
The Conference Call Search Problem in Wireless Networks?

Leah Epstein1, and Asaf Levin2

1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel. lea@math.haifa.ac.il
2 Department of Statistics, The Hebrew University, Jerusalem, Israel. levinas@mscc.huji.ac.il.

Abstract. Cellular telephony systems, where locations of mobile users are unknown at some

times, are becoming more common. In such systems, mobile users are roaming in a zone and a

user reports its location only if it leaves the zone entirely. The Conference Call Search problem

(CCS) deals with tracking a set of mobile users in order to establish a call. To find a single

roaming user, the system may need to search each cell where the user may be located. The goal

is to identify the location of all users, within bounded time, satisfying some additional constraints

on the search scheme.

We consider cellular systems with n cells and m mobile users (cellular phones). The uncertain

location of users is given by m probability distribution vectors. Whenever the system needs to

find the users, it conducts a search operation lasting at most d rounds. A request for a single

search step specifies a user and a cell. In this search step, the cell is asked whether the given user

is located there. In each round the system may perform an arbitrary number of such requests.

An integer number B ≥ 1 bounds the number of distinct requests per cell in every round. The

bound d results from quality of service considerations whereas the bound B results from the

wireless bandwidth allocated for signaling being scarce.

Every search step consumes expensive wireless links, which motivates search techniques mini-

mizing the expected number of requests thus reducing the total search costs.

We distinguish between oblivious, semi-adaptive and adaptive search protocols. An oblivious

search protocol decides on all requests in advance, and stops only when all users are found.

A semi-adaptive search protocol decides on all the requests in advance, but it stops searching

for a user once it is found. An adaptive search protocol stops searching for a user once it has

been found (and its search strategy may depend on the subsets of users that were found in each

previous round). We establish the difference between those three search models. We show that

for oblivious “single query per cell” systems (B = 1), and a tight environment (d = m), it is

NP-hard to compute an optimal solution (the case d = m = 2 was proven to be NP-hard already

by Bar-Noy and Naor) and we develop a PTAS for these cases (for fixed values of d = m).

However, we show that semi-adaptive systems allow polynomial time algorithms. This last result

also shows that the case B = 1 and d = m = 2 is polynomially solvable also for adaptive search

systems, answering an open question of Bar-Noy and Naor.

1 Introduction

Cellular phone systems allow us to contact and talk to people that are not residing in pre-
determined locations. In systems where a user reports its new location each time it moves
to a new cell, the task of finding the user is simple. Many existing systems allow the users

? A preliminary version of this paper appeared in the Proceedings of the 3rd Workshop on Approximation and

Online Algorithms (WAOA 2005), LNCS volume 3879, Springer, pages 133-146.

2

to report their locations more rarely. Furthermore, future systems are planned to have more
and smaller cells, which makes it infeasible for a user to report each time it crosses a border
between a pair of cells.

The Conference Call Search problem (CCS) deals with establishing wireless conference
calls under delay and bandwidth constraints. The goal is to establish a conference call between
m roaming users in a cellular network consisting of n cells. The search for the users places
another step in the process of establishment of the conference call. I.e., the system needs
to find out to which cell each user is connected at the moment. Using historical data the
system has an a-priori assumption of the likelihood of each user to reside in each cell. This is
represented by a probability vector for each user describing the probabilities for the system to
find the user in each cell. We denote by pi,j the probability to find user i in cell j. Following
previous work [2], we assume that pi,j > 0 for all values of i, j. We assume that each user
is connected to exactly one cell in the system and that the locations of the different users
are independent random variables. The tool for finding the users are search requests. Given
a request for a user i and a cell j, the system pages cell j and asks whether user i is located
there. Delay constraints limit the whole search process into d synchronous search rounds (such
that 1 ≤ d ≤ mn). Bandwidth constraints limit the number of requests per cell in each round
to at most a given integer number B such that 1 ≤ B ≤ m. Both delay and bandwidth
constraints are motivated by quality of service considerations. We are interested in designing
search protocols which efficiently utilize the wireless links, i.e. given the constraints, minimize
the expected cost of the search, where each search request incurs a uniform cost of 1.

Note that even if at some time it is already clear that a given user must be located in a
specific cell, (i.e., this user was paged in all other cells and was not located there), we still need
to page this user in the cell where it is located in order to be able to initiate a communication
link.

We consider three types of search protocols. An oblivious search protocol makes a full plan
of search requests for d rounds, and does not change it. It stops completely if all users are
found. We can view this protocol as one where we are not notified when a single user was
located, but only at the time that all of them were found. A semi-adaptive search protocol
makes a full plan of search requests for d rounds, and does not change it, however once a user
is found we stop search for it. An adaptive search protocol decides on the search requests per
round after it is notified which users were found in the previous round. It never continues a
search for a user that has already been found. As one can imagine an optimal adaptive search
protocol is much more complex than the optimal oblivious search protocol or the optimal
semi-adaptive search protocol, as it has to define the search strategy according to the subsets
of users that were found in each of the previous rounds.

We define a tight instance of the conference call search problem to be an instance where
B = 1 and d = m. To motivate our study of tight instances we note that the case of B = 1 is
the elementary case where each cell can be asked about a single user in each round. Clearly

3

this means that the process of finding all users may take up to m rounds. In order to minimize
the worst case delay, we require that all users are found within exactly m rounds (i.e. d = m).
Note that when B = 1 then d = m is the minimum number of rounds that enables a feasible
solution to the problem. So one may consider the restriction to tight instances to have a
primary goal of minimizing the worst case delay and minimizing the maximum load on a
cell within a particular round, and a secondary goal that is to minimize the consumption of
wireless bandwidth defined as the expected number of requests.

