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Abstract

We study on-line bounded space bin-packing in the resource augmentation model of competitive analysis.
In this model, the on-line bounded space packing algorithm has to packladistems with sizes if0, 1],
into a minimum number of bins of siZgb > 1. A bounded space algorithm has the property that it only has
a constant number of active bins available to accept items at any point during processing. The performance
of the algorithm is measured by comparing the produced packing with an optimal offline packing of the list
L into bins of size 1. The competitive ratio then becomes a function of the on-line bim.siZsirik and
Woeginger studied this problem in [3] and proved that no on-line bounded space algorithm can perform better
than a certain boungd(b) in the worst case. We relax the on-line condition by allowing a complete repacking
within the active bins, and show that the same lower bound holds for this problem as well, and repacking may
only allow to obtain the exact best possible competitive ratip(6] having constant number of active bins,
instead of achieving this bound in the limit. We design a polynomial time on-line algorithm that uses three
active bins and achieves tegactbest possible competitive ratigb) for the given problem.

1 Introduction

Problem definition. Bin-Packing(BP) is one of the basic problems in theoretical computer science and combi-
natorial optimization. It was first introduced and investigated by Ullman in [25]. In the classical one-dimensional
problem we are given a finite ligt = {a1,a9,... a,} Of n elements, calledems each element; has a fixed
size in (0,1]. In a slight abuse of notation, we useo indicate both the-th element and its size. We have a
potentially infinite supply of unit-capacity containers, calleds The problem consists of assigning (packing)
each item to an unique bin such that the sum of sizes of elements in a bin does not exceed the bin capacity anc
such that the total number of bins used is as small as possible. Research of bin-packing and its many variants was
motivated by the fact this abstract problem models a large variety of real world problems, such as cutting stock
problems (cutting pieces of variable sizes from standard paper sheets, from standard textile cloth measures, etc.)
machine scheduling problems (minimizing the number of machines necessary for completing all tasks by a given
deadline) and storage allocation problems (allocating spaces on a disc or in a computer memory). The problem
is known to be NP-hard [12], thus research has concentrated on the study and developapgmbxifmation
algorithms, that is, algorithms which do not guarantee to find an optimal solution for every instance, but attempt
to find near-optimalpackings in polynomial time. A particular class consists of the so-called on-line algorithms.

A bin-packing algorithm is calledn-ling if it is given the items froml one at a time, and must assign each
item a; to a bin immediately upon arrival. The assignment must be based solely on its size and the packing
of the previous itemsi,as,... a;—1, without having any information on neither the sizes of the subsequent
items, nor their number. The decisions of the algorithm are irrevocable; An item assigned to a bin must not be
repacked during the execution of the algorithm at later times. Since on-line algorithms do not need to know the
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future, they also work in real-time environments where decisions must be made very fast, without delay, and
without complete information. We usually do not put any restrictions on the computational complexity of on-line
algorithms, although efficient algorithms are preferred.

As opposed to on-line algorithmgfflinealgorithms for bin-packing have complete knowledge about the list
of items and can thus apply more advanced strategies for packing.

As an intermediate class between these two classes, one can define semi-on-line algorithms. In contrast tc
pure on-line algorithms, these algorithms slightly relax the on-line restriction by allowing to execute certain types
of additional operations in each step, as repacking some finite number of already packed items [9, 10, 16, 17],
preprocessing the items by ordering them with regard to sizes [7] or buffering some items before packing them
[14, 15]. Each bin becomes active (@per), when it receives its first item, but once it is declared inactive (or
closed, the algorithm no longer considers it for packing and it can never become active again. Aehiptis
if no item is assigned to it. Some on-line algorithms keep all bins into which items have been placed open,
while others allow only a restricted finite number of bins available to accept items at any point during processing.
These latter algorithms are the so-callemlinded spacalgorithms. An on-line bin-packing algorithm is said to
usek-bounded spack#, for each new itenu;, the number of active bins in which it may be packed is at nkost
(k > 1). The bounded space restriction is quite natural, especially so in on-line bin-packing. It models situations
in which bins are exported once they are packed. Thus, the bounded space restriction guarantees the constar
flow of the output bins, and that the packer does not accumulate an enormous amount of bins which are only
given as output at the end of processing.

These latter restrictions (on-line and bounded space) arise in many applications, as in packing trucks at a
loading dock that has positions for a limited number of trucks or in communicating via channels with bounded
buffer size in which information moves in fixed-size blocks that are filled with smaller packets with various sizes.

In this paper, we study algorithms that are on-line, bounded space, and allow full repacking within the current
k active bins. That means, that in addition to the standard actions of bounded space bin-packing, where we are
allowed to: (1) Open a new bin (if the number of active bins is less or equal-ta),

(2) Close some active bin (and never open it again),
(3) Pack a new item into some active bin (if the contents of the bin remains below one).

We are also allowed to:  (4) Repack the set of active bins as the new item arrives, using the information on
the size of the newly arrived item, i.e. iy, ..., By, denote the active bins (we identify the contents of a bin with
the bin), to form a new partitio®, ..., B, of the items inside the active bins such thaB; = |J B; holds, and
such that the items in each part of the new partition have overall size less than or equal to 1.

To allow action (4) is a natural assumption. As long as an item is in an active bin, the item is available for
the packer to change its position. In the loading dock example, trucks will be partially repacked and items will
be moved from one truck at the loading dock to another in order to increase the number of items packed.
Performance evaluation of on-line bin packing algorithms. Since it is impossible (in general) to produce the
best possible solution when computation occurs on-line, we consider approximation algorithms. Approximation
algorithms have been analyzed from different points of view. In this paper we restrict ourselves to worst-case
analysis. When we discuss the performance of on-line algorithms, we use theampetitiveinstead ofap-
proximationwhich is used for offline algorithms. The quality of on-line algorithms is usually evaluated using
competitive analysis. Competitive analysis tries to find the maximum ‘distance’ between the optimal packing
and the packing constructed by the considered algorithm. In the case of bin-packing, the standard metric for
the worst-case performance is the asymptotic worst-case competitive ratio, or asgpiptotic competitive ra-
tio (ACR) In particular, we want to find an algorithm that incurs cost within a constant factor of the minimum
possible cost (which is denoted by OPT) no matter what the input list is. This constant factor is the ACR.

We define the asymptotic competitive ratio more formally. For allist {a;,as,. .. a,} oOf items with sizes
in (0,1] and an on-line algorithml: If A(L) denotes the number of unit-capacity bins used by algorithto
pack the input-list., andOPT'(L) denotes the number of bins used in an optimal packing, then the ACR of



A(L)
k

A, denoted byR%, is given by: R := limsupy_, ., | supy, { OPT(L) = k; ¢. A more instructive

sufficient condition is the following definition, which states tif#° is the smallest constant such that there
exists a constartt < K < oo for which A(L) < Ry - OPT(L) + K for every listL; the asymptotic ratio, a
multiplicative constant, hides the additive const&nt This ratio is of most interest in those applications where

K is small relative toA(L). It is apparent that the smaller the valig’ is, the better the heuristic algorithm

A performs in terms of the worst-case scenario. In other words, the smallét’trsevalue is, the closer the
heuristic solution is to the optimal one. Hence, we want to mininkiZeas much as possible when we design a
heuristic algorithm. Experience shows that the ACR is the more reasonable measure of performance for a quality
of a bin-packing algorithm as it is robust against anomalies with a small number of bins in the optimum packing,
and it also allows the packing algorithm more freedom while packing the first few bins.

