 and BIN2 by FF. Assume by contradiction
that some itemz does not fit in any of those bins. First, we consider the case when the good subset we remove
consists ofBi-items. Fortbi = 2: z ∈ (

1
2 , 1

b

]
(tbi = 2 for i = 1, astb2 ≥ 3 for any b ≥ 1 andtbi for i > 2 is

even greater, sincetbi is a strictly increasing sequence). Then,z is aB1-item, but by Lemma 6(i) fori = 1 suchz
forms a good subset by itself, so there can not be suchz since the algorithm removes it as a good subset in Step
(4.1) as soon as it arrives. Fortbi ≥ 3: we remove (tbi − 2) Bi-items (not including the new item) from the set.
The total size of the removed items is at least1

tbi
· (tbi − 2) = 1− 2

tbi
≥ 1

3 , astbi ≥ 3.

In the case the good subset we remove consists ofCi-items; Fortbi ≥ 2: we remove (tbi − 1) Ci-items (not
including the new item) from the set. The total size of the removed items is at least1

tbi+1
·(tbi−1) = 1− 2

tbi+1
≥ 1

3 ,

astbi ≥ 2. So, asz did not fit in any of BIN1 or BIN2, and we assumed the entire set of items (without the new
item) fits in two bins, the sum of the sizes of all the items that remain in the set after we remove the good subset
(which has to containaj+1) either in Step (4.1) or Step (4.2), is upper bounded by5

3 . As z did not fit in in any of
the two bins, each of these bins is more than1− z full. We get2(1− z) + z < 5

3 ⇒ z > 1
3 . So, we are looking

at values ofz in
(

1
3 , 1

2

]
. There are few possible cases:

¦ tb1 = 2 andtb2 = 3 (b ∈ [1, 1.2)). Thenz is aB2-item, asB2 =
(

1
3 , 1

2

]
.

In this case, the size of any of the items in BIN1 and BIN2 is greater or equal toz as they are packed by FFD
heuristic, but less than12 (otherwise they are removed as a good subset in earlier stage), hence all these items

13



have sizes in the interval
(

1
3 , 1

2

]
. Thus, they are alsoB2-items. So, as there was no room forz, each of the bins

BIN1 and BIN2 contains exactly two such items, who by Lemma 6(i) fori = 2 form a good subset ofB2-items.
But that is not possible, as according to our algorithm such subset is removed from the sorted list as soon as the
secondB2-item arrives. So we get a contradiction.

¦ tb1 = 2 andtb2 > 3 (b ∈ [1.2, 2)). Thenz is aC1-item, asC1 =
(

1
3 , 1

2

]
.

In this case, a very similar consideration as in the case above combined with Lemma 6(ii) fori = 1 shows that if
there are twoC1-items in BIN1 or BIN2 we get a contradiction.

¦ tb1 = 3 (b ∈ [2, 3)). Thenz is aB1-item, asB1 =
(

1
3 , 1

b

]
.

In this case, a very similar consideration as in the case above combined with Lemma 6(i) fori = 1 shows that if
there are twoB1-items in BIN1 or BIN2 we get a contradiction.

¦ tb1 > 3 (b1 + bc > 3 ⇒ bbc > 2 ⇒ b ≥ 3). In this case there can not be an item from interval
(

1
3 , 1

2

]
in the

list, as the size of any item is bounded from above by1
b , and hereb ≥ 3.

So, as we showed that any of the cases above is not possible according to our algorithm, we can conclude there
is no such itemz, and hence after we remove the good subset ofBi or Ci-items from the set and put them into
BIN3, all the remaining items being packed by FF fit in two active bins. Then we just move on to Step (5) where
BIN3 is closed and replaced by a empty bin. Thus, the invariant holds after we pack theaj+1 item.

(ii) In this case, there is no good subset of(tbi − 1) Bi-items ortbi Ci-items in the set. So, the new itemaj+1

has size in
(
0, 1

2

]
(otherwise it would form a good subset ofB1-items all by itself). We pack the set of items by

FFD heuristic using the three active bins. Assume by contradiction that some itemz does not fit in any of those
bins. Asz did not fit in any of BIN1 or BIN2, and we assumed the entire set of items (without the new itemaj+1)
fits in two bins, the sum of the sizes of all the items in the set after we receive the new item is upper bounded by
2.5. Asz did not fit in in any of these bins, each bin is more than1− z full. We get3(1− z)+ z < 2.5 ⇒ z > 1

4 .
So, we are looking at values ofz in

(
1
4 , 1

b

]
.

