Optimally Competitive List Batching

Wolfgang W. Bein'!, Leah Epstein?, Lawrence L. Larmore', and John Noga®
! School of Computer Science, University of Nevada
Las Vegas, Nevada 89154, USA. ***
bein@cs.unlv.edu larmore@cs.unlv.edu
2 School of Computer Science, The Interdisciplinary Center
Herzliya, Israel. '
lea@idc.ac.il
% Department of Computer Science, California State University Northridge
Northridge, CA 91330, USA

jnoga@csun.edu

Abstract. Batching has been studied extensively in the offline case,
but many applications such as manufacturing or TCP acknowledgement
require online solutions.

We consider online batching problems, where the order of jobs to be
batched is fixed and where we seek to minimize average flow time. We
present optimally competitive algorithms for s-batch (competitive ratio
2) and p-batch problems (competitive ratio of 4.) We also derive results
for naturally occurring special cases. In particular, we consider the case
of unit processing times.

Keywords: Design of Algorithms; Online Algorithms; Batching, TCP ac-
knowledgement.

1 Introduction

Batching problems are machine scheduling problems, where a set of jobs J =
{1,...,n} with processing times p;, i € J, has to be scheduled on a single
machine. The set of jobs 7 has to be partitioned into J = U;Zl Jx, to form a
sequence of batches J1, ..., J, for some integer r. A batch combines jobs to run
jointly, and each job’s completion time is taken to be the completion time of the
entire batch. We assume that when each batch is scheduled it requires a setup
time s. In an s-batch problem the length of a batch is the sum of the processing
times of the jobs in the batch, whereas in a p-batch problem the length is the
maximum of the processing times in the batch. We seek to find a schedule that
minimizes the total flow time Y t;, where t; denotes the completion time of job
i in a given schedule, and consider the versions the problems, where the order
of the jobs is given and fixed. We respectively refer to these problems as the list
s-batch problem and list p-batch problem. We remark that the use of the term

*** Research of these authors supported by NSF grant CCR-9821009.
f Research of this author supported by Israel Science Foundation grant 250/01.

“s-batch” intuitively has to do with the fact that in an s-batch problem jobs are
to be processed sequentially, whereas for “p-batch” problems the jobs in each
individual batch are to processed on the machine in some parallel manner.

We say that the batching problem is online, if jobs arrive one by one, and
each job has to be scheduled before a new job is seen. By “a job has to be
scheduled” we mean that the job has to either (a) be included in the current
batch or (b) it has to be scheduled as the first job of a new batch. An algorithm
that follows this protocol is called an online algorithm for the batching problem.
We say the online algorithm batches a job if it follows the action described in
(b), otherwise, if it follows the action in (a) we say the algorithm does not batch.

The quality of an online algorithm 4 is measured by the competitive ratio,
which is the worst case ratio of the cost of A to the cost of an optimal offline
algorithm opt that knows the entire sequence of jobs in advance. We note that
the offline list s-batch problem is a special case of the 1|s — batch| Y C; problem
which has been well studied and has a linear time algorithm [3]. Many related
offline problems have been studied as well, see e.g. [4,2].

An application of the problem is the following. Jobs (or processes) are to
be run on either a single processor or on a large number of multiple processors.
Jobs are partitioned into batches that use a joint resource. The resources of
each batch have to be set-up before it can start. The successful processing of a
batch acknowledged when it terminates. A job may be seen as completed when
an acknowledgement is sent (and not necessarily at its completion time), which
is done after all jobs of the batch are completed. The goal is to minimize the
sum of flow times of all jobs. An s-batch simulates a single processor, in that
case at each time one job is run, and a batch is completed when all its jobs
are completed, i.e. the time to run a batch is the sum of processing times of
its jobs. A p-batch simulates a multiprocessor system where each job may run
on a different processor and therefore the time to run a batch is the maximum
processing time of any job in the batch.

