
Approximation Schemes for Scheduling on Uniformly
Related and Identical Parallel Machines

Leah Epstein∗ Jǐŕı Sgall†

Abstract

We give a polynomial approximation scheme for the problem of scheduling on
uniformly related parallel machines for a large class of objective functions that depend
only on the machine completion times, including minimizing the lp norm of the vector
of completion times. This generalizes and simplifies many previous results in this
area.

Keywords: Scheduling, approximation algorithms, parallel machines, machine com-
pletion time, polynomial time approximation scheme.

1 Introduction

Scheduling is one of fundamental areas of combinatorial optimization. Most multiprocessor
scheduling problems are known to be hard to solve optimally (NP-hard, see below). Thus
the research focuses on giving efficient approximation algorithms that produce a solution
close to the optimal one. Ideally, one hopes to obtain a family of polynomial algorithms
such that for any given ε > 0 the corresponding algorithm is guaranteed to produce a
solution with a cost within a factor of (1 + ε) of the optimum cost; such a family is called
a polynomial approximation scheme.

A polynomial scheme for the basic problem of minimization of the total length of the
schedule (the makespan) on identical machines was given by Hochbaum and Shmoys [12].
This technique was later generalized to a number of scheduling (and other) problems.

Our paper gives a unified and comprehensive treatment of various special cases studied
before and their further generalization. We believe that our presentation is easy to read,
perhaps even easier than the specialized results published before, since the general treat-
ment let us focus on the important issues. Our algorithms can be applied to many special

∗E-mail lea@idc.ac.il, School of Computer Science, The Interdisciplinary Center, Herzliya, Israel.
This work carried out while the author was at Tel-Aviv University.

†E-mail sgall@math.cas.cz, http://www.math.cas.cz/~sgall, Mathematical Inst., AS CR,
Žitná 25, CZ-11567 Praha 1, Czech Republic and Institute for Computer Science, Prague (project
LN00A056 of MŠMT CR). Partially supported by grants 201/97/P038 and 201/01/1195 of GA ČR, and
cooperative research grant KONTAKT-ME476/CCR-9988360-001 from the NSF and MŠMT CR.

1

scheduling problems, either directly, or with minor modification. This is demonstrated on
the example of scheduling with rejection in Section 7.

We are given n jobs with processing times pj, j ∈ J = {1, . . . , n} and m machines M1,
M2, . . . , Mm, with speeds s1, s2, . . . , sm. A schedule is an assignment of the n jobs to the
m machines. Given a schedule, for 1 ≤ i ≤ m, Ti denotes the weight of machine Mi which
is the total processing time of all jobs assigned to it, and Ci denotes the completion time
of Mi, which is Ti/si. (Each job is assigned to exactly one machine, i.e., we do not allow
preemption.)

Our objective is, for some fixed function f : [0, +∞) → [0, +∞), one of the following:

(I) minimize
∑m

i=1 f(Ci), (III) maximize
∑m

i=1 f(Ci), or
(II) minimize maxm

i=1 f(Ci), (IV) maximize minm
i=1 f(Ci).

Most of such problems are NP-hard, see [9, 14]. Thus we are interested in approximation
algorithms. Recall that a polynomial time approximation scheme (PTAS) is a family of
polynomial time algorithms over ε > 0 such that for every ε and every instance of the
problem, the corresponding algorithm outputs a solution whose value is within a factor of
(1 + ε) of the optimum value [9]. Since even the simple cases of our problem are NP-hard
in the strong sense [9], we cannot hope to get a fully polynomial approximation scheme
(then we would require the running time to depend polynomially also on ε, and strong
NP-hardness of the problems implies that such an algorithm would show that P = NP).

We give a PTAS for scheduling on uniformly related machines for a rather general set
of functions f , covering many natural functions studied before. Let us give some examples
covered by our results and references to previous work.

