
Two-dimensional packing with conflicts∗

Leah Epstein† Asaf Levin‡ Rob van Stee§

Abstract

We study the two-dimensional version of the bin packing problem with conflicts. We are given a set
of (two-dimensional) squaresV = {1, 2, . . . , n} with sidess1, s2 . . . , sn ∈ [0, 1] and a conflict graph
G = (V, E). We seek to find a partition of the items into independent sets ofG, where each independent
set can be packed into a unit square bin, such that no two squares packed together in one bin overlap.
The goal is to minimize the number of independent sets in the partition.

This problem generalizes the square packing problem (in which we haveE = ∅) and the graph
coloring problem (in whichsi = 0 for all i = 1, 2, . . . , n). It is well known that coloring problems on
general graphs are hard to approximate. Following previous work on the one-dimensional problem, we
study the problem on specific graph classes, namely, bipartite graphs and perfect graphs.

We design a2+ε-approximation for bipartite graphs, which is almost best possible (unlessP = NP).
For perfect graphs, we design a 3.2744-approximation.

Topic: Algorithms and data structures

1 Introduction

Two-dimensional packing of squares is a well-known problem, with applications in stock cutting and other
fields. In the basic problem, the input consists of a set of (two-dimensional) squares of given sides. The goal
is to pack the input into bins, which are unit (two-dimensional) squares. A packed item receives a location
in the bin so that no pair of squares have an overlap. The goal is to minimize the number of used bins.

However, in computer related applications, items often represent processes. These processes may have
conflicts due to efficiency, fault tolerance or security reasons. In such cases, the input set of items is accom-
panied with a conflict graph where each item corresponds to a vertex. A pair of items that cannot share a
bin are represented by an edge in the conflict graph between the two corresponding vertices.

Formally, the problem is defined as follows. We are given a set of (two-dimensional) squaresV =
{1, 2, . . . , n} whose sides are denoted bys1, s2 . . . , sn and satisfysi ∈ [0, 1] for all 1 ≤ i ≤ n. We are also
given a conflict graphG = (V,E). A valid output is a partition of the items into independent sets ofG,
together with a packing of the squares of each set into a unit square bin. The packing of a bin is valid if no
two squares that are packed together in this bin overlap. The goal is to find such a packing with a minimum
number of independent sets.

∗An extended abstract version of this paper has appeared in Proceedings of the 16th International Symposium on Fundamentals
of Computation Theory (FCT 2007), pages 288-299.

†Department of Mathematics, University of Haifa, 31905 Haifa, Israel.lea@math.haifa.ac.il .
‡Department of Statistics, The Hebrew University, Jerusalem 91905, Israel.levinas@mscc.huji.ac.il .
§Department of Computer Science, University of Karlsruhe, D-76128 Karlsruhe, Germany.vanstee@ira.uka.de . Re-

search supported by the Alexander von Humboldt Foundation.

1

This problem is a generalization of the square packing problem [1], whereE = ∅, and of the graph
coloring problem, wheresi = 0 for all i = 1, 2, . . . , n. It is well known that coloring problems on general
graphs are hard to approximate. Following previous work on the one-dimensional problem, we study the
problem on specific graph classes, namely, bipartite graphs and perfect graphs.

For an algorithmA, we denote its cost on an inputI byA(I), and simply byA, if I is clear from the
context. An optimal algorithm that uses a minimum number of bins is denoted byOPT. We consider the
(absolute) approximation ratio that is defined as follows. The (absolute) approximation ratio ofA is the
infimumR such that for any inputI, A(I) ≤ R · OPT(I). We restrict ourselves to algorithms that run

in polynomial time. The asymptotic approximation ratio is defined aslim sup
n→∞

sup
I

{ A(I)
OPT(I) |OPT(I) = n

}
.

The absolute approximation ratio is useful when no inputs can be neglected. The asymptotic approximation
ratio is used for problems where only the behavior of the algorithm for large enough inputs is of interest.
Bin packing algorithms are typically measured using the asymptotic approximation ratio. However, coloring
algorithms are usually measured using the absolute approximation ratio. Following previous work on (one-
dimensional) packing with conflicts, we address the absolute approximation ratio in this paper.
One-dimensional packing without conflicts. The one dimensional problem (where both items and bins
are one-dimensional rather than squares) was introduced in the early 70’s [28, 7, 5]. Many variants of this
problem has been studied ever since.
One-dimensional packing with conflicts. The one dimensional problem was studied on several graph
classes, including perfect graphs and bipartite graphs. Jansen andÖhring [16] introduced the problem and
designed approximation algorithms which work in two phases. The first phase is a coloring phase, where
the graph is colored using a minimum number of colors. In the second phase, each independent set (which
corresponds to a color class) is packed using a bin packing algorithm. Using this method, they obtained a
2-approximation algorithm for bipartite graphs and a 2.7-approximation algorithm for perfect graphs.

In [8], improved algorithms were designed. It was shown that the approximation ratio of the algorithm
of [16] for perfect graphs is actually approximately 2.691, and a2.5-approximation algorithm was designed.
The algorithm applies a matching phase in which some pairs of relatively large items are packed in dedicated
bins, and applies the methods of [16] as above on the remaining subgraph. An improved 1.75-approximation
for bipartite conflict graphs was achieved by applying the algorithm of [16] on inputs with large enough
values ofOPT, while finding better solutions for inputs with small values ofOPT.

Several papers [16, 15, 8] contain further results for additional graph classes. The paper [16] considered
a class of graphs, on which thePRECOLORING EXTENSIONproblem, where every precolored vertex is
assigned a different color (see [13, 21, 22]), can be solved in polynomial time. In this problem a graph is to be
colored using a minimum number of colors with the constraint that some vertices already have given colors
(a different color to each such vertex). This class contains chordal graphs, interval graphs, forests, split
graphs, complements of bipartite graphs, cographs, partialK-trees and complements of Meyniel graphs. For
these graphs, they designed a 2.5-approximation algorithm which is based on solving thePRECOLORING

EXTENSION problem, mentioned above, on the graph (where the items of size larger than1
2 are precolored

each with a different color). In [8] an improved73 -approximation algorithm, which is based on a pre-
processing phase in which subsets of at most three items are packed into dedicated bins, was designed.

For all ε > 0, Jansen and̈Ohring [16] also presented a(2 + ε)-approximation algorithm for one-
dimensional packing with conflicts on cographs and partialK-trees. Jansen [15] showed an asymptotic
fully polynomial time approximation scheme for the one-dimensional problem ond-inductive (also called
d-degenerate) graphs, whered is a constant. Ad-inductive graph has the property that the vertices can be
assigned distinct numbers1, . . . , n such that each vertex is adjacent to at mostd lower numbered vertices.
This includes the cases of trees, grid graphs, planar graphs and graphs with constant treewidth. Additional

2

papers [25, 23] studied the one-dimensional problem on graphs that are unions of cliques, but their results
are inferior to work of Jansen and̈Ohring [16].
Hardness of approximability for packing without conflicts. The inapproximability results known for
the two-dimensional and one-dimensional packing problems are as follows. Since standard bin packing
(two-dimensional packing of squares and one-dimensional packing, respectively), is a special case of the
problems with conflicts, the same inapproximability results holds for them as well. This means that the
one-dimensional problem cannot be approximated up to a factor smaller than3

2 , unlessP = NP , (due to
a simple reduction from thePARTITION problem, see problem SP12 in [10]). Also, the two-dimensional
problem cannot be approximated up to a factor smaller than2, unlessP = NP , since it was shown in [20]
that given a set of squares, it isNP -hard to check whether these squares can be packed into one bin. These
results hold for the graph classes we consider since an empty graph (i.e., a graph with an empty edge set) is
both bipartite and perfect.
Square packing without conflicts. Square packing was studied in many variants. An algorithm of
approximation2 (best possible unlessP = NP) was shown in [29]. Unlike coloring problems, bin packing
is often studied with respect to the asymptotic approximation ratio. An asymptotic approximation scheme
was given by Bansal et al. [1, 2, 6]. This was the last result after a sequence of improvements [4, 17, 3, 18,
27, 9].
Our results. In this paper we design the first approximation algorithms for bipartite graphs and perfect
graphs. Prior to this work, no approximation algorithms for square packing with conflicts on any conflict
graph were known. For bipartite graphs, we give an algorithm of approximation ratio2 + ε for anyε > 0.
Note that unlike the one-dimensional case, this is almost best possible unlessP = NP . The algorithm
chooses the best solution out of several algorithms, which are designed for various values ofOPT.