In this paper we will often drop the term “asymptotic” when we mention the asymptotic competitive ratio.
Weighting functions.  In our paper we use theeighting functiongechnique, which is a major tool in the
analysis of algorithms for bin packing. This technique was introduced in [11, 19, 25] and subsequently applied
in many other papers (see, for example, [8, 18, 21, 27]). The idea of such weighting functions is simple. An
item is assigned a weight according to its size and its packing in some fixed solution. The weights are assigned
in a way that the cost of an algorithm is close to the total sum of weights. The weight of a bin is the weight of
all items in it. In order to complete the analysis, it is usually necessary to consider the total weight that can be
packed into a single bin of an optimal solution. But, as there is no systematic way to find weighting functions,
the main difficulty in using the approach is finding the appropriate weighting function.

Resource augmentation. This technique for analyzing on-line algorithms was introduced in 1995 by Kalyana-
sundaram and Pruhs in [20]. The resource augmentation model was introduced due to the following drawback
of standard competitive analysis. Competitive analysis compares the performance of an on-line algorithm, which
must pack each item upon arrival, to that of the omniscient and all-powerful optimal offline algorithm that gets the
entire input as a set. The main idea behind the resource augmentation technique is to give the on-line algorithm
additional power so it would have fairer chance in competing against the powerful offline adversary advantage,
by giving him better resources than the optimal offline algorithm to which it is compared. In bin-packing appli-
cations, the extra resource we give the online algorithm is additional bin space. In order to illustrate this idea for
packing applications, we use again the loading dock example: as we need to pack the trucks online, and know
that most probably the packing will not be optimal, we can consider taking a larger truck, hoping that the extra
space would cover up for the waste, and allow us to shift more items. The motivation is to preclude pathological
examples that may drive the worst-case competitive ratio; with resource augmentation we derive improved, more
realistic and meaningful competitive ratios. During the last few years the resource augmentation technique has
become a very popular tool, and it has been applied to many problems in scheduling (see [4],[22, 2]), in paging
(see [1], [5]), and in combinatorial optimization(see [20]). et {a;,as,...a,} be alist of items in0, 1].

The offline optimumO PT' (L) is the minimum number of unit-sized bins into which the itemg.ioan fit. We
investigate the behavior of on-line bounded space bin-packing algorithms that pack thénlistbins of size

b > 1. This larger bin sizé is the augmented resource of the on-line algorithm; the offline algorithm has to work
with bins of size 1. For an on-line algorithrhand a bin sizé, we denote by4;(L) the number of bins of size

b that algorithmA uses in packing the items ib. The asymptotic worst-case competitive ratio of algorithm

for bin sizeb, denoted byR% (b), is defined afRy] (b) := lim supy,_ { supy, {AI’IEL) OPT\(L) = k}} The

competitive ratio then becomes a function of the on-line bin &ize
Preliminaries. In this section we define the sequer{(té};‘il, that was originally introduced by Csirik and
Woeginger in [3], and will be essential in the definition and in the analysis of our algorithm.

Givenb > 1, we associate with it an infinite sequeriEgh) = {t,t,...} of positive integers, defined as
follows:

b1 2 1)

b _
t]=1[1+0] and r b_g’
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The intuition behindl'(b) is to find a sequence of positive integers, such that the next integer at each point is
picked greedily to be minimal, and the sum of their reciprocals is Iess;])than this interpretation, the value
rf represents the difference betwe?and the sum accumulated so far, after adding the reciprocal value of the
integert? to the sum. This means theft > 0, and

1 1
t?+1: {l—i-bJ and rfﬂzrb 1=1,2,.... (2)

)
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T, = g - . tb-. (3)
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Note that the next inequality directly follows from the definitions in (1) and (2):
1

b < . 4

Tic1 > tf 1 ( )

We now mention several facts on the sequéfi@e that will be used later. First, we observe that for every 1
the corresponding sequentépb) = {t4,t5, ...} is growing rapidly.

Lemma 1. For everyb > 1 :
() The values ot? are strictly increasing as a function of
(i) The values of? satisfyt? > b.

Lemma 2. For everyb > 1 the elements of the sequer(eé, t5, . . .} satisfy:
o >0 —1)+1  foralli>1. 5)

Csirik and Woeginger [3] used this sequence to define the function

o) = ©

i=1 1

p(b) is a strictly decreasing function éf(see Figure 1 in [3]). Note that(1) = ho ~ 1.69103.
Lemma 3. The infinite sum in the righthand side of (6) converges for every valaeof.

Previous work. The bin-packing problem holds a special place, both in the history of approximation algorithms
and in the history of on-line problems and has been studied extensively since the early 1970’s. Various heuristic
algorithms with guaranteed bounds on their performance were proposed for the classical problem. The demands
for on-line and bounded space algorithms arise in a wide variety of real-world applications, consequently, the
problem was analyzed thoroughly in the 1980's and the 1990’s. Among bounded space algorithms, those of
harmonic-typeplay an important role. First such algorithm was formulated by Lee and Lee in [21]. Their
sequences of algorithms Harmonic(k) are based on a special nonuniform partition of the ifitet/ato &
subintervals. To each of these subintervals there corresponds a single active bin and only items belonging to
this subinterval are packed into this bin. If some item does not fit into its assigned bin, this bin is closed and a
new bin is used. In [27] Woeginger presents a sequence of algorithms Simplified Harmonic(k), that work very
similarly to the Harmonic(k) algorithms, but use more complicated partition of the intgryH|, one based on a
Golomb sequences studied in [13]. (Note that it is the same sequence introduced in the above section, for the cas
b = 1). The asymptotic worst-case ratios of these algorithms apprbachs the number of active bins tends

to infinity; but none of the known bounded space algorithms reaches this bound while using a finite number of
active bins. On the negative side, Lee and Lee proved in [21] that no on-line approximation algorithm can have
a competitive ratio less than the constagt ~ 1.69103 using bounded space. The best on-line algorithm so far
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was developed by Seiden and has ACR 1.58889 [24]. This algorithm, called Harmonic++ belongs to the class of
Super Harmonic Algorithmglefined in [24]. The best on-line algorithms [21, 23] known prior to it, belong to

this class as well. The best known lower bound 1.5401 for the ACR of on-line algorithms has been given by van
Vliet [26], while the lower bound of any Super Harmonic type algorithm is 1.58333 [23]. From this lower bound
we can conclude that in order to get a solution which is very close to optimal, the algorithm cannot be online in
the usual sense, and we should consider a semi-online model which allows a small amount of modifications to the
solution produced by the algorithm (and thus partly lose its online quality). The first semi-online algorithm was
given by Galambos [7] for the bounded space version of the classical bin-packing problem where only a bounded
number of bins are open while packing. This algorithm uses two “buffer-bins” for temporary storing of items.
The idea was further developed by Galambos and Woeginger in [9], where they present an on-line algorithm
REPR; and demonstrate that the bouhg, can be reached with three active bins, if the algorithm is allowed to
repack the items within the three active bins (i.e. to move items from one active bin to another).

