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Abstract

Bin packing is the problem of partitioning a set of items into subsets of total sizes at most
1. In batched bin packing, items are presented in k batches, such that the items of a batch are
presented as a set, to be packed before the next batch. In the disjunctive model, a algorithm
must use separate bins for the different batches. We analyze the asymptotic and absolute
approximation ratios for this last model completely, and show tight bounds as a function of k.
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1 Introduction

We study the bin packing problem [23, 15], and analyze algorithms for it that receive the input in a

small number of batches. In the bin packing problem, the goal is to allocate input items of sizes in

(0, 1] to blocks called bins, such that the total size of items assigned to each block does not exceed

1, and the number of non-empty bins is minimized. The process of allocation of items to bins is

also referred to as the process of packing items into bins. The items are are denoted by 1, 2, . . . , n,

and the size of item i is denoted by si.

In the offline variant, all input items are presented together as a set. The problem is NP-hard in

the strong sense, and thus, approximation algorithms were studied. An approximation algorithm

has an asymptotic approximation ratio of at most R, if there exists a constant C1 ≥ 0 (which

is independent of the input), such that for any input I, the cost of the algorithm for I does not

exceed the following value: R times the optimal cost for this input plus C1. If C1 = 0, then

the approximation ratio is called absolute. A specific optimal algorithm as well as its cost are

denoted by OPT (I) or OPT , when the input is fixed. An alternative definition of the asymptotic

approximation ratio is the supreme limit of the ratio between the cost of the algorithm and OPT,

as a function of this last cost, taking the maximum or supremum over the inputs with the same

optimal cost.

For this classic variant, an asymptotic fully polynomial time approximation scheme (AFPTAS)

is known [11, 18]. This is a class of algorithms containing an approximation algorithm with an

asymptotic approximation ratio of 1+ ε for any ε > 0, with running time polynomial in the size of

the input and in 1
ε
. Many fast heuristics are known [23, 17, 16], including First-Fit (FF) [23, 17],

which processes a list of items, and assigns each item, in turn, to the minimum index bin where

it can be added. First-Fit-Decreasing (FFD) [15] acts identically to FF, but it requires the list of

input items to be sorted according to non-increasing sizes. FFD is known to have the best possible
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absolute approximation ratio 1.5 (this is the best possible unless P=NP) [22]. Next-Fit (NF) [16]

assigns each item into the maximum index non-empty bin if it can be packed there, and otherwise

to the minimum index empty bin. Next-Fit-Decreasing (NFD) [1] and Next-Fit-Increasing (NFI)

[12] are the algorithms that apply NF to lists that are sorted by non-increasing and non-decreasing

orders, respectively. First-Fit-Increasing (FFI) is identical to NFI. The asymptotic and absolute

approximation ratio of FF and NF are 1.7 and 2, respectively [17, 8, 16]. The sorted versions have

a better performance, FFD has an asymptotic approximation ratio of 11/9 [15], while NFD and

NFI have an asymptotic approximation ratio of approximately 1.69103 [1, 12].

In the online scenario, an algorithm is presented with the items one by one, and each item

must be packed before the next item can be seen. In this variant, the best possible asymptotic

approximation ratio (also called competitive ratio, for online algorithms, as an online algorithm

is compared to an optimal offline algorithm) is at least 1.5403 [4] and at most 1.58889 [21], and

the best possible absolute approximation ratio is 5
3 [27, 3]. The algorithms FF and NF are online

algorithms, but FFD, NFD, and NFI, are not online algorithms.

In batched bin packing, items are presented in k batches, for an integer k ≥ 1. For each batch,

the algorithm receives all its items at once, and these items are to be packed irrevocably before the

next batch is presented (if the current batch is not the last one). This last model is an intermediate

model, which bridges between the two extreme known models. The case k = 1 corresponds to

the offline problem. If the number of batches that may be presented is unbounded, this scenario

corresponds to the online problem. There are two models for any fixed k ≥ 2. In the disjunctive

model [7], the algorithm must use separate bins for the different batches. In the augmenting model

[14], the algorithm may use existing bins, where items were already packed in previous batches, as

well as new bins. Obviously, any algorithm for the disjunctive model can be seen as an algorithm

for the augmenting model, with the same performance.