Our problem is related to the TCP acknowledgement problem. With TCP
there exists a possibility of using a single acknowledgement packet to simultane-
ously acknowledge multiple arriving packets, thereby reducing the overhead of
the acknowledgments. Dooly, Goldman, and Scott [5] introduced the dynamic
TCP acknowledgement problem in which the goal is to minimize the number
of acknowledgments sent plus the sum of the delays of all data packets which
are the time gaps between the packets arrival time and the time at which the
acknowledgement is sent. The above paper gave an optimally competitive algo-
rithm (with competitive ratio 2) for this problem. Albers and Bals [1] derived
tight bounds for a variation of the problem in which the goal is to minimize the
number of acknowledgments sent plus the maximal delay incurred for any of the
packets. A more generalized problem where a constant number of clients is to
be served by a single server was recently studied in [6].

As mentioned above, the s-batch problem is an online one-machine scheduling

problem. The p-batch can be seen as such a problem as well, where the single
machine is capable of processing several jobs in parallel. We can see the batching

problems both as scheduling to minimize the sum of completion times, and as
scheduling to minimize the sum of flow times, as no release times are present (the
flow time of a job is its completion time minus its release time). However, both
the classical “sum of completion times” problem and the “sum of flow times”
are very different from the s-batch problem. For completion times, the optimal
competitive ratio is 2 [9-11], whereas for the flow problem the best competitive
ratio can be easily shown to be linear in the number of jobs. In these two problems
there are release times and no set-up times, so there are no batches. Each job
is run separately and the jobs do not need to be assigned in the order they
arrived. There are very few one-machine papers where immediate decision on
assignments is required. Fiat and Woeginger [8] studied one such model where
the goal is minimization of total completion time. A single machine is available
to be used starting time zero. Each job has to be assigned (immediately upon
arrival) to a slot of time. The length of this slot should be identical to the
processing requirement of the job. However, idle times may be introduced, and
the jobs can be run in any order. It was shown that the competitive ratio is
strictly larger than logarithmic in the number of jobs n, but for any € > 0, an
algorithm of (logn)! ¢ competitive ratio exists. Another immediate dispatching
problem to minimize the sum of completion times (plus a penalty function)
is studied in [7]. Jobs arrive one by one, where a job can be either accepted
or rejected by paying some penalty (which depends on the job). The penalty
function is simply the sum of penalties of rejected jobs.

2 Optimally Competitive List s-Batching

Throughout this paper we will assume for the setup time that s = 1 since
processing times can be scaled appropriately. Also, we will make use of very
short null jobs. We denote a null job by the symbol O, and a sequence of null
jobs by O71,0s,.... The length of a null job is € > 0, where ¢ is arbitrarily
small, and therefore we will simplify our exposition by appropriately ignoring
this quantity for the length of a schedule. We note that in all of our proofs the
quantities could be introduced explicitly and then a limit taken at the end, with
no change to the results.

Theorem 2.1. The competitive ratio of any deterministic online algorithm for
the list s-batch problem is no better than 2.

Proof. We first show that for any deterministic online algorithm 4 one can
construct a request sequence such that the cost for A cannot be can be better
than twice the cost of opt on that sequence. Such a sequence is made up of a
number of phases. Each phase consists of a number L of null jobs, followed by a
single job 7 of length 1; we write o© = Oy,...,Op, 7. An entire sequence is of
the form:

N _N? Nk
pr=0 ,0" ,...,0

where N is a large integer. Thus a sequence is always made up of a number phases,
where the length of the phase is increasing from phase to phase. A sequence of
this form is sufficient to prove our result, for any A.

Certainly A must either

a) batch during every phase o' for i < m, for some m < N, or
b) have an earliest phase i < m in which it does not batch.

Case a: In this case the sequence is chosen to be p,,,. We have
costopt = N™(1+ (m — 1)) + O(N™1).

We note that we may w.l.o.g. assume A always batches towards the end of the
phase right before the job of length 1. Thus,

costy = N™(m + (m — 1)) + O(N™ 1),
The lower bound follows for A since

m+ (m—1)

— 2
1+ (m—1)

as m increases.

Case b: Whenever A batches we may as before assume that 4 always batches
towards the end of the phase right before the job of length 1. Unlike before, in
this case there exists a smallest ¢ such that A does not batch in phase ¢. To
obtain our result the sequence is chosen to be p;. We have

cost opt = N1+ (£=1)) +O(N),

whereas
costy = N'(L+0) + O(N*h),

yielding again the lower bound of 2.