Our main result is for perfect conflict graphs, for which we design algorithms with clever pre-processing
phases. We analyze an algorithm which chooses the best solution out of the outputs of all the algorithms
we design. This results in an algorithm of approximation ratio at most3.2744. The only property of perfect
graphs used by our algorithm is the existence of a polynomial time algorithm which finds a valid coloring
of the graph using a minimum number of colors. An algorithm that finds such a coloring for perfect graphs
is implied using the ellipsoid algorithm [11] (see also chapter 67 in [26]). Our algorithm can be applied not
only on perfect conflict graphs, but on any class of conflict graphs for which a minimum coloring can be
found in polynomial time.

2 Bipartite graphs

In this section, we present an algorithm and analysis for the case where the conflict graph is bipartite, and
establish the following theorem.

Theorem 1 For everyε > 0, there exists a polynomial time approximation algorithm for square packing
with conflicts, where the conflict graph is bipartite, with approximation ratio of at most2 + ε.

The algorithm will use the well-known square packing algorithmNEXT FIT DECREASING(NFD) [24]
and a natural variant of it,FIRST FIT DECREASING (FFD), as subroutines. We begin by giving some
properties of these two algorithms in Section 2.1. In Section 2.2, we introduce a new algorithm called
SixEleven, which is a variation of FFD which packs items differently in one special, crucial case. This helps
to get a better area guarantee in a bin packed with SixEleven. We then describe our main algorithm for the
casesOPT = 1 andOPT = 2 (Section 2.3),OPT = 3 (Section 2.4),OPT is a constantk > 3 (Section 2.5) and

3

finally the case whereOPT is not constant (Section 2.6). Since the value ofOPT is unknown to the algorithm,
the algorithm needs to apply all these possibilities and among these that output a valid solution, choose the
one with the smallest cost. We will therefore assume thatOPT is known to the algorithm (but make sure that
the number of different algorithms applied is constant).

2.1 NFD and FFD

NFD packs items in slices, which are rectangular regions of the bin of width 1 that are stacked on top of
each other starting from the bottom of the bin. The height of a slice is defined as the side of the first item
packed into it. Each item is packed immediately to the right of the previously packed item, or in the next
slice in case it does not fit in the current slice. When a new slice does not fit in the current bin, a new bin is
opened for it. FFD works the same, but tries to put each new item in each slice that has been opened so far
(to the right of the last item in the slice) instead of only trying the last slice or a new one. Regarding NFD
and FFD, we have the following results.

Lemma 1 (Meir & Moser [24]) LetL be a list of squares with sidesx1 ≥ x2 ≥ . . . ThenL can be packed
in a rectangle of heighta ≥ x1 and widthb ≥ x1 usingNEXT FIT DECREASING if one of the following
conditions is satisfied:

• the total area of items inL is at mostx2
1 + (a− x1)(b− x1).

• the total area of items inL is at mostab/2.

In the following, we will abuse notation and usexi to denote both theith item in the input and its side, i.e.,
the length of one of its sides.

Lemma 2 (van Stee [29])Consider a bin that is packed by NFD, and suppose the largest item in this bin
has side at most 1/3. If after packing this bin, there are still unpacked items with side at most1

3 left, then the
total area of the items in the bin is at least9/16.

A hereditarycondition on an inputI is a condition which still holds if we remove some items fromI. In
particular, the conditions in Lemmas 1 and 2 are all hereditary. Anarea guaranteeρ for algorithmAmeans
that if we applyA on an inputI andA(I) needs at least two bins then it uses at least one bin to pack items
whose total area is at leastρ. The following technical lemma helps in the analysis of SixEleven.

Lemma 3 Suppose we are given an area guarantee for NFD on inputI and rectangleR that depends only
on hereditary conditions, as long as not all items are packed inR. Then this area guarantee also holds for
FFD.

Proof Consider an inputI = {x1, . . . , xn} and suppose that NFD as well as FFD do not packI in one
bin. Denote byI ′ ⊆ I the subset which is packed in the first bin by FFD. We create a new inputI ′′ ⊆ I ′

from I ′ as follows. Remove fromI ′ any item that is placed in an old slice by FFD, that is, not the most
recently started slice. Denote the last (smallest) item inI ′′ by xi, theni < n. Finally, add an item of side
xi+1 temporarily toI ′′.

Consider the output of NFD forI ′′ ∪ xi+1. Since NFD never tries to use old slices, it can be seen by
induction that each item is allocated to exactly the same slice and position as it was allocated by FFD on the
input I ′.

Regarding the itemxi+1, there are two options for FFD, since FFD did not place this item in the last
slice.

4

Input: A list of squares of sides{x1, . . . , xn}, sorted in order of nonincreasing side
Output: A packing of the input or a prefix of it in a single bin.

1. If x1 + x2 + x3 > 1, but x1 + x2 + x4 ≤ 1, pack the three largest items as shown in Figure
2. Pack the areaA using NFD starting from the fourth item, then continue in areaB with NFD
(considering this to be a single slice), and finally pack areaC using NFD.

2. Else, use FFD.

Figure 1: Algorithm SixEleven

1. FFD putsxi+1 in an earlier slice, or

2. FFD does not putxi+1 in the first bin at all

In the first case, either NFD already “fails” before itemxi+1 (NFD does not packxi in this bin), or NFD
tries to putxi+1 into the last slice. However, if it were possible to packxi+1 there, FFD would pack at least
one item afterxi in the last slice, contradicting the definition ofi.

In the second case, clearly NFD also does not putxi+1 in the first bin (since the packing so far is equal
to the packing of FFD for the items inI ′′, and FFD tries more options to packxi+1 than NFD does).

Thus in both cases NFD packs at mostI ′′ withoutxi+1 in a bin, andI ′′ ⊆ I ′. We have an area guarantee
for I ′′, which then clearly also holds for the supersetI ′ packed by FFD. ¤

2.2 Algorithm SixEleven

Algorithm SixEleven is displayed in Figure 1. It has the following properties.

Lemma 4 Consider a set of squares of sidesx1 ≥ x2 ≥ . . . that is packed using SixEleven. Assume that
at least one item remains unpacked and letxτ be the side of the first such item. If the three conditions,
x1 > 1/3, x1 + x2 ≤ 1 andxτ ≤ 1/5 hold, then SixEleven packs at least a total area of6/11 in this bin.

Proof We assume that there is at least one unpacked item. There are four cases. In Cases 1, 3 and 4, FFD is
applied to the input; only in Case 2, Step 1 of SixEleven is applied. In Cases 1, 3 and 4, we will sometimes
prove area guarantees for NFD (instead of FFD). This is sufficient by Lemma 3. Throughout this proof, we
denote the side of the largest item byx, the side of the largest item in the second slice byy and the side of
the largest unpacked item byα. Note thaty ≥ α. Additionally, we also denote the sides of the items by
x1, x2, . . . in nonincreasing order (sox1 = x).

Case 1 The largest three items have total side at most 1. I.e.,x1 + x2 + x3 ≤ 1.
In this case, NFD packs a total area of at leastx2 + 2y2 in the first slice, and by Lemma 1, at least

y2 + (1 − y)(1 − x − y) − α2 ≥ (1 − y)(1 − x − y) in all other slices (since the height of the remaining
part is1− x). Note that since the three largest items already have total side at most 1, NFD indeed allocates
more than one slice. In fact at least three slices are opened, since the total height of these slices would be
the sum of three items in the sequence, and even for the three largest items in the sequencex1, x2, x3, we
havex1 + x2 + x3 ≤ 1, so the second and third slices are indeed non-empty. In total, NFD packs at least an
area ofA = x2 + 2y2 + (1 − y)(1 − x − y) in the bin. This expression has a global minimum of6/11 at
x = 4/11, y = 3/11. In the remaining cases we assume thatx1 + x2 + x3 > 1.

5

3 B

C

1
2

A

Figure 2: Alternative packing

Case 2 The first, second and fourth item have total side at most 1. I.e.,x1 + x2 + x4 ≤ 1.
In this case SixEleven uses the packing shown in Figure 2. We next argue that the rectanglesA andC

contain at least one item. ForA, this holds becausex1 + x2 + x4 ≤ 1. ForC because the first item placed
in it has side at mostx4, andx1 + x3 + x4 ≤ x1 + x2 + x4 ≤ 1.