In this work, we analyze the asymptotic approximation ratio and the absolute asymptotic

approximation ratio for the disjunctive model completely, and show tight bounds for them as a

function of k. The asymptotic approximation ratio tends to approximately 1.69103, while the tight

absolute approximation ratio is exactly k. Moreover, our results provide an improved upper bound

on the asymptotic approximation ratio for the augmenting model with two batches. This last

algorithm has an asymptotic approximation ratio of 1.5, improving over the algorithm of Dósa [7]

(see below). For the analysis, we will define subset of items called combined items, and use them for

the analysis of an optimal solution rather than dealing with the actual items. Moreover, we analyze

a particular offline algorithm for the combined items, rather than analyzing an optimal solution.

The other features of our analysis are related to those used in [1, 19, 25, 13, 10, 7]. Finally, we

show that the absolute approximation ratio for the augmenting model with two batches is 3
2 , while

for at least three batches, it is exactly 5
3 .

There is an additional relation between batched bin packing and the online problem. All lower

bounds on the asymptotic competitive ratio [26, 24, 4] are of the form where a pre-determined

number batches of identical items are presented to the algorithm, such that the algorithm does

not know how many non-empty batches will arrive. These lower bounds are valid for both models

of batched bin packing, with the corresponding number of batches (the number of batches in the

lower bound construction). Moreover, there is a certain relation of the disjunctive model to bounded

space online bin packing. In the latter problem, an online algorithm may keep a constant number

of bins open, and it must close all other bins that were used, in the sense that they can no longer
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be used for packing new items. The lower bounds for online bounded space bin packing are of the

form where batches of identical items arrive, and the algorithm must pack almost all items (except

for a constant number of items) of a batch into new bins, as there is only a constant number of

open bins that were used before. The best possible asymptotic competitive ratio for online bounded

space bin packing is the sum of a series and tends to approximately 1.69103 [19, 25]. This is the

same value as the asymptotic approximation of NFD and NFI, and the series will be discussed in

what follows.

In [14], Gutin, Jensen, and Yeo, proved a lower bound of approximately 1.3871 on the asymptotic

approximation ratio for the augmenting model with two batches. In [7], Dósa analyzed FFD

for two batches and both models of batched bin packing. The algorithm applies FFD on each

batch independently, using separate bins. The asymptotic approximation ratio was shown to be
19
12 ≈ 1.5833 even for the disjunctive model. Moreover, in the same paper it is shown that the

asymptotic approximation ratio of any algorithm for the disjunctive model (and k = 2) is at least
3
2 . In the case k ≥ 3, there are online algorithms that perform better than the best algorithms for

the disjunctive model (which are analyzed here), and thus better algorithms for the augmenting

model cannot be those of the disjunctive model. Balogh et al. [2] proved lower bounds on the

asymptotic competitive ratios of algorithms for the augmenting model and different numbers of

batches, and in particular, they showed a lower bound of 1.51211 for three batches (while the

previously known lower bound was 1.5 [26]). For four batches, the lower bound of van Vliet [24] is

approximately 1.539, thus, the effect of a small number of batches is mostly noticeable for k = 2

and k = 3.

2 Main result

We will prove our results in this section. We start with the required definitions, then we prove the

upper bounds, and finally we will that these bounds cannot be improved for the disjunctive model.

Preliminaries. We define a sequence πj (for any integer j ≥ 1) as follows. Let π1 = 1, and for

i ≥ 1, πi+1 = πi(πi + 1). Let Γk =
∑k

i=1 πi. We have Γ1 = 1, Γ2 =
3
2 , Γ3 =

5
3 , Γ4 =

71
42 ≈ 1.690476,

and Γ∞ = limk→∞ Γk ≈ 1.69103. Recall that the last value is the asymptotic approximation ratio

of several well-known bin packing algorithms (for example, it is the asymptotic approximation

ratio of Harmonic, NFI, and NFD). This sequence is frequently used in analysis of bin packing

[1, 19, 25, 13, 10]. In particular, the following claim is often used, and we will use it in our analysis

as well.

Claim 1 For any integer i ≥ 2, πi > πi−1, and πi ≥ i. For any two integers i ≥ 1 and i′ ≥ i, πi′

is divisible by πi. Moreover, we have
∑j

i=1
1

πi+1 = 1− 1
πj+1

for j ≥ 1.