Example 1. Problem (II) with f(x) = x is the basic problem of minimizing the
maximal completion time (makespan). It was studied for identical machines in [10, 11,
15, 12]; the last paper gives a PTAS. Finally, Hochbaum and Shmoys [13] gave a PTAS
for uniformly related parallel machines. Thus our result can be seen as a generalization of
that result. In fact our paper is based on their techniques, perhaps somewhat simplified.

Example 2. Problem (I) with f(x) = xp for any p > 1. This is equivalent to min-
imizing the lp norm of the vector (C1, . . . , Cm), i.e., (

∑
Cp

i)1/p. For p = 2 and identical
machines this problem was studied in [5, 4], motivated by storage allocation problems.
For a general p a PTAS for identical machines was given in [1]. For related machines this
problem was not studied before.

Note that for p ≤ 1 the minimization problem is trivial: it is optimal to schedule all
jobs on the fastest machine (choose one arbitrarily if there are more of them). In this case
a more interesting variant is the maximization version, i.e., the problem (III).

Example 3. Problem (IV) with f(x) = x. In this problem the goal is to maximize
the time when all the machines are running; this corresponds to keeping all parts of some
system alive as long as possible. This problem on identical machines was studied in [8, 6],
and [16] gave a PTAS. For uniformly related machines a PTAS was given in [2].

Example 4. Scheduling with rejection. In this problem each job has associated certain
penalty. The schedule is allowed to schedule only some subset of jobs, and the goal is to

2

minimize the maximal completion time plus the total penalty of all rejected jobs. This
problem does not conform exactly to any of the categories above, nevertheless our scheme
can be extended to work for it as well. This problem was studied in [3] where also a PTAS
for the case of identical machines is given. For related machines this problem was not
studied.

Our paper is directly motivated by Alon et al. [1], who proved similar general results
for scheduling on identical machines. We generalize it to uniformly related machines and
a similar set of functions f . Even for identical machines, our result is stronger than that
of [1] since in that case we allow a more general class of functions f . In Section 6 we also
disprove a conjecture of [1] concerning the class of functions f allowing PTAS for identical
machines.

The basic idea is to round the size of all jobs to a constant number of different sizes, to
solve the rounded instance exactly, and then re-construct an almost optimal schedule for
the original instance. This rounding technique traces back to Hochbaum and Shmoys [12].
We also use an important improvement from [1]: the small jobs are clustered into blocks
of jobs of small but non-negligible size. The final ingredient is that of [13, 2]: the rounding
factor is different for each machine, increasing with the weight of the machine (i.e., the
total processing time of jobs assigned to it). Such rounding is possible if we assign the
jobs to the machines in the order of non-decreasing weight. This is easy to do for identical
machines. For uniformly related machines we prove, under a reasonable condition on the
function f , that in a good solution the weight of machines increases (or decreases) with
their speed, which fixes the order of machines.

2 Our assumptions and results

Now we state our assumptions on the function f . Let us note at the beginning that the
typical functions used in scheduling problems satisfy all of them.

The first condition says that to approximate the contribution of a machine up to a small
multiplicative error, it is sufficient to approximate the completion time of the machine up
to a small multiplicative error. This condition is from Alon et al. [1], and it is essential for
all our results.

(F∗) : (∀ε > 0)(∃δ > 0)(∀x, y ≥ 0)

(|y − x| ≤ δx → |f(y)− f(x)| ≤ εf(x)).

If we transform f so that both axes are given a logarithmic scale, the condition naturally
translates into uniform continuity, as |y−x| ≤ δx iff (1− δ)x ≤ y ≤ (1+ δ)x iff ln(1− δ)+
ln x ≤ ln y ≤ ln(1 + δ) + ln x, and similarly for f(x). More formally, (F∗) is equivalent to
the following statement:

(F∗∗) : The function hf : (−∞, +∞) → (−∞, +∞)

defined by hf (z) = ln f(ez)

is defined everywhere and uniformly continuous.

3

For the typical case of convex functions, this implies that f grows at most polynomially,
see Section 6 for more discussion of the condition.

