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Abstract

In the online bidding problem, a bidder is trying to guess a positive numberT , by placing bids until
the value of the bid is at leastT . The bidder is charged with the sum of the bids. In thebounded
online bidding problem, a parameterk is given, and the bidder is charged only with the largestk bids.
It is known that the online bidding problem admits a4-competitive deterministic algorithm, and ane-
competitive randomized algorithm, and these results are best possible. The deterministic best possible
competitive ratio for the online bounded bidding problem is also known, for any value ofk.

We study the randomized bounded online bidding problem, and show that for anyk > 2, random-
ization is helpful, that is, it allows to design an algorithm of a smaller competitive ratio compared to the
best deterministic algorithm. In contrast, fork = 2, we show a lower bound of2 on the competitive ratio
of any randomized algorithms, matching the upper bound achieved by a trivial deterministic algorithm,
which tests all possible bids sequentially.

1 Introduction

TheONLINE BIDDING PROBLEM (OB) is defined as follows. An algorithm needs to submitbids, b1, b2, . . .,
wherebi > 0, until for someq ≥ 1, its bid,bq, is at least as large as an unknown thresholdT ∈ N. The cost

of the algorithm, denoted by∆(T ), is the sum of its bids, i.e.,
q∑

i=1
bi. The problem is considered to be an

online problem, and it is analyzed via competitive analysis. Since an optimal offline algorithm which knows
the valueT can simply place a single bid ofT , an algorithm isC-competitive if for any thresholdT ∈ N,
∆(T ) ≤ C · T . While the nameonline biddingwas coined only recently [3], in that paper,OB is referred
to as a “folklore” online problem. Problems related toOB were frequently studied (see the recent survey
article of Chrobak and Kenyon-Mathieu [4] and references therein). In the survey [4], a number of related
problems is discussed. Among those problems, there are problems whose study requires reduction toOBB.
Two examples of such problems areincremental medians[3, 5], andload balancing on uniformly related
machines[1].

Chrobak et al. [3] stated the following results as folklore: the best possible deterministic competitive
ratio for OB is 4, and it is achieved by placing bids for all powers of2. A folklore result regarding random-
ized algorithms forOB is ane-competitive algorithm, wheree ≈ 2.718 (see also [2]). Chrobak et al. [3]
showed that this bound is best possible.

We note that this problem is equivalent to the following variant. An algorithm needs to submit abid set
B which is a set of positive real numbers. The cost of the algorithm for a bid valueT ∈ R+ is ∆(T ) =
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∑
t∈B:t<T

t+ inf
t∈B:t≥T

t. Then an algorithm isC-competitive if for any thresholdT ∈ R+, ∆(T ) ≤ C·T . Clearly

the two problems are equivalent, that is, the best competitive ratio (either randomized or deterministic) is
the same for the two variants. In this paper to simplify the notations we use the second formulation of the
problem.

The ONLINE BOUNDED BIDDING PROBLEM (OBB), with the positive integer parameterk ≥ 2, is
defined as follows. An algorithm again submits a bid setB, but it is charged only with itsk largest bids.
That is,∆k(T ) is defined as the sum of following two values: the first value is the infimum element ofB
which is at leastT , and the second value is the supremum sum of anyk−1 elements ofB which are smaller
thanT . The algorithm is said to beC-competitive if for allT ∈ R+, we have∆k(T ) ≤ C · T . In this
paper, we consider randomized algorithms. A randomized algorithm uses a distribution over setsB ⊆ R+.
The cost of a randomized algorithm is the expected value of∆k(T ). Therefore, a randomized algorithm
is C-competitive if for allT ∈ R+, we haveE(∆k(T )) ≤ C · T , whereE(·) is the expected value of its
argument.

Paulus, Ye and Zhang [6] have studied a related online batch scheduling problem with batches of fixed
capacity, but their results are valid forOBB. They showed that the best possible deterministic competitive
ratio for the parameterk is

min
x≥1

{
xk−1 + xk−2 + . . . + x + 1

xk−2

}
.

We consider the randomized bounded online bidding problem. Fork = 2, andk = 3, the deterministic
algorithms implied by the results of [6] simply letB = R+. We show that fork = 2 this algorithm is
still a best possible randomized algorithm. In contrast, for anyk ≥ 3, we design an improved randomized
algorithm. The competitive ratio of our improved randomized algorithm tends toe ask approaches infinity.
We note that the competitive ratio converges very fast toe ask grows. This can be observed by the line
marked “Randomized UB” in the following table, in which we compare the tight values for deterministic
algorithms proven by [6, 3], and the randomized upper bound shown in this paper.

k 2 3 4 5 6 7 8 ∞
Deterministic bounds 2 [6] 3 [6] 3.61 [6] 3.83 [6] 3.92 [6] 3.96 [6] 3.98 [6] 4 [3]
Randomized UB 2 [6] 2.5243 2.6582 2.6981 2.7112 2.7157 2.71736 e [3]
Value ofzk 1 [6] 2.047 2.4556 2.6122 2.6747 2.7003 2.71085 e [3]

Table 1. Tight values for the competitive ratio of deterministic algorithms versus an upper bound on the
randomized competitive ratio.

