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Abstract

We study the two-dimensional version of the bin packing problem with conflicts. We are given a set
of (two-dimensional) squards = {1,2,...,n} with sidessy, s2...,s, € [0,1] and a conflict graph
G = (V, E). We seek to find a partition of the items into independent sef ofhere each independent
set can be packed into a unit square bin, such that no two squares packed together in one bin overlap.
The goal is to minimize the number of independent sets in the partition.

This problem generalizes the square packing problem (in which we Rave ()) and the graph
coloring problem (in whichs; = 0 forall i = 1,2,...,n). Itis well known that coloring problems on
general graphs are hard to approximate. Following previous work on the one-dimensional problem, we
study the problem on specific graph classes, hamely, bipartite graphs and perfect graphs.

We design &+-¢-approximation for bipartite graphs, which is almost best possible (uilessV P).

For perfect graphs, we design a 3.2744-approximation.

Topic: Algorithms and data structures

1 Introduction

Two-dimensional packing of squares is a well-known problem, with applications in stock cutting and other
fields. In the basic problem, the input consists of a set of (two-dimensional) squares of given sides. The goal
is to pack the input into bins, which are unit (two-dimensional) squares. A packed item receives a location
in the bin so that no pair of squares have an overlap. The goal is to minimize the number of used bins.

However, in computer related applications, items often represent processes. These processes may have
conflicts due to efficiency, fault tolerance or security reasons. In such cases, the input set of items is accom-
panied with a conflict graph where each item corresponds to a vertex. A pair of items that cannot share a
bin are represented by an edge in the conflict graph between the two corresponding vertices.

Formally, the problem is defined as follows. We are given a set of (two-dimensional) squares
{1,2,...,n} whose sides are denoted by sz . . ., s, and satisfys; € [0, 1] forall 1 < i < n. We are also
given a conflict graplts = (V, E). A valid output is a partition of the items into independent seté& pf
together with a packing of the squares of each set into a unit square bin. The packing of a bin is valid if no
two squares that are packed together in this bin overlap. The goal is to find such a packing with a minimum
number of independent sets.

*An extended abstract version of this paper has appeared in Proceedings of the 16th International Symposium on Fundamentals
of Computation Theory (FCT 2007), pages 288-299.
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This problem is a generalization of the square packing problem [1], whete (), and of the graph
coloring problem, wherg; = 0 foralli = 1,2,... n. Itis well known that coloring problems on general
graphs are hard to approximate. Following previous work on the one-dimensional problem, we study the
problem on specific graph classes, namely, bipartite graphs and perfect graphs.

For an algorithmA, we denote its cost on an inpitby .A(7), and simply byA, if I is clear from the
context. An optimal algorithm that uses a minimum number of bins is denotexbliy We consider the
(absolute) approximation ratio that is defined as follows. The (absolute) approximation ratigsdhe
infimum R such that for any inpuf, A(Z) < R - oPT(I). We restrict ourselves to algorithms that run
in polynomial time. The asymptotic approximation ratio is definet@asup sup {%]OPT(I) = n}

n—oo I

The absolute approximation ratio is useful when no inputs can be neglected. The asymptotic approximation
ratio is used for problems where only the behavior of the algorithm for large enough inputs is of interest.
Bin packing algorithms are typically measured using the asymptotic approximation ratio. However, coloring
algorithms are usually measured using the absolute approximation ratio. Following previous work on (one-
dimensional) packing with conflicts, we address the absolute approximation ratio in this paper.
One-dimensional packing without conflicts. The one dimensional problem (where both items and bins
are one-dimensional rather than squares) was introduced in the early 70’s [28, 7, 5]. Many variants of this
problem has been studied ever since.
One-dimensional packing with conflicts. The one dimensional problem was studied on several graph
classes, including perfect graphs and bipartite graphs. Jansebraimd) [16] introduced the problem and
designed approximation algorithms which work in two phases. The first phase is a coloring phase, where
the graph is colored using a minimum number of colors. In the second phase, each independent set (which
corresponds to a color class) is packed using a bin packing algorithm. Using this method, they obtained a
2-approximation algorithm for bipartite graphs and a 2.7-approximation algorithm for perfect graphs.

In [8], improved algorithms were designed. It was shown that the approximation ratio of the algorithm
of [16] for perfect graphs is actually approximately 2.691, aBdeapproximation algorithm was designed.
The algorithm applies a matching phase in which some pairs of relatively large items are packed in dedicated
bins, and applies the methods of [16] as above on the remaining subgraph. Animproved 1.75-approximation
for bipartite conflict graphs was achieved by applying the algorithm of [16] on inputs with large enough
values ofoPT, while finding better solutions for inputs with small valuesosfT.

Several papers [16, 15, 8] contain further results for additional graph classes. The paper [16] considered
a class of graphs, on which thERECOLORING EXTENSIONproblem, where every precolored vertex is
assigned a different color (see [13, 21, 22]), can be solved in polynomial time. In this problem a graph is to be
colored using a minimum number of colors with the constraint that some vertices already have given colors
(a different color to each such vertex). This class contains chordal graphs, interval graphs, forests, split
graphs, complements of bipartite graphs, cographs, paftiaées and complements of Meyniel graphs. For
these graphs, they designed a 2.5-approximation algorithm which is based on SoIVIREL®LORING
EXTENSION problem, mentioned above, on the graph (where the items of size Iarge% tr@rprecolored
each with a different color). In [8] an improvegj-approximation algorithm, which is based on a pre-
processing phase in which subsets of at most three items are packed into dedicated bins, was designed.

For alle > 0, Jansen an®hring [16] also presented @ + e)-approximation algorithm for one-
dimensional packing with conflicts on cographs and pattiairees. Jansen [15] showed an asymptotic
fully polynomial time approximation scheme for the one-dimensional problemtiaductive (also called
d-degenerate) graphs, whetés a constant. Al-inductive graph has the property that the vertices can be
assigned distinct numbets. .., n such that each vertex is adjacent to at mbkiwer numbered vertices.
This includes the cases of trees, grid graphs, planar graphs and graphs with constant treewidth. Additional



papers [25, 23] studied the one-dimensional problem on graphs that are unions of cliques, but their results
are inferior to work of Jansen arihring [16].
Hardness of approximability for packing without conflicts.  The inapproximability results known for
the two-dimensional and one-dimensional packing problems are as follows. Since standard bin packing
(two-dimensional packing of squares and one-dimensional packing, respectively), is a special case of the
problems with conflicts, the same inapproximability results holds for them as well. This means that the
one-dimensional problem cannot be approximated up to a factor smalle%mmhessP = NP, (due to
a simple reduction from theAaRTITION problem, see problem SP12 in [10]). Also, the two-dimensional
problem cannot be approximated up to a factor smaller ZhamlessP = N P, since it was shown in [20]
that given a set of squares, itAsP-hard to check whether these squares can be packed into one bin. These
results hold for the graph classes we consider since an empty graph (i.e., a graph with an empty edge set) is
both bipartite and perfect.
Square packing without conflicts.  Square packing was studied in many variants. An algorithm of
approximatior2 (best possible unled3 = N P) was shown in [29]. Unlike coloring problems, bin packing
is often studied with respect to the asymptotic approximation ratio. An asymptotic approximation scheme
was given by Bansal et al. [1, 2, 6]. This was the last result after a sequence of improvements [4, 17, 3, 18,
27, 9].
Our results. In this paper we design the first approximation algorithms for bipartite graphs and perfect
graphs. Prior to this work, no approximation algorithms for square packing with conflicts on any conflict
graph were known. For bipartite graphs, we give an algorithm of approximatioreratio for anye > 0.
Note that unlike the one-dimensional case, this is almost best possible uhles¥ P. The algorithm
chooses the best solution out of several algorithms, which are designed for various valeas of