Previous work. There has been a fair amount of work on problems related to the conference
call search problem in the past, see e.g. [1, 7]. The paper [3] introduced the model where search
requests for different users for the same cell are made separately (i.e., we can not ask a cell
what is the subset of the users that are currently connected to it). They showed that the
case B = 1, d = m = 2, is NP-hard for oblivious search protocols. It was left open to find
out whether the same case is NP-hard for the adaptive search protocol as well. A similar
model was introduced by Bar-Noy and Malewicz [2]. In that model once a cell is requested in
some round, it does not search for a single user (or a limited number of users), but outputs a
list of all users in that cell. The paper focuses on oblivious search techniques. It is shown in
that paper that for any constant number of users (m > 1,d > 1), and any constant number
of rounds 1 ≤ d ≤ n, the problem is NP-hard. Note that the problem for a single user,
which is equivalent to the problem studied in this paper in this case, is polynomially solvable
using a simple dynamic programming [6, 8]. Bar-Noy and Malewicz [2] suggested a simple
algorithm which combines users and reduces to the algorithm for the case m = 1. This is a
4
3 -approximation for m = d = 2 and e

e−1 ∼ 1.581977-approximation for other values of d,m.
In a previous paper [4] we designed a PTAS (Polynomial Time Approximation Scheme) for
that last problem. The PTAS is defined for the oblivious search model, but can be modified
easily to work for the adaptive search model as well.

Paper outline. In Section 2 we prove that finding an optimal oblivious search protocol of
a tight instance is NP-hard for all fixed values of d ≥ 2. This last result extends an earlier
result of Bar-Noy and Naor [3] for d = 2. We also show that if d is a part of the input,
then finding an optimal oblivious search protocol of a tight instance becomes NP-hard in the
strong sense. In Section 3 we present our PTAS for oblivious search problems that are tight.
We first present a relatively simple PTAS for the case d = m = 2 and afterwards we present a
more complicated PTAS for an arbitrary constant d = m. Finally, in Section 4 we show that
computing an optimal semi-adaptive search protocol for tight instances where the number of
users is a constant, can be done in a polynomial time. This last result shows the barrier in
the tractability of the conference call search problem between the oblivious and semi-adaptive
search protocols; the first is NP-hard whereas the second is polynomially solvable. The case
of semi-adaptive search protocol with d = m = 2 also implies a polynomial time algorithm
for computing an optimal adaptive search protocol.

4

2 NP-Hardness for the Oblivious Problem

We recall that Bar-Noy and Naor [3] proved that finding the optimal oblivious search protocol
is NP-hard for B = 1 and d = m = 2. In this section we extend this result to the general
tight case.

Theorem 1. Finding an optimal oblivious search protocol is NP-hard even when restricted
to tight instances with d = m rounds and B = 1 for all fixed values of d ≥ 2.

Proof. The claim for d = m = 2 is proved in [3]. We prove the claim for d ≥ 3 using a reduction
from the partition problem (see problem SP12 on page 223 in [5]). In this problem we are

given N integer numbers a(1), . . . , a(N), such that
N∑

i=1
a(i) = 2S for some integer S ≥ 2, and

the question is whether there exists a subset J ∈ {1, . . . , N} such that
∑
i∈J

a(i) = S. We create

an instance of the oblivious search problem as follows. Let δ > 0 be a small positive value such
that δ < 1

8S2d2 . There are N +m−2 cells, c1, . . . , cN+m−2. The (identical) probabilities of the
first two users are as follows. The probability for cell cj , j ≤ N is p1,j = p2,j = (1 − δ)a(j)

2S .
The probability of every other cell j > N is p1,j = p2,j = δ

m−2 . As for the other m− 2 users,
user i (3 ≤ i ≤ m) has probability of 1− δ in cell i+N − 2 (pi,i+N−2 = 1− δ) and probability
pi,j = δ

N+m−3 for all j 6= i + N − 2. This completes the description of the reduction.
We upper-bound the cost of an optimal oblivious search protocol in case there exists

an exact partition (i.e., the partition instance is a YES instance). Let J be the subset of
{1, . . . , N} such that

∑
i∈J

a(i) = S. In the first round, the requests are as follows. The cells in

J are asked about the first user and the cells in {1, . . . , N} − J are asked about the second
user. Note that

∑
i/∈J

a(i) = S as well. Each other cell N + k is asked for user k + 2. Recall that

the probability of this user and cell is 1 − δ. In the second round, the cells in J are asked
about the second user. The cells in {1, . . . , N} − J are asked about the first user. All other
search requests are made in some arbitrary order. The probability to find each one of the
first two users in the first round is exactly 1−δ

2 . The probability to find any other user in the
first round is exactly 1− δ. Therefore, the probability to find all the users in the first round
is (1−δ)m

4 , and so the probability to have a second round is 1 − (1−δ)m

4 . For every user, the
probability to find it within the first two rounds is at least 1− δ. Therefore, the probability
to find all the users within the first two rounds is at least (1− δ)m, and thus the probability
that the search will last at least three rounds (and at most m rounds) is at most 1− (1− δ)m.
We conclude that the total cost is at most

n + n

(
1− (1− δ)m

4

)
+ n(m− 2)(1− (1− δ)m) ≤

n + n

(
3
4

+
mδ

4

)
+ nm(m− 2)δ ≤ 7n

4
+ nm2δ <

7n

4
+

n

8S2

where the first inequality holds since (1 − δ)m ≥ 1 − mδ, the second inequality follows by
simple algebra and the last inequality holds as δ < 1

8Sd2 = 1
8Sm2 .