Proof. The claims are proved by induction. In the base case i = 2, π2 = 2. Assume that πi > πi−1

and πi ≥ i hold. Then, πi+1 = πi(πi + 1). Using πi ≥ i, we get πi + 1 > i ≥ 2, so πi+1 > πi. Using

πi ≥ i ≥ 2, we get πi(πi + 1) ≥ 2(i+ 1) > i+ 1.

The base case of the second claim (i′ = i) is trivial, and the induction is simple as well: Assume

that πi′−1 is divisible by πi. This implies that πi′ is divisible by πi as πi′ is divisible by πi′−1.
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Consider the third claim. In the base case j = 1, and 1
π1+1 = 1

2 = 1− 1
2 = 1− 1

π2
. Next, assume

that
∑j

i=1
1

πi+1 = 1 − 1
πj+1

holds. We show that
∑j+1

i=1
1

πi+1 = 1 − 1
πj+2

holds as well. Indeed,∑j+1
i=1

1
πi+1 =

∑j
i=1

1
πi+1 + 1

πj+1+1 = 1− 1
πj+1

+ 1
πj+1+1 = 1− 1

πj+1(πj+1+1) = 1− 1
πj+2

.

In what follows, we will prove the following theorem.

Theorem 2 The absolute approximation ratio for batched bin packing in the disjunctive model is

k, and the asymptotic approximation ratio is Γk. The additive constant for the last approximation

ratio is Θ(k), and for k = 2 it is exactly 1
2 .

Upper bounds. We will analyze a specific input I. Let OPTi denote the optimal cost for

packing the items of batch i, let ALGi denote the cost of a given algorithm ALG for batch i, and

ALG =
∑k

i=1ALGi. Obviously, OPTi ≤ OPT .

Consider the following algorithm. The algorithm FF-Batch (FFB) applies FF on each batch

separately.

Proposition 3 For any k ≥ 2, the absolute approximation ratio of FFB is at most k.

Proof. If the input is empty, we are done. If FFB uses a single bin for every batch, FFBi = 1,

and FFB = k. In the latter case, as OPT ≥ 1, the absolute approximation ratio does not exceed

k.

Finally, assume that at least two bins were used by FFB for at least one batch. Let θ be such

that 1 ≤ θ ≤ k is the number of batches for which there are at least two bins, and let ℓ denote

the total number of bins in such batches. For inputs where FF creates at least two bins, the total

size of items packed into each bin is above 1
2 on average (as any item of a bin could not be packed

into a bin of a smaller index, see e.g. [5], page 1918). Thus, the total size of items is above ℓ
2 , and

OPT > ℓ
2 , and therefore, OPT ≥ ⌈ ℓ+1

2 ⌉ ≥ 2, and OPT ≥ ℓ+1
2 .

If θ = k, then FFB ≤ ℓ < 2 · OPT . Otherwise, there are k − θ ≥ 1 bins for other batches,

and we find FFB ≤ (k − θ) + ℓ ≤ k − θ + 2 · OPT − 1 ≤ (k − θ − 1)/2 · OPT + 2 · OPT =

(k − θ + 3)/2 ·OPT ≤ k ·OPT , as k + θ ≥ 3, which holds as k ≥ 2 and θ ≥ 1.

Consider an an algorithm ALG that runs an approximation algorithm with approximation ratio

at most ϕ ≥ 1 for each batch (this last approximation algorithm does not have to be an online

algorithm, as it is applied on one batch at a time). The absolute approximation ratio of ALG

is at most ϕ · k, since ALG =
∑k

i=1ALGi ≤
∑k

i=1 ϕ · OPTi ≤
∑k

i=1 ϕ · OPT = kϕ · OPT . If

we are interested in the effect of splitting the input into batches rather than the effect of limited

computational power and we assume that the items of each batch are packed optimally (that is,

ϕ = 1), the absolute approximation ratio here is k as well. We will analyze the last algorithm with

respect to the asymptotic approximation ratio.

For the analysis of the asymptotic approximation ratio, we will show
∑k

i=1OPTi ≤ Γk ·OPT +

O(k), and for k = 2, we will show OPT1 + OPT2 ≤ 3
2 · OPT + 1

2 . This will prove that the

asymptotic approximation ratio for k batches is Γk. If instead of ALG, an approximation algorithm

is used for each batch, where that algorithm computes for each input I ′ a solution of cost at most

ψ · OPT (I ′) + C1 (where C1 is a non-negative constant), then the total cost of the solution will

be
∑k

i=1(ψ · OPTi + C) ≤ ψΓk · OPT + O(k). As an approximation scheme for bin packing can

be applied (an APTAS or an AFPTAS), the approximation ratio increases only by a multiplicative
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factor of 1 + ε (where ε > 0 can be chosen to be arbitrarily small). Thus, in what follows, we will

analyze the algorithm ALG that computes an optimal solution for each batch.