Our main result is for perfect conflict graphs, for which we design algorithms with clever pre-processing
phases. We analyze an algorithm which chooses the best solution out of the outputs of all the algorithms
we design. This results in an algorithm of approximation ratio at 1%.@3t4. The only property of perfect
graphs used by our algorithm is the existence of a polynomial time algorithm which finds a valid coloring
of the graph using a minimum number of colors. An algorithm that finds such a coloring for perfect graphs
is implied using the ellipsoid algorithm [11] (see also chapter 67 in [26]). Our algorithm can be applied not
only on perfect conflict graphs, but on any class of conflict graphs for which a minimum coloring can be
found in polynomial time.

2 Bipartite graphs

In this section, we present an algorithm and analysis for the case where the conflict graph is bipartite, and
establish the following theorem.

Theorem 1 For everye > 0, there exists a polynomial time approximation algorithm for square packing
with conflicts, where the conflict graph is bipartite, with approximation ratio of at rdast.

The algorithm will use the well-known square packing algorithexT FIT DECREASING(NFD) [24]
and a natural variant of itFIRST FIT DECREASING (FFD), as subroutines. We begin by giving some
properties of these two algorithms in Section 2.1. In Section 2.2, we introduce a new algorithm called
SixEleven, which is a variation of FFD which packs items differently in one special, crucial case. This helps
to get a better area guarantee in a bin packed with SixEleven. We then describe our main algorithm for the
case®PT= 1 andoPT = 2 (Section 2.3)pPT = 3 (Section 2.4)pPTis a constant > 3 (Section 2.5) and



finally the case wherepTis not constant (Section 2.6). Since the valuepfis unknown to the algorithm,

the algorithm needs to apply all these possibilities and among these that output a valid solution, choose the
one with the smallest cost. We will therefore assume dimatis known to the algorithm (but make sure that

the number of different algorithms applied is constant).

2.1 NFD and FFD

NFD packs items in slices, which are rectangular regions of the bin of width 1 that are stacked on top of
each other starting from the bottom of the bin. The height of a slice is defined as the side of the first item
packed into it. Each item is packed immediately to the right of the previously packed item, or in the next
slice in case it does not fit in the current slice. When a new slice does not fit in the current bin, a new bin is
opened for it. FFD works the same, but tries to put each new item in each slice that has been opened so far
(to the right of the last item in the slice) instead of only trying the last slice or a new one. Regarding NFD
and FFD, we have the following results.

Lemma 1 (Meir & Moser [24]) LetL be alist of squares with sidas > x5 > ... ThenL can be packed
in a rectangle of height > z; and widthb > z; usingNEXT FIT DECREASINGIf one of the following
conditions is satisfied:

e the total area of items ik is at mostz? + (a — x1)(b — x1).

e the total area of items i is at mostub/2.

In the following, we will abuse notation and usgto denote both thé&h item in the input and its side, i.e.,
the length of one of its sides.

Lemma 2 (van Stee [29])Consider a bin that is packed by NFD, and suppose the largest item in this bin
has side at most 1/3. If after packing this bin, there are still unpacked items with side a% refisthen the
total area of the items in the bin is at least16.

A hereditarycondition on an inpuf is a condition which still holds if we remove some items frénin
particular, the conditions in Lemmas 1 and 2 are all hereditaryar&a guarantee for algorithm.4 means
that if we apply.4 on an input/ and.A(I) needs at least two bins then it uses at least one bin to pack items
whose total area is at legst The following technical lemma helps in the analysis of SixEleven.

Lemma 3 Suppose we are given an area guarantee for NFD on idiartd rectangleR that depends only
on hereditary conditions, as long as not all items are packeH.iThen this area guarantee also holds for
FFD.

Proof Consider an inpuf = {z1,...,x,} and suppose that NFD as well as FFD do not phdk one

bin. Denote byl’ C I the subset which is packed in the first bin by FFD. We create a new iffpat I’
from I’ as follows. Remove froni’ any item that is placed in an old slice by FFD, that is, not the most
recently started slice. Denote the last (smallest) itet'iby z;, theni < n. Finally, add an item of side
x;+1 temporarily tol”.

Consider the output of NFD faF” U z;11. Since NFD never tries to use old slices, it can be seen by
induction that each item is allocated to exactly the same slice and position as it was allocated by FFD on the
input’.

Regarding the itemr;, 1, there are two options for FFD, since FFD did not place this item in the last
slice.



Input: A list of squares of sideéx, ..., z,}, sorted in order of nonincreasing side
Output: A packing of the input or a prefix of it in a single bin.

1. fozy + a0+ 23 > 1, butay + 29 + 4 < 1, pack the three largest items as shown in Figure
2. Pack the area using NFD starting from the fourth item, then continue in aBeaith NFD
(considering this to be a single slice), and finally pack @rasing NFD.

2. Else, use FFD.

Figure 1: Algorithm SixEleven

1. FFD putsz;; in an earlier slice, or
2. FFD does not put; 4 in the first bin at all

In the first case, either NFD already “fails” before item.; (NFD does not pack; in this bin), or NFD
tries to putz; ;1 into the last slice. However, if it were possible to pagk; there, FFD would pack at least
one item after; in the last slice, contradicting the definitioniof

In the second case, clearly NFD also does notiput in the first bin (since the packing so far is equal
to the packing of FFD for the items ii', and FFD tries more options to pack,; than NFD does).

Thus in both cases NFD packs at mé&swithoutx; 1 in a bin, andl” C I'. We have an area guarantee
for I, which then clearly also holds for the superEgbacked by FFD. O

2.2 Algorithm SixEleven

Algorithm SixEleven is displayed in Figure 1. It has the following properties.

Lemma 4 Consider a set of squares of sides > x5, > ... that is packed using SixEleven. Assume that
at least one item remains unpacked andaetbe the side of the first such item. If the three conditions,
x1 > 1/3, 21 + 29 < 1andz, < 1/5 hold, then SixEleven packs at least a total areé Afl in this bin.