We now present a class of algorithms, one of which achieves the competitive
ratio of 2 and thus matches the lower bound. For each B > 0, we define algorithm
PseupoBarcH(B) and, in fact, we call the algorithm with parameter value B = 1
simply “PseuboBATcH”, i.e. without any parameter. Algorithm PseupoBarcu(B)
keeps a tally of processing thus far; we call the set of jobs associated with this
tally the “pseudo batch”. Once a job a causes the processing requirements in the
pseudo batch to exceed B, algorithm PseuboBarcu(B) batches, and the pseudo
batch is cleared. Note that this means that (a) « is the first job in a new batch
and (b) the old tally, which contains p,, is cleared and thus p, is not part of the
upcoming tally during the batch just opened. We note that therefore in general
the pseudo batches and the actual batches created by the algorithm are shifted
by one job, and the very first job does not belong to any pseudo batch.

Theorem 2.2. The competitive ratio of algorithm PSEUDOBATCH S mo worse
than 2.

Proof. We note that for the optimal schedule with completion times ¢7,%5,. . ..
we have
tH>1+5;

where S; = Z;zl Dj-
For the algorithm we have

ti<m;+S;+1

where m; is the number of batches up to job i including the current batch. We
also have
m; S 1+ Sl

Thus t; < 24 25;, which implies the result.

The next result shows that the exact competitiveness of 2 relies on the fact
that the jobs may be arbitrarily small. Indeed, it is easy to show that if there is a
lower bound on the size of the jobs then it is possible to construct an algorithm
with competitiveness better than two.

Theorem 2.3. If the processing time of every job is at least p, then there is a

i _ 1+p+1
C'-competitive online algorithm, where C' = o

Proof. We consider Pseuposarch(B), with B = y/p + 1. Note that C' = 1+ +.
We will prove that PseupoBarcu(B) is C-competitive, given that p; > p for all
i

As before, let S; = 2;21 pj, t; the completion time of the i*" job in the
optimal schedule, ¢; the completion time of the i*" job in the schedule created
by PseupoBarcH(B), and m; the number of batches up to and including the
batch which contains the i*! job in the schedule created by Pseubosarcu(B).
We shall prove that

L<C (1)

for all 4.

The i*" job is in the m!® batch. Let us say that the ¢! job is the last job
in that batch. Then Sy — S; < B, since i + 1,...,¢ must be in the same pseudo
batch.

As before, t; > S; + 1, and t; = S¢ + m;. By the definition of the algorithm
PseupoBatci(B), we have m; < % + 1. Since p, > p, we have that

p1+1+B<p+1+B:C
p+1 = p+1

Recall that 1 + % = (. We hayve:

E<S€+mi
tr— Si+1

Si+m; +B
- Si+1
Si—pi+my+p, +B
Si—p+1+p
- (1+5)(Si—p)+1+p +B
o Si—pr+1+p
C(Si—p)+C(A+p) _
Si—pi+1+p

IN

This verifies (1) for each 4, and we are done.

3 Identical Job Sizes

For machine scheduling problems it is typical that restricting to unit jobs makes
the problem easier to analyze. However, this is not the case for list batching. In
this section we give results for the case s =1 and p; =1, for all j € 7. In this
case we can give an exact description of the optimal offline solution. To this end
define

optcost[n] = optimal cost of n jobs
firstbatch[n] = size of first batch for n jobs.

We have the following recursive definition of optcost[n]:

0 forn=20
ming<p<p opteost[p] + n(n —p + 1) for all n > 0.

opteost[n] = {

To see this let n — p be the number of items in the first batch. Then p is the
number of items in the remaining batches. We assume that they are processed
optimally. The cost of processing the first batch is (n — p)(n — p + 1). The cost
of processing all remaining batches is optcost[p] + (n — p + 1)p.

We define a function F[n], for n >= 0, as follows. If n = m(m +1)/2 + k for
some m > 0 and some 0 < k <m + 1, then

1 2 kE(k+1
Fln) = Mt)(mQI JBM3) Lk tm— k1) + % 2)
In the special case that n = mm+l) for some m > 0, then the rule gives two

different formulae for F'[n]. Routinely, we verify that the values are equal, in fact
they are both equal to m(m + 1)%
The following facts will be useful in describing the offline solution in closed

form:

Lemma 3.1. a) Ifn =27 m+1) +k where 0 < k < m+1, then F[n+1]—F[n] =
n+m+ 2.

b) Ifnzw, then F[n] — Fln — 1] =n +m.
¢) If n > 1, then Fln+ 1]+ Fn — 1] > 2Fn].