Bin-packing with resource augmentation was first studied by Csirik and Woeginger in [3]. They gave on-line
bounded space bin-packing algorithms for eveby 1, whose worst case ratio in this model comes arbitrary close
to thep(b) bound. Moreover, they proved that for evéry- 1 no on-line bounded space algorithm can perform
better thanp(b) in the worst case, thus showing that the optimal asymptotic competitive ratio for the on-line
bounded space algorithms with resource augmentatisra strictly decreasing functiomb) of b. Unbounded
space resource augmented bin-packing was studied in [6].

Our results and organization of the paper. In this paper we study the on-line bounded space bin-packing prob-
lem with limited repacking allowed, in the resource augmentation model of competitive analysis. Unfortunately,
the p(b) lower bound of Csirik and Woeginger carries over to this problem, too, as we prove in Section 4. We
extend the ideas in [9] for the resource augmented environment; We design, fob evéryan on-line algorithm

for resource augmented bounded space bin-packing problem called RESOURCE AUGMENTE®)RBP
shortly RAR;(b)), which is allowed to repack a constant number of active bins (three active bins to be precise)
and has exact worst-case competitive ratip@f), and so show that in a resource augmented environment, al-
lowing the repacking of finite number of bins, allows us to reach the exact optimal worst-case ratio instead of
achieving it in the limit.

The main tool we apply is weighting functions technique, which we introduced above. The weighting func-
tion we use in a generalized version of the one used in [27]. In order to adapt it to fit our purposes, we use an
alternative definition to the resource augmented bin-packing problem; We compare an on-line algorithm which
uses bins of sizé to an optimal offline algorithm whose bins are of s%zeWe assume that all item sizes are
bounded by% (i.e. the sizes of the items are scaled into the inte@a&]). This definition is equivalent to the
one mentioned above.

The paper is organized as follows. In Section 2 we present the weighting function we use and define our
algorithm RAR;(b), Section 3 is dedicated to a proof of its correctness. In Section 4 we analyze its worst-case
asymptotic behavior.

2 The algorithm RAR;(b)

Classification of the items. Recall that all the items have sizes in the inter(\ml%]. We classify the items
according to the following partition of the intervél, 1]. The partition of(0, ] changes according to different
values ofb.
Tt 17 ; . _ 1 1 . _ 1 1

Forb € [1,1.2) the partition of (0, ;] is as follows: B; = (E’ﬂ’ and fori > 2, B; = (t—b,fb—_l}
C; = (ﬁ, tib] andD; = (ﬁ, ﬁ] Note that in this case, by the definitions of the sequence in%(2),2,
5 = 3 and#} > 7. Thus, the results from [9] for = 1 hold, with few modifications, for this case as well, and
we only need to consider the case 1.2.

Forb > 1.2 the partition of(0, 1] is as follows: B; = (%, 3], fori > 2, B; = (%, tl?l—l] and fori > 1,
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Ci == (tb}i-l’ tb] andD == (tlb_'_ﬁ’ tgﬁ]

From definition of the sequenceg and by inequality (5), we can see that the above partition of the interval
(0, %} is well defined for any > 1. The B;, C; and D-type intervals do not overlap, and cover the entire interval.
Definition of the weights. Let us define our weighting functio’ (z) : (0, 1] — R*.

$+m for %<x§% and i=1 (£-1<b<t))
1 .
W(.Q?): ZE’—FW fOI’ E 1 and ZZ2
b
Ll for <:c< and i>1

b b _q
ti t1+1

This weighting function is similar to the weighting function in [27].
Itis not difficult to prove the following properties of our weighting function.

Observation 4. For anyb > 1.

(i) W(x) is nondecreasing if0, 1].

) , b
i) Fori>1andz <4, Y@ <4+ pods.
tb? T tb

(i) Fori>1andz > 51—, "> B 2 holds.
7.—0—1

Lemma 5. For anyb > 1: given an item of size < let ¢ be an integer such thatr € (@%1, %] Then, for

bll

any item of sizg > 717, "% > &2 holds.

Proof. Itemx can be a B, C;- or D;- item. We discuss these cases separately.

If = € By, for somej > 2, then/ = tb —1 = 5 = ¢+ 1. Foranyy > by Observation 4(iii),

_1
b_ 1
tj 1

W tb 41 tb+1 . .
# > Jt;,%l =1+ t§’-1,1 > 1+71]b_ - th_ = 2, ast’ | < ! forany;j > 2. Foranyy € Bj, again by

W(y) < B+l 42
Observation 4("')T > Jtl],_ = 7

. 1
If = € C;, for somej > 2, then? = 0. If y > tb%l by Observation 4(|||),@ > ]tb1+ =1+ t,}
J j—1 j—1

_ B2 oo b b ;

1+tb >1+t”+1 = t§+1 = {11 ast; 1<tjforanyj > 2.
. 2
If y € B;UC;, again by Observation 4(|||)‘f% e A AR + ,, > 1+ th = :bi 2, ast? > 0 for any
J

Jj>2.
IfxeDj,forsomej>2,then62t§?+1:>£+12t?+2and£+1gtb-

; j+1 — 1. From this, we get
o2 _
dr=l+mps1l+

tb+2

b
T, by Observation 4(|||) ) > 4 H

tb+2 > ﬁﬁ ast? > 0 for any; > 2.

O
The resource augmented repacking algorithm. In this section we define the RESOURCE AUGMENTED
RER;(b) algorithm (RAR(b) for short), forb > 1. Our algorithm is a generalization of the algorithm REP
introduced in [9] forb = 1. It uses a well knowrrirst-Fit Decreasingheuristic (FFD) with a small modification.
Given a list of items, the original FFD first sorts the items in non-increasing order according to sizes, and then
appliesFirst-Fit (FF) algorithm that goes through the sorted list and places each item in turn into the lowest
indexed bin where it fits. A new bin is opened only in the case an item does not fit into any non-empty bin. Our
algorithm always keeps three active bins that we call BBIN; and BIN;. RAR3(b) proceeds as follows:

1

tg : _1+tb>1+

(1) Get a new itemx and putz into an empty active bin.
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(2) Remove all items from the three active bins.
(3) Sort the items by a non-increasing order of their sizes.
(4) Scan the sorted list.