This z can not be from interval
(

1
2 , 1

b

]
, because suchz forms a good subset ofB1-items by itself, and the

algorithm removes it in Step (4.1) as soon as it arrives. Soz ∈ (
1
4 , 1

2

]
. We distinguish between two subcases.

¦ z ∈ (
1
3 , 1

2

]
. In this case, the size of any of the items in BIN1, BIN2 and BIN3 is greater or equal toz as they

are packed by FFD heuristic, but at most1
2 , hence all these items have sizes in the interval

(
1
3 , 1

2

]
. So, asz did

not fit in any bin, each of the bins BIN1, BIN2 and BIN3 contains exactly two such items, hence, together withz
there are 7 items with sizes in

(
1
3 , 1

2

]
in the set. Beforeaj+1 arrived there were at least 6 of those items in the set,

and this contradicts the invariant that holds according to our assumption, because these items could not possibly
be packed in two active bins, as their overall size is greater than 2.

¦ z ∈ (
1
4 , 1

3

]
. In this case, the size of any of the items in BIN1, BIN2 and BIN3 is greater or equal toz as they

are packed by FFD heuristic, but at most1
2 , hence these items have sizes in interval

(
1
3 , 1

2

]
or in

(
1
4 , 1

3

]
. Assume

that there area items from
(

1
3 , 1

2

]
andb items from

(
1
4 , 1

3

]
. In total, there can be at most 7 such items in the set,

as we assumed the entire set of items (without the new item) fits in two bins, soa + b ≤ 7. On the other hand,
a ≤ 1 must hold, since we saw in the case discussed earlier that two items with size in

(
1
3 , 1

2

]
form a good subset,

in contradiction to our assumption that there is no good subset ofBi or Ci-items in the set. Ifa = 0, as there was
no room forz, each of the bins BIN1, BIN2 and BIN3 contains exactly three items with sizes in

(
1
4 , 1

3

]
, hence,

together withz there are 10 such items in the set-a contradiction toa + b ≤ 7. If a = 1, as there was no room for
z, BIN1 contains one item with size in

(
1
3 , 1

2

]
and either one or two items with sizes in

(
1
4 , 1

3

]
, BIN2 and BIN3

contains three items with sizes in
(

1
4 , 1

3

]
each. Hence, together withz there are 8 or 9 such items in the set-a

contradiction toa + b ≤ 7.
So, as we showed that any of the cases above is not possible according to our algorithm, we can conclude

there is no such itemz, and hence all the items (including the new item) being packed by FFD heuristic fit in
three active bins. According to Theorem 7, either these items are packed into two bins such that BIN3 is empty-in
this case we go to Step (5) and the invariant is fulfilled, or we detect a good subset in BIN1 or BIN2- in this case
we go to Step (5) where the bin that contains the good subset is closed, and a new bin is opened instead. So in
both cases the invariant holds as we finish packing theaj+1 item.

14



4 The asymptotic competitive ratio of RAR3(b)

To establish the upper bound, we use the weighting function technique.

Theorem 9. For anyb ≥ 1: In any packing of a listL into bins of size1b , the weight of any bin is at mostρ(b).
Hence,W (L) ≤ ρ(b) OPT1

b
(L) holds.

Proof. Let us consider some fixed binB (of size 1
b ) that contains itemsq1 ≥ q2 ≥ . . . ≥ qm. Obviously∑m

i=1 qi ≤ 1
b holds. We distinguish between two cases.

(a) qi ∈
(

1
tbi

, 1
tbi−1

]
for i = 1, . . . , m. Then, by the definition of the weighting function

W (B) =
∑m

i=1 W (qi) =
∑m

i=1

(
qi + 1

tbi (t
b
i−1)

)
=

∑m
i=1 qi+

∑m
i=1

1
tbi−1

−∑m
i=1

1
tbi
≤ 1

b−
∑m

i=1
1
tbi

+
∑m

i=1
1

tbi−1
,

as
∑m

i=1 qi ≤ 1
b holds. Note that from (3) we can see thatrb

m = 1
b −

∑m
i=1

1
tbi

, and from (4) fori = m+1 we get

rb
m ≤ 1

tbm+1−1
. Plugging this into the above inequality we getW (B) ≤ ∑m

i=1
1

tbi−1
+ 1

tbm+1−1
=

∑m+1
i=1

1
tbi−1

<
∑∞

i=1
1

tbi−1
= ρ(b). So the weight of binB is upper bounded byρ(b).