Proof. We first prove part a). To that end, let

Fn] = mim + 1)(m21 2Bm+3) | k(n+m—k+1)+ w
and
Fln+1] = m(m+1)(m21 2)(3m +5) k)t m— k1) + (k+1)2(k+2)_
Then

Fn+1]-Fhnl=Mn4+m—-k+1)+k+1=n+m+2,

which proves part a).
For part b) simply write n = (m — 1)m/2 + m, then apply part a).
In the proof of part c¢) we consider two cases:
Case 1: n =m(m + 1)/2 + k where 0 < k < m + 1. Applying part a) twice,

Fin+1]+Fn—-1]-2Fn|=n+m+2)—(n+m+1) =1.

Case 2: n = m(m + 1)/2 for some m > 0. Then F[n+ 1] — Fln] =n+m+2 by
part a), and F[n] — F[n — 1] = n + m by part b). Thus

Fln+1]+ Fln—1] - 2F[n] = 2.
We are now ready to give the closed form:

Theorem 3.2. For optcost[n], optcost = F[n] for all n > 0. Furthermore, if
n= W +k for somem > 0 and some 0 < k < m + 1, then the optimal size
of the first batch ism if k=0, is m+1 if k =m+1, and is either m or m + 1

if0<k<m+1.

Proof. We first show optcost[n] < F[n] for all n by strong induction on n.
If n = 0 we are done. If n > 0, select m > 0 and 0 < k < m + 1 such that
n= WA + k.
We show
Fn]=Fn—m]+n(m+1) (3)

To show equation 3, note

Fln] = m(m + 1)(m21- 2)(3m + 5) Fktm—k+1) 4+ k(k2+ 1).
Then, since 0 < k <m
_ (m—=1)m(m +1)(3m + 2) k(k+1)
Fln—m] = o +k(n—k)+T.

Then

Fln]—Fln—m]—n(m+1) =
m(m + 1)(12m + 12)
24

m(m + 1)
2

+k(m+1) - +k(m+1)=0.

This establishes equation 3.

By the inductive hypothesis, F[n — m] > optcost[n — m]. By definition,
optcost[n] < optcostln — m] + n(m + 1). Then F[n] = Fln — m]+ n(m + 1) >
optcostln — m] + n(m + 1) > opteost[n]. This completes the proof of the fact
opteost[n] < Fn] for all n.

It now follows the proof that indeed optcost[n] = F[n] holds. This is also by
strong induction. The case n = 0 is trivial. For fixed n > 0, we now define

Glp] = Flp] + n(n —p+1) for all p < n.
It is easy to see that
Glp+ 1]+ Gp — 1] > 2Gp] for all p > 0. (4)

since the second term in the definition of G is linear and by Lemma 3.1, part c).
Letn>0.Writen:W+k,wherem>0and0<:k<m+l.

Case 1: k=0. Thenlet p=n—m = w By definition of G' and by Lemma
3.1, part a), we have

Glp+1]-Glp]=1.
By definition of G and by Lemma 3.1, part b), we have
Glpl-Gp-1=1.

We can easily check that F[n] = G[p]. It follows, by equation 4 and by the
inductive hypothesis that optcost[n] = F[n] and that firstbatch[n] = m.

Case 2: k> 0. Thenletp=n—-m—1= W—kk—l. By definition of G and
by Lemma 3.1, part a), we have

Glp+1]—-GJp] =0.
By definition of G and by Lemma 3.1, part a), we have
Gp+2]-Gp+1]=1.
If £k =1, by definition of G and by Lemma 3.1, part b), we have
Glpl-Gp—-1]=1.
If k > 1, by definition of G and by Lemma 3.1, part a), we have

Glp]l -Glp—1]=1.

We can easily check that
Fn] =G[p] = Glp+1].