(4.1) If zis a B;-item for somei > 1 and there is a set oft? — 1) B;-items (includingz), remove these
items from the list and pack them using one active bin.

(4.2) If zis aC;-item for some; > 1 and there is a set odf C;-items (includingz), remove these items
from the list and pack them using one active bin.

(4.3) Apply FF on the items in the list.

(5) Compute the weight of each active bin, close any bins having a total weight at least 1 and open new bins
instead of them. Go to Step (1).

3 Proof of correctness

The crucial step of the algorithm RARD) is Step (4). The main part of this section is devoted to establishing the
fact that Step (4) is always possible, and that after Step (4) either at least one bin is empty or at least one bin has
weight greater or equal to one, thus being closed after Step (5) and an empty bin is open instead of it. Thus, Step
(1) is well defined. To do this, we prove the following theorems.

Similarly to [9], we call agood packingo a packing with an empty bin, andyaod subseof items is a subset of

weight greater or equal one and of size at most one. The following holds:

Lemma 6. For anyb > 1 and: > 1:
(i) (t?—1) B;-items compose a good subset.
(i) t* C;-items compose a good subset.

Theorem 7. Let BIN;, BIN, and BIN; be three active bins. Then we can either repack the bins by FFD to
produce a packing with an empty bin or we can find a subset of items with weight at least one and size at most
one. Such a subset is either the contents of a bin in the FFD-packing, or found in Step (4.1) or Step (4.2).

Proof. We assume that it is neither possible to produce a good packing (a packing with an empty bin), nor to
find a good subset of items (a subset of weight greater or equal one and of size at most one), and we derive &
contradiction from this. Since we assumed that there neither exists a good packing nor a good subset, in the
produced FFD-packing neither BiNvill be empty, nor will there be a bin with weight greater or equal one.
We will prove a number of combinatorial properties of the FFD-packing. Our purpose is to show that by assuming
the above, we get that Bf\tan not possibly contain any of thig-, C;- or D;- items, and thus FFD-packing is a
good packing as it leaves an empty bin.

First, we consider the ca$e> 1.2, and the corresponding partition @f, %}. The proof is split into several
claims.
Claim 1a.

(i) Forb € [1.2,2) : In the FFD-packing, no bin contains B, -itemz.

(i) For other values of ib > 2): In the FFD-packing, neither BIjNnor BIN; contains anyB; -itemz.



Proof. (i) If such an itemz exists, therlV (z) = = + m > % + % = 1 sincet} = 2. So everyB;-item

has weight of at least 1, and any subset of items containing this item would form a good subset. We derive a
contradiction.

(i) Assume by contradiction that B, -item = was put by the packing into BWNor BIN3. Sincex was not put

into BIN; and we apply FFD, BINmust contain b| = t? — 1 B;-items, which form a good subset by Lemma

6(i) for ¢ = 1. Again, the contents of BINwill form a good subset, in contradiction to our assumption. [

Claim 2a. For any value ob > 1.2: In the FFD-packing, neither BINnor BINs; contains anyD;-itemzx, i > 1.

Proof. Assume the opposite: that either BINr BIN3 contains aD;-item z. Sincex was not put into BIN,

BIN; is at Ieast t fuII with items of size greater thaﬂ— (sincex € ( |, and we apply FFD).

By Observation 4(|||), fory > 1—, % > 4 e

141

-1’ tb+1

holds. But now, the total weight of BINis at least:
byl

t+1 b

Claim 3a.

o Forb >3 (th > 4):

In the FFD-packing, neither BINnor BIN; contains anyB;-itemzx, ¢ > 2.

oForbe[2,3) (8 =3,t5 > 7):

In the FFD-packing, neither BINnor BIN; contains anyB;-itemzx, i > 3.

For values ob that satisfytg > 9, neither BIN nor BIN; containsBsy-item.

For values ob that satisfyt; € {7,8}, BINy and BIN; together contain at most ongy-item.

oForb e [1.2,2) (8 = 2,t5 > 4):

In the FFD-packing, neither BINnor BIN; contains anyB;-itemz, ¢ > 3.

For values of that satisfytg > 6, neither BIN nor BIN; contains anyB,-item.

For values ofb that satisfytg € {4,5}, BIN; and BIN; both contain at most on8,-item. Proof. Assume, by

contradiction, that for sométhere is aB;-item = in BINy (without loss of generality). We denote by the

overall size of all items in BIN that are larger than th8;-items. By Observation 4(iii), the total weight of

= 1, and the contents of BINwould be a good subset, in contradiction to the assumption. [

b
these items is at Ieaé@)(. Let 8 be the number oB;-items in BIN;, and letB denote their overall size.

b
So W(BIN;)> = 1+1X + B+ z‘b(tb - Using the fact that by the assumptigin(BIN;)< 1 must hold, as the
contents of BIN is not a good subset, we get:
o +1 3
= X+B + — < 1. @)
tifl ( - 1)
. We subtract the last inequality
multlphed by (t? | + 1) from (7) multiplied byt?_, to get:
o tb —9
P 2w e (8)

- v - < S =
b —1) Tt b
In addition, we know that everg;-item in BIN; has size at mos% and there are exactl§ such items, this

impliesB < <7 Plugglng this into inequality (8) and S|mpI|fy|ng the resulting inequality yields:
th—tb | —2 2t
> Li=tia=2 b T 9
B tb ti) . 7 1 t? B ti')_l ( )

If the righthand side of (9) is at leagt— 3, that means that is at least? — 2. Together with the item: in BIN.,
there are at Ieastﬁ?(— 1) B;-items. By Lemma 6(i) thoset?(— 1) B;-items form a good subset. Thus we derive
a contradiction.



So, we have to check for which valuesidhe righthand side of (9) is at Ieaté}t— 3, and the above holdﬁ:—

Ei S th —3 = t2 —3t2_ | > 0If we apply (5) to the last inequality, we g&t— 3> |, > (t¢ , — 1) +

to— tf .
1-3t2 =2 )2 —4t2 | +1>0.So,t? | > 3.73 must hold, i.e? |, > 4 (ast® is a sequence of integers).
We would like to find the value afstarting from which this holds for the different valueshoiVe split the proof
to several subcases, in accordance to the vallbearid treat them separately. There are three cases we need to
considerd € [1.2,2), b € [2,3) andb > 3. We now treat these cases one by one.

o Forb > 3: In the casé > 3, t’{ >4, and{tf} is an increasing sequence, sofer 1 > 1 = i > 2 there
are noB;-items in BIN; or in BIN3.

o For b € [1.2,2): By the definition of the{t?} sequence in (2), for values éfin this interval: t} = 2,

rb=1_1landt}= L1+#J = L1+%ﬁj =1+ = |1+ 2] = | 222 ]. Since| 22| is non-decreasing
2 2b

forb ¢ [1.2,2), tg > 4 holds. Also{tﬁ?} is an increasing sequence. So for 1 > 2 = ¢ > 3, according to
previous considerations, there areﬁpitems in BIN; or in BINs.