Proof We assume that there is at least one unpacked item. There are four cases. In Cases 1, 3and 4, FFD is
applied to the input; only in Case 2, Step 1 of SixEleven is applied. In Cases 1, 3 and 4, we will sometimes
prove area guarantees for NFD (instead of FFD). This is sufficient by Lemma 3. Throughout this proof, we
denote the side of the largest item bythe side of the largest item in the second slice;and the side of

the largest unpacked item lay Note thaty > «. Additionally, we also denote the sides of the items by
x1,Z2,...IN Nonincreasing order (so, = x).

Case 1 The largest three items have total side at most 1. t.e+4 x5 + 23 < 1.

In this case, NFD packs a total area of at legst+ 232 in the first slice, and by Lemma 1, at least
P+ (1—y)(1—2—y)—a?>(1-y)(1—x—y)inall other slices (since the height of the remaining
partisl — x). Note that since the three largest items already have total side at most 1, NFD indeed allocates
more than one slice. In fact at least three slices are opened, since the total height of these slices would be
the sum of three items in the sequence, and even for the three largest items in the seguence;, we
havex; + z2 + x3 < 1, so the second and third slices are indeed non-empty. In total, NFD packs at least an
area ofA = 22 + 2y% + (1 — y)(1 — = — y) in the bin. This expression has a global minimun6pf1 at
x =4/11,y = 3/11. In the remaining cases we assume that- 5 + z3 > 1.
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Figure 2: Alternative packing

Case 2 The first, second and fourth item have total side at most 1.ahek 2o + 24 < 1.

In this case SixEleven uses the packing shown in Figure 2. We next argue that the rectaagths
contain at least one item. Fak, this holds because, + x5 + x4 < 1. For C because the first item placed
in it has side at most,, andz; + 23 + x4 < 21 + 22 + 24 < 1.

B contains at least two items. The first item that SixEleven tries to pack there has side af, ost,
wherezs is the height ofB, so at least one item fits height-wise. Moreovgr+ 2z4 < x1 +x9 + 14 < 1,
so at least two items fit next to each othedn

Denote the number of items i by & > 2, and their sides by, ..., z;. In A, by Lemma 1, we pack
items with total area at Ieagfl_gi_”) — 22, In B, we pack items with total area at ledsf’_, 2. In C, by
Lemma 1, we pack items with total area at leisf—~ — z2. In total, we pack total area of at least

N
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B T B Gk k.2 3 2 5+ ’
=2
k—1
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The condition arer > 9 > y > 21 > ... > zp, x4+ aa+y > L, andYr 2z > 1 —y — z.

From this expression, we simply omit the teﬁff:‘; z2. On the domaing > 1 — 29 — v, Soﬂ—i;cxz >
(I*wzfy)g*m*y), and therefore” dominates

P=1- g (y+x2—y2—yx2) —I—Zx% = 1—%(3/—1—:1:2)(1—1/)4—236%.
We havedP; /0y = 0 < y = 1 — 22 anddP; [0z, = 0 < y = 1 — Sx,. The global minimum of?; is
attained at the point, = %,y = 13 Where the constraint < z» is not satisfied. ~ Therefore, sindg

is convex, the constraint < z is a binding constraint in the constrained optimum, and we can search for
the minimum ofP; with y = z5. The minimum ofl — 3 (2y)(1 — y) + 2y? = 5y*> — 3y + 1 is attained at

y = - and at the optimun#®; has the valug} > £.

Case 3 NFD creates only two slicedn this case and the next case, NFD packs exactly two items in the
first slice: not more than two because we are not in Case 1, and at least two because the two largest items
have total side at most 1. We make a case division based on the number of items packed in the second slice.
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If the second slice contains only two items, the total side of these items is at J&asihce the largest
unpacked item has side at magb, and this then also holds for the total side of the first (largest) two items.
By the arithmetic mean-geometric mean inequality, the total area of each pair of items is 2t (%a)%t SO
the total area overall is at least (£)? = 18 = 0.64 > L.

Suppose the second slice contains three items. Denote their sidesby. in nonincreasing order.
NFD packs a total area of at leagt= 22 + 2y? + 2% + 22, wherex + y > 4/5 since there are only two
slices,y + z1 + 22 > 4/5andxz > y > z; > z9. Consider the vectaz, g, Z1, Z2) which minimizesA on
this domain. We havé; = Z,. This is so because suppose otherwise that Zs + a for somea > 0,
then the vecto(z, 7, 21 — a/2, Z2 + a/2) is also in the domain but the value dfis smaller, a contradiction.
Assume therefore; = z9 and letz = 21 = 2».

Thus NFD packs a total area of at least = 22 + 2y> + 222 wherer > 4/5 —y andz > (4/5 —y)/2.
Takingz = 4/5 —y andz = (4/5 — y) /2, we find thatd, dominatesds = 2 — 12y + 742 on the domain.
As has a global minimum of6/175 > 6/11 for y = 12/35.

Suppose the second slice contains at least four items. NFD packs a total area of &t le@stf® +
S 22, wherey + 3% 2 > 11—z, x4y > 1 — 2, andk > 3. We again find that in the minimum,
2 = zfori =1,..., k,using asimilar reasoning. Thus NFD packs a total area of atleast:? 42y + k2>
wherez >y > 2,k >3,y+kz>1—zandr +y >1— 2 Aisatleastds = (1 —y — 2)? + 2y% + k2>
on the domain since > 1 — y — z. As has a global minimum otk/(3k + 2) fory = k/(3k + 2) and
z = 2/(3k + 2), which is monotonically increasing iand is6/11 for k = 3.

Case 4 NFD creates at least three slices.

Denote the side of the fourth item hy(i.e., z = x4). We findx + x5 + z > 1 (since otherwise
we are in Case 2), of > (1 — x — x2). If NFD packs at least three items in the second slice, then by
Lemma 1, NFD packs a total area of atleadtt 23 + 3> + (1 — 2z —22)? + 22+ (1 — 2 —y)/2 —a? >
2?4+ 23+ 9y + (1 -2 —29)%+ (1 —2—1y)/2 = A. This expression has a global minimumdgfl6 > 6,/11
forxzé,a:gzy:%.

If NFD packs only two items in the second slice, there are two cases. If FFD packs some future item in
one of the first two slices, we again find the area guaraatdmcause the side of that item is larger than the
side of the first unpacked item (just likg > o above). Otherwise, since FFD packs at least three slices,
FFD packs a total area of at leakt = 22 + 2y + 22 + 3(1 — z — y)2. This follows because the third slice
has height less than 1/3, and therefore contains at least three items, and none of these items apparently fit in
the second slice. Recall thag + x4 + =5 > 1 andy = z3. Thereforex > 1 — 2y, and hence FFD packs a
total area of at leasty = (1 —2y)?+2y?+ 22+ 3(1 — z—y)2. A4 has a global minimum af7/27 > 6/11
fory = 11/27,z = 4/9. O

Lemma 5 Consider a set of squares of sides > x5 > ... that is packed using SixEleven. Assume that
at least one item remains unpacked andaetbe the side of the first such item. If the two conditions,
x1 +x2 < landz,; < 1/5 hold, then SixEleven packs at least a total areé Afl in this bin.