We also need a condition that would guarantee that in the optimal schedule, the weights
of the non-empty machines are monotone. These conditions are different for the cases when
the objective is maximize or minimize

∑
f(Ci), and for the cases of min-max or max-min

objectives.
Recall that a function g is convex iff for every x ≤ y and 0 ≤ ∆ ≤ y − x, f(x + ∆) +

f(y−∆) ≤ f(x)+ f(y). For the cases of min-sum and max-sum we require this condition:

(G∗) : The function gf : (−∞, +∞) → [0, +∞)

defined by gf (z) = f(ez) is convex.

Note that f(x) = gf (ln x). Thus, the condition says that the function f is convex, if plotted
in a graph with a logarithmic scale on the x-axis and a linear scale on the y-axis. This is
true for example for any non-decreasing convex function f . However, gf is convex, e.g.,
even for f(x) = ln(1 + x). On the other hand, the condition (G∗) implies that f is either
non-decreasing or it is unbounded for x approaching 0.

For the case of min-max or max-min we require that the function f is bimodal on
(0, +∞), i.e., there exists an x0 such that f is monotone (non-decreasing or non-increasing)
both on (0, x0] and [x0, +∞). (E.g., (x − 1)2 + 1 is bimodal, decreasing on (0, 1] and
increasing on [1, +∞).) This includes all convex functions as well as all non-decreasing
functions.

Note that none of the conditions above puts any constraints on f(0). The function f
can be even discontinuous at 0, which means that the cost of an empty machine can be
very different from a cost of a machine with a single small job assigned to it.

Last, we need the function f to be computable in the following sense: for any ε > 0
there exists an algorithm that on any rational x outputs a value between (1 − ε)f(x)
and (1 + ε)f(x), in time polynomial in the size of x. To simplify the presentation, we
assume in the proofs that f is computable exactly; choosing smaller ε and computing the
approximations instead of the exact values always works. Typical functions f that we want
to use are computable exactly, but for example if f(x) = xp for non-integral p then we can
only approximate it.

Our main results are:

Theorem 2.1 Let f be a non-negative computable function satisfying the conditions (F∗)
and (G∗). Then the scheduling problems of minimizing and maximizing

∑
f(Ci) on uni-

formly related machines both possess a PTAS.

Theorem 2.2 Let f be a non-negative computable function satisfying the condition (F∗)
and bimodal on (0, +∞). Then the scheduling problems of minimizing max f(Ci) and of
maximizing min f(Ci) on uniformly related machines both possess a PTAS.

Theorem 2.3 Let f be a non-negative computable function satisfying the condition (F∗).
Then all the scheduling problems of minimizing or maximizing

∑
f(Ci), of minimizing

max f(Ci), and of maximizing min f(Ci) on identical machines possess a PTAS.

4

All our PTAS are running in time O(ncp(|I|)), where c is a constant depending on
the function f and the desired precision ε, p is the polynomial bounding the time of the
computation of f , and |I| is the size of the input instance. Thus the time is polynomial,
but the exponent in the polynomial depends on f and ε. This should be contrasted with
Alon et al [1], where for the case of identical machines they are able to achieve linear
time (i.e., the exponential dependence on ε is only hidden in the constant) using integer
programming in fixed dimension. It is an open problem if such an improvement is also
possible for related machines; this is open even for the case of minimizing the makespan
(Example 1 above).

3 Ordering of the machines

The following lemma implies that, depending on the type of the problem and f , we can
order the machines in either non-decreasing or non-increasing order of speeds and then
consider only the schedules in which the weights of the machines are non-decreasing (pos-
sibly with the exception of the empty machines). It shows why the conditions (G∗) and
bimodality are important for the respective problems; it is the only place where the condi-
tions are used. Note that for identical machines the corresponding statements hold trivially
without any condition.

Lemma 3.1 Let the machines be ordered so that the speeds si are non-decreasing.

(i) Under the same assumptions as in Theorem 2.1, there exists a schedule with mini-
mal (maximal, resp.)