Itis left to consider the3, € (L items. As to the casie= 2: According to (9),3 > t — 263

th—tb

2t5

b
=13 th—2

55— 1]
2t2

holds. We check which values ofsatisfyt} — > t5 — 3. This is equivalent te} > 6. So, for values ob

that satisfyty > 6, BIN, and BIN; can not contam Bo-item.
But we showed that fob € [1.2,2) t§ > 4 holds. So it is left for us to check what happens for valugsiofthis
interval that satisfy = 4 ort} = 5.

2t5

In the case}, = 4: the righthand side of (9) ig} — 75 =0, and this yields? > 1. So there is at least one
2

Bs-item in BIN;. If there are two or morés-items in both BIN and BIN;, it means that in total there are at
least threeBs-items in the set, and according to Lemma 6(i) fet 2, three of those items form a good subset,
and we get a contradiction. So BjMind BIN; contain together at most one such item.

In the case}, = 5: the righthand side of (9) ig5 — tft_gQ ~ 1.66, and this yields3 > 2. So there are at least
two Bs-items in BIN;. If there are two or moré?z-items2 in BIN, and BIN; together, it means that in total there
are at least fouBs-items in the set, and according to Lemma 6(i) for 2, four of those items form a good
subset, and we get a contradiction. So Bid BIN; contain together at most one such item.

o Forb € [2,3): According to the definition of thet’} sequence in (2), for values ofin this interval:

th=3r=¢—gandth=[1+ %] =[1+ 5] =[1+ ,,J = |32 ], Since| £ | is non-decreasing
1 b 3

for b € [2,3), t§ > 7 holds, and{t’} is an increasing sequence Sofor 1 > 2 = i > 3, according to
previous considerations, there are Bgitems in BIN, or in BIN3. It is left for us to check the cage= 2: the

rlghthand side of (9) ist} — 2t2 =th— tftgg. We would like to know for which values &t 3 > ¢} — 3, that is

> ¢4 — 3, and for these values we get that there are notBgitems in BIN, or in BIN3. So, we get

tg tb 3
that for values ob in [2, 3) that satlsfyt2 > 9, the above holds.
We showed that fob € [2,3) ¢} > 7 holds. We also showed that for valueshdhat satisfyt} > 9 there are no
B;-items in BIN, or in BINs.

So, itis left for us to examine what happens for values iofthis interval that satisfy = 7 ort} = 8.

b

In the case’ = 7: the righthand side of (9) is5 — tftjg = 3.5, and this yield$? > 4. So there are at least
2

four Bo-items in BIN;. If there are two or moré,-items in both BIN and BIN;, it means that in total we have
at least sixBy-items in the set, and according to Lemma 6(i) foe 2, six of those items form a good subset,

and we get a contradiction. So BjMind BIN; together contain at most one such item.

In the case’ = 8: the righthand side of (9) is5 — tftgg = 4.8, and this yields3 > 5. So there are at least

-

five By-items in BIN;. If there are two or morés,-items in BIN, and BIN; together, it means that altogether we
have at least seveB;-items in the set, and according to Lemma 6(i)#ef 2, seven of those items form a good

subset, and we get a contradiction. So Bid BIN; contain together at most one such item. O




Claim 4a. For b > 1.2: In the FFD-packing, neither BINnor BIN; contains anyC-item .
Proof. We will split the proof to two subcases.

Forb € [1.2,2): Assume the opposite, that there i€ g-item in BINy (without loss of generality). We
have proved in Claim la that in this case no bin contains Bmyjtem. Consequently, thé-item z is the
largest possible item in these three bins. sAdid not fit into BIN;, BIN; must contain twaC -items (since
C € (tg+1’ tli] and forb € [1.2,2) t% = 2 holds). According to Lemma 6(ii) far = 1, these twaC; -items in

BIN; define a good subset, so BiMontains a good subset, an existence of which contradicts our assumption.
So the contrary holds.

Forb > 2: Assume that there is @;-item in BIN3. That means that there azt’{e()l-items in BIN, (since
we have proved in Claim la that for> 2 there are not anys; -items in BIN,, we do FFD and: did not fit into
BIN2). According to Lemma 6(ii) foi = 1, theset? C;- items in BIN, form a good subset, so Bi\contains a
good subset-again we derive a contradiction. So, there a€§ #iems in BIN;. Regarding BIN; sinceb > 2,
BIN; may contain aB;-item. Assume that there is@ -item x in BIN,. If BIN ; contains naB; -items, we can
argue analogously to above (only now it is the contents of;Bht will form a good subset). Hence, we may
assume that BINdoes contain somB;-item. We have assumed that BJl& not empty (otherwise we produce
a packing with an empty bin, in contrary to the assumption).cLieé an item that arrived at BN We discussed
the case where is a(C-item above. So assumeis not aC;-item. Then any item that arrives at BjMdan be
at most aBs-item (because we proved that there can not befangnd D items in BIN;), and thus has size at
most; 1 . Since we showed in Claim 2a that there arelhatems in BIN; for ¢ > 1, BIN3 can contain onlyB;

andCZ,z > 2 items. Sav has to be one of those. There is a positive intégéar whicha € (e+1’ 0> t5—1.
Sincea did not fit into BIN;, BIN; is full by more thanl — 7 L with items of size more thagﬁ Let these items
beqi, ¢, ..., qm, 1 € By. Because we used FFBR, > ¢2 > ... > ¢, > « holds. By Theorem 5, we may claim
that for a intege¥ and an item of size greater th%_l:—'}, the ratio between its weight and its size is at I%%t
So, the total weight of the items in BIiNs at least

m

Z 1 Z 1 1 l £+2
[/[/ i = _— ‘/1/ Z > _— 1 _ - —
2 1 1

(IR RS R Ty

But( > t5 —1 > t4(t} — 1) holds (by Lemma 2). Alsq; < - (sinceq, is aB; item) andq1 < 3 < £ since
1

b 1 1 _ 440—-20—2 __
tt —1 < bandb > 2, soW(BINl) >1- (e+1) st =1 ‘Hmn = 1- 2€(é+1) We want to know
when W(BIN))> 1, i.e. when 4=

2£(f+1) < 0. 2¢(¢£ 4 1) > 0 for any positive integef, and2 — ¢ < 0 for ¢ > 2.
Sincel > tg -1, andtg > 6 foranyb > 2, ¢ > 5, and the above holds. So, W(BIN> 1, thus the contents
of BIN; form a good subset in contradiction to our assumption. We conclude thatdids not contain any
C4-item, either. O
Claim 5a. For b € [1.2,2) that satisfyt} € {4,5}, and forb € [2, 3) that satisfyt} € {7, 8}:

In the FFD-packing the bin BIjNdoes not contain anggs-itemy.