Proof If the side of the largest square is at mogs, this follows from Lemma 2. Else, it follows from
Lemma 4. ]

Define aarge itemto be an item with side more thar88. An item that is not large is said to besmall
item A large item ishugeif its side is more than /3.

Definition 1 A goodset of squares is a sétwith at least one of the following properties:



1. The two largest items i§ have total side at most 1, and the total area of the large items is at most
6/11.

2. S contains only one large item.

Theorem 2 For any input setS of squares which is good, SixEleven either pagks one bin, or packs at
least an area of 6/11 in the first bin.

Proof In case S contains only one large item, then if this large item has area at least 6/11, we are done.
Else, the two largest items must have total side at most 1, so SixEleven packs at least four items in the first
bin. Suppose SixEleven does not p&tk one bin, and it moreover packs a total area less than 6/11 in the
first bin. Then the total area of the first four itemsSns less than 6/11. If the first item il has side at
most1/3, SixEleven behaves like FFD, so by Lemma 2 the area packed is moréthira contradiction.
The largest item that remains unpacked must have side more than 1/5 by Lemma 4. Moreover, the cases 1,2,
and 4 in the proof of that Lemma do not use the assumption that the largest unpacked item has side at most
1/5. (In particular, this covers the case whéreontains only one large item of area less th@nl.) This
also holds for the last subcase of Case 3 (at least four items in the second slice). Hence it must be the case
that NFD creates two slices, where the first slice has two items and the second slice has two or three items.
Suppose the second slice has two items. Then the total side of the third, fourth and fifth iteis in
more than 1, and their average area is more (%aﬁ. But then the area of each of the two largest items
must both also be more thaé)z, giving that the total area of items with side more than 1/5 is more than
5/9 (since the fifth item has side more than 1/5, so then the first four items also have side at leastS1/5), so
is not good, a contradiction.
Suppose the second slice contains three items. Denote their sigles by, in nonincreasing order. Let
a > 1 be the side of the first unpacked item 2lif< a < 2, NFD packs at least = 22 + 2y? + 2§ + 23,
wherex + y > 1 — a (since there is no third slice), + z1 + 22 > 1 — a (sincea does not fit into the
second slice) and > y > z; > z,. We concluder? + y? > (1 — a)? andy? + 27 + 23 > (1 —a)? by
the arithmetic mean-geometric mean inequality. But then we havelthat> > 2(1 — a)? + o? which is
monotonically non-increasing in this interval and larger thahl ata = 49—0. Otherwise, we can follow the
proof of Case 3 for at least four items in the second slice, but use thé:cas2in which we get that the
contents of the bin have a total area of at |da€ Adding the area of the first unpacked item fréhgives
atleast23: > =, We get that in both cases, is not good. O
This Theorem implies that when SixEleven packs a good set, all the large items in the set are packed in
the first bin.

2.3 The algorithm for OPT =1 and OPT =2

Recall that the conflict graph is bipartite. Thus, itis 2-colorable in all cases 1= 1, we get that all items
can be packed into a single bin, and therefore the conflict graph is empty. We can apply the 2-approximation
from [29].

If oPT = 2, we act as follows. There are at most 18 huge items. Consider all partitions (a constant
number) of the huge items into two sdts and L,. For the analysis it suffices to consider the iteration
of the correct guess. So each such set of huge items can be packed with one bin (and we can find such a
packing using the algorithm from Bansal et al. [1], which gives a constant time algorithm to pack a constant
number of squares into a bin, is possible), and the coloring of the huge items (where the color of an item is
determined by the set it is in) can be extended to a 2-coloring of the entire input as explained below.



For each connected component that contains a huge item the 2-coloring is defined uniquely (unless it
contains at least two huge items and we get that it is impossible to extend the coloring accordingly, in this
case the partition of the huge items is incorrect), and it remains to decide on the 2-coloring of the connected
components of the remaining items. For this problem we apply a similar idea to the one in [8] on the 1-
dimensional case, only the partition into two sets must be done more carefully here. For each connected
component we find its 2-coloring and we need to decide which color is red and which color is blue (in each
of the connected components). We see the problem of balancing the area of blue items and red items as
a load balancing problem. Letbe the number of connected components. For each connected component
i, let ¢; andd; be the areas of items of the two colors in compongnte definep; = max{c;, d;} and
A(i) = min{c;, d;}. Clearly, each color has in total an area of at l€g%t ; A(i). We define a load
balancing problem on the residual area, i.e., we would like to balance the gpad<\ (i) between two
“machines”, where assigning “job”"to machine 1 means that in componérthe color class of larger area
got red color, and assigning “joly'to machine 2 means that in compongérhe color class of larger area got
blue color. Some “jobs” are pre-assigned to a machine if the coloring of this component is determined by
the huge items. Therefore, we have a restricted assignment problem. This is a special case of load balancing
on two unrelated machines, which admits an FPTAS, see [12].

Consider an optimal solution to the original bin packing problem. The total size of the items that are
packed withZ; for i = 1,2 is at most 1. Since we are using an FPTAS, where some area may be removed,
the totals remain at mostand the total size of the larger set of items is at nio¥6 (for ¢ = 0.006).

Next we show that we can apply an algorithm based on SixEleven for each color class, which uses at
most two bins (and four in total). First consider the case where the set of the huge items in this color has
size at leastt/9. Then the huge items use at most one bin (using the packing of the algorithm from [1]),
and for the other items, if by packing them using SixEleven, we need at least two bins, then we have an area
guarantee of at lea8y' 16 in the second bin by Lemma 2, and this is a contradictioty8s+ 9/16 > 1.006.

On the other hand, if the total area of the huge items is at mstthen we use SixEleven on the
compelte color class. We would like to show that the area guarantee of the first packed bin isialaést
there is a second bin. If there is a single huge item and it has side atJ8ast are done. Otherwise, the
huge item can fit next to any other item. If there are at least two huge items, since the huge items can fit into
one bin, the sum of sides of the largest two items in at rho%te get from the proof of Lemma 4 that if an
item does not fit into the first bin, then the area guaranté¢i$ in cases 1,2,4, no matter what the size of
the next item is, and a guaranteelg® in case 3, unless the bin contains exactly four items. Since the next
item had side of at modt/3, we get a guarantee @fin this case (similarly to the proof for the case that
this item is bounded by/5). So if there is a second bin, the first one has an area guarangedfwf/e are
using three bins, then the second bin again has an area guaraftéé by Lemma 2, which again leads to
a contradiction.

2.4 The algorithm for OPT =3

We call items with side irf1/3, 1/2] items of type 2, and larger items are type 1. In this section, items with
side at mos1 /88 are callecsmall and the others atarge. If oPT = 3, there are at most- 872 large items.
In constant time, find

¢ A two-coloring of these items that can be extended to a valid coloring for the entire input. This can
be done by standard methods. We color the entire conflict graph ignoring the sizes of items.

e A packing of these items in at most three bins. This can be again done by checking all possible
partitions of large items into three sets, and application of the algorithm of [1] on each set to pack it
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into a bin.