5

Consider now the situation where there is no exact partition (i.e., the partition instance
is a NO instance). Therefore, for every subset J ′ ⊆ {1, . . . , N} either

∑
i∈J ′

a(i) ≤ S − 1 or
∑
i∈J ′

a(i) ≥ S + 1. First note that if one of the cells N + 1, . . . , N + m− 2 is not paged in the

first round for the user who has probability 1− δ to be in this cell, then the probability for a
second round is at least 1− δ, and the cost is at least 2n− nδ. Otherwise, consider the cells
1, . . . , N . A subset A1 ⊆ {1, . . . , N} of these cells is paged for the first user in the first round,
and a disjoint subset A2 ⊆ {1, . . . , N} is paged for the second user in the first round. Let p(1)
(p(2)) be the sum of probabilities of cells paged for the first (second) user in the first round.
I.e., p(1) =

∑
j∈A1

p1,j and p(2) =
∑

j∈A2
p2,j . Since A1 ∩ A2 = ∅ and p1,j = p2,j for all j,

we conclude that p(1) + p(2) ≤ 1− δ. Due to the definitions of probabilities for the first two
users in the first N cells, we know that p(i) = (1−δ)X(i)

2S , where X(i) for i = 1, 2 are integers.
Since there is no exact partition, we know that X(i) 6= S. If X(i) ≤ S − 1 for i = 1, 2, then
the probability to reach the second round is at least 1− (1− δ)2 · (S−1

2S)2 > 1− (1− δ)2 S2−1
4S2

where the last inequality holds since S ≥ 1. Otherwise, since X(1) + X(2) ≤ 2S, and none of
the values can be S, we have that if for one of the users i, X(i) = S + u ≥ S + 1, then for the
other user 3− i we have X(3− i) ≤ S − u ≤ S − 1. In this case the probability for a second
round is at least (1− (S+u

2S)(S−u
2S)(1− δ)2) ≥ 1− (1− δ)2 S2−1

4S2 (since u ≥ 1). The cost in the
last two cases is therefore at least n + n(1 − S2−1

4S2 (1 − δ)2) ≥ n + n(1 − S2−1
4S2) = 7n

4 + n
4S2 .

Note that the cost we got in the first case (2n− nδ) is not smaller since 2n− nδ ≥ 7n
4 + n

4S2

is equivalent to δ + 1
4S2 ≤ 1

4 which holds since δ < 1
8Sd2 and S, d ≥ 2.

We got that if there is an exact partition, then the optimal cost is at most 7n
4 + n

8S2 ,
whereas if there is no exact partition, the optimal cost is at least 7n

4 + n
4S2 . Therefore we got

that the question, whether the cost is at most 7n
4 + 3n

16S2 , is NP-hard. ut

Next, we prove the following theorem. We show that if d is not fixed, but a part of the input,
the problem becomes strongly NP-hard.

Theorem 2. Finding an optimal oblivious search protocol is strongly NP-hard even when
restricted to tight instances with d = m rounds and B = 1.

Proof. We prove the claim using a reduction from the 3-partition problem (see prob-
lem SP15 on page 224 in [5]). In this problem we are given N = 3M integer numbers

a(1), . . . , a(N), such that
N∑

i=1
a(i) = MS for some integer S ≥ 3. Each number a(i) satis-

fies S
4 < a(i) < S

2 . The question is whether there exists a partition of the indices into M

disjoint sets A1, . . . , AM such that
∑

j∈Ai

a(j) = S. If such a partition exists, clearly each set

has exactly three elements.

We create an instance of the oblivious search problem as follows. We introduce M users
and N = 3M cells. The probability of user i in cell j pi,j = a(j)

MS .

6

The cost of an oblivious search protocol is

N

M∑

r=1

(
1−

M∏

i=1

ui,r

)
= N

(
M −

M∑

r=1

(
M∏

i=1

ui,r

))
,

where ui,r is the probability to find user i within the first r rounds. Note that since pi,j = pi′,j

for all i 6= i′ and for all j, no matter which requests are made in some round, and the sum of

probabilities of the requested cells is 1 in each round. Therefore,
M∑
i=1

ui,r = r. We claim that

there exists a solution of cost at most N

(
M −

M∑
r=1

(
r
M

)M
)

iff the 3-partition instance is a

YES instance.

Consider first a YES instance of the 3-partition problem. Let A1, . . . , AM be the disjoint
partition of indices such that

∑
j∈Ai

a(j) = S. We define the following protocol. The cells with

indices in Ai are requested for user (i + k − 1) mod M in round k. For this protocol, the
probability to find user i within r rounds is exactly r

M and therefore the cost is exactly

N

(
M −

M∑
r=1

(
r
M

)M
)

.

Next, consider a solution which minimizes N
(
M −∑M

r=1

(∏M
i=1 ui,r

))
. This is equivalent

to maximizing
∑M

r=1

∏M
i=1 ui,r subject to the constraints

M∑
i=1

ui,r = r, 1 ≤ r ≤ M . Consider

the minimization problem of
∏M

i=1 ui,r subject to
M∑
i=1

ui,r = r. Due to the means inequality,

the unique minimum of this function is achieved at ui,r = r
M for 1 ≤ i ≤ M . This is also an

optimal solution for the minimization problem of the sum (since it is feasible for that problem
as well). Moreover, this is the unique minimum point. The existence of another minimum point
would imply another minimum point for at least one of the parts of the sum, which does not

exist. We get that if a solution costs at most N

(
M −

M∑
r=1

(
r
M

)M
)

, then this is its exact cost.