Given a fixed optimal solution OPT for the entire input, we create combined-items (C-items)

as follows. For a bin B of the optimal solution, let Bj denote the items of B that belong to batch

j (for 1 ≤ j ≤ k). A C-item a of size σa =
∑

i∈Bj si is created for any j such that 1 ≤ j ≤ k. The

C-item that was created for a given value of j is called a C-item of batch j. The size of a C-item

is non-negative (it can be zero if Bj is empty), and it cannot exceed 1, as
∑

i∈Bj si ≤
∑

i∈B si ≤ 1.

Any solution (i.e., packing) for the C-items induces a solution for the original input. Moreover, a

solution where every bin contains only C-items of one batch induces solutions for the k inputs of

the k batches (into separate bins for the different batches).

The analysis will consist of bounding the cost of an optimal solutions for the C-items from

above. Specifically, we will present a solution SOLi (whose cost is also denoted by SOLi) for the

C-items of batch i, and we will find an upper bound on SOL =
∑k

i=1 SOLi. This will provide an

upper bound for
∑k

i=1OPTi, as OPTi ≤ SOLi.

We start with a simple analysis of the case k = 2. In this case, every bin of OPT has two C-items.

In order to construct these solutions (SOL1 and SOL2), we consider the packing of OPT, and split

bins of OPT into pairs (possibly leaving one unpaired bin). We repack the C-items such that every

bin will contain only C-items of one batch as follows. Given two bins of OPT that are a pair, let

the sizes of their C-items be α1, α2, β1, β2 (where the index of the size of an item corresponds to

its batch). Since these four items are packed into two bins in OPT, α1 + α2 + β1 + β2 ≤ 2. Thus,

at least one of α1 + β1 ≤ 1 and α2 + β2 ≤ 1 must hold. In the former case, create one bin in SOL1

with the two C-items of the first batch, and two dedicated bins for the other items in SOL2. In

the latter case, create one bin for α2 and β2 in SOL2, and one bin for each of α1 and β1 in SOL1.

In both cases, at most three bins were created. If an unpaired bin remains, create two bins (one

for each C-item, such that one bin is in SOL1 and the other is in SOL2).

Proposition 4 We have SOL ≤ 3
2 ·OPT + 1

2 .

Proof. As at most three bins of SOL1 and SOL2 (together) are created from every pair of bins of

OPT, and two bins are created from an unpaired bin, if it exists, we find the following. We have

SOL ≤ 3
2OPT , if OPT is even, and otherwise SOL ≤ 3

2 · OPT−1
2 + 1 = 3

2OPT + 1
2 .

Next, we consider a set of solutions SOLi (i = 1, 2, . . . , k), where SOLi is constructed by

running Next Fit Decreasing (NFD) on the C-items of batch i. Recall that this algorithm sorts

the C-items in a non-increasing order (by size), and assigns each item, in turn, into a bin of the

maximum index that is non-empty, and into an empty bin of a minimum index if this is impossible

(in the case where the total packed size would exceed 1). We assume that all zero size items are

packed into the last non-empty bin. Note that this algorithm cannot be simply applied on the

input, as the identity of the C-items is not known to the algorithm.

While a weight-based analysis became fairly common for bin packing problems, here we will

apply it on C-items rather than on the actual items. We will find a lower bound on the total weight

of C-items in each solution SOLi compared to the number of bins, and we will find an upper bound

on the total weight of C-items packed into a bin of OPT.