Proof. We have proved for these valuestofamong others) that BINand BIN; do not contain any3y, C; or
D, item. Consequently, thBs-itemy is the largest possible item in these two bins. We also proved in Claim 3a,
that for the mentioned values b&fthe bins BIN and BIN; together contain at most orig-item. So FFD puts
this singleBs-item into BIN,. O
Claim 6a.

For anyb € [1.2,3) : In the FFD-packing, BIN cannot contain any;-itemx with i > 3.

For b > 3 : In the FFD-packing BIN cannot contain any’;-itemx with i > 2.

Proof. Assume by contradiction that Bf\contains somé&’;-item z. We denote byY the overall size of items
in BIN, that are larger than th€;-items. All of these items are at leaSt_;-items. That is true starting with
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i > 3, since there are n®; | and B;, ¢ > 3 items in BIN,. That does not always hold far= 2 though,
as forb € [1.2,3) there may be &s-item in BIN,. By Observation 4(jii), the total weight of these items is at

b
Ieast(tlt 1y Let v be the number of’;-items in BIN;, and denote their overall size lay. SoWW (BIN2)>
i—1
b

(& tb1+1) Y+ t%“ C. Since by the assumption the contents of Bidinot a good subsell’ (BIN3)< 1 holds, and

this ylelds
L +1 41
(“; )y+lt C<1. (10)

tifl ti

Since theCj-item x < tlb did not fit into BIN,, we haveY + C > t?tgl. We multiply the last inequality by

(tﬁ?_1 + 1) and the ineqL;aIity (10) by the factcé?r_l. Subtracting one inequality from the other gives:

b b b b

tb tb
We divide both sides of the inequality 98¢, — ¢*). Note thatt? ; < ¢® (oy Lemma 1).
o —th 41 1 1
> =l =1 (11)
ti—l - tz ti—l - tz tz - ti—l

Moreover,C < 0] holds (since size of eadl);-item is at most; and there are of those). Combining this with

the inequality (11) we derive:

b t
S B (12)

If the righthand side of (12) is larger thah— 2, that means we have at ledst — 1) C;-items in BIN,, and at
least one”;-item in BIN3. Together that give$ C;-items in the set. By Lemma 6(ii) th%&(]i—items construct
a good subset, and thus we derive a contradiction as wanted.

So, we want to check for which valuesighe inequalityt? — >t0—-2 = t?—2t% | > 0holds. If we apply

i
Lemma 2 to the above inequality, we g&t—2t? | > t? | (tiL1 —)+1-2t2 = (0 )2t +1-2t | =
(t? )2 —3t2_, +1>0. Sowe getthat’ , > 2.61 must hold, i.e£?_, > 3.

But for b > 1.2, t5 > 4 holds, and{t?} is an increasing sequence. So this holds starting vt > 2 =
i > 3. Thus forb € [1.2, 3) there are n@;-items withi > 3 in BINj.

Forb > 3, tl{ > 4 already, and there are ri8,-items in BIN,. So the above holds starting with= 2, and
BIN3 cannot contain ang’s-item. O
Claim 7a. For b € [1.2,3): In the FFD-packing, BIN cannot contain any’s-item.

Proof. Recall that in this case there can b8gitem in BIN,.

Assume, by contradiction, that BjNcontains somé&’s-item z. Note that in Claim 5a we showed that BIN
does not contailB,-items. If BIN, does not contain &,-item, it must contaiﬁg Cy-items. This is because the
Cs-items are the largest items that can be in Bisince we have proved that BjMdannot contain any;, Cy or
D, item, and sincer did not fit in it. By Lemma 6(ii) fori = 2, thoset}, Cs-items form a good subset, and thus
we derive a contradiction. So BjNcannot contain &'>-item

Hence, we may assume that BINoes contain somBs-item y (and by Claims 3a and 5a it is the onBg-item

in BIN3). In Claim 3a we showed that this is possible only for those valuésrointerval [1.2, 2) which satisfy

tb =4 orty = 5, or for values ob in interval[2, 3) which satisfyt} = 7 or ¢} = 8 (in the other cases we proved
there cannot b&s-item in BINy). We split the proof to consider each one of these options separately.

(A)(1) For values ob in [1.2,2) that satisfy t5 = 4: B, = (1,3], C2 = (3, 4]

Similarly as in the proof of Claim 3a, we denote Kythe overall size of all items in BINthat are larger than
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the Bsy-items (i.e. larger thaé). By Observation 4(iii), the total weight of these items is at Ié%&X = %X,
th =2
Let the number oB,-items in BIN; be 3, and denote their overall size 8. ThenW (BIN;) < 1 (that holds by
the assumption) implies:
§X+B+Lz§X+B+£<1 (13)
2 s —1) 2 12 7
As the Co-item 2z < % did not fit into BIN,, it is at least? full, so we haveX + B > 2. We subtract the last
inequality multiplied by% from (13). This yieldsB > i + g. Finally, we plug inB < % (there are3 B,—items,
each of size smaller tha@), and derive: g > % + % = 3> % i.e B > 2. Altogether (both in BIN and
BIN5), there are at least thrdg,-items, and according to Lemma 6(i) fore= 2, those three items form a good
subset. So, again we detected a good subset of items in the set.
(A)(2) For values obin [1.2,2) that satisfy t3 = 5: By = (£,1], Co = (3,1]
Once again, we denote by the overall size of all items in BINthat are larger than thBs-items (i.e. larger
than% in this case). By Observation 4(iii), the total weight of these items is at fé?sﬁ( = %X, th = 2.

Let the number of32-items in BIN; be 3, denote their overall size b§. ThenWW (BIN;) < 1 implies:
3 p 3 p

“X+B =-X+B+ <1 14
2h T +ﬁ%@—1) 2" TPy (14)

As Co-item 2 < 1 did not fit into BINy, it is at least? full, so we have:X + B > 2. We subtract the last
inequality multiplied by% from (14). This yieldsB > % + %. We plug inB < % (there are3 B,-items, each of
size smaller thag), and derive: 2 > 2 + & — 5> 8, ie §> 3. Altogether, in BIN and BIN, there are
at least fourB,-items, and according to lemma 6(i) fbe= 2, those four items form a good subset.
B)(1) For values o in [2,3) that satisfy t3 =71 By = (3, 4], Co = (3, 1]
Again, we denote by the overall size of all items in BINthat are larger than thB,-items (i.e. larger tha%).
By Observation 4(iii), the total weight of these items is at Iég#b X =3Xth=3
1

Let the number of32-items in BIN; be 3, and denote by3 their overall size. Thef/ (BIN;) < 1 implies:

4 B 4 g

- X+B+—+—7F—=-X4+B+-—=<1. 15

37 T *ﬁyg_1) 30 TP (15)
As theCo-itemz < 1 did not fit into BIN;, we have:X + B > &. We subtract the last inequality multiplied by
% from (15). This yieldsB > % + %. Finally, we plug inB < % (there arg3 By-items, each of size smaller than
1), and derive: % >3 4 1—54 = >3, ie B> 5. Altogether, there are at least dfi-items (in BIN; and
BIN, together), and according to Lemma 6(i) for 2, those six items form a good subset.