Moreover, it means that ui,1 = 1
M ∀i. Let Bi be the set of indices whose request in the first

round is for user i. We get that
∑

j∈Bi

a(j)
S = 1, i.e.

∑
j∈Bi

a(j) = S. The sets Bi are a proper

disjoint partition of the indices of 1, . . . , N and we get that the 3-partition instance is a
YES instance. ut

3 A PTAS for the Oblivious Problem

Properties. Recall that we assume non-zero probabilities for each pair of user and cell. In
this case, each cell must be asked regarding exactly one user per round. Therefore, each cell
needs to be assigned a permutation of the users. Recall that an oblivious search is defined
in advance, and lasts as long as some user is still not located. Since we solve tight instances,
already the first round costs n, and therefore OPT ≥ n.

7

Let ε be a value such that 0 < ε < 1
(20m)m+1·m!

. We show polynomial time approximation
schemes where the running time is polynomial in n, but the values ε, and also m are seen as
constants. The approximation ratios of the algorithms are 1 + Θ(ε).

Our schemes are composed of several guessing steps. In these guessing steps we guess
certain information about the structure of OPT . Each guessing step can be emulated via an
exhaustive enumeration of all the possibilities for this piece of information. Our algorithm
runs all the possibilities, and among them chooses the best solution achieved. In the analysis
it is sufficient to consider the solution obtained when we check the correct guess.

3.1 Two Users

We start with a relatively simple PTAS for this case. Here the search takes one or two rounds.
For a given algorithm, its cost is simply 2n−n(1−p)(1−q), where p and q are the probabilities
of finding the first user and the second user (respectively) in the second round. In this section,
let p and q denote these probabilities in an optimal solution.

Let pj = p1,j be the probability for the first user to be located in cell j, and let qj = p2,j

be the probability of the second user to be located in that cell.
Denote the probability intervals I0 = (0, ε

n], and for 1 ≤ i ≤ ⌈
log1+ε

(
n
ε

)⌉
,

Ii =
(ε

n
(1 + ε)i−1,

ε

n
(1 + ε)i

]
.

First guessing step: we guess k, which is the number of cells that are paged in the second
round for the first user. Moreover, we guess the probability p of finding the first user in the
second round. That is, we guess the index i such that p ∈ Ii.

Lemma 1. The number of possibilities for the first guessing step is

O
(
n

[
log1+ε

(n

ε

)
+ 2

])
.

Proof. Clearly 0 < k < n, since paging all cells for the same user in the first round always
results in a second round, which gives cost 2n, and this is sub-optimal. To conclude the proof,
note that the number of intervals is at most log1+ε

(
n
ε

)
+ 2. ut

By Lemma 1, performing an exhaustive enumeration for the first guessing step can be
done in polynomial time. We continue to analyze the iteration of this step in which we guess
the “correct” values that correspond to OPT . We denote the guess of p by p′ to be the upper
bound of Ii; i.e., p′ = ε

n(1 + ε)i.
The next step is to scale the probabilities of only the first user as follows. For all j define

rj = pj/p′ to be the scaled probability of cell j and the first user. We consider the vector
R = (rj) of the scaled probabilities that the first user is in cell j. We remove all cells with
scaled probability larger than 1. Such cells cannot be paged for the first user in the second
round, and therefore must be paged for the first user in the first round.

8

We further assign a type to each cell according to the following way. We define a set of
intervals J as follows: J0 = (0, ε], and for all ` ≥ 1, J` = (ε · (1 + ε)`−1, ε · (1 + ε)`], and J
= {J0, J1, . . .}. For each cell 1 ≤ j ≤ n, we find the interval from J that contains rj . That
is, we compute a value tj such that rj ∈ Jtj . The index tj is the type of cell j. For values of
tj such that tj > 0, we replace rj with r′j which is the upper bound of the interval Jtj , i.e.,
r′j = ε(1+ε)tj . Otherwise the value remains unchanged, i.e., r′j = rj . Note that the number of
types is at most log1+ε

(
1
ε

)
+ 2 = O

(
log1+ε

(
1
ε

))
. We let S be the sum of scaled probabilities

for type 0 cells (paged in round 2 for the first user). Let S′ be the upper bound of this interval
that contains S.

Second guessing step: We guess the amount of cells of each type that are paged for the
first user in the second round. Moreover, we guess the value of S′.

Lemma 2. The number of possibilities in the second guessing step is

O

(
nlog1+ε(1

ε)+2 log1+ε

(
1
ε

))
.

Proof. The number of cells from each type is an integer between 0 and k ≤ n − 1 (clearly,
bounded from above by the number of cells that exist for this type). The number of options
for guessing S′ is equal the number of intervals in J that is O

(
log1+ε

(
1
ε

))
. ut

Note that the number of possibilities for this guessing step is polynomial (for a fixed value
of ε).