B contains at least two items. The first item that SixEleven tries to pack there has side at mostx4 ≤ x3,
wherex3 is the height ofB, so at least one item fits height-wise. Moreover,x3 + 2x4 ≤ x1 + x2 + x4 ≤ 1,
so at least two items fit next to each other inB.

Denote the number of items inB by k ≥ 2, and their sides byz1, . . . , zk. In A, by Lemma 1, we pack
items with total area at leastx(1−x−x2)

2 − z2
1 . In B, we pack items with total area at least

∑k
i=1 z2

i . In C, by
Lemma 1, we pack items with total area at least1−x−y

2 − z2
k. In total, we pack total area of at least

P = x2 + x2
2 + y2 +

x(1− x− x2)
2

+
k−1∑

i=2

z2
i +

1− x− y

2

=
1
2

+
x2

2
− xx2

2
+ x2

2 + y2 − y

2
+

k−1∑

i=2

z2
i .

The condition arex ≥ x2 ≥ y ≥ z1 ≥ . . . ≥ zk, x + x2 + y > 1, and
∑k

i=1 zi > 1 − y − zk.

From this expression, we simply omit the term
∑k−1

i=2 z2
i . On the domain,x > 1 − x2 − y, so x2−xx2

2 >
(1−x2−y)(1−2x2−y)

2 , and thereforeP dominates

P1 = 1− 3
2

(
y + x2 − y2 − yx2

)
+ 2x2

2 = 1− 3
2
(y + x2)(1− y) + 2x2

2 .

We have∂P1/∂y = 0 ⇔ y = 1
2 − x2

2 and∂P1/∂x2 = 0 ⇔ y = 1 − 8
3x2. The global minimum ofP1 is

attained at the pointx2 = 3
13 , y = 5

13 where the constrainty ≤ x2 is not satisfied. Therefore, sinceP1

is convex, the constrainty ≤ x2 is a binding constraint in the constrained optimum, and we can search for
the minimum ofP1 with y = x2. The minimum of1 − 3

2(2y)(1 − y) + 2y2 = 5y2 − 3y + 1 is attained at
y = 3

10 and at the optimumP1 has the value11
20 > 6

11 .

Case 3 NFD creates only two slices.In this case and the next case, NFD packs exactly two items in the
first slice: not more than two because we are not in Case 1, and at least two because the two largest items
have total side at most 1. We make a case division based on the number of items packed in the second slice.

6

If the second slice contains only two items, the total side of these items is at least4/5 since the largest
unpacked item has side at most1/5, and this then also holds for the total side of the first (largest) two items.
By the arithmetic mean-geometric mean inequality, the total area of each pair of items is at least2 · (2

5)2, so
the total area overall is at least4 · (2

5)2 = 16
25 = 0.64 > 6

11 .
Suppose the second slice contains three items. Denote their sides byy, z1, z2 in nonincreasing order.

NFD packs a total area of at leastA = x2 + 2y2 + z2
1 + z2

2 , wherex + y > 4/5 since there are only two
slices,y + z1 + z2 > 4/5 andx ≥ y ≥ z1 ≥ z2. Consider the vector(x̃, ỹ, z̃1, z̃2) which minimizesA on
this domain. We havẽz1 = z̃2. This is so because suppose otherwise thatz̃1 = z̃2 + a for somea > 0,
then the vector(x̃, ỹ, z̃1−a/2, z̃2 +a/2) is also in the domain but the value ofA is smaller, a contradiction.
Assume thereforez1 = z2 and letz = z1 = z2.

Thus NFD packs a total area of at leastA2 = x2 + 2y2 + 2z2 wherex > 4/5− y andz > (4/5− y)/2.
Takingx = 4/5− y andz = (4/5− y)/2, we find thatA2 dominatesA3 = 24

25 − 12
5 y + 7

2y2 on the domain.
A3 has a global minimum of96/175 > 6/11 for y = 12/35.

Suppose the second slice contains at least four items. NFD packs a total area of at leastx2 + 2y2 +∑k
i=1 z2

k, wherey +
∑k

i=1 zk > 1 − zk, x + y > 1 − zk, andk ≥ 3. We again find that in the minimum,
zi = z for i = 1, . . . , k, using a similar reasoning. Thus NFD packs a total area of at leastA = x2+2y2+kz2

wherex ≥ y ≥ z, k ≥ 3, y + kz > 1− z andx + y > 1− z. A is at leastA2 = (1− y − z)2 + 2y2 + kz2

on the domain sincex > 1 − y − z. A2 has a global minimum of2k/(3k + 2) for y = k/(3k + 2) and
z = 2/(3k + 2), which is monotonically increasing ink and is6/11 for k = 3.

Case 4 NFD creates at least three slices.
Denote the side of the fourth item byz (i.e., z = x4). We find x + x2 + z > 1 (since otherwise

we are in Case 2), orz > (1 − x − x2). If NFD packs at least three items in the second slice, then by
Lemma 1, NFD packs a total area of at leastx2 + x2

2 + y2 + (1− x− x2)2 + x2
5 + (1− x− y)/2− α2 ≥

x2 +x2
2 + y2 +(1−x−x2)2 +(1−x− y)/2 = A. This expression has a global minimum of9/16 > 6/11

for x = 1
2 , x2 = y = 1

4 .
If NFD packs only two items in the second slice, there are two cases. If FFD packs some future item in

one of the first two slices, we again find the area guaranteeA, because the side of that item is larger than the
side of the first unpacked item (just likex5 ≥ α above). Otherwise, since FFD packs at least three slices,
FFD packs a total area of at leastA3 = x2 + 2y2 + z2 + 3(1− z − y)2. This follows because the third slice
has height less than 1/3, and therefore contains at least three items, and none of these items apparently fit in
the second slice. Recall thatx3 + x4 + x5 > 1 andy = x3. Therefore,x > 1− 2y, and hence FFD packs a
total area of at leastA4 = (1−2y)2 +2y2 +z2 +3(1−z−y)2. A4 has a global minimum of17/27 > 6/11
for y = 11/27, z = 4/9. ¤

Lemma 5 Consider a set of squares of sidesx1 ≥ x2 ≥ . . . that is packed using SixEleven. Assume that
at least one item remains unpacked and letxτ be the side of the first such item. If the two conditions,
x1 + x2 ≤ 1 andxτ ≤ 1/5 hold, then SixEleven packs at least a total area of6/11 in this bin.

Proof If the side of the largest square is at most1/3, this follows from Lemma 2. Else, it follows from
Lemma 4. ¤

Define alarge itemto be an item with side more than1/88. An item that is not large is said to be asmall
item. A large item ishugeif its side is more than1/3.

Definition 1 A goodset of squares is a setS with at least one of the following properties:

7

1. The two largest items inS have total side at most 1, and the total area of the large items is at most
6/11.

2. S contains only one large item.

Theorem 2 For any input setS of squares which is good, SixEleven either packsS in one bin, or packs at
least an area of 6/11 in the first bin.

Proof In case S contains only one large item, then if this large item has area at least 6/11, we are done.
Else, the two largest items must have total side at most 1, so SixEleven packs at least four items in the first
bin. Suppose SixEleven does not packS in one bin, and it moreover packs a total area less than 6/11 in the
first bin. Then the total area of the first four items inS is less than 6/11. If the first item inS has side at
most1/3, SixEleven behaves like FFD, so by Lemma 2 the area packed is more than6/11, a contradiction.
The largest item that remains unpacked must have side more than 1/5 by Lemma 4. Moreover, the cases 1,2,
and 4 in the proof of that Lemma do not use the assumption that the largest unpacked item has side at most
1/5. (In particular, this covers the case whereS contains only one large item of area less than6/11.) This
also holds for the last subcase of Case 3 (at least four items in the second slice). Hence it must be the case
that NFD creates two slices, where the first slice has two items and the second slice has two or three items.

Suppose the second slice has two items. Then the total side of the third, fourth and fifth item inS is
more than 1, and their average area is more than(1

3)2. But then the area of each of the two largest items
must both also be more than(1

3)2, giving that the total area of items with side more than 1/5 is more than
5/9 (since the fifth item has side more than 1/5, so then the first four items also have side at least 1/5), soS
is not good, a contradiction.