2 A randomized lower bound for k = 2

In this section we construct a lower bound of2 in the competitive ratio of any online algorithm forOBB.
Our lower bound is inspired by the randomized lower bound ofe for OB due to [3].

Theorem 1 The competitive ratio of any randomized online algorithm forOBB with k = 2 is at least 2.

Proof. We fix a randomized online algorithmA whose competitive ratio isβ. Let n ∈ N be a sufficiently
large number. We will consider an adversary which uses only threshold values ofT which are integers
between1 andn. Since our adversary uses only such values, we can modify algorithmA to use only integer
numbers between1 andn (such that the probability thatn is included in the bid set, which is selected by
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A, is 1) without increasing the competitive ratio of the algorithm against our adversary. This modification
is carried out by replacing every member of the bid set selected byA with its floor value. In this way, for
every threshold value, the cost paid by the algorithm may only decrease and thus the algorithm remains
β-competitive. Therefore, in the remainder of this proof, we restrict ourselves to an adversary which uses
threshold values ofT which are integers between1 andn, and consider a randomized algorithmA with
support containing bid sets which are subsets of{1, 2, . . . , n}. We let[n] = {1, 2, . . . , n}.

We define the following probabilities for each paira, b ∈ [n], wherea < b. X(a, b) is the probability that
a andb are two consecutive values in the bid setB selected byA. Then, the algorithm pays (in expectation)∑
a,b∈[n]:a<T≤b

(a+ b) ·X(a, b) against thresholdT . Since it is aβ-competitive algorithm, this value is at most

βT . We also have
∑

a,b∈[n]:a<T≤b

X(a, b) ≥ 1, which holds since for every threshold valueT ∈ [n] and for

every realization of the bid setB, we must have two consecutive values inB for which T is between them
(i.e.,a < T andT ≤ b).

Hence,β and the vectorX must form a feasible solution to the following linear program.

min β

s.t.
∑

a,b∈[n]:a<T≤b

X(a, b) ≥ 1 ∀T ∈ [n]

β − ∑
a,b∈[n]:a<T≤b

(a+b)
T ·X(a, b) ≥ 0 ∀T ∈ [n]

X(a, b) ≥ 0 ∀a, b ∈ [n], a < b.

Clearly, the competitive ratio ofA is at least the valueβ∗ of the optimal solution of the last linear program.
To get a lower bound onβ∗, we will present a feasible solution to its dual linear program which is presented
next. The dual linear program can be stated as follows, where(µ(T ))T∈[n] are the dual variables corre-
sponding to the first set of constraints, and(π(T ))T∈[n] are the dual variables corresponding to the second
set of constraints.

max
n∑

T=1

µ(T )

s.t.
n∑

T=1

π(T ) ≤ 1

b∑
T=a+1

µ(T )−
b∑

T=a+1

a+b
T π(T ) ≤ 0 ∀a, b ∈ [n], a < b

µ(T ), π(T ) ≥ 0 ∀T ∈ [n].

We would like to remove the first constraint. To do so, we note that given two vectors(µ(T ))T∈[n] and
(π(T ))T∈[n] which satisfy the other constraints, and are not identically equal to zero, we can scale the
vectors by a multiplicative factor of

∑n
T=1 π(T ) to create a solution for the dual linear program. (Note that

if
∑n

T=1 π(T ) = 0, thenµ(T ) = π(T ) = 0 holds for anyT ∈ [n].) As a result of this scaling, the objective
function value is also scaled by a factor of

∑n
T=1 π(T ). Hence our dual linear program is equivalent to the
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following mathematical program.

max

nP
T=1

µ(T )

nP
T=1

π(T )

s.t.
b∑

T=a+1

µ(T )−
b∑

T=a+1

a+b
T π(T ) ≤ 0 ∀a, b ∈ [n], a < b

µ(T ), π(T ) ≥ 0 ∀T ∈ [n].

We next consider the vectorsµ(T ) = 2T − 1 andπ(T ) = T for all T ∈ [n]. We first note that the objective

function value is

nP
T=1

µ(T )

nP
T=1

π(T )
=

nP
T=1

(2T−1)

nP
T=1

T
= 2− n

n·n+1
2

= 2− 2
n+1 which tends to 2 asn approaches infinity.