Next, for a given type of cell, i > 0, consider the cells which belong to this type. After
the rounding, the difference between these cells is the probability of the second user to reside
in this cell. Clearly, given that s such cells need to be paged for the first user in round 2,
it means that the same set of cells should be paged for the second user in the first round.
We prefer to page the cells with highest probability for the second user among the cells with
a common type. A simple exchange argument shows that considering this option only (for
rounded instances) may never increase the cost of the solution. For cells of type 0, define the
density of a cell j to be qj/pj , this is the ratio between probabilities of the two users. Sort
all cells of type 0 by non-increasing densities. Afterwards, take a minimal prefix of the sorted
cells, such that the sum of scaled probabilities of the first user is at least S′ = ε · (1 + ε)`. If
the sum of all the scaled probabilities of type 0 cells does not exceed S′, then all these cells
will be paged for the first user in round 2. If S′ > ε, then the second user would prefer to
page the most profitable such cells in round 1. We allow a slightly higher probability in the
second round, and pick the most profitable cells greedily. Therefore, we may only increase
the probability of finding the second user in round 1. If we could not exceed S′, but instead
page all type 0 cells in round 2 for the first user, then this may slightly harm the first user
(see details below), but again may only increase the probability of finding the second user in
round 1.

9

Consider the guess which guesses correctly the value k, the amounts of cells from each
type, and the value of S′. The first step in the analysis would be to bound the relation between
the probabilities of finding the users in the first step in the optimal solution and the solution
we find. Let p̂ and q̂ be the corresponding probabilities to p and q in the resulting solution.
Since the probability of the second user to be found in the first round may only increase, we
get 1− q̂ ≥ 1− q, i.e. q̂ ≤ q.

To bound p̂ in terms of p, note that p′ ≤ (1 + ε)p + ε
n . The rounding for cells whose

rounded probabilities are not of type 0, results in a possible increase of probabilities by a
multiplicative factor of 1 + ε. For cells of type 0, assume that S′ ∈ J`. If ` > 0, we allow the
sum (of scaled probabilities) for the chosen cells to exceed the value ε · (1 + ε)`. However,
since all values are at most ε, we get an additive error of at most that amount, in addition to
a multiplicative rounding error of 1 + ε. For type 0, the worst case would be that the sum of
scaled probabilities should have been zero, but it reaches ε and exceeds it by the same amount.
Therefore, p̂ ≤ p′(1 + ε) + 2εp′ = (1 + 3ε)p′ ≤ (1 + 3ε)(1 + ε)p + (1 + 3ε) ε

n ≤ (1 + 7ε)p + 4ε
n .

The last inequality holds since ε < 1.
The cost is therefore

APX = n(1 + p̂ + q̂ − p̂q̂) = n(1 + p̂ + q̂(1− p̂)) ≤ n(1 + p̂ + q(1− p̂))

= n(1 + p̂(1− q) + q) ≤ n(1 + (1 + 7ε)p(1− q) +
4ε

n
+ q)

≤ (1 + 7ε)n(1 + p + q − pq) + 4ε ≤ (1 + 11ε)OPT = (1 + Θ(ε))OPT

The last inequality follows from OPT ≥ 1 which holds for any instance of the problem.
Therefore, we have established the following theorem:

Theorem 3. Problem CCS with two users, two rounds and B = 1 has a polynomial time
approximation scheme.

Remark 1. We can easily extend the scheme of this section to the case where there are also
zero probabilities. To do so, we first guess the number of cells n1 (n2) to page the first (second)
user in the first round such that the second (first) user has zero probability to be placed in
this cell. Over the set of cells where both users have positive probability we apply the scheme
of this section. Among the cells where the first (second) user has zero probability we will page
for the second (first) user in the first round in the set of the n2 (n1) cells with the highest
probability.

3.2 m Users

We continue with a PTAS for a general (constant) number of users. We prove the following
theorem.

Theorem 4. Problem CCS with a constant d = m and B = 1 has a polynomial time approx-
imation scheme.

10

In this scheme, instead of using exact probabilities, we use rounded values. This is done
both for input probabilities and probabilities uses by the algorithm. As a result, the sum of
probabilities for an event whose probability must be 1, can change to a value which is not
1 (though it should still be close to 1). This does not affect the correctness of the algorithm
since we do not treat the rounded values as probabilities of events throughout the execution.
Instead of that, we fix all the (rounded) probabilities which the algorithm uses, and based on
this, we solve a generalized knapsack problem.

The number of rounds that the search takes is at least 1 and at most m. Since locations
of users are again independent, we can compute the expectation of the number of requests
by calculating for each r, the probability of finding all users in at most r rounds. Given an
algorithm (search scheme) let qi,r be the probability of finding user i in round r by a given
solution, Then, the cost of this solution is

n
m∑

r=1

(
1−

m∏

i=1

(
r−1∑

s=1

qi,s

))
= n

m∑

r=1

(
1−

m∏

i=1

(
1−

m∑
s=r

qi,s

))
.

In this section we use these (qi,r) notations to denote the values in a fixed optimal solution.
We start with a uniform rounding of the values pi,j . In this section we use the following

set of intervals for all rounding procedures. We define J as follows: J0 = (0, ε2m+5], and for
all k ≥ 1, Jk = (ε2m+5 · (1 + ε)k−1, ε2m+5 · (1 + ε)k], and J = {J0, J1, . . .}. Let s be such
that 1 ∈ Js. We replace the interval Js by (ε2m+5 · (1 + ε)s−1, 1], and use only the s + 1 first
intervals. For each pair i, j where 1 ≤ i ≤ m, 1 ≤ j ≤ n, we find the interval from J that
contains pi,j . That is, we compute a value ti,j such that pi,j ∈ Jti,j , and we define the type of
the cell j to be the vector (t1,j , . . . , tm,j). For values of pi,j such that ti,j > 0, we replace pi,j

with p′i,j which is the upper bound of the interval Jti,j , i.e., p′i,j = ε2m+5 ·(1+ε)ti,j . Otherwise,
the value remains unchanged, i.e., p′i,j = pi,j .