Suppose the second slice contains three items. Denote their sides byy, z1, z2 in nonincreasing order. Let
a > 1

5 be the side of the first unpacked item. If1
5 < a ≤ 9

40 , NFD packs at leastA = x2 + 2y2 + z2
1 + z2

2 ,
wherex + y > 1 − a (since there is no third slice),y + z1 + z2 > 1 − a (sincea does not fit into the
second slice) andx ≥ y ≥ z1 ≥ z2. We concludex2 + y2 > 1

2(1− a)2 andy2 + z2
1 + z2

2 > 1
3(1− a)2 by

the arithmetic mean-geometric mean inequality. But then we have thatA + a2 ≥ 5
6(1 − a)2 + a2 which is

monotonically non-increasing in this interval and larger than6/11 ata = 9
40 . Otherwise, we can follow the

proof of Case 3 for at least four items in the second slice, but use the casek = 2 in which we get that the
contents of the bin have a total area of at least1/2. Adding the area of the first unpacked item fromS gives
at least 881

1600 > 6
11 . We get that in both cases,S is not good. ¤

This Theorem implies that when SixEleven packs a good set, all the large items in the set are packed in
the first bin.

2.3 The algorithm for OPT = 1 and OPT = 2

Recall that the conflict graph is bipartite. Thus, it is 2-colorable in all cases. IfOPT = 1, we get that all items
can be packed into a single bin, and therefore the conflict graph is empty. We can apply the 2-approximation
from [29].

If OPT = 2, we act as follows. There are at most 18 huge items. Consider all partitions (a constant
number) of the huge items into two setsL1 andL2. For the analysis it suffices to consider the iteration
of the correct guess. So each such set of huge items can be packed with one bin (and we can find such a
packing using the algorithm from Bansal et al. [1], which gives a constant time algorithm to pack a constant
number of squares into a bin, is possible), and the coloring of the huge items (where the color of an item is
determined by the set it is in) can be extended to a 2-coloring of the entire input as explained below.

8

For each connected component that contains a huge item the 2-coloring is defined uniquely (unless it
contains at least two huge items and we get that it is impossible to extend the coloring accordingly, in this
case the partition of the huge items is incorrect), and it remains to decide on the 2-coloring of the connected
components of the remaining items. For this problem we apply a similar idea to the one in [8] on the 1-
dimensional case, only the partition into two sets must be done more carefully here. For each connected
component we find its 2-coloring and we need to decide which color is red and which color is blue (in each
of the connected components). We see the problem of balancing the area of blue items and red items as
a load balancing problem. Lett be the number of connected components. For each connected component
i, let ci anddi be the areas of items of the two colors in componenti, we definepi = max{ci, di} and
∆(i) = min{ci, di}. Clearly, each color has in total an area of at least

∑t
i=1 ∆(i). We define a load

balancing problem on the residual area, i.e., we would like to balance the loadspi − ∆(i) between two
“machines”, where assigning “job”i to machine 1 means that in componenti, the color class of larger area
got red color, and assigning “job”i to machine 2 means that in componenti, the color class of larger area got
blue color. Some “jobs” are pre-assigned to a machine if the coloring of this component is determined by
the huge items. Therefore, we have a restricted assignment problem. This is a special case of load balancing
on two unrelated machines, which admits an FPTAS, see [12].

Consider an optimal solution to the original bin packing problem. The total size of the items that are
packed withLi for i = 1, 2 is at most 1. Since we are using an FPTAS, where some area may be removed,
the totals remain at most1 and the total size of the larger set of items is at most1.006 (for ε = 0.006).

Next we show that we can apply an algorithm based on SixEleven for each color class, which uses at
most two bins (and four in total). First consider the case where the set of the huge items in this color has
size at least4/9. Then the huge items use at most one bin (using the packing of the algorithm from [1]),
and for the other items, if by packing them using SixEleven, we need at least two bins, then we have an area
guarantee of at least9/16 in the second bin by Lemma 2, and this is a contradiction as4/9+9/16 > 1.006.

On the other hand, if the total area of the huge items is at most4/9, then we use SixEleven on the
compelte color class. We would like to show that the area guarantee of the first packed bin is at least4/9, if
there is a second bin. If there is a single huge item and it has side at least2/3 we are done. Otherwise, the
huge item can fit next to any other item. If there are at least two huge items, since the huge items can fit into
one bin, the sum of sides of the largest two items in at most1. We get from the proof of Lemma 4 that if an
item does not fit into the first bin, then the area guarantee is6/11 in cases 1,2,4, no matter what the size of
the next item is, and a guarantee of1/2 in case 3, unless the bin contains exactly four items. Since the next
item had side of at most1/3, we get a guarantee of49 in this case (similarly to the proof for the case that
this item is bounded by1/5). So if there is a second bin, the first one has an area guarantee of4

9 . If we are
using three bins, then the second bin again has an area guarantee of9/16 by Lemma 2, which again leads to
a contradiction.

2.4 The algorithm for OPT = 3

We call items with side in(1/3, 1/2] items of type 2, and larger items are type 1. In this section, items with
side at most1/88 are calledsmall, and the others arelarge. If OPT = 3, there are at most3 · 872 large items.
In constant time, find

• A two-coloring of these items that can be extended to a valid coloring for the entire input. This can
be done by standard methods. We color the entire conflict graph ignoring the sizes of items.

• A packing of these items in at most three bins. This can be again done by checking all possible
partitions of large items into three sets, and application of the algorithm of [1] on each set to pack it

9

into a bin.

Note that the two results are unrelated and we do not require the packing to be consistent with the two-
coloring. There are two cases. First, if the total area of the small items is at most2 · (87

88)2 ≈ 1.9548, do the
following.

1. Use an arbitrary valid two-coloring for the small items.

2. Pack the largest set of small items in2 bins, and the smallest set in at most1 bin, using NFD.

3. Pack the large items in at most three bins according to the packing found above.

To see that Step 2 can indeed by applied, note that the smallest set has area at most(87
88)2, and the largest

set has area at most twice this. The first bin packed for the largest set has area packed at least(87
88)2 by

Lemma 1, leaving at most the same amount for the second bin, which can be packed there using NFD again
by Lemma 1.

If the total area of the small items is more than2 · (87
88)2, consider the packing for the large items (in at

most 3 bins) that we have found. This packing gives us (at most) three sets, denoted byL1, L2, L3. Each set
may contain items of both colors. The total area of these items is at most 1.0452. In total, there are at most
three items with side more than1/2, since all items can be packed in three bins.

We are going torepackthese items so that each bin contains only items of one color. In this way we
ensure that we do not pack conflicting items together. We next show the following auxiliary claim.

Claim 1 All large items can be packed in at most four bins. For any color, if not all items of that color are
packed with large items, then the bins with large items have area guarantee of at least 6/11.

Let us now consider the following two tables of area guarantees: Table 1 and Table 2.

Bins needed for blue items 1 2 3 4
Total area guarantee of blue items packed6/11 1.5228 2.5002 3
Maximum possible area of red items 3 2.4546 1.4772 0.4998
Packed in red bin 1, 2, 3 6/11 6/11 6/11 1/2
Packed in red bin 4, 5 (if needed) 0.977 0.977 - -

Table 1: The set of blue items is good: SixEleven packs all large blue items in one bin

Bins needed for blue items 1 2 3 4
Total area guarantee of blue items packed6/11 12/11 2.068 3
Maximum possible area of red items 3 2.4546 1.909 0.932
Packed in red bin 1, 2 6/11 6/11 6/11 6/11
Packed in red bin 3, 4 (if needed) 0.977 0.977 0.977 -

Table 2: the blue large items are placed in two bins

The first table concerns the case where one of the colors (called blue in the table) isgood. This means
that if we pack all blue items using SixEleven, by Theorem 2 SixEleven packs an area of at least 6/11 in the

10

first blue bin (unless perhaps if it needs only one bin forall blue items). By Lemma 1, the area guarantee of
any other bin for this color (except, always, the last one) is(87

88)2 > 0.977. Furthermore, Claim 1 shows the
printed area guarantees for the other color (red). Using this table, it is easy to verify that in this case (i.e., if
the set of blue items is good) we never need more than six bins.