B)(2) For values ob in [2,3) that satisfy t} =8 B, = (},1], C2=(3,3]
As before, we denote by the overall size of all items in BINthat are larger than thB,-items (i.e. larger than
b

1). By Observation 4(jii), the total weight of these items is at Ié%iX =3X,t§ =3,
Let the number oB32-items in BIN; be 3, and denote their overall size 8. ThenW (BIN;) < 1 implies:

4 p 4 p

- X+B+—+—7F7—=-X4+B+—=<1. 16

37 T *ﬁygf1) 37 TP 56 (16)
As theCs-itemz < % did not fit into BIN;, we have:X + B > g. We subtract the last inequality multiplied by
% from (16). This yieldsB > % + %. Finally, we plug inB < g (there ares Bs-items, each of size smaller
than%), and derive: g > %4— % = 3> % i.e (3 > 6. Together with the singl&,-item in BIN, there are
at least sevei®,-items (in BIN; and BIN, together), and according to Lemma 6(i) for 2, those seven items
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form a good subset. In all the cases we derived a contradiction to our assumptions by showing the existence of a
good subset. So, the opposite holds. O
Summarizing, in Claims la through 7a we have shown that forl .2 in the FFD-packing BIN can neither
contain aB;-, nor aC;-, nor aD;-item, under our assumptions. Thus, BINN empty, and the FFD-packing is a
good packing. This is the final contradiction, which completes the proof of Theorem 7 for thie zake.
As to the casé € [1,1.2) and the suitable partition @b, +]. Note that in this case, by the definitions of the
sequence in (2Y% = 2,t} = 3 and#} > 7. Thus, the proof from [9] fob = 1 that in the FFD-packing BIjNcan
neither contain &;-, nor aC;-, hor aD;-item holds, using a small number of modifications.
Recall that our main assumption was a non-existence of a good subset and of a good packing, we saw that
for anyb > 1 the opposite holds, and we can always obtain a good packing or a good subset. O
Now, let us show that Step (4) is always executable and well-defined.

Theorem 8. For anyb > 1: The algorithm RARb) can be implemented so that it never gets stuck in Step (4).

Proof. The proof is by induction on the number of packed items. We keep the following invariant: Ag(BAR
receives a new item to pack, one of the three active bins is empty. Without loss of generality, let this biry be BIN
and the rest of the items are packed in the remaining two active bins. Obviously, this invariant holdss@s)RAR
receives the firstitem. Assume it holds after the packing of ignand consider the moment RA®) receives

a;+1. By inductive assumption, there is a set of items that were packed in the previous step into two of the three
active bins by RAR(b) and BIN; is empty at this point. When itemy; arrives, itis put into BIN in Step (1).

Then we remove all the items from the bins and sort them in non-increasing order by their size. There are two
possible cases:

(i) The algorithm finds a good subset(@j’ —1) B;-items ortf C;-items, and after we remove theBgitems
in Step (4.1) oIC;-items in Step (4.2) from the set, RA®) packs the remaining items in the set (which are still
sorted in non-increasing order) by FF using two bins in Step (4.3).

(i) RAR3(b) packs the entire set of items by FF using three bins in Step (4.3).

We discuss these two cases separately. We claim that all items can be packed. (i) If we perform Step (4.1), it
means that the new item that has arrived i3;dtem, thus completes the amountBf-items in the list tcti? -1
(otherwise, if the new item is not B;-item and there aret{ — 1) B;-items present in the set we would have
combined them as a good subset in the previous step). If we perform Step (4.2), it means that the new item that
has arrived is &;-item, thus completes the amount@f-items in the list tot? (by similar considerations). In
any case, by Lemma 6 we know that these items form a good subset and fit into a single bin. We put them in
BIN3. Then we go to Step (4.3) and pack the rest of the items in Bin BIN, by FF. Assume by contradiction
that some item does not fit in any of those bins. First, we consider the case when the good subset we remove
consists ofB;-items. Fort? = 2: z € (1,1] (t) = 2fori = 1, ast} > 3 for anyb > 1 andt! fori > 2is
even greater, sindé is a strictly increasing sequence). Theris a B;-item, but by Lemma 6(i) fof = 1 suchz
forms a good subset by itself, so there can not be sigihce the algorithm removes it as a good subset in Step
(4.1) as soon as it arrives. Fti’rz 3: we remove(ﬁ? — 2) B;-items (not including the new item) from the set.

The total size of the removed items is at Ie;%st(tf —2)=1- t% > 1, ast? > 3.

In the case the good subset we remove consis{s-atems; Forti? > 2: we removez(f — 1) C;-items (not

including the new item) from the set. The total size of the removed items is atjeastt? —1) = 1— 2 > 3,

astf > 2. So, asz did not fit in any of BIN, or BIN,, and we assumed the entire set of items (without the new
item) fits in two bins, the sum of the sizes of all the items that remain in the set after we remove the good subset
(which has to contain;_ ) either in Step (4.1) or Step (4.2), is upper bounde@b@&s z did not fit in in any of
the two bins, each of these bins is more than z full. We get2(1 —2) + 2z < g =z > % So, we are looking
at values of: in (3, 1]. There are few possible cases:

oth =2andt5 =3 (b € [1,1.2)). Thenz is a By-item, asB; = (3, 3].
In this case, the size of any of the items in BI&nd BIN, is greater or equal te as they are packed by FFD
heuristic, but less thaé (otherwise they are removed as a good subset in earlier stage), hence all these items
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have sizes in the intervél%, %] Thus, they are als®,-items. So, as there was no room fgreach of the bins

BIN; and BIN, contains exactly two such items, who by Lemma 6(i)#ef 2 form a good subset aB,-items.

But that is not possible, as according to our algorithm such subset is removed from the sorted list as soon as the
secondBs-item arrives. So we get a contradiction.

oth =2andt} > 3 (b € [1.2,2)). Thenz is aCy-item, asCy = (3, 3].

In this case, a very similar consideration as in the case above combined with Lemma 6(#) fashows that if
there are twa’; -items in BIN; or BIN,; we get a contradiction.

ot? =3 (b€ [2,3)). Thenz is aBy-item, asB; = (3, 1].

In this case, a very similar consideration as in the case above combined with Lemma 6&) foshows that if
there are twaB;-items in BIN; or BIN, we get a contradiction.

oth >3 (|14b] >3=[b] >2=b>3). Inthis case there can not be an item from inte(Val3] in the
list, as the size of any item is bounded from above}bynd heré > 3.

So, as we showed that any of the cases above is not possible according to our algorithm, we can conclude there
is no such itenx, and hence after we remove the good subse®;abr C;-items from the set and put them into

BINs, all the remaining items being packed by FF fit in two active bins. Then we just move on to Step (5) where
BIN3 is closed and replaced by a empty bin. Thus, the invariant holds after we pack. thigem.