It follows the inductive hypothesis and equation 4, that optcost[n] = F[n] and
that firstbatch[n] = m or m + 1.

Our next goal is to find a lower bound on the competitive ratio of any algo-
rithm for the unit jobs case and give an algorithm which achieves this ratio.

Define D to be the algorithm which batches after jobs: 2, 5, 9, 13, 18, 23, 29,
35, 41, 48, 54, 61, 68, 76, 84, 91, 100, 108, 117, 126, 135, 145, 156, 167, 179, 192,
206, 221, 238, 257, 278, 302, 329, 361, 397, 439, 488, 545, 612, 690, 781, 888,
1013, 1159, 1329, 1528, 1760, and 2000440 for all « > 0.

Pruned Decision Tree

Opt

11

18

26

Fig. 1. The Decision Tree used in the Pruning Procedure

Theorem 3.3. For the list batching problem restricted to unit job sizes no online
algorithm can have a competitive ratio smaller than 619/583 and the algorithm
described above achieves this ratio.

Proof. Any online algorithm for list batching restricted to unit jobs is described
by a sequence of decisions: should the i** job be the first job in a new batch?
In other words, every online algorithm is a path in a decision tree where a node
at level ¢ has two children: one representing the choice not to batch prior to job
i and one representing making job ¢ the first job in a new batch. However, it
can be noted that having an empty batch only increases an algorithm’s cost and
therefore the first job should begin the first batch (i.e. we should not close the
first batch prior to the first job).

If we can show that any path from the root to a node with depth d in the
decision tree must encounter a node at which the ratio of online cost to offline

cost is at least 619/583 then we have established our lower bound. Utilizing a
small computer program it is easy to verify that this fact holds for d = 100.
What is unusual is that considering less than 100 jobs does not yield the bound.

Consider the algorithm D described above. Verifying that D maintains a cost
ratio of at most 619/583 for all job sequences with less than 2000 jobs is tedious
but trivial for a computer program. For sequences with more than 2000 jobs we
note that: 1) the contribution of the first 2000 jobs to the optimal cost will only
increase because the size of the optimal batches increases with the number of jobs
and 2) the contribution of job i > 2000 to the optimal cost is at least 7 + 1 while
the contribution to the online cost is at most i + 48 + (i — 2000)/40 < 619/583i.
Therefore D is 619/583-competitive.

Given that there are exponentially many paths from the root to a node
at depth d, two notes on efficiency are appropriate here. First, if a node is
encountered where the ratio of costs is greater than or equal to 619/583 then
no further descendents need to be checked. This alone brings the calculation
described above to manageable levels. Second, given two nodes n; and no which
have not been pruned by the previous procedure, if the online cost at n is less
or equal to the online cost at no and both have done their most recent batching
at the same point then descendants of ns need not be considered. This follows
because the cost on any sequence of choices leading from ns is greater or equal
to the the same cost on n;. We illustrate the preceding ideas with the diagram
of Figure 1. Level i corresponds to all possible decisions after i jobs have arrived.
We can prune at level 3 because 12/11 > 619/583 and descendants of the starred
node need not be considered.

4 The List p-Batch Problem

We now turn to the list p-batch problem and define a class of algorithms,

THRESHOLD, one of which has an optimal competitive ratio. For a sequence A =<

ai,as,... > we define TurEsHOLD(A) to be the algorithm that batches for the £¢*

time whenever the processing requirement is larger of equal threshold value a,.

Specifically, we consider the sequnce A* = < (i+1)2/—1,4i=1,2,... >, and we

will write “THRESHOLD” ,i.e. without any parameter, to mean THRESHOLD(A*).
We have:

Theorem 4.1. The competitive ratio of algorithm THRESHOLD is no worse than
4.

Proof. Consider a job j which is in the ¢** batch of the online algorithm. This
single job will contribute at most ¢ + Zle a} to the online cost, because there
have been at most £ set up times and the length of batch ¢ is at most a}. On the
other hand, it will contribute at least 1+aj_; to the offline cost. The calculation
below shows that the ratio is 4.

(+>iar 4+ [(+1)27 1]
T4+af, 140271 —1

[—1)25! 4 2] + [2141 — 2]
12i-1

121+

[21—1
=4.