We give one example of such a verification. Suppose the total area of the blue items is 1.6, and the set
of blue items is good. Then by Table 1, we need at most three bins for the blue items. Since the total area
guarantee for the first three red bins is18/11 > 1.4 = 3− 1.6, we need at most three bins for the red items
as well, so at most six bins in total.

The second table concerns the case where the large blue items are packed intotwo bins (either by
SixEleven, or in some other way). In this case by Claim 1, we can pack the red items with area guarantees of
6/11 in the first two bins. Therefore, all large red items are packed in the first two bins since12/11 > 1.0452.
Therefore, any further red bin that is packed using SixEleven (which uses FFD in this case) will again have
an area guarantee of(87

88)2 > 0.977 by Lemma 1. Again, it can be verified that this is sufficient to pack all
items in at most six bins in all cases.

2.5 The algorithm for OPT = k > 3

For any constant valuek of OPT, we can find using Lemma 1 a valueε such that the area guarantee for NFD
on items of side at mostε is at least(k − 1.0452)/(k − 1) = 1− 0.0452

k−1 . Then, if the small items have total
area at mostk − 1.0452, we can pack them into at mostk bins using NFD, and find an optimal packing for
the items with side larger thanε using complete enumeration.

Else, the items with side at leastε have total area at most 1.0452. The proof of Claim 1 shows thatin
case there are at most three items of type 1we need at most four bins for all large items. We now show that
we need at most2k bins for all the items. If SixEleven needs more bins for both colors, this follows because
the area guarantee in the four bins with large items is24/11, so a total area of at mostk − 24

11 remains to be
packed, and we have

k − 24
11

< (2k − 6)
(

1− 0.0452
k − 1

)
for k ≥ 4. (1)

So we need at most2k − 5 bins for the small items of both colors: we lose (at most) one bin compared to
(1) because there are two colors. (If there are less than four bins with large items, the area guarantee of the
remaining bins improves.)

If SixEleven has already packed one color, then the small items of the other color have total area at most
min(k, k − 6

11(j − 2)) wherej ≤ 4 is the number of bins packed so far (there may be two almost empty
bins that contain large items, since we have two colors). These items can be packed in at most2k − j bins
for k ≥ 4, since

min(k, k − 6
11

(j − 2)) < (2k − j)
(

1− 0.0452
k − 1

)
for k ≥ 4, j = 0, . . . , 4. (2)

The only case that is not covered yet is the case where there arefour items of type 1 (since there cannot
be more than four such items because the total size of items with side at leastε is at most 1.0452). If all these
items are red (say), the blue items are good, and we pack the large red items in four bins. In case we need
more bins for both colors, we now have five bins with area guarantee 6/11, and we can pack the remaining
items in at most2k − 5 bins sincek − 30

11 < (2k − 6)(1− 0.0452
k−1) for k ≥ 4. If one color is already packed,

we can pack the remaining items into at most2k − 6 bins by (1) if we packed five bins so far, and into at
most2k − j bins by (2) if we packedj < 5 bins so far.

11

If only one item of type 1 is blue, the blue items are still good. In this case the red items are also good
if we exclude the two largest red items, so we need only four bins for all large items (again packing the red
items as in Case 1A). Finally, if there are two blue items of type 1, we can pack the large items of each color
into two bins, since removing the largest item of either color leaves a good set.

2.6 The algorithm for large OPT

Consider a fixed valueε > 0. There are two cases: ifε · OPT > 2, color the items with two colors, and on
each of them apply the APTAS of [1] for square packing. Since the minimum number of bins required to
pack each color class is no larger thanOPT, it needs only at most2((1 + ε)OPT+ 1) ≤ (2 + 3ε)OPT bins.
Else,OPT ≤ 2/ε which is a constant, so use the method from the previous section and use at most2OPT

bins.
Note finally that for the caseε · OPT > 2, we run just one algorithm, so in total we run at most2/ε + 1

polynomial-time algorithms and take the one that gives the best output.

3 An algorithm for perfect graphs

3.1 An algorithm for independent sets

Given an independent set of items, we use the following packing algorithm.
Algorithm Pack Independent Set (PackIS):

1. As long as there exists an item of side in(1
2 , 1], pack such an item in a bin.

2. As long as the number of items of side in(1
3 , 1

2] is at least four, pack four such items in a bin.

3. As long as the number of items of side in(1
4 , 1

3] is at least9, pack9 such items in a bin.

4. As long as the number of items of side in(1
5 , 1

4] is at least16, pack16 such items in a bin.

5. If there are no items of side in(1
3 , 1

2] left, pack the remaining items using NFD and halt.

6. Pack all items of side in(0, 1
3] using NFD. Call the resulting set of binsS, and letm = |S|. Let sa be

the side of the first item of binm of S.

Take binm of S and remove all items from it. Pack its contents together with the remaining larger
items (of side in(1

3 , 1
2]), possibly using a second bin, by applying algorithm SixEleven on the first bin,

and NFD on the second bin. The items packed in the second adapted bin are those which did not fit
into the first adapted bin.

If a second bin is needed for the adapted packing andsa ≤ 1
5 , keep the first adapted bin packed with

the items of side in(1
3 , 1

2]. Re-pack all other items (the ones inS plus the ones in the second adapted
bin) once again with NFD. Note that this may affect the packing of binm− 1. Otherwise, the current
packing (S without binm together with one or two adapted bins) is given as output.

Note that there is at most one bin packed in the last step whose first packed item has side in the interval
(1

k+1 , 1
k], for k = 2, 3, 4, 5.

As can be seen, some of the steps of this algorithm are based on a harmonic partition according to sides
of items. The first to use such a partition in the design of bin packing algorithms were Lee and Lee [19].

12

To analyze our algorithm, we use three parameters,8
5 ≤ r ≤ 16

9 , 1
4 ≤ µ ≤ 2

7 and 1
9 ≤ ν ≤ 1

7 . These
bounds imply

ν ≥ r

16
and µ ≥ r

9
. (3)

We moreover require

r
43
99

+ µ ≥ 1, r
5
16

+ 4ν ≥ 1, r
331
648

+ ν ≥ 1. (4)

We assign weights as follows.

side (1
2 , 1] (1

3 , 1
2] (1

4 , 1
3] (0, 1

4]
weight 1 µ + r(x2 − 1

9) ν + r(x2 − 1
16) r · x2

expansion 1 r + (µ− r
9)/x2 r + (ν − r

16)/x2 r

Expansion is defined as the minimum ratio of weight over size of an item. By (3), it can be seen that the
expansion of any item of side at most1

2 is at leastr, so it is at least85 .

Claim 2 Let ` be the number of bins created by Algorithm PackIS applied on a given color class. The sum
of weights of items in this color class is at least`− 1.

Proof Consider the bins created in steps 1-4. The weights of items of sides in(1
2 , 1], (1

3 , 1
2], (1

4 , 1
3] are at

least1, 1
4 , 1

9 respectively. The weight of an item of sides in(1
5 , 1

4] is at least r
25 ≥ 8

125 > 1
16 . We get that

the total weight of items in each one of these bins is at least1. Next, consider bins created in steps 5 and
6. If there is at most one such bin we are done, therefore assume that at least two bins are created. In the
execution of NFD, there is at most one bin whose first item has side in(1

k+1 , 1
k], for k = 3, 4. Call these

binsβ andγ, and all other bins packed by NFDδ-bins. Note that binβ is the first bin packed in Step 5 or 6
(if it exists) and binγ is the first or second bin packed in Step 5 or 6 (again, if it exists).

We first consider the case that SixEleven does not manage to pack all items in one bin in step 6. We
distinguish the case where in step 6sa ≤ 1

5 , and the casesa > 1
5 .

Case 1 If sa ≤ 1
5 , then at least oneδ-bin exists, so the last bin packed by NFD is aδ-bin. Consider first

the binβ, if it exists, after NFD is run for the first time. Sinceβ is the first bin packed in Step 5, the second
round can only increase the area of items packed in this bin. Since this is not the last bin packed by NFD,
it has a total packed area of at least9

16 [29]. Moreover, if there are at most three items in(1
4 , 1

3], it can be
deduced from [29] that the occupied area is actually at least743

1296 . Note also that the expansion of all items
in this bin is at leastr.