Several weight functions were defined for bounded space online algorithms, and for offline algo-

rithms that have the same asymptotic approximation ratio Γ∞ [1, 19, 25, 13, 10]. Here, we adopt
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the weights given in [1]. We define a function f : [0, 1] → [0, 1] as follows. We let f(0) = 0. For

x ∈ (0, 1], f(x) is defined as follows, let jx ≥ 1 be an integer such that x ∈ ( 1
jx+1 ,

1
jx
]. If jx = πi

for some i ≥ 1, then we let f(x) = 1
πi
. Otherwise, we let f(x) = jx+1

jx
· x. Any x > 0 satisfies

f(x) ≤ jx+1
jx

· x, since in the cases where this does not hold with equality, x ∈ ( 1
πi+1 ,

1
πi
] for some

i ≥ 1, and f(x)
x = 1

πi
· 1
x <

1
πi

· (πi + 1) = jx+1
jx

. Moreover, this implies that if y ≤ 1
j for an integer

j ≥ 1, then f(y) ≤ j+1
j · y.

For a C-item a of size σa, we let wa = f(σa). Let Wi denote the total weight of all C-items of

batch i, and let W =
∑k

i=1Wi.

The next lemma is proved in [1] (see Claim 1 in [1]).

Lemma 5 Given a set of items of positive sizes, whose weights are defined according to f , if

applying NFD on these items results in X bins, then the total weight of the items is at least X − 3.

Adding zero size items changes neither the total weight nor the number of bins, if the inputs

contains at least one item having a positive size. If all items have zero sizes, then the total weight

and the number of bins are both equal to zero. We find the next corollary.

Corollary 6 Given a set of items of non-negative sizes, whose weights are defined according to

f , if applying NFD on these items results in X bins, then the total weight of the items is at least

X − 3.

The next lemma provides an upper bound for the weights of a bin containing k C-items. It

resembles proofs given in [19, 25, 13, 6, 20], but the number of C-items is at most k, similarly to

[9].

Lemma 7 Consider k values x1, x2, . . . , xk such that for i = 1, . . . , k, we have 0 ≤ xi ≤ 1, and∑k
i=1 xi ≤ 1. For these values,

∑k
i=1 f(xi) ≤ Γk.

Proof. Without loss of generality, assume x1 ≤ x2 ≤ · · · ≤ xk. Let 1 ≤ i ≤ k be the minimum

integer such that xi /∈ ( 1
πi+1 ,

1
πi
]. If i is undefined, then for 1 ≤ i ≤ k, f(xi) =

1
πi
, and

∑k
i=1 f(xi) =

Γk. Otherwise, as xℓ ∈ ( 1
πℓ+1 ,

1
πℓ
] for 1 ≤ ℓ < i, we have

∑k
j=i xj ≤ 1−

∑i−1
ℓ=1 xℓ < 1−

∑i−1
ℓ=1

1
πℓ+1 =

1
πi
, by Claim 1. Since xi /∈ ( 1

πi+1 ,
1
πi
], we have xi ≤ 1

πi+1 , and moreover, as xj ≤ xi for j > i,

we have xj ≤ 1
πi+1 for j ≥ i. Recall that if y ≤ 1

t , f(y) ≤ t+1
t · y, and we find

∑k
j=i f(xj) ≤

πi+2
πi+1 ·

∑k
j=i xj =

πi+2
πi+1 · 1

πi
= 1

πi
+ 1

πi(πi+1) = 1
πi

+ 1
πi+1

. This shows
∑k

j=i f(xj) ≤
∑i+1

j=1
1
πj

= Γi+1,

and proves the claim for the cases where i < k. If i = k, then f(xi) ≤ πi+2
πi+1 · 1

πi+1 ≤ 1
πi
, which

follows from simple algebra. In this case
∑k

j=i f(xj) ≤
∑i

j=1
1
πj

= Γi = Γk.

Since any bin of OPT has k items, we find the following.

Corollary 8 The total weight of any bin of OPT is at most Γk.

Combining the bounds on total weights, we find the following.

Theorem 9 We have SOL ≤ Γk ·OPT +O(k).

Proof. The total weight of all items does not exceed Γk ·OPT , as any bin of OPT has total weight

at most Γk. As Wi ≥ SOLi − 3, we get SOL ≤
∑k

i=1(Wi + 3) =W + 3k ≤ Γk ·OPT +O(k).
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Lower bounds. The construction of the lower bound (which will be proved for all cases simul-

taneously) is similar to that of Lee and Lee [19], and to later constructions [25, 13, 6, 20], but we

use a constant number of items, as in [9].

Proposition 10 The absolute approximation ratio of any algorithm for batched bin packing in the

disjunctive model is at least k. The asymptotic approximation ratio of any algorithm for batched

bin packing in the disjunctive model is at least Γk, with an additive constant of Ω(k), and at least
1
2 for k = 2.