It remains to show that this is a feasible solution for every value ofn. First note thatµ(T ), π(T ) ≥ 0

for all T ∈ [n], and hence it remains to consider the set of constraints
b∑

T=a+1

µ(T ) −
b∑

T=a+1

a+b
T π(T ) ≤ 0.

We fix a, b ∈ [n] such thata < b, and consider the corresponding constraint.

b∑

T=a+1

µ(T )−
b∑

T=a+1

a + b

T
π(T )

=
b∑

T=a+1

(2T − 1)−
b∑

T=a+1

a + b

T
T

= 2
b∑

T=a+1

T − (b− a)− (a + b)(b− a)

= 2 ·
(

a + 1 + b

2

)
· (b− a)− (b− a)− (a + b)(b− a)

= 0 ,

and the claim follows.

3 An improved randomized algorithm for k ≥ 3

The algorithm in this section is an adaptation of thee-competitive algorithm forOB, and similarly to the
algorithm of [6] uses doubling with a parameter which is a function ofk.

We denote byzk > 1 a constant value which will be determined later. Our algorithm picks uniformly at
random a valueu with uniform distribution in the interval[0, 1), that isu ∼ U [0, 1]. The resulting bid set is
defined asBu = {zi+u

k : i ∈ Z}. It remains to analyze the competitive ratio of this algorithm.
Given a threshold valueT , we denote byTu = mini∈Z:zi+u

k ≥T zi+u
k , that is, the smallest value in the bid

setBu which is at leastT .

Lemma 2 For every realization ofu, the algorithm pays at most
1− 1

zk
k

1− 1
zk

· Tu.
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Proof. Note that givenT and a fixed value ofu, the algorithm paysTu + Tu
zk

+ Tu

z2
k

+ . . . + Tu

zk−1
k

since the

members ofBu are geometric sequence with the common ratiozk. The claim follows since

Tu +
Tu

zk
+

Tu

z2
k

+ . . . +
Tu

zk−1
k

= Tu ·
k−1∑

i=0

(
1
zk

)i

=
1− 1

zk
k

1− 1
zk

· Tu .

The next corollary is an immediate consequence of the last lemma.

Corollary 3 The expected value of the cost ofB is at most
1− 1

zk
k

1− 1
zk

·E(Tu).

The next step is to boundE(Tu) in terms ofT .

Lemma 4 E(Tu) = zk−1
ln zk

· T .

Proof. We consider the random variableA = Tu
T . Then, the distribution ofA is zα

k whereα ∼ U [0, 1]. We

next compute the expected value ofA. E(A) =
∫ 1
0 zα

k dα = zα
k

ln zk
|1α=0 = zk−1

ln zk
, and the claim follows.

We conclude that the expected cost of the algorithm is at most

ρ(k) =
1− 1

zk
k

1− 1
zk

· zk − 1
ln zk

· T .

Therefore, for every value ofk ≥ 3, we choosezk as the minimizer of the functionρ(k) and thenρ(k)

is the resulting competitive ratio. We note thatρ(k) =

zk
k−1

zk
k

zk−1

zk

· zk−1
ln zk

= zk
k−1

zk−1
k ln zk

. From this last formula, it is

clear thatρ(k) < e for every finite value ofk, since by settingzk = e, we get an expression which is smaller
thane and it is clearly an upper bound onρ(k). zk is the unique root larger than 1 of the following equation:
(zk

k + k − 1) · ln zk = zk
k − 1. Some values of the optimalzk value and the resultingρ(k) are presented in

Table 1. The following theorem is established.

Theorem 5 For k ≥ 3 there is a randomized algorithm forOBB whose competitive ratio isρ(k) =
zk
k−1

zk−1
k ln zk

wherezk is the unique root larger than 1 of the equation(zk
k + k − 1) · ln zk = zk

k − 1.

4 Concluding remarks

We have presented improved randomized algorithms forOBB for anyk > 2, and showed that fork = 2, the
deterministic algorithm of [6] is the best possible randomized algorithm. We conjecture that our algorithms
for k > 2 are the best possible randomized algorithms. The current methods for obtaining randomized
lower bounds forOB do not extend toOBB. In a nutshell, the difficulty arises since in the analysis of the
performance of the online algorithm it is necessary to take into account sets ofk consecutive values used by
the algorithm’s bid set. Fork = 2 this was possible since the last two values tested for a given threshold are
the first one that is larger or equal to the threshold, and its predecessor in the bid set, so these are exactly
the two values in the bid set that the threshold lies between them. On the other hand, fork ≥ 3, additional
values of the bid set (but not the entire bid set) needs to be considered. We leave this open problem for future
research.
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