(ii) In this case, there is no good subset{tjf— 1) B;-items ort? C;-items in the set. So, the new item,
has size ir(o, %] (otherwise it would form a good subset Bf -items all by itself). We pack the set of items by
FFD heuristic using the three active bins. Assume by contradiction that some dess not fit in any of those
bins. Asz did not fitin any of BIN or BIN;, and we assumed the entire set of items (without the newdten)
fits in two bins, the sum of the sizes of all the items in the set after we receive the new item is upper bounded by
2.5. Asz did not fitin in any of these bins, each bin is more thanz full. We get3(1—2) +2 < 2.5 = z > 1.

So, we are looking at values ofin (1, 1].

This z can not be from interva(3, ; |, because such forms a good subset dB;-items by itself, and the
algorithm removes it in Step (4.1) as soon as it arrivesz So(i, %] We distinguish between two subcases.

oz € (%, %} . In this case, the size of any of the items in B|JBIN5 and BIN; is greater or equal to as they
are packed by FFD heuristic, but at mésthence all these items have sizes in the inte@a%]. So, asz did
not fit in any bin, each of the bins BINBIN, and BIN; contains exactly two such items, hence, together with
there are 7 items with sizes {#, 3] in the set. Before;,; arrived there were at least 6 of those items in the set,
and this contradicts the invariant that holds according to our assumption, because these items could not possibly
be packed in two active bins, as their overall size is greater than 2.

oz € (i, %} . In this case, the size of any of the items in BIBIN, and BIN; is greater or equal te as they
are packed by FFD heuristic, but at mgsthence these items have sizes in inteféal3] orin (1, ]. Assume
that there are items from(3, 3] andb items from(%, 1]. In total, there can be at most 7 such items in the set,
as we assumed the entire set of items (without the new item) fits in two bias}do< 7. On the other hand,

a < 1 must hold, since we saw in the case discussed earlier that two items with (s?oz%i}nform a good subset,
in contradiction to our assumption that there is no good subgBt of C;-items in the set. I& = 0, as there was
no room forz, each of the bins BIN BIN, and BIN; contains exactly three items with sizes(ib, %] hence,
together withz there are 10 such items in the set-a contradictiantad < 7. If a = 1, as there was no room for
z, BIN; contains one item with size i}, 7] and either one or two items with sizes (i, 1|, BIN; and BIN;
contains three items with sizes (rj, é] each. Hence, together withthere are 8 or 9 such items in the set-a
contradiction tax + b < 7.

So, as we showed that any of the cases above is not possible according to our algorithm, we can conclude
there is no such item, and hence all the items (including the new item) being packed by FFD heuristic fit in
three active bins. According to Theorem 7, either these items are packed into two bins such thatEshlibty-in
this case we go to Step (5) and the invariant is fulfilled, or we detect a good subset;imBB\N-- in this case
we go to Step (5) where the bin that contains the good subset is closed, and a new bin is opened instead. So ir
both cases the invariant holds as we finish packing:the item. O
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4 The asymptotic competitive ratio of RAR;(b)

To establish the upper bound, we use the weighting function technique.

Theorem 9. For anyb > 1: In any packing of a list into bins of sizeé—, the weight of any bin is at mogtb).
Hence W (L) < p(b) OPT%(L) holds.

Proof. Let us consider some fixed bii (of size %) that contains itemg; > ¢ > ... > ¢n,. Obviously
S, @i < + holds. We distinguish between two cases.

(@)q; € (tb, - 1] fori=1,. m. Then, by the definition of the weighting function
W(B) = LI Wa) = X (qi + @) = Do Gt i e i 5 < - i i
as>.", qi < 3 holds. Note that from (3) we can see that= 1 — >, tlb and from (4) fori = m + 1 we get

1 w—mtl 1
i=1 tb Tt o1 > 1S

b
rmgt

- Plugging this into the above inequality we g&t(B) < > "
m+1
S, 5 = p(b). So the weight of bir3 is upper bounded by(b).

i=14¢0_1

1

(b) Now assumes < m is the least such thaty; ¢ (tb, T

] and hencey, < b (as any of the items

qi,.-.,qs—1 IS contained in an mtervé@, T -] for the correspondmg P> g > tb+ ot s
11 1 ) i
holds, combining this with (3) and (4) far= s, we getgs < 7 t—b + t—b — .= E =r,_; < ) and

together with the fac, ¢ (tb, T 74|, this implies the inequality stated above).

We denote by the sum of the S|zes of the remaining itegsvith ¢ > s. Q@ = > _¢;. Sinced ", ¢; =
Zf‘l ql + 30 g < b, Q+ ZZ 16 < 1 holds. As any of the itemg, . .., ¢;_1 iS contained in an interval

(tlb, tb 1] it has size of at Ieag} for the correspondlng Combining this with (3) and (4) far= s, we get that
Q<l-Yyrlg<i-yo 11 tl,, =rb < (tb 75~ Since the largest one of the, ..., g, items, g, has size

in (0, tib] we conclude that the size of every one of these items is at fﬁomhen by Observation 4(ii), their
overall weight is at mos’ii)'tT Q. As ZZ 14 < —Qwe getiv (B) < Zf:ll %Jrzl 1 fb+1 0<

tb tb 1) t0
b
*—Q+Zz 1tb(tb 1)+t‘§tt1'Q *_Q"i‘Zz 1tbtb 1)+Q+tb Q b+ZZ 1tbtb 1 tb QUsmg
Q< tb 1 (proved above), wederl\W( )< +Zl 1tbtb 0 +é-(tb 0 b+ZZ 1t,, 1 Zflltler
t1571,1 - é = % B Zz:l t;’ + Zz:l ti?_l'

Note that from (3) we can see thdt= %—Zf 1 tb, and from (4) fori
this into the above inequality we g#it (B) < s tb - = Zf+11 tbl < Zl . tb - = (b). Thus
the weight of the bin3 is at mostp(b). The number of such bins is OI?UI) and the proof of Theorem (9) is
complete. O

As the repacking in our algorithm is done within the active bins, the lower bound from [3] carries over to our
problem as well.

Theorem 10. For anyb > 1 and for any on-line bounded space bin-packing algorithrthat allows repacking
within & active bins, we hav&°° (b) > p(b) .

Theorem 11. For anyb > 1: The algorithm RAR(b) has the best possible worst case competitive .

Proof. To prove that RAR(b) has the best possible worst-case competitive atip note that for any list. of
items, RAR(b)< W (L) + 3 holds (the algorithm closes only bins of weight at least 1 and the last three active
bins are added). Combining this with Theorem 9, we get RRR-3< W (L) < p(b) OPT% (L). Together with

the lower bound of Theorem 10 we get that the competitive ratio of KBRS p(b). O
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