Note that the two results are unrelated and we do not require the packing to be consistent with the two-
coloring. There are two cases. First, if the total area of the small items is ame(%t)2 ~ 1.9548, do the
following.

1. Use an arbitrary valid two-coloring for the small items.
2. Pack the largest set of small items2ibbins, and the smallest set in at magiin, using NFD.
3. Pack the large items in at most three bins according to the packing found above.

To see that Step 2 can indeed by applied, note that the smallest set has area(%é)ﬁcmhd the largest
set has area at most twice this. The first bin packed for the largest set has area packec{gt)i?ehyt
Lemma 1, leaving at most the same amount for the second bin, which can be packed there using NFD again
by Lemma 1.

If the total area of the small items is more than(%)?, consider the packing for the large items (in at
most 3 bins) that we have found. This packing gives us (at most) three sets, denéted byLs. Each set
may contain items of both colors. The total area of these items is at most 1.0452. In total, there are at most
three items with side more thdr(2, since all items can be packed in three bins.

We are going taepackthese items so that each bin contains only items of one color. In this way we
ensure that we do not pack conflicting items together. We next show the following auxiliary claim.

Claim 1 All large items can be packed in at most four bins. For any color, if not all items of that color are
packed with large items, then the bins with large items have area guarantee of at least 6/11.

Let us now consider the following two tables of area guarantees: Table 1 and Table 2.

Bins needed for blue items 1 2 3 4
Total area guarantee of blue items packe@/11 1.5228 2.5002 3
Maximum possible area of red items 3 24546 1.4772 0.4998
Packedinredbin1, 2,3 6/11 6/11 6/11 1/2
Packed in red bin 4, 5 (if needed) 0.977 0.977 - -

Table 1: The set of blue items is good: SixEleven packs all large blue items in one bin

Bins needed for blue items 1 2 3 4
Total area guarantee of blue items packe@/11  12/11 2.068 3
Maximum possible area of red items 3 2.4546 1.909 0.932
Packed inred bin 1, 2 6/11 6/11 6/11 6/11
Packed in red bin 3, 4 (if needed) 0.977 0.977 0.977 -

Table 2: the blue large items are placed in two bins

The first table concerns the case where one of the colors (called blue in the tajdeflid his means
that if we pack all blue items using SixEleven, by Theorem 2 SixEleven packs an area of at least 6/11 in the
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first blue bin (unless perhaps if it needs only one birdibblue items). By Lemma 1, the area guarantee of
any other bin for this color (except, always, the last oneégi—@? > 0.977. Furthermore, Claim 1 shows the
printed area guarantees for the other color (red). Using this table, it is easy to verify that in this case (i.e., if
the set of blue items is good) we never need more than six bins.

We give one example of such a verification. Suppose the total area of the blue items is 1.6, and the set
of blue items is good. Then by Table 1, we need at most three bins for the blue items. Since the total area
guarantee for the first three red bind&/11 > 1.4 = 3 — 1.6, we need at most three bins for the red items
as well, so at most six bins in total.

The second table concerns the case where the large blue items are packmebibios (either by
SixEleven, or in some other way). In this case by Claim 1, we can pack the red items with area guarantees of
6/11 in the first two bins. Therefore, all large red items are packed in the first two bind 8jfide> 1.0452.
Therefore, any further red bin that is packed using SixEleven (which uses FFD in this case) will again have
an area guarantee ()2%)2 > 0.977 by Lemma 1. Again, it can be verified that this is sufficient to pack all
items in at most six bins in all cases.

2.5 The algorithm for OPT =k > 3

For any constant valueof OPT, we can find using Lemma 1 a vakusuch that the area guarantee for NFD
on items of side at mostis at least{k — 1.0452) /(k — 1) = 1 — %2452 Then, if the small items have total
area at most — 1.0452, we can pack them into at mastins using NFD, and find an optimal packing for
the items with side larger thanusing complete enumeration.

Else, the items with side at leashave total area at most 1.0452. The proof of Claim 1 showsitthat
case there are at most three items of typgelneed at most four bins for all large items. We now show that
we need at mostk bins for all the items. If SixEleven needs more bins for both colors, this follows because
the area guarantee in the four bins with large iten®slj&l 1, so a total area of at mokt— 21 remains to be
packed, and we have

24 0.0452
k_11<(2k_6)<1_k—1> for k > 4. (1)
So we need at mogt: — 5 bins for the small items of both colors: we lose (at most) one bin compared to

(1) because there are two colors. (If there are less than four bins with large items, the area guarantee of the
remaining bins improves.)

If SixEleven has already packed one color, then the small items of the other color have total area at most
min(k, k — 1%(]‘ — 2)) wherej < 4 is the number of bins packed so far (there may be two almost empty
bins that contain large items, since we have two colors). These items can be packed in2t mgdiins
for k£ > 4, since

6

min(k, k — ﬁ(] —2)) < (2k —j) (1

_0.0452) fork>4,7=0,...,4. (2)

k-1

The only case that is not covered yet is the case where thefeuargems of type 1 (since there cannot
be more than four such items because the total size of items with side atieastost 1.0452). If all these
items are red (say), the blue items are good, and we pack the large red items in four bins. In case we need
more bins for both colors, we now have five bins with area guarantee 6/11, and we can pack the remaining
items in at moskk — 5 bins sincek — 2V < (2k — 6)(1 — %2452) for k > 4. If one color is already packed,
we can pack the remaining items into at makt— 6 bins by (1) if we packed five bins so far, and into at
most2k — j bins by (2) if we packed < 5 bins so far.
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If only one item of type 1 is blue, the blue items are still good. In this case the red items are also good
if we exclude the two largest red items, so we need only four bins for all large items (again packing the red
items as in Case 1A). Finally, if there are two blue items of type 1, we can pack the large items of each color
into two bins, since removing the largest item of either color leaves a good set.

2.6 The algorithm for large OPT

Consider a fixed value > 0. There are two cases: 4f- OPT > 2, color the items with two colors, and on
each of them apply the APTAS of [1] for square packing. Since the minimum number of bins required to
pack each color class is no larger thapr, it needs only at most((1 + €)orPT+ 1) < (2 4 3¢)OPTbins.
Else,oPT < 2/e which is a constant, so use the method from the previous section and use &oPost
bins.

Note finally that for the case- oPT > 2, we run just one algorithm, so in total we run at m®gt + 1
polynomial-time algorithms and take the one that gives the best output.

3 An algorithm for perfect graphs

3.1 An algorithm for independent sets

Given an independent set of items, we use the following packing algorithm.
Algorithm Pack Independent Set (PacklS):

1. As long as there exists an item of side(%1 1], pack such an item in a bin.
. As long as the number of items of side(ib, %] is at least four, pack four such items in a bin.