∑
f(Ci) in which the non-zero weights of the machines are

monotone non-decreasing (monotone non-increasing, resp.). I.e., for any 1 ≤ i <
j ≤ m such that Ti, Tj > 0, we have Ti ≤ Tj (Ti ≥ Tj, resp.).

(ii) Under the same assumptions as in Theorem 2.2, there exist schedules both with mini-
mal max f(Ci) and with maximal min f(Ci) in which either (a) the non-zero weights
of the machines are monotone non-decreasing or (b) for some 1 ≤ k < m, the k small-
est jobs are assigned to the k fastest machines, one job per machine, in non-decreasing
order, and the remaining machines have non-zero and non-decreasing weights.

Proof: (i) We prove the lemma for minimization of
∑

f(Ci); the case of maximization is
similar (with the order reversed). We prove that if Ti > Tj for some i < j then switching
the assigned jobs between Mi and Mj leads to at least as good schedule. This is sufficient,
since given any optimal schedule we can obtain an optimal schedule with ordered weights
by at most m− 1 such transpositions.

Denote s = sj/si, ∆ = ln s, X = ln Cj = ln(Tj/sj), and Y = ln Ci = ln(Ti/si).
From the assumptions we have X < Y and 0 ≤ ∆ < Y − X. The difference of the
original cost and the cost after the transposition is f(Cj) + f(Ci) − f(sCj) − f(Ci/s) =
gf (X) + gf (Y)− gf (X + ∆)− gf (Y −∆) ≥ 0, using convexity of gf . Thus the transposed
schedule is at least as good as the original one.

5

(ii) We prove the lemma for minimization of max f(Ci); the case of maximization of
min f(Ci) is symmetric. We have two subcases.

First suppose that we are minimizing max f(Ci) and f is bimodal, first non-increasing
then non-decreasing. We prove that (a) is satisfied by showing that if Ti > Tj for i < j,
then switching the assigned jobs between Mi and Mj can only improve the schedule. Let
s = sj/si ≥ 1. By the assumptions we have Cj ≤ sCj ≤ Ci and Cj ≤ Ci/s ≤ Ci. By
bimodality of f we have max{f(sCj), f(Ci/s)} ≤ max{f(Cj), f(Ci)}, hence the transposed
schedule can only be better.

Now suppose that we are minimizing max f(Ci) with f first non-decreasing and then
non-increasing. Choose x0 such that f is non-decreasing on (0, x0) and then non-increasing
and consider an optimal schedule. If there exist two machines Mi with Ti = 0 and Mj with
Cj > x0, we can get at least as good solution by scheduling all the jobs on Mj and (a) is
satisfied. If there exist no nonempty machines Mi and Mj with 0 < Ci < x0 < Cj then
we are done by the previous case, as we may restrict our attention to one of the intervals
where f is monotone. If machines Mi and Mj are such that 0 < Ci < x0 < Cj then we may
assume that i > j and Mi contains a single job smaller than all jobs on Mj: otherwise we
obtain at least as good a schedule by switching all the jobs on the two machines, moving
a job from Mi to Mj, or switching a single job from Mi for a smaller job on Mj. Thus, for
some 1 ≤ k < m, the k fastest machines contain the k smallest jobs, one job per machine.
As in the previous case, it follows that these k machines have non-decreasing weights,
and the remaining machines also have non-decreasing (and non-zero) weights, thus (b) is
satisfied.

Note that even though the last case of the proof is longer than the other two, typically
it is the case when the scheduling problem is trivial. We include it only to have a simpler
condition in the final result.

4 Preliminaries and definitions

Let δ > 0 and λ be such that λ = 1/δ is an even integer; we will choose it later. The
meaning of δ is the (relative) rounding precision.