We now show that algorithms THRESHOLD is optimally comeptitive:

Theorem 4.2. No deterministic online algorithm for the list p-batch problem
can have competitiveness less than 4.

Proof. We prove that for any > 0 there is no (4 — d)-competitive algorithm.
Fix v > 0 and let N be a very large integer such that 1/vy < N. To this end, we
show that for any deterministic online algorithm A one can construct a request
sequence such that the cost for A cannot be can be better than (4 — J) times
the cost of opt on that sequence. Define now 7% = 01, ..., Or. Let C* denote a
job with processing requirement k. Then we will construct a sequence of jobs
C',C%,C3,... punctuated by various 77. More precisely we define the sequence
to be

2 3
Nocte?, el N et ke PN

where C*¢ is the first job in batch £+1 for the online algorithm and it is stipulated
that the sequence may terminate after job C*¢ for any /.

Then opt can serve all jobs with two batches (one ending with V' and one
ending with C*¢). Therefore to be (4 — §)-competitive the following inequality
must hold for all ¢

4
NYE+Y (fi=7) + O(N'T") < (4= O)N(1 + feur) + O(N'TY),

where for simplicity, define f; = k;y. If v is chosen sufficiently small and N is
chosen sufficiently large these inequalities require that

4
C+Y i <(4=6/2)(1+ fio1)

hold for all £. Further the sequence f;,i = 1,2,... must be increasing by def-
inition. A simple variational argument can show that these inequalities have a
solution iff there is a solution with all inequalities tight. These resulting equalities
can be solved using recurrences. We find that the unique solution yields values
of f; which are not monotone increasing. We conclude that therefore there can
be no (4 —0d)-competitive algorithm. We mention that if the multiplicative factor
(4 —0/2) is replaced by 4 then there is a solution which is monotone increasing.
In fact, in this case, the values of the f;s are the a}s which define THRESHOLD.

5

Conclusion

For the s-batch problem we showed tight bounds of 2. Both the upper bound
and the lower bound follow from a ratio of two in the completion times of the
algorithm compared to the optimal offline schedule, not only for the total cost,
but for each job separately. Therefore those bounds hold for a larger class of goal
functions, including weighted total flow time and £,-norm of flow times. We note
that our results for identical job sizes are obtained for the case the the job size
equals the setup time. Those techniques can be easily applied to cases where the
two values are different.

References

1.

10.

11.

S. Albers and H. Bals. Dynamic TCP acknowledgement: Penalizing long delays. In
Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’20038),
pages 47-55, 2003.

. P. Baptiste. Batching identical jobs. Mathematical Methods of Operation Research,

52:355-367, 2000.

P. Brucker. Scheduling Algorithms. Springer Verlag, 2001.

P. Brucker, A. Gladky, H. Hoogeveen, M. Kovalyov, C. Potts, T. Tautenhahn, and
S. van de Velde. Scheduling a batch processing machine. Journal of Scheduling,
1(1):31-54, 1998.

D. R. Dooly, S. A. Goldman, and S. D. Scott. On-line analysis of the TCP ac-
knowledgement delay problem. Journal of the ACM, 48(2):243-273, 2001.

L. Epstein and A. Kesselman. On the remote server problem or more about TCP
acknowledgments. manuscript, 2003.

L. Epstein, J. Noga, and G. J. Woeginger. On-line scheduling of unit time jobs
with rejection: Minimizing the total completion time. Operations Research Letters,
30(6):415-420, 2002.

Amos Fiat and Gerhard J. Woeginger. On-line scheduling on a single machine:
Minimizing the total completion time. Acta Informatica, 36:287-293, 1999.

J. A. Hoogeveen and A. P. A. Vestjens. Optimal on-line algorithms for single-
machine scheduling. In Proc. 5th Conf. Integer Programming and Combinatorial
Optimization (IPCO), pages 404-414, 1996.

X. Lu, R. Sitters, and L. Stougie. A class of on-line scheduling algorithms to
minimize total completion time. Operations Research Letters, 2003. to appear.

C. A. Phillips, C. Stein, and J. Wein. Scheduling jobs that arrive over time. In
Algorithms and Data Structures, 4th International Workshop (WADS’95), pages
86-97, 1995.