(b) Now assumes ≤ m is the leasti such thatqi /∈ (
1
tbi

, 1
tbi−1

]
, and henceqs ≤ 1

tbs
(as any of the items

q1, . . . , qs−1 is contained in an interval
(

1
tbi

, 1
tbi−1

]
for the correspondingi, 1

b ≥
∑s

i=1 qi > 1
tb1

+ 1
tb2

+. . .+ 1
tbs−1

+qs

holds, combining this with (3) and (4) fori = s, we getqs <
1
b
− 1

tb1
+

1
tb2
− . . . − 1

tbs−1

= rb
s−1 ≤

1
tbs − 1

and

together with the factqs /∈ (
1
tbs

, 1
tbs−1

]
, this implies the inequality stated above).

We denote byQ the sum of the sizes of the remaining itemsqi with i ≥ s. Q =
∑m

i=s qi. Since
∑m

i=1 qi =∑s−1
i=1 qi +

∑m
i=s qi ≤ 1

b , Q +
∑s−1

i=1 qi ≤ 1
b holds. As any of the itemsq1, . . . , qs−1 is contained in an interval(

1
tbi

, 1
tbi−1

]
, it has size of at least1

tbi
, for the correspondingi. Combining this with (3) and (4) fori = s, we get that

Q ≤ 1
b −

∑s−1
i=1 qi < 1

b −
∑s−1

i=1
1
tbi

= rb
s−1 ≤ 1

(tbs−1)
. Since the largest one of theqs, . . . , qm items,qs has size

in
(
0, 1

tbs

]
, we conclude that the size of every one of these items is at most1

tbs
. Then, by Observation 4(ii), their

overall weight is at mostt
b
s+1
tbs

·Q. As
∑s−1

i=1 qi ≤ 1
b −Q we getW (B) ≤ ∑s−1

i=1 qi +
∑s−1

i=1
1

tbi (t
b
i−1)

+ tbs+1
tbs

·Q ≤
1
b −Q +

∑s−1
i=1

1
tbi (t

b
i−1)

+ tbs+1
tbs

·Q = 1
b −Q +

∑s−1
i=1

1
tbi (t

b
i−1)

+ Q + 1
tbs
·Q = 1

b +
∑s−1

i=1
1

tbi (t
b
i−1)

+ 1
tbs
·Q. Using

Q ≤ 1
(tbs−1)

(proved above), we deriveW (B) ≤ 1
b +

∑s−1
i=1

1
tbi (t

b
i−1)

+ 1
tbs
· 1

(tbs−1)
= 1

b +
∑s−1

i=1
1

tbi−1
−∑s−1

i=1
1
tbi

+
1

tbs−1
− 1

tbs
= 1

b −
∑s

i=1
1
tbi

+
∑s

i=1
1

tbi−1
.

Note that from (3) we can see thatrb
s = 1

b−
∑s

i=1
1
tbi

, and from (4) fori = s+1 we getrb
s ≤ 1

tbs+1−1
. Plugging

this into the above inequality we getW (B) ≤ 1
tbs+1−1

+
∑s

i=1
1

tbi−1
=

∑s+1
i=1

1
tbi−1

<
∑∞

i=1
1

tbi−1
= ρ(b). Thus

the weight of the binB is at mostρ(b). The number of such bins is OPT1
b
(L), and the proof of Theorem (9) is

complete.
As the repacking in our algorithm is done within the active bins, the lower bound from [3] carries over to our

problem as well.

Theorem 10. For anyb ≥ 1 and for any on-line bounded space bin-packing algorithmA that allows repacking
within k active bins, we haveR∞

A (b) ≥ ρ(b) .

Theorem 11. For anyb ≥ 1: The algorithm RAR3(b) has the best possible worst case competitive ratioρ(b).

Proof. To prove that RAR3(b) has the best possible worst-case competitive ratioρ(b), note that for any listL of
items, RAR3(b)≤ W (L) + 3 holds (the algorithm closes only bins of weight at least 1 and the last three active
bins are added). Combining this with Theorem 9, we get RAR3(b) – 3≤ W (L)≤ ρ(b) OPT1

b
(L). Together with

the lower bound of Theorem 10 we get that the competitive ratio of RAR3(b) isρ(b).