. As long as the number of items of side(ih, %] is at leas®, pack9 such items in a bin.

2
3
4. As long as the number of items of side(ib, 1] is at leastl6, pack16 such items in a bin.
5. If there are no items of side i(n}, %] left, pack the remaining items using NFD and halt.
6

. Pack all items of side if0, 1] using NFD. Call the resulting set of biiss and letm = |5|. Lets, be
the side of the first item of bim of S.

Take binm of S and remove all items from it. Pack its contents together with the remaining larger
items (of side in($, 3]), possibly using a second bin, by applying algorithm SixEleven on the first bin,
and NFD on the second bin. The items packed in the second adapted bin are those which did not fit
into the first adapted bin.

If a second bin is needed for the adapted packingsand % keep the first adapted bin packed with
the items of side im%, %]. Re-pack all other items (the onesSimplus the ones in the second adapted
bin) once again with NFD. Note that this may affect the packing ofibin 1. Otherwise, the current
packing (6 without binm together with one or two adapted bins) is given as output.

Note that there is at most one bin packed in the last step whose first packed item has side in the interval
(7> 1) fork =2,3,4,5.

As can be seen, some of the steps of this algorithm are based on a harmonic partition according to sides
of items. The first to use such a partition in the design of bin packing algorithms were Lee and Lee [19].
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To analyze our algorithm, we use three parametérs, r < 18, 1 <, < Zand} < v < 1. These
bounds imply
T T
> — and > — . 3
V2 ig rzg 3)
We moreover require
43 5 331
— >1 — +4r >1 — > 1. 4
Tgg T Tg b Teg s “)
We assign weights as follows.
sid_e (3,1] (3, 3] (1,3 (0, 4]
weight 1 /1,—1—7"(3;2— %) 1/_|_7~($2_ Tlfi) r 2
expansion 1 r+4(u—§)/a® r+ v —{5)/a* r

Expansion is defined as the minimum ratio of weight over size of an item. By (3), it can be seen that the
expansion of any item of side at mc#ts at least, so it is at Ieasg.

Claim 2 Let/ be the number of bins created by Algorithm PacklS applied on a given color class. The sum
of weights of items in this color class is at leést 1.

Proof Consider the bins created in steps 1-4. The weights of items of sidés i (3, 3], (, 3] are at

leastl, §, & respectively. The weight of an item of sides(ih, 1] is at least}: > 5= > ;:. \?Vegget that
the total weight of items in each one of these bins is at leadtext, consider bins created in steps 5 and
6. If there is at most one such bin we are done, therefore assume that at least two bins are created. In the
execution of NFD, there is at most one bin whose first item has siajg}—rip, 1], for k = 3,4. Call these
bins 8 and~, and all other bins packed by NFDBbins. Note that birg is the first bin packed in Step 5 or 6
(if it exists) and biny is the first or second bin packed in Step 5 or 6 (again, if it exists).

We first consider the case that SixEleven does not manage to pack all items in one bin in step 6. We
distinguish the case where in step6< % and the case, > %
Casel If s, < % then at least oné-bin exists, so the last bin packed by NFD ig-ain. Consider first
the bing, if it exists, after NFD is run for the first time. Singkis the first bin packed in Step 5, the second
round can only increase the area of items packed in this bin. Since this is not the last bin packed by NFD,
it has a total packed area of at qu%t[zg]. Moreover, if there are at most three items(ﬁj %], it can be
deduced from [29] that the occupied area is actually at Iéj‘-g%t Note also that the expansion of all items
in this bin is at least.

The weight of an item of side, in (1, 3] isv + r(s} — 15) = rsf + v — &. Thus if the bin contains
s such items and its area guaranteeljghe total weight is at leastd + s(v — ). By (3), the minimum
weight is achieved for minimal. If s > 4, we get a weight of at leasty + 4(v — =) = r2 +4v > 1.
Otherwise, since > 1 we get a weight of at least>2. + (v — &) = r231 + v > 1.

Consider the biny, if it exists, together with ald-bins, and otherwise (i.e., if there is no hijhthe-bins
only. We consider these bins after the second round of NFDj Letl be the total amount of bins , and
y1,...,y; the sides of the first items packed in these bins, wherey; < ... < y;.

By Lemma 1, each bin which is started by the item of gjgdéor i < j has an occupied area of at least
y? + (1 — y)? — y2.,. This gives a total of at leagf + >°7_/ (1 — y;)2. Sincey; < i fori > 1 we get at
leasty? + (1 —y1)? + (j — 2)%. On the domain, this function is minimized for = i, and we get an area
of at least(j — 1)5 and thus (since > %) a total weight of at least — 1.
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Consider the bin packed using SixEleven. Since at least one item did not fit into it, and since this item
has side no larger tha%’l (since already, belongs to this group of items, and further items can only be
smaller), by Lemma 4 the area packed in this bin is at I¢astet ¢ be the number of items of side {g, 3]
in this bin. The weight of an item of sidg in (3, 3] is u+r(s2 — ) = rs? + u— %, thus if the bin contains
t such items and its area guarantedisthe total weight is at leastB + t(u — g). By (3), the minimum
weight is achieved for minimal We get a weight of at least’; + (1 — 5) = 227 + p > 1.

Case 2 Consider now the case, > % Note that in this cas® contains at most two bins/{ < 2), 38

and~. Thus, the adapted bin was eitheor v. We consider both cases together, where the possiblg bin
can be analyzed as above. We analyze the two adapted bins together and show the total weight in them is at
leastl. If the first item in the second bin is of side at mésthen by Lemma 4, the area packed in the first
adapted bin is at Ieaﬁ. Otherwise, the only case of that theorem that requires this condition is if NFD is
the algorithm which is used as a procedure by SixEleven, it creates two slices, and the second one has two
or three items (see Case 3).

If there are two items in the second slice, the sum of the sides of every two items is moie-than
This gives a total area of at leak{t!=¢ )2 + s2 = 252 — 2, + 1 for all five items, which has the minimum
valueg > 1% Otherwise, the proof for three items in the second slice gives an area of a% eastre the
side of the item that does not fit into the bin may be arbitrary). In the §a§esa < % we have a total area
of at Ieastl% > % [29]. Otherwise, lek, denote the side of the first itemin the first adapted bin. Let,
be the side of the first item in the second slice andilgh, t5 be the sides of the two additional items in the
second slice and the item which did not fit. We have a total area of atdfas®s? + t7 + t3 + ¢3, where

1—sy

s, + 8y +t3 > 1lands, +t; + to +t3 > 1. This function is minimized fot; =ty = t3 = ¢, ¢t = —*,
s, =1—t—5, = 2(17551,) and achieves a minimal value fey = 0.28 which is0.56 > .
As shown above, the total weight of a set of items of total area at J&aswhere at least one item has

sidein(}, 1], is at leastl.