The weight of an item of sidesb in (1
4 , 1

3] is ν + r(s2
b − 1

16) = rs2
b + ν − r

16 . Thus if the bin contains
s such items and its area guarantee isA, the total weight is at leastrA + s(ν − r

16). By (3), the minimum
weight is achieved for minimals. If s ≥ 4, we get a weight of at leastr 9

16 + 4(ν − r
16) = r 5

16 + 4ν ≥ 1.
Otherwise, sinces ≥ 1 we get a weight of at leastr 743

1296 + (ν − r
16) = r 331

648 + ν ≥ 1.
Consider the binγ, if it exists, together with allδ-bins, and otherwise (i.e., if there is no binγ) theδ-bins

only. We consider these bins after the second round of NFD. Letj > 1 be the total amount of bins , and
y1, . . . , yj the sides of the first items packed in these bins, where1

4 ≤ y1 ≤ . . . ≤ yj .
By Lemma 1, each bin which is started by the item of sideyi for i < j has an occupied area of at least

y2
i + (1− yi)2 − y2

i+1. This gives a total of at leasty2
1 +

∑j−1
i=1 (1− yi)2. Sinceyi ≤ 1

5 for i > 1 we get at
leasty2

1 + (1− y1)2 + (j − 2)16
25 . On the domain, this function is minimized fory1 = 1

4 , and we get an area
of at least(j − 1)5

8 and thus (sincer ≥ 8
5) a total weight of at leastj − 1.

13

Consider the bin packed using SixEleven. Since at least one item did not fit into it, and since this item
has side no larger than15 (since alreadysa belongs to this group of items, and further items can only be
smaller), by Lemma 4 the area packed in this bin is at least6

11 . Let t be the number of items of side in(1
3 , 1

2]
in this bin. The weight of an item of sidesc in (1

3 , 1
2] is µ+ r(s2

c − 1
9) = rs2

c +µ− r
9 , thus if the bin contains

t such items and its area guarantee isB, the total weight is at leastrB + t(µ − r
9). By (3), the minimum

weight is achieved for minimalt. We get a weight of at leastr 6
11 + (µ− r

9) = 43
99r + µ ≥ 1.

Case 2 Consider now the casesa > 1
5 . Note that in this caseS contains at most two bins (m ≤ 2), β

andγ. Thus, the adapted bin was eitherβ or γ. We consider both cases together, where the possible binβ
can be analyzed as above. We analyze the two adapted bins together and show the total weight in them is at
least1. If the first item in the second bin is of side at most1

5 , then by Lemma 4, the area packed in the first
adapted bin is at least611 . Otherwise, the only case of that theorem that requires this condition is if NFD is
the algorithm which is used as a procedure by SixEleven, it creates two slices, and the second one has two
or three items (see Case 3).

If there are two items in the second slice, the sum of the sides of every two items is more than1 − sa.
This gives a total area of at least4(1−sa

2)2 + s2
a = 2s2

a − 2sa + 1 for all five items, which has the minimum
value 5

9 > 6
11 . Otherwise, the proof for three items in the second slice gives an area of at least1

2 (where the
side of the item that does not fit into the bin may be arbitrary). In the case1

4 ≤ sa ≤ 1
3 , we have a total area

of at least 9
16 > 6

11 [29]. Otherwise, letsz denote the side of the first itemz in the first adapted bin. Letsy

be the side of the first item in the second slice and lett1, t2, t3 be the sides of the two additional items in the
second slice and the item which did not fit. We have a total area of at leasts2

z + 2s2
y + t21 + t22 + t23, where

sz + sy + t3 > 1 andsy + t1 + t2 + t3 > 1. This function is minimized fort1 = t2 = t3 = t, t = 1−sy

3 ,

sz = 1− t− sy = 2(1−sy)
3 , and achieves a minimal value forsy = 0.28 which is0.56 > 6

11 .
As shown above, the total weight of a set of items of total area at least6

11 , where at least one item has
side in(1

3 , 1
2], is at least1.

Case 3 SixEleven does manage to pack all items in a single bin. In this case, the number of bins is the
same as in the case where we would run only step 5 on items with side in(0, 1

3]. Thus we can apply the
analysis from Case 1 above for binsβ, γ and theδ-bins and note that we now pack strictly more items (and
therefore weight) in the same amount of bins. ¤

3.2 The general algorithm

Algorithm Matching Preprocessing (PM):

1. Define the following auxiliary bipartite graph. One set of vertices consists of all items of side in(1
2 , 1].

The other set of vertices consists of items of side in(1
4 , 1

2]. An edge(a, b) between vertices of items
of sidessa > 1

2 andsb ≤ 1
2 occurs if both following conditions hold.

(a) sa + sb ≤ 1.

(b) (a, b) /∈ E(G).

That is, if these two items can be placed in a bin together. If this edge occurs, we give it the costµ if
sb ≥ 1

3 andν otherwise.

2. Find a maximum cost matching in the bipartite graph.

14

3. Each pair of matched vertices is removed fromG and packed into a bin together.

4. Let G′ denote the induced subgraph over the items that were not packed in the preprocessing (i.e.,
during Steps 1,2,3).

5. Compute a feasible coloring ofG′ usingχ(G′) colors.

6. For each color class, apply the PackIS algorithm described above .

We analyze algorithm PM using weighting functions. Denote the weight function defined in the analysis
of Algorithm PackIS for independent sets byw1. We define the weight function for items packed into bins
which are created in the preprocessing to be1− µ for an item of side in(1

2 , 1] which is packed with an item
of side in(1

3 , 1
2], and1− ν otherwise (i.e., if it is packed with an item of side in

(
1
4 , 1

3

]
).

We define a second weight functionw2 which is based on an optimal packingOPT of the entire input
which we fix now. This weight function is defined differently fromw1 only for items of side in(1

2 , 1].
Specifically, for a given such itemx, consider the bin in whichOPT packsx. If all items in this bin are of
side in(0, 1

4], we definew2(x) = 1. If the bin contains at least one other item of side larger than1
3 , we

definew2(x) = 1− µ and otherwisew2(x) = 1− ν. Note that matching each item of side in(1
2 , 1], which

got a weight strictly smaller than1 with respect tow2, with the largest item that shares its bin inOPT, gives
a valid matching in the auxiliary bipartite graph. Therefore, ifWi denotes the total weight of all items with
respect to the weight functionwi, then we haveW1 ≤ W2.

To prove an upper bound for PM, we first prove the following lemmas. Letω2 be an upper bound on the
amount of weight according tow2 that a set of items packed into a single bin can have.

Lemma 6 Consider a partitioning of the input into sets, where each set is independent. Some of the sets
consist of items that can be packed into a single bin, and have a total weight at least1 according tow1. Let
k be the number of independent sets that do not follow this rule. These sets are packed using the algorithm
PackIS. The number of packed bins is at mostω2OPT+ k.

Proof Consider thek sets defined above, let`i be the number of bins resulting from seti, and` the total
number of bins including also sets that result in one bin of total weight at least1. Using Claim 2 we find
that the total weight of items in seti is at least̀ i− 1. Since there arek such sets, the total weight according
to w1 is at least̀ − k, i.e. W2 ≥ W1 ≥ ` − k. According to the definition ofω2, we haveW2 ≤ ω2OPT

which proves the claim. ¤

Lemma 7 The approximation ratio of PM is at mostω2 + 1.

Proof PM creates the independent sets using an optimal coloring algorithm. Therefore,k ≤ OPT, sincek
is the minimum number of colors required to color a subset of the input. ¤

Theorem 3 The approximation ratio of PM, for square packing with conflicts, where the conflict graph is
perfect, is at most 3.277344.

Proof We need to analyze the total weight in packed bins ofOPT. We first compute this value as a function
of the parameters.

A bin with one itema of sidesa ∈ (1
2 , 1] and all other items no larger than14 has weight of at most

1 + (1− s2
a)r <

3
4
· r + 1.

15

Given a bin with one itema of sidesa ∈ (1
2 , 1] and all other items no larger than13 , let s be the number

of items of side in(1
4 , 1

3]. Clearlys ≤ 5. The bin has a total weight of at most1− ν + sν +(1− 1
4 − s

16)r =
1 + 3

4 · r + (s− 1)ν − sr
16 . By (3), the expression is maximized for the largest value ofs, giving

1 +
7r

16
+ 4ν. (5)

Finally, consider a bin which consists of an item of side in(1
2 , 1] and at least one item of side in(1

3 , 1
2].