15



References

[1] S. Albers, S. Arora, and S. Khanna. Page replacement for general caching problems. InProc. 10th Symp. on Discrete
Algorithms (SODA), pages 31–40. ACM/SIAM, 1999.

[2] Y. Azar, L. Epstein, and R. van Stee. Resource augmentation in load balancing.J. of Scheduling, 3(5):249–258, 2000.

[3] J. Csirik and G. J. Woeginger. Resource augmentation for online bounded space bin packing.Journal of Algorithms,
44(2):308–320, 2002.

[4] J. Edmonds. Scheduling in the dark. InProc. 31st Symp. Theory of Computing (STOC), pages 179–188. ACM, 1999.

[5] L. Epstein, Y. Kleiman, J. Sgall, and R. van Stee. Paging with connections: Fifo strikes again.Theor. Comput. Sci.,
377(1-3):55–64, 2007.

[6] L. Epstein and R. van Stee. Online bin packing with resource augmentation. InProc. of the Approximation and Online
Algorithms, Second International Workshop, WAOA, pages 23–35, 2004.

[7] G. Galambos. A new heuristic for the classical bin packing problem. Technical Report 82, Institut für Mathematik,
Universiẗat Augsburg, Germany, 1985.

[8] G. Galambos. Parametric lower bounds for online bin packing.SIAM J. on Alg. and Disc. Methods, 7:362–367, 1986.

[9] G. Galambos and G. J. Woeginger. Repacking helps in bounded space online bin packing.Computing, 49:329–338,
1993.

[10] G. Gambosi, A. Postiglione, and M. Talamo. Algorithms for the relaxed online bin-packing model.SIAM J. Comput.,
30:1532–1551, 2000.

[11] M. R. Garey, R. L. Graham, and J. D. Ullman. Worst-case analysis of memory allocation algorithms. InProc of the
4th Symp. Theory of Computing (STOC’72), pages 143–150, 1972.

[12] M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide to the theory of of NP-Completeness. Freeman
and Company, San Francisco, 1979.

[13] S. W. Golomb. On certain nonlinear recurring sequences.AMM, 70(4):403–405, 1963.

[14] E. F. Grove. Online binpacking with lookahead. InProc. 6th Symp. on Discrete Algorithms (SODA), pages 430–436.
ACM/SIAM, 1995.

[15] G. Gutin, T. Jensen, and A. Yeo. Batched bin packing.Discrete Optimization., 2:71–82, 2005.

[16] Z. Ivkovic and E. Lloyd. A fundamental restriction on fully dynamic maintenance of bin packing.Inform. Process.
Lett., 59:229–232, 1996.

[17] Z. Ivkovic and E. L. Lloyd. Fully dynamic algorithms for bin packing: Being (mostly) myopic helps.SIAM J. Comput.,
28(2):574–611, 1998.

[18] D. S. Johnson. Fast algorithms for bin packing.J. Comput. Systems Sci., 8:272–314, 1974.

[19] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst-case performance bounds for simple
one-dimensional packing algorithms.SIAM J. Comput., 3:256–278, 1974.

[20] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance.J. ACM, 47(4):617–643, 2000.

[21] C. C. Lee and D. T. Lee. A simple online bin packing algorithm.J. ACM, 32:562–572, 1985.

[22] C. A. Phillips, C. Stein, E. Torng, and J. Wein. Optimal time-critical scheduling via resource augmentation.Algorith-
mica, 32(2):163–200, 2002.

[23] P. Ramanan, D. J. Brown, C. C. Lee, and D. T. Lee. Online bin packing in linear time.J. Algorithms, 10:305–326,
1989.

[24] S. S. Seiden. On the online bin packing problem.Journal of the ACM, 49(5):640–671, 2002.

[25] J. D. Ullman. The performance of a memory allocation algorithm. Technical Report 100, Princeton University,
Princeton, NJ, 1971.

[26] A. van Vliet. An improved lower bound for online bin packing algorithms.Inform. Process. Lett., 43:277–284, 1992.

[27] G. J. Woeginger. Improved space for bounded-space online bin packing.SIAM J. Discrete Math., 6:575–581, 1993.

16