Case 3 SixEleven does manage to pack all items in a single bin. In this case, the number of bins is the
same as in the case where we would run only step 5 on items with s(@e%h Thus we can apply the
analysis from Case 1 above for bifisy and thej-bins and note that we now pack strictly more items (and
therefore weight) in the same amount of bins. O

3.2 The general algorithm
Algorithm Matching Preprocessing (PM):

1. Define the following auxiliary bipartite graph. One set of vertices consists of all items of s@e]jh
The other set of vertices consists of items of sid(a%jn%]. An edge(a, b) between vertices of items
of sidess, > 3 ands;, < 1 occurs if both following conditions hold.

(@) sq +sp < 1.
(b) (a,b) & E(G).

That is, if these two items can be placed in a bin together. If this edge occurs, we give it thafcost
sp > 3 andv otherwise.

2. Find a maximum cost matching in the bipartite graph.
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3. Each pair of matched vertices is removed fréhand packed into a bin together.

4. Let G’ denote the induced subgraph over the items that were not packed in the preprocessing (i.e.,
during Steps 1,2,3).

5. Compute a feasible coloring 6 usingy(G’) colors.
6. For each color class, apply the PacklS algorithm described above .

We analyze algorithm PM using weighting functions. Denote the weight function defined in the analysis
of Algorithm PacklS for independent sets by. We define the weight function for items packed into bins
which are created in the preprocessing td bey for an item of side ir(%, 1] which is packed with an item
of side in(3, 3], and1 — v otherwise (i.e., if it is packed with an item of side(i, 1 ]).

We define a second weight functiamn which is based on an optimal packiagT of the entire input
which we fix now. This weight function is defined differently from only for items of side in(%, 1].
Specifically, for a given such item, consider the bin in whiclopT packsz. If all items in this bin are of
side in(0, {], we definew,(z) = 1. If the bin contains at least one other item of side larger thawe
definews(z) = 1 — p and otherwisev,(z) = 1 — v. Note that matching each item of side(ih, 1], which
got a weight strictly smaller thahwith respect tavs, with the largest item that shares its binarT, gives
a valid matching in the auxiliary bipartite graph. Thereford}if denotes the total weight of all items with
respect to the weight functian;, then we havél; < Ws.

To prove an upper bound for PM, we first prove the following lemmasukédte an upper bound on the
amount of weight according t@- that a set of items packed into a single bin can have.

Lemma 6 Consider a partitioning of the input into sets, where each set is independent. Some of the sets
consist of items that can be packed into a single bin, and have a total weight at leestrding tow;. Let

k be the number of independent sets that do not follow this rule. These sets are packed using the algorithm
PacklS. The number of packed bins is at mgsiPT+ k.

Proof Consider the: sets defined above, 16t be the number of bins resulting from setaind/ the total
number of bins including also sets that result in one bin of total weight at leddsing Claim 2 we find
that the total weight of items in séts at least; — 1. Since there arg such sets, the total weight according
tow, is at least — k, i.e. Wy > W7 > £ — k. According to the definition of,, we havelV, < w,0PT
which proves the claim. d

Lemma 7 The approximation ratio of PM is at most + 1.

Proof PM creates the independent sets using an optimal coloring algorithm. ThedeforepT, sincek
is the minimum number of colors required to color a subset of the input. O

Theorem 3 The approximation ratio of PM, for square packing with conflicts, where the conflict graph is
perfect, is at most 3.277344.

Proof We need to analyze the total weight in packed bins®f. We first compute this value as a function
of the parameters.
A bin with one itema of sides, € (%, 1] and all other items no larger th%rhas weight of at most

3
1+(1—s§)7’<1-r+1.
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Given a bin with one item of sides, € (3, 1] and all other items no larger th%n let s be the number

of items of side in(%, 3] Clearlys < 5.The b|n has a total weight of at maist-v + sv + (1 — 3 — {5)r =
1+ % T+ (s — 1)v — {5. By (3), the expression is maximized for the largest valug, givmg
1+ L +4v. (5)
16

Finally, consider a bin which consists of an item of sid¢jn1] and at least one item of side (8, 3].
Let s andt be the number of items of sides(if, ] and(3, 3], respectively. Note that+t < 5 andl < ¢ <
3. The bin has a total weight of at mdstu+su+tu+(1—l—§— £)r < 140.75-r4sv+(t—1)p—5 -3¢
Sincep — ¢ > 0, the expression is maximized whent ¢ is maximal, i.e. we need to consider the three
cases = 1 s=4;t=2,s=3;t=23,s =2 We getthe three bounds+ £ + 4v, 1 + 1} + 3v + 4,
1+35 Ir 7+ 2v + 2u. The first two are dominated by the last bound and/or by (5).

leen a bin where all items are of side no larger t%anet s andt be the number of items of sides
in (1, ] and(3, 3], respectively. Clearly + t < 9 andt < 4. The bin has a total weight of at most
svttp+(1—§—S)r <r+sv+tp—% — 5. Again, the expression is maximized for maxinaak ¢.
Weneedtocon3|derthef|veca$es0 3—9 t—l s=8t=2,s=T7t=3,s=6;t=4,s=>5.This
gives the five bound§ + 9v, 25 + 8v + i, 3% + Tv + 24, Br 4+ 6v + 3y, ‘;’ZQ + 5v + 4p1. Obviously,
only the first and the last need to be considered. Szmg , the first is dominated by (5). Singe< 2 2 the
last one is dominated by+ + 2v + 2u.

We are left with the foIIowmg bound,

3r r r
max{ 1 +1,1+4 16+4v,1—|— 24+2V+2u}.

Running a linear program we find that an upper bound on this value is approximately 2.277344, which
is achieved forr =~ 1.7031, n = 0.2603, v =~ 0.13. This gives an upper bound of 3.277344 on the
approximation ratio. O

Running an alternative algorithm which combines five possible preprocessing steps instead of just one
improves the upper bound on the approximation ratio to 3.2743938. The details of this algorithm are in the
appendix.

4 Conclusion

In this paper we addressed the approximability of square packing with conflicts. Our study focuses on the
absolute approximation ratio as is common for coloring problems. The upper bounds which we proved
on the absolute approximation ratio of our algorithm clearly holds for the asymptotic approximation ratio
as well. However, all the known approximability results, which are mentioned in the introduction, do not
hold in this case. An interesting research direction would be to find whether an Asymptotic Polynomial
Time Approximation Scheme (APTAS) exists for some square packing with conflicts, for some class of
(non-empty) conflict graphs.
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A Improved upper bound for perfect graphs

To achieve a better upper bound, we suggest four new preprocessing steps. Each possible preprocessing
yields a different algorithm. Our main algorithm runs each one of the five algorithms, and it chooses the
solution with the minimum number of bins.

The general structure of our algorithms is as follows. Perform a preprocessing which creates some
packed bins. Then steps 4-6 of PM are applied. Each one of the four alternative pre-processing steps creates
a collection of subsets, whose ground set is the set of items in the input. Each subset haskaitemost
(2 < i < 5). We are using an algorithm of Hurkens and Schrijver [14] for approximating the maximum
(unweighted) set packing problem. Their algorithm finds a sub-collection of subsets, such that every pair of
subsets is disjoint. The cardinality of the output sub-collection is at Ieésta fraction of the largest such
sub-collection. The preprocessing packs each such subset into a separate bin.