Let s andt be the number of items of sides in(1
4 , 1

3] and(1
3 , 1

2], respectively. Note thats+t ≤ 5 and1 ≤ t ≤
3. The bin has a total weight of at most1−µ+sν+tµ+(1− 1

4− t
9− s

16)r < 1+0.75·r+sν+(t−1)µ− tr
9 − sr

16 .
Sinceµ − r

9 ≥ 0, the expression is maximized whens + t is maximal, i.e. we need to consider the three
casest = 1, s = 4; t = 2, s = 3; t = 3, s = 2. We get the three bounds1 + 7r

18 + 4ν, 1 + 49r
144 + 3ν + µ,

1 + 7r
24 + 2ν + 2µ. The first two are dominated by the last bound and/or by (5).

Given a bin where all items are of side no larger than1
2 , let s and t be the number of items of sides

in (1
4 , 1

3] and (1
3 , 1

2], respectively. Clearlys + t ≤ 9 and t ≤ 4. The bin has a total weight of at most
sν + tµ + (1− t

9 − s
16)r < r + sν + tµ− tr

9 − sr
16 . Again, the expression is maximized for maximals + t.

We need to consider the five casest = 0, s = 9; t = 1, s = 8; t = 2, s = 7; t = 3, s = 6; t = 4, s = 5. This
gives the five bounds63r

144 + 9ν, 56r
144 + 8ν + µ, 49r

144 + 7ν + 2µ, 42r
144 + 6ν + 3µ, 35r

144 + 5ν + 4µ. Obviously,
only the first and the last need to be considered. Sinceν ≤ 1

7 , the first is dominated by (5). Sinceµ ≤ 2
7 , the

last one is dominated by1 + 7r
24 + 2ν + 2µ.

We are left with the following bound,

max{3r

4
+ 1, 1 +

7r

16
+ 4ν, 1 +

7r

24
+ 2ν + 2µ} .

Running a linear program we find that an upper bound on this value is approximately 2.277344, which
is achieved forr ≈ 1.7031, µ ≈ 0.2603, ν ≈ 0.13. This gives an upper bound of 3.277344 on the
approximation ratio. ¤

Running an alternative algorithm which combines five possible preprocessing steps instead of just one
improves the upper bound on the approximation ratio to 3.2743938. The details of this algorithm are in the
appendix.

4 Conclusion

In this paper we addressed the approximability of square packing with conflicts. Our study focuses on the
absolute approximation ratio as is common for coloring problems. The upper bounds which we proved
on the absolute approximation ratio of our algorithm clearly holds for the asymptotic approximation ratio
as well. However, all the known approximability results, which are mentioned in the introduction, do not
hold in this case. An interesting research direction would be to find whether an Asymptotic Polynomial
Time Approximation Scheme (APTAS) exists for some square packing with conflicts, for some class of
(non-empty) conflict graphs.

References

[1] N. Bansal, J. Correa, C. Kenyon, and M. Sviridenko. Bin packing in multiple dimensions: Inap-
proximability results and approximation schemes.Mathematics of Operations Research, 31(1):31–49,
2006.

16

[2] N. Bansal and M. Sviridenko. New approximability and inapproximability results for 2-dimensional
packing. InProceedings of the 15th Annual Symposium on Discrete Algorithms, pages 189–196.
ACM/SIAM, 2004.

[3] A. Caprara. Packing 2-dimensional bins in harmony. InProc. 43rd Annual Symposium on Foundations
of Computer Science, pages 490–499, 2002.

[4] F. R. K. Chung, M. R. Garey, and D. S. Johnson. On packing two-dimensional bins.SIAM Journal on
Algebraic and Discrete Methods, 3:66–76, 1982.

[5] E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms for bin packing: A survey.
In D. Hochbaum, editor,Approximation algorithms. PWS Publishing Company, 1997.

[6] J. Correa and C. Kenyon. Approximation schemes for multidimensional packing. InProceedings of
the 15th ACM/SIAM Symposium on Discrete Algorithms, pages 179–188. ACM/SIAM, 2004.

[7] J. Csirik and G. J. Woeginger. On-line packing and covering problems. InA. Fiat and G. J. Woeginger,
editors,Online Algorithms: The State of the Art, pages 147–177, 1998.

[8] L. Epstein and A. Levin. On bin packing with conflicts. InProc. of the 4th Workshop on Approximation
and online Algorithms (WAOA2006), pages 160–173, 2006.

[9] L. Epstein and R. van Stee. Optimal online bounded space multidimensional packing. InProc. of 15th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’04), pages 207–216, 2004.

[10] M. R. Garey and D. S. Johnson.Computers and intractability. W. H. Freeman and Company, New
York, 1979.

[11] M. Grötschel, L. Lov́asz, and A. Schrijver.Geometric algorithms and combinatorial optimization.
Springer, 1993.

[12] E. Horowitz and S. Sahni. Exact and approximate algorithms for scheduling nonidentical processors.
Journal of the ACM, 23(2):317–327, 1976.

[13] M. Hujter and Z. Tuza. Precoloring extension, III: Classes of perfect graphs.Combinatorics, Proba-
bility and Computing, 5:35–56, 1996.

[14] C. A. J. Hurkens and A. Schrijver. On the size of systems of sets everyt of which have an SDR, with
an application to the worst-case ratio of heuristics for packing problems.SIAM Journal on Discrete
Mathematics, 2(1):68–72, 1989.

[15] K. Jansen. An approximation scheme for bin packing with conflicts.Journal of Combinatorial Opti-
mization, 3(4):363–377, 1999.

[16] K. Jansen and S.̈Ohring. Approximation algorithms for time constrained scheduling.Information and
Computation, 132:85–108, 1997.

[17] C. Kenyon and E. Ŕemila. A near optimal solution to a two-dimensional cutting stock problem.Math-
ematics of Operations Research, 25(4):645–656, 2000.

[18] Y. Kohayakawa, F. K. Miyazawa, Prabhakar Raghavan, and Yoshiko Wakabayashi. Multidimensional
cube packing.Algorithmica, 40(3):173–187, 2004.

17

[19] C. C. Lee and D. T. Lee. A simple online bin packing algorithm.Journal of the ACM, 32(3):562–572,
1985.

[20] J. Y.-T. Leung, T. W. Tam, C. S. Wong, G. H. Young, and F. Y. L. Chin. Packing squares into a square.
Journal on Parallel and Distributed Computing, 10:271–275, 1990.

[21] D. Marx. Precoloring extension.http://www.cs.bme.hu/ dmarx/prext.html.

[22] D. Marx. Precoloring extension on chordal graphs. InGraph Theory in Paris. Proceedings of a
Conference in Memory of Claude Berge, Trends in Mathematics, pages 255–270. Birkhäuser, 2007.

[23] B. McCloskey and A. Shankar. Approaches to bin packing with clique-graph conflicts. Technical
Report UCB/CSD-05-1378, EECS Department, University of California, Berkeley, 2005.

[24] A. Meir and L. Moser. On packing of squares and cubes.J. Combinatorial Theory Ser. A, 5:126–134,
1968.

[25] Y. Oh and S. H. Son. On a constrained bin-packing problem. Technical Report CS-95-14, Department
of Computer Science, University of Virginia, 1995.

[26] A. Schrijver.Combinatorial optimization polyhedra and efficiency. Springer-Verlag, 2003.

[27] S. S. Seiden and R. van Stee. New bounds for multi-dimensional packing.Algorithmica, 36(3):261–
293, 2003.

[28] J. D. Ullman. The performance of a memory allocation algorithm. Technical Report 100, Princeton
University, Princeton, NJ, 1971.

[29] R. van Stee. An approximation algorithm for square packing.Operations Research Letters, 32(6):535–
539, 2004.

18

A Improved upper bound for perfect graphs

To achieve a better upper bound, we suggest four new preprocessing steps. Each possible preprocessing
yields a different algorithm. Our main algorithm runs each one of the five algorithms, and it chooses the
solution with the minimum number of bins.

The general structure of our algorithms is as follows. Perform a preprocessing which creates some
packed bins. Then steps 4-6 of PM are applied. Each one of the four alternative pre-processing steps creates
a collection of subsets, whose ground set is the set of items in the input. Each subset has at mostki items
(2 ≤ i ≤ 5). We are using an algorithm of Hurkens and Schrijver [14] for approximating the maximum
(unweighted) set packing problem. Their algorithm finds a sub-collection of subsets, such that every pair of
subsets is disjoint. The cardinality of the output sub-collection is at least a2

ki
− ε fraction of the largest such

sub-collection. The preprocessing packs each such subset into a separate bin.
The four collections are as follows.