Corollary 1. If ti,j > 0 then pi,j ≤ p′i,j ≤ (1 + ε)pi,j.

We assign sub types to cells, based on the (unchanged) values of probabilities of type 0. If
for all users 1 ≤ i ≤ m, ti,j > 0, there is no further partition to sub types. Otherwise, let
the weight of cell j denoted as wj be defined as wj = max{i|ti,j=0} pi,j . For a type vector of a
given cell j, create the following vector aj of length m. The i-th entry aj

i is −1 if ti,j > 0, and
otherwise aj

i = pi,j

wj
.

We use the same partition into intervals in order to round and classify the vectors aj .
For an entry aj

i , find the interval from J that contains aj
i . Compute a value t′i,j such that

aj
i ∈ Jt′i,j , then the sub type of the cell j is the vector (t′1,j , . . . , t

′
m,j) (where t′i,j = −1 if

ti,j > 0). We use the vector a′j , where a′ji is the upper bound of the interval Jt′i,j . If aj
i = −1

then also a′ji = −1. We scale the probabilities again in the following way: if ti,j > 0 then
p′′i,j = p′i,j and otherwise p′′i,j = wja

′j
i .

Corollary 2. If ti,j = 0, p′′i,j ≤ wj

(
(1 + ε)aj

i + ε2m+5
)

= (1 + ε)pi,j + wjε
2m+5.

11

Note that at least one entry in a′j is 1, that is an entry `j for which wj = p`j ,j . We call
the user `j the leader of the cell. Note that there may be other such unit entries, in the case
that the maximum is not unique (in that case, `j is picked to be such a user with a minimum
index), or if some user has a slightly smaller probability, but still in the last interval.

A cell is specified by its type, sub type, leader and weight (excluding cells with no sub
type). Two cells j1, j2 have the same general type if they both have no sub type, or if they
have the same type, same sub type and same leader. Their weights wj1 and wj2 may both
take arbitrary values in (0, ε2m+5]. Therefore, the number of general types is at most

m

(
2 log1+ε

(
1
ε

)2m+5

+ 3

)m

≤ m

ε2m
.

This follows from the choice of ε < 1
(20m)m+1·m!

, and from ln 1
ε ≤ 1

ε , ln(1+ε) ≥ ε
2 , and m ≥ 2.

Given a cell, in order to specify a solution when restricted to this cell, we need to give a
permutation of the users. That would be the order in which the cell is paged for the users.
Guessing step: For every general type and every permutation π (out of the m! possible
ones), we guess the number of cells of this general type that are paged in the order of the
permutation π. Note that the sum of these numbers should be exactly the total number of
cells of this general type. For every general type t, excluding the general type with no sub
types, we also guess an interval for the total probability P (t, π) that the cells of the general
type t, paged using the permutation π, induce in the round where the leader of this general
type is paged (i.e., the sum of their weights belongs to the guessed interval).

Lemma 3. The number of possibilities for the first guessing step is polynomial.

Proof. The number of combinations of general types and permutations is at most m!m
ε2m . The

number of possible guesses for a given permutation and cell is at most n+1 (this is an integer
between 0 and n). The number of possibilities for a probability guess is

(
(2m + 5) log1+ε

(
1
ε

)
+ 2

)
≤ 1

ε2
.

Therefore, the number of possibilities for the guessing step is at most
(

n+1
ε2

)m!m
ε2m . ut

Given a guess, we distribute the cells to the permutations as follows. For a general type
with no sub types, allocate the guessed number of cells of this type to each permutation, if
possible. The exact distribution is not important. For other general types (i.e., with subtypes),
given a specific general type, let ` be its leader. Denote the permutations by π1, . . . , πm!. Given
a permutation πi, let ti be the index for the probability interval guessed for this class, and
let ai be the number of cells guessed for it. Let n′ be the number of cells that need to be
distributed. Re-number the cells from 1 to n′ and denote by wj the weight associated with
cell j. We need to distribute the n′ cells to the m! permutations, where for every permutation,

12

an upper bound is given on the sum of probabilities of the cells allocated to it as well as an
upper bound on the number of these cells. This corresponds to the following integer program.
Let Xi,j be an indicator variable whose value is 1 if cell j is allocated to permutation i. We
apply the upper bounds of numbers and probabilities as follows. For each 1 ≤ i ≤ m!,

n′∑

i=1

Xi,j ≤ ai and
n′∑

i=1

wj ·Xi,j ≤ ε2m+5(1 + ε)t .

We clearly have
m!∑
i=1

Xi,j ≥ 1 for all 1 ≤ j ≤ n′, since each cell is assigned to at least one

permutation. If it is assigned to more than one, one of its occurrences can be removed without
violating the other constraints. The goal is to find a feasible integer point.