The four collections are as follows.

2. Sets of four items that can fit into one bin, where one item has si@ i} and three items have sides

in (3, 3. Thereforek; = 4.

3. Sets of three items that can fit into one bin, where one item has s((%eiﬂ\and two items have sides
in (3, 3]. Thereforeks = 3.

4. Sets of six items that can fit into one bin, where one item has sid&, it and five items have sides
in (1, 1]. Thereforeky = 6.

5. Sets of five items that can fit into one bin, where one item has sitlg ifj and four items have sides
in (1, 1]. Thereforek; = 5.

We usew; [1] = w; andws[1] = wy. Furthermore we define four additional weight functions|:]
andws[i] for i = 2,3,4,5. The functionsws[i] are based on a fixed optimal packinguag1]. The weight
function for items of side irf0, %] is as before. Items of side (l%, 1] get weightl except for special cases
as described below.

2. Anitem of side in(3, 1] that in the optimal packing shares a bin with three items of sidé ig] gets
weight1l — M according taws[2]. Let N, be the number of such items.

3. An item of side in(1 1] that in the optimal packing shares a bin with at least two items of side in

(1)

(1, 1] gets weightl — according taws[3]. Let N3 be the number of such items.

4. An item of side in(3, 1] that in the optimal packing shares a bin with five items of sidgkin;] gets
weightl — M according taws[4]. Let N4 be the number of such items.

5. An item of side in(% ] 1] that in the optimal packing shares a bin with at least four items of side in

(1 %)

(1, 1] gets weightl — according tawz[5]. Let N5 be the number of such items.

Next, we describe the functions, [:]. Similarly tows]i], the only items that get special weights are the
ones of side in(3, 1].

2. An item of side in(%, 1] that is packed into a bin during preprocessing gets wdighBy according
to w; [2]. Note that the number of such items is at legst- &) V.
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3. Anitem of side in(%, 1] that is packed into a bin during preprocessing gets wdigh®. according
to w; [3]. Note that the number of such items is at le@st- &) V3.

4. An item of side in(%, 1] that is packed into a bin during preprocessing gets weightr according
to w; [4]. Note that the number of such items is at le@st- £) V.

5. An item of side in(%, 1] that is packed into a bin during preprocessing gets welighttv according
to w; [5]. Note that the number of such items is at le@st- ) Ns.

Let W be the sum of regular weight of all items. &t [¢] and/3[i] be the sums of weights of all items
according taw; [7] andws]i].

We haveWs[2] = W — 21u(1 — 2e)No = W — 3482 4 31e Ny, W5[3] = W — 2 (1 — &) N3, Wa[4] =
W — 2u(1 — &) Ny, Wa[5] = W — 21(1 — €)N5.

On the other hand we havidj; [2] < W —3u(3 —e)No = W — % +3ueNy = Wi[2], W1 [3] < W —
2#(%—5)]\73 = W—%—Flud\fg = WQ[B], W1[4] < W—5I/(%—€)N4 = W—%+5V€N4 = W2[4],

Wil5] < W —4u(2 — )N = W — 385 4 qpe Ny = Wh[5).

To prove an improved upper bound, lef[i] be an upper bound on the amount of weight according to
we[i] that a set of items packed into a single bin can have. As in Lemma 6, for each weight function, we
analyze the total amount of weight that can be packed into a single kinof

The analysis for the first pre-processing is the same as in the proof of Theorem 3. Since bins without an
item of side in(%, 1] have the same weight in all cases and no reductions, then we only need to consider the
extreme cases as in the proof of Theorem 3.

There are 20 types of bins that need to be considered and we analyze each type according to every
preprocessing. We denote items of sidg4n3] by A and items of side irf}, 3] by B. Items of side in
(1, 1] are denoted by..

Since we choose the solution with smallest number of bins, we use a convex combination instead. We
use parameters[i], for 1 < i < 5, such thaf">_ afi] = 1.

For each bin typg (1 < j < 20), we computels[i][j] which is the largest amount of weight that
can be packed in a bin of typeaccording to weight functiom[i]. We use the following lemma. Let

wh = max; {327 aliltali][j]}.

Lemma 8 The approximation ratio of the algorithm which chooses the best out of the five solutions is at
mostws, + 1.

Proof We define a new weight function, = Z?Zl ali] - we[i]. For eachi, the sum of the total weight
according taws[i] and the chromatic number, is at least the cost of the algorithm. Therefore, this holds also
for w/, and the cost of the best solution among the five algorithms. O

Using Matlab, we were able to find that using the values

r=1.699191, u=0.261967, v = 0.132049,
and
a[l] = 0.5872688, a[2] = 0.120419, «[3] = 0.052589, a[4] = 0.117455, «[5] = 0.122349,
gives an upper bound of approximately 3.2743938. We summarize with the following theorem.

Theorem 4 The approximation ratio of the combined algorithm, for square packing with conflicts, where
the conflict graph is perfect, is at most 3.274394.
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Amounts of| Max. weight of bin| Reductions] Prep.2 | Prep.2 | Prep.4 | Prep.5
L,AB without reduction Prep. 1
(1,3,2) A2+ 3u+2v W 3 3pue | % —2pe | % —bve | & —dve
(1,2,3) 144T+2N+3V 1 0 47” — 2ue % — dve %’ — 4ue
(1,1,4) 144T+M+4V 2 0 0 5%’—51/6 8%—41/8
(1,0,5) 164347”4-51/ v 0 0 5?”—51/5 %” — 4ve
(1,3,1) 1447“+3,u+l/ 7 37“—3,% %”—QME 0 %”—41/5
(1,2,2) 144T+2N+2V v 0 %—Q,Mé‘ 0 8%—4V€
(1,1,3) 1447"+u+31/ 1 0 0 0 %”—4V€
(1,0,4) 5T+ 4y v 0 0 0 & — 4que
(1,3,0) 1447‘—|—3/,L 1 37“—3,1145 %‘—2#8 0 0
(1,2,1) 1447°+2M+y 7 0 %”—2/15 0 0
1,1,2 4w+ 2v 0 0 0 0
(1,1, SErURT e
(1,0,3) Blr+3v v 0 0 0 0
(1,2,0) LBr+2p L 0 W 2pe 0 0
(1,1,1) Br+pu+v ] 0 0 0 0
(1,0,2) 7+ 2v v 0 0 0 0
(1,1,0) Zr+p w 0 0 0 0
(1,0,1) Br+v v 0 0 0 0
1,0,0 1+3.r 0 0 0 0 0
(1, 1
0,4,5 S 4 4y + b 0 0 0 0 0

144

(0,0,9) Lor + 9w 0 0 0 0 0

Table 3: Analysis of Maximum weights of bins and reductions in the different preprocessing steps
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