Given w, either 0 or an integral power of two, intuitively the order of magnitude, we
want to represent a set of jobs with processing times not larger than w as follows. Each job
of size more than δw is replaced by a job with processing time rounded to the next higher
multiple of δ2w, while the remaining small jobs are replaced by an appropriate number of
jobs with processing time δw. Now it is sufficient to remember the number ni of modified
jobs of processing time iδ2w, for each i, λ ≤ i ≤ λ2. Such a vector together with w is
called a configuration.

In our approximation scheme, we proceed machine by machine, and use this represen-
tation to remember the set of all jobs scheduled so far. We always use the least possible
w (principal configurations below), to make the additive error caused by the small jobs
relatively small; for this we also need the condition of non-decreasing weight of machines.

6

There are some technical difficulties in this approach. First, we need to represent the
empty machines exactly, as otherwise it would be impossible to handle the additive error.
Second, as we proceed the order of magnitude w increases and if we rounded the sizes of jobs
repeatedly, the error could accumulate. To avoid this, we round the sizes of jobs in advance,
always with respect to the largest w such that the job is larger than δw; this is implicit in
the use of rounding function r below (and corrects an error from the conference version [7]).
Since the values of w are powers of two, this ensures that the size is the necessary integral
multiple also for smaller relevant values of w. Still, the configurations need to be carefully
rescaled when changing w. These problems make the following definitions somewhat more
technical than for the case of identical machines where no rescaling is needed.

Definition 4.1 Let A ⊆ J be a set of jobs.

• A rounding function r(p) for p > 0 is defined as follows. Let w be the largest power
of two such that p > δw. Let i be the smallest integer such that p ≤ iδ2w. Then
r(p) = iδ2w. We define r(0) = 0. (Note that whenever w′ is an integer power of two
and δw′ < p ≤ w′ holds, r(p) is an integral multiple of δ2w′.)

• A configuration is a pair α = (w, (nλ, nλ+1, . . . , nλ2)), where w = 0 or w = 2i for
some integer i (possibly negative) and ~n is a vector of nonnegative integers.

• The weight of a set of jobs is W (A) =
∑

j∈A pj.

The rounded weight of a set of jobs is Wr(A) =
∑

j∈A r(pj).

The weight of a configuration (w,~n) is defined by W (w,~n) =
∑λ2

i=λ niiδ
2w.

• Given a set of jobs A and a weight w, a set of small jobs is A(w) = {j ∈ A | pj ≤ δw}.
• A configuration (w,~n) represents A if

(i) no job j ∈ A has processing time pj > w,

(ii) for any i, λ < i ≤ λ2, ni equals the number of jobs j ∈ A with r(pj) = iδ2w, and

(iii) nλ ∈ {bWr(A(w))/(δw)c, dWr(A(w))/(δw)e}; this is equivalent to |nλδw −
Wr(A(w))| < δw.

• The principal configuration of A is a configuration α(A) = (w,~n) with the smallest
w which represents A; of the (at most) two such configurations, it is the one with the
larger nλ, i.e., nλ = dWr(A(w))/(δw)e.

• A a configuration α(A) = (w,~n) is a principal configuration if it is the principal
configuration of any A ⊆ J , i.e., if there exists A ⊆ J such that (w,~n) = α(A).

• The scaled configuration for (w,~n) and w′ ≥ w is defined as a vector scalew→w′(n) =
~n′ such that (w′, ~n′) represents the set K containing exactly ni jobs with processing
time equal to iδ2w, for each i = λ, . . . , λ2, and no other jobs; of the (at most) two

7

such configurations choose the one satisfying |Wr(K(w′))−n′λδw
′| ≤ δw′/2, breaking

ties arbitrarily, if both configurations satisfy the inequality. (Note that for w′ = w,
scalew→w(~n) = ~n.)

The definition implies that for each A and sufficiently large w there are exactly one
or two configurations representing it, and they can be computed efficiently. Similarly,
the principal configurations of a set of jobs and scaled configurations can be computed
efficiently.