We relax the integrality constraint, and replace it with Xi,j ≥ 0. We are left with a
linear program which clearly has a solution if the original integer program does. Solving the
linear program we can find a basic solution. This basic solution has at most 2m! + n′ non
zero variables (as the number of constraints). Clearly, each cell j has at least one non zero
variable Xi,j and thus we get that the number of cells that are not assigned completely to
a permutation (i.e., that have more than one non zero variable associated with them) is at
most 2m!. These cells are removed and re-distributed to the permutations in order to satisfy
the amounts of cells. In the worst case, all additional cells are assigned to one permutation,
increasing its total probability in the round of the leader (i.e., its total weight) by an additive
factor of 2m!wjε

2m+5, and values which are no larger than 2m!wjε
2m+5 in other rounds.

From now on, we consider the correct set of guesses. We would like to compute the
differences between the values qi,r used by an optimal algorithm and the ones used by our
scheme. Let q′i,r be the values used by the algorithm. I.e., q′i,r is the total probability of finding
user i during round r by the scheme.

Lemma 4. q′i,r ≤ (1 + 7ε)qi,r + ε2.

Proof. There are two types of changes in the value qi,r, multiplicative changes and additive
changes. The first two rounding steps are taken for pairs of cells and users. By Corollary 1
and 2, we conclude that p′′i,j ≤ (1 + ε)pi,j + wjε

2m+5. Therefore, the sum of additive changes
in all pairs of cells and leaders is bounded by ε2m+5 times the sum of all probabilities, which
is m. Hence, mε2m+5 bounds the resulting additive change in each value qi,r.

The next rounding is of P (t, π). Another multiplicative factor of 1+ε is introduced at this
time. Moreover, the probability of a given permutation π may increase by an additive factor of
(2m! + 1)ε2m+5. In the worst case, this additive growth may happen for every pair of general
type and permutation. The term 2m!ε2m+5 is due to the last phase where the fractional
solution to the linear program is rounded. An additional ε2m+5 is due to the rounding of
P (t, π) to right end points of probability intervals.

13

Recall that the number of combinations of general types and permutations is at most(
m!m
ε2m

)
, thus the additive factor is at most

(
m!m
ε2m

)
(2m! + 1)ε2m+5 ≤ ε4. Summarizing we get,

q′i,r ≤ ((1 + ε)qi,r + ε2m+4)(1 + ε) + ε4 ≤ (1 + 3ε)qi,r + ε2 .

ut

We compute an upper bound for the change in the goal function value.

n

mX
r=1

1−

mY
i=1

1−

mX
s=r

q′i,s

!!
(1)

≤ n

mX
r=1

1−

mY
i=1

1−

mX
s=r

�
(1 + 3ε)qi,s + ε2�!! (2)

≤ n

mX
r=1

1−

mY
i=1

1−mε2 − (1 + 3ε)

mX
s=r

qi,s

!!
(3)

≤ n

mX
r=1

m2ε2 + (1 + 3ε)

1−

mY
i=1

1−

mX
s=r

qi,s

!!!
(4)

≤ n

m3ε2 + (1 + 3ε)

mX
r=1

1−

mY
i=1

1−

mX
s=r

qi,s

!!!
(5)

≤ εOPT + (1 + 3ε)OPT = (1 + 4ε)OPT , (6)

where (2) follows by Lemma 4, and (3),(5) follow by simple algebra. Next, (4) follows since
given a set of m independent random events, the probability of their union is multiplied by at
most (1+3ε) if we multiply the probability of each event in this set by that amount, and if we
increase the probability of each event by an additive factor of ρ = mε2, then the probability
of the union increases by at most mρ = m2ε2. Finally (6) follows since OPT ≥ n and ε < 1

m3 .
This completes the proof of Theorem 4.

4 Polynomial Time Algorithms for Finding Optimal Semi-Adaptive

Search Protocols

In this section we consider the problem of computing an optimal semi-adaptive search protocol
for tight instances of CCS. We show polynomial time algorithms for solving this problem.
We describe a fast algorithm to solve the two-users two-rounds case (this solution holds for
adaptive systems as well). Further, we present a dynamic programming based algorithm to
solve the CCS problem with a constant number of users.

4.1 Two Users

We assume that there are two users and two rounds and B = 1. Bar-Noy and Naor [3] showed
that computing an optimal oblivious protocol for this case is an NP-hard problem. They left as
an open question to decide if computing an optimal adaptive search protocol is polynomially
solvable.

14

We note that for this case, given a search plan for one round, since we may need to search
each of the two users in every cell, the plan for the second round is fixed. Changes in this
plan can follow only from users being found already in the first round. However, a user that
was not found, must be searched in every cell, and there is no room for changes in the plan.
This means that in this case the semi-adaptive search protocol is equivalent to the adaptive
search protocol.

Therefore, by computing an optimal semi-adaptive search protocol in polynomial time,
we provide a positive answer for this question.

Our algorithm, denoted by Alg, guesses k that is defined as the number of cells that an
optimal solution pages for the first user in the first round. This guess is implemented by an
exhaustive enumeration using the fact that k is an integer in the interval [0, n], and then
returning the best solution obtained during the exhaustive enumeration. We next analyze the
iteration in which the guess is correct.

Denote by Ik
i = p1,i · (n−k)−p2,i ·k the index of cell i in the k-th iteration. Our algorithm

sorts the indices of the cells in non-decreasing order, and then it picks the first k cells (in
the sorted list). These picked cells are paged for the first user in the first round, whereas the
other cells are paged for the second user in the first round.

Theorem 5. Alg returns an optimal semi-adaptive search protocol.

Proof. To prove the theorem, it is sufficient to prove the following claim: Assume that there
exists a pair of cells i, j with Ik

i ≥ Ik
j such that the optimal solution pages j for the first user

in the first round, and it pages i for the second user in the first round. Then, replacing the
role of i and j (i.e., the new solution pages i for the first user in the first round, and it pages
j for the second user in the first round), results in another optimal solution.