2. Sets of four items that can fit into one bin, where one item has side in(1
2 , 1] and three items have sides

in (1
3 , 1

2]. Thereforek2 = 4.

3. Sets of three items that can fit into one bin, where one item has side in(1
2 , 1] and two items have sides

in (1
3 , 1

2]. Thereforek3 = 3.

4. Sets of six items that can fit into one bin, where one item has side in(1
2 , 1] and five items have sides

in (1
4 , 1

2]. Thereforek4 = 6.

5. Sets of five items that can fit into one bin, where one item has side in(1
2 , 1] and four items have sides

in (1
4 , 1

2]. Thereforek5 = 5.

We usew1[1] = w1 andw2[1] = w2. Furthermore we define four additional weight functions,w1[i]
andw2[i] for i = 2, 3, 4, 5. The functionsw2[i] are based on a fixed optimal packing asw2[1]. The weight
function for items of side in(0, 1

2] is as before. Items of side in(1
2 , 1] get weight1 except for special cases

as described below.

2. An item of side in(1
2 , 1] that in the optimal packing shares a bin with three items of side in(1

3 , 1
2] gets

weight1− 3µ(1−2ε)
2 according tow2[2]. Let N2 be the number of such items.

3. An item of side in(1
2 , 1] that in the optimal packing shares a bin with at least two items of side in

(1
3 , 1

2] gets weight1− 4µ(1− 3ε
2

)

3 according tow2[3]. Let N3 be the number of such items.

4. An item of side in(1
2 , 1] that in the optimal packing shares a bin with five items of side in(1

4 , 1
2] gets

weight1− 5ν(1−3ε)
3 according tow2[4]. Let N4 be the number of such items.

5. An item of side in(1
2 , 1] that in the optimal packing shares a bin with at least four items of side in

(1
4 , 1

2] gets weight1− 8ν(1− 5ε
2

)

5 according tow2[5]. Let N5 be the number of such items.

Next, we describe the functionsw1[i]. Similarly tow2[i], the only items that get special weights are the
ones of side in(1

2 , 1].

2. An item of side in(1
2 , 1] that is packed into a bin during preprocessing gets weight1− 3µ according

to w1[2]. Note that the number of such items is at least(2
4 − ε)N2.

19

3. An item of side in(1
2 , 1] that is packed into a bin during preprocessing gets weight1− 2µ according

to w1[3]. Note that the number of such items is at least(2
3 − ε)N3.

4. An item of side in(1
2 , 1] that is packed into a bin during preprocessing gets weight1− 5ν according

to w1[4]. Note that the number of such items is at least(2
6 − ε)N4.

5. An item of side in(1
2 , 1] that is packed into a bin during preprocessing gets weight1− 4ν according

to w1[5]. Note that the number of such items is at least(2
5 − ε)N5.

Let W be the sum of regular weight of all items. LetW1[i] andW2[i] be the sums of weights of all items
according tow1[i] andw2[i].

We haveW2[2] = W − 3
2µ(1− 2ε)N2 = W − 3µN2

2 + 3µεN2, W2[3] = W − 4
3µ(1− ε)N3, W2[4] =

W − 5
3ν(1− ε)N4, W2[5] = W − 8

5ν(1− ε)N5.
On the other hand we have,W1[2] ≤ W −3µ(1

2−ε)N2 = W − 3µN2

2 +3µεN2 = W2[2], W1[3] ≤ W −
2µ(2

3−ε)N3 = W − 4µN3

3 +2µεN3 = W2[3], W1[4] ≤ W −5ν(1
3−ε)N4 = W − 5νN4

3 +5νεN4 = W2[4],
W1[5] ≤ W − 4ν(2

5 − ε)N5 = W − 8νN5
5 + 4νεN5 = W2[5].

To prove an improved upper bound, letω2[i] be an upper bound on the amount of weight according to
w2[i] that a set of items packed into a single bin can have. As in Lemma 6, for each weight function, we
analyze the total amount of weight that can be packed into a single bin ofOPT.

The analysis for the first pre-processing is the same as in the proof of Theorem 3. Since bins without an
item of side in(1

2 , 1] have the same weight in all cases and no reductions, then we only need to consider the
extreme cases as in the proof of Theorem 3.

There are 20 types of bins that need to be considered and we analyze each type according to every
preprocessing. We denote items of side in(1

3 , 1
2] by A and items of side in(1

4 , 1
3] by B. Items of side in

(1
2 , 1] are denoted byL.

Since we choose the solution with smallest number of bins, we use a convex combination instead. We
use parametersα[i], for 1 ≤ i ≤ 5, such that

∑5
i=1 α[i] = 1.

For each bin typej (1 ≤ j ≤ 20), we computet2[i][j] which is the largest amount of weight that
can be packed in a bin of typej according to weight functionw2[i]. We use the following lemma. Let
ω′2 = maxj{

∑5
i=1 α[i]t2[i][j]}.

Lemma 8 The approximation ratio of the algorithm which chooses the best out of the five solutions is at
mostω′2 + 1.

Proof We define a new weight functionw′2 =
∑5

i=1 α[i] · w2[i]. For eachi, the sum of the total weight
according tow2[i] and the chromatic number, is at least the cost of the algorithm. Therefore, this holds also
for w′2 and the cost of the best solution among the five algorithms. ¤

Using Matlab, we were able to find that using the values

r = 1.699191, µ = 0.261967, ν = 0.132049 ,

and

α[1] = 0.5872688, α[2] = 0.120419, α[3] = 0.052589, α[4] = 0.117455, α[5] = 0.122349,

gives an upper bound of approximately 3.2743938. We summarize with the following theorem.

Theorem 4 The approximation ratio of the combined algorithm, for square packing with conflicts, where
the conflict graph is perfect, is at most 3.274394.

20

Amounts of Max. weight of bin Reductions: Prep. 2 Prep. 2 Prep. 4 Prep. 5

L,A,B without reduction Prep. 1

(1, 3, 2) 42
144r + 3µ + 2ν µ 3µ

2 − 3µε 4µ
3 − 2µε 5ν

3 − 5νε 8ν
5 − 4νε

(1, 2, 3) 49
144r + 2µ + 3ν µ 0 4µ

3 − 2µε 5ν
3 − 5νε 8ν

5 − 4νε

(1, 1, 4) 56
144r + µ + 4ν µ 0 0 5ν

3 − 5νε 8ν
5 − 4νε

(1, 0, 5) 63
144r + 5ν ν 0 0 5ν

3 − 5νε 8ν
5 − 4νε

(1, 3, 1) 51
144r + 3µ + ν µ 3µ

2 − 3µε 4µ
3 − 2µε 0 8ν

5 − 4νε

(1, 2, 2) 58
144r + 2µ + 2ν µ 0 4µ

3 − 2µε 0 8ν
5 − 4νε

(1, 1, 3) 65
144r + µ + 3ν µ 0 0 0 8ν

5 − 4νε

(1, 0, 4) 72
144r + 4ν ν 0 0 0 8ν

5 − 4νε

(1, 3, 0) 60
144r + 3µ µ 3µ

2 − 3µε 4µ
3 − 2µε 0 0

(1, 2, 1) 67
144r + 2µ + ν µ 0 4µ

3 − 2µε 0 0

(1, 1, 2) 74
144r + µ + 2ν µ 0 0 0 0

(1, 0, 3) 81
144r + 3ν ν 0 0 0 0

(1, 2, 0) 76
144r + 2µ µ 0 4µ

3 − 2µε 0 0

(1, 1, 1) 83
144r + µ + ν µ 0 0 0 0

(1, 0, 2) 90
144r + 2ν ν 0 0 0 0

(1, 1, 0) 92
144r + µ µ 0 0 0 0

(1, 0, 1) 99
144r + ν ν 0 0 0 0

(1, 0, 0) 1 + 3
4 · r 0 0 0 0 0

(0, 4, 5) 35
144r + 4µ + 5ν 0 0 0 0 0

(0, 0, 9) 63
144r + 9ν 0 0 0 0 0

Table 3: Analysis of Maximum weights of bins and reductions in the different preprocessing steps

21