Proof. Let N be a positive integer such that N−1 is divisible by πk (and therefore by Claim 1, it is

divisible by πi for 1 ≤ i ≤ k−1 as well). Batch i consists of N items of size 1
πi+1+δ, where δ < 1

π2
k+1

.

An optimal solution consists of N bins, such that each bin has one item of each type. By Claim 1,

the total size of items packed into each bin is
∑k

i=1
1

πi+1+kδ = 1− 1
πk+1

+kδ ≤ 1− 1
πk+1

+πk+1δ < 1,

and therefore the packing of each bin is valid, and the number of bins in any solution cannot be

smaller, as the N items of the first batch have sizes above 1
2 . As the items of batch i are strictly

larger than 1
πi
, each bin for this batch can contain at most πi items, and an optimal solution for

batch i consists of N−1
πi

+ 1 bins. Thus, the algorithm uses k + (N − 1)Γk bins.

We get ALG = Γk · OPT + k − Γk = ΓkOPT + Ω(k), since Γk ≤ 2. For k = 2, We get

ALG = 3
2 · OPT + 1

2 . This shows that the asymptotic approximation ratio is at least Γk (using

large values of N), and the absolute approximation ratio is at least k, using N = 1, in which case

OPT = 1. It also shows that the additive constant for the asymptotic approximation ratio is Ω(k)

and for k = 2 it is at least 1
2 .

The augmenting model. Finally, we briefly discuss the augmenting model. Here, the absolute

approximation ratio is much smaller than that of the disjunctive model.

Proposition 11 The best possible absolute approximation ratio for the augmenting model is equal

to 3
2 for k = 2, and to 5

3 for k ≥ 3.

Proof. First, consider the case k ≥ 3. The online algorithm of Balogh et al. [3] has an absolute

competitive ratio of 5
3 . Moreover, the lower bound construction stated in the last paper consists of

at most three batches.

Next, consider the case k = 2. The following input provides a simple lower bound. A first batch

consists of two items, each of size 0.4, and it is possibly followed by a second batch consisting of two

items, each of size 0.6. If the first two items are packed into two bins, the absolute approximation

ratio is at least 2, and otherwise, the algorithm uses three bins, while an optimal solution requires

two bins (each containing one item of each batch).

We show that the following (exponential time) algorithm has an absolute approximation ratio

of at most 3
2 . For a given packing, let its lower value be the minimum total size of items in any

non-empty bin. The algorithm constructs a packing of the first batch with a minimum number

of bins, such that (out of solutions with the minimum number of bins) its lower value is minimal.

That is, it does not only construct an optimal packing, but out of optimal solutions, the maximum

empty space in any bin is maximal. In the second batch, it creates a solution with the smallest

total number of bins, such that it can pack items into the already existing non-empty bins, and

into new bins.
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We adapt the previous approach, where SOL1 and SOL2 are analyzed for bounding the ap-

proximation ratio. If OPT is even, we analyze these solutions exactly as before. If OPT is odd,

let γ1 and γ2 denote the sizes of the C-items of the first batch and the second batch, respectively,

for the unpaired bin of OPT .

The solution that the algorithm constructs for the first batch has at most SOL1 bins. One valid

option for the second batch would be to pack all items of the second batch into SOL2 new bins.

Thus, if OPT is even, then the cost of the constructed solution is at most SOL1+SOL2 ≤ 3
2OPT .

We are left with the case where OPT is odd. If the cost of the solution that is constructed for the

first batch is strictly smaller than SOL1, then the cost is at most (SOL1−1)+SOL2 ≤ 3
2OPT − 1

2 .

Therefore, we are left with the case that the minimum number of bins required for the first batch

is exactly SOL1 (it cannot be larger, as SOL1 is a possible packing of this input). Since SOL1 is

a possible solution with the smallest number of bins for the first batch, by the choice of a solution

with the smallest lower value, we find that the lower value of the output for the first batch is at

most γ1. A possible output for the second batch would be to create all bins of SOL2, except for

the bin of the C-item of size γ2, and pack the last item (that is, the items it consists of) into a

bin of a smallest lower value constructed by the algorithm for the items of the first batch. This

is possible as γ1 + γ2 ≤ 1. We find that a possible output of the algorithm is a solution of cost

SOL1 + SOL2 − 1 < 3
2OPT .
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