To prove the claim we first argue that the decrease in the solution cost resulting by this
replacement is (n − k) · (p1,i − p1,j) + k · (p2,j − p2,i). To see this, note that the probability
of finding the first user in the first round increases by p1,i − p1,j , thus gaining an expected
decrease of the cost by (n−k) ·(p1,i−p1,j). Similarly for the second user the expected decrease
in the cost is k · (p2,j − p2,i).

However, (n−k)·(p1,i−p1,j)+k ·(p2,j−p2,i) = p1,i ·(n−k)−p2,i ·k−[p1,j ·(n−k)−p2,j ·k] =
Ik
i − Ik

j ≥ 0, where the last inequality follows by the assumption. Therefore, the replacement
of the roles of i and j results in another optimal solution, as we claimed. ut

The next corollary answers the open question implied by [3].

Corollary 3. Alg returns an optimal adaptive search protocol.

Proof. As stated above, the definitions of the adaptive and semi-adaptive search protocols
are equivalent for the case of two users and two rounds. ut

15

4.2 m Users

We assume that there are m = d users and d rounds where d is a constant, and B = 1.
We show a dynamic programming procedure that computes an optimal semi-adaptive search
protocol for this case.

Our first step is to guess for each permutation π of the users the number of cells that are
paged according to the permutation π (i.e., the i-th user is paged for the cell in round π(i)).
Note that the number of possibilities for this guessing step is bounded by (n + 1)d! (since the
number of occurrences of each permutation is an integer between 0 and n). Therefore we can
implement an exhaustive enumeration of this guessing step in polynomial time. We assume
that the guessing step outputs a vector T = (t1, . . . , td!) where tj is the number of cells with
permutation πj .

Using T , we can compute for each user i, and each round r, the number of cells that the
optimal semi-adaptive search protocol pages for user i in round r. We denote this number by
ni,r.

We next compute for all i and all r′ ≤ d− 1 the gain that we will get if we find user i in
the r′-th round, i.e., Ni,r′ =

∑d
r=r′+1 ni,r. To motivate this definition note that if we find user

i in the r′-th round, then we stop looking for user i and thus we gain
∑d

r=r′+1 ni,r requests
with respect to the solution that pages user i in all the cells.

For a cell c, the expected gain of using permutation πj for cell c is defined as Ej,c =∑d
i=1 pi,c · Ni,πj(i). Note that our goal is equivalent to allocating permutations to cells so as

to maximize the total expected gain while satisfying the bounds on the number of cells that
can be allocated to each permutation (the bounds that are given by the guess).

This last problem can be solved by using a dynamic programming procedure as follows:
Define Fc(t1, t2, . . . , td!)) to denote the optimal total expected gain by allocating permutations
to cells c, c + 1, . . . , n such that permutation πj is allocated at most tj cells. Then

Fn(t1, t2, . . . , td!) = max
j:tj≥1

Ej,n,

and for c < n the following holds:

Fc(t1, t2, . . . , td!) = max
j:tj≥1

{Ej,c + Fc+1(t1, t2, . . . , tj−1, tj − 1, tj+1, . . . , td!)}.

This completes our algorithm. Therefore, we established the following theorem:

Theorem 6. There is a polynomial time algorithm that computes an optimal semi-adaptive
search protocol for tight instances of CCS where d is a constant.

5 Open Questions

We list several open questions that are left for future research:

16

– Determine the complexity status of computing an optimal adaptive search protocol for
tight instances with d = m > 2.

– Find an FPTAS or prove its non-existence (by showing that the problem is NP-hard in
the strong sense for fixed constant values of d = m) for computing an optimal oblivious
search protocol for tight instances with a fixed constant number of users.

– Find a PTAS or prove its non-existence (by showing that the problem is APX-hard)
for computing an optimal oblivious search protocol for an arbitrary tight instance. The
running time of the PTAS should be polynomial in n and in d = m.

References

1. A. Bar-Noy and I. Kessler. Tracking mobile users in wireless networks. IEEE Transaction on Information

Theory, 39:1877–1886, 1993.

2. A. Bar-Noy and G. Malewicz. Establishing wireless conference calls under delay constraints. Journal of

Algorithms, 51(2):145–169, 2004.

3. A. Bar-Noy and Z. Naor. Establishing a mobile conference call under delay and bandwidth constraints.

In The 23rd Conference of the IEEE Communications Society (INFOCOM2004), volume 1, pages 310–318,

2004.

4. L. Epstein and A. Levin. A PTAS for delay minimization in establishing wireless conference calls. In Proc.

of the 2nd Workshop on Approximation and Online Algorithms (WAOA2004), pages 36–47, 2004.

5. M. R. Garey and D. S. Johnson. Computer and Intractability. W. H. Freeman and Company, New York,

1979.

6. D. Goodman, P. Krishnan, and B. Sugla. Minimizing queuing delays and number of messages in mobile

phone location. Mobile Networks and Applications, 1(1):39–48, 1996.

7. S. Madhavapeddy, K. Basu and A. Roberts. Adaptive paging algorithms for cellular systems. In Wireless

Information Networks: Architecture, Resource Management and Mobile Data, pages 83–101, 1996.

8. C. Rose and R. Yates. Minimizing the average cost of paging under delay constraints. Wireless Networks,

1(2):211–219, 1995.