The crucial point of our algorithm is that instead of enumerating all the (exponentially
many) sets of jobs it is sufficient to enumerate principal configurations and bound their
number, which is done in the next lemma. A single principle configuration may represent
many different sets of jobs that are equivalent for us. It is easy to see that a configuration
(w,~n′) is principal if and only if (i) ~n′ ≤ ~n coordinatewise where (w,~n′) is the principal
representation of J(w) = {j ∈ J | pj ≤ w} and (ii) n′i > 0 for some i > λ2/2. The first
condition guarantees that the set of all jobs contains sufficiently many jobs of each size.
The second condition guarantees that any set represented by (w,~n′) contains a set of size
larger than (λ2/2)δ2w = w/2 and thus the chosen w is the smallest one that can represent
it. (Here we use the assumption that λ is even.)

Lemma 4.2 The number of principal configurations is at most (n + 1)λ2
and they can be

enumerated efficiently.

Proof: There are at most n + 1 possible values of w in the principal configurations: 0 and
pj’s rounded up to a power of two. To enumerate all principal configurations with a given
w, find a representation (w,~n) of J(w) = {j ∈ J | pj ≤ w} and enumerate all the vectors
~n′ bounded by ~0 ≤ ~n′ ≤ ~n (coordinatewise), such that n′i > 0 for some i > λ2/2. For each
i, there are at most n + 1 possible values.

The next lemma proves that scaling a configuration which represents a given set pro-
duces a representing configuration as well (this property is the reason why we need to
consider two representations of a set of job with any given weight).

Lemma 4.3 If A is represented by (w,~n) then it is also represented by (w′, scalew→w′(~n))
for any w′ ≥ w.

Proof: If w = 0 or w′ = w then the statement is trivial. Otherwise, condition (i) of
the definition of representation is satisfied since w′ > w. Condition (ii) is satisfied since
all the jobs with pj > δw′ are accounted for in the definition of scalew→w′ exactly. To
verify (iii), we assume, w.l.o.g., that A = A(w′), i.e., A contains only jobs with processing
time at most δw′. Let K be the set of jobs from the definition of scalew→w′ , and let
~n′ = scalew→w′(A). Since A is represented by (w,~n), the definition of K implies |Wr(A)−
Wr(K)| = |Wr(A(w)) − Wr(K(w))| < δw ≤ δw′/2. From the definition of scale and
K = K(w′) we have |Wr(K)− n′λδw

′| ≤ δw′/2. By summing these two bounds we obtain
|Wr(A)− n′λδw

′| < δw′, and (w′, ~n′) represents A.

8

The next lemma bounds the error caused by approximation. The set B−A corresponds
to jobs assigned to a machine Mi if A is the set of jobs assigned to previous machines and
B are all jobs assigned including jobs assigned to Mi.

Lemma 4.4 Let A ⊂ B ⊆ J be sets of jobs and (w,~n) and (w,~n′) be any two configurations
representing A and B, respectively. Then

W (B − A)− 2δw ≤ Wr(B − A)− 2δw < W (w,~n′ − ~n)

< Wr(B − A) + 2δw ≤ (1 + δ)W (B − A) + 2δw

Proof: By the definition of r, for any job j, pj ≤ r(pj) < (1 + δ)pj. Summing over all jobs
j ∈ B − A we get W (B − A) ≤ Wr(B − A) < (1 + δ)W (B − A).

The contributions of any job not in B(w) to Wr(B − A) and to W (w,~n′ − ~n) are
equal by the definition of a representing configuration. By the bounds on nλ and n′λ from
the definition of a representing configuration, we have |Wr(B − A) − W (w,~n′ − ~n)| ≤
|Wr(A(w)) − nλδw| + |Wr(B(w)) − n′λδw)| < 2δw. (Note that w > 0 since B 6= ∅.) The
lemma follows by combining the proven inequalities.

The last lemma we need allows to find a set of jobs to be assigned to a machine if we
are given the set of jobs already used and the configuration we are supposed to reach after
assigning to this machine. In the degenerate case of A = ∅ (i.e., the first machine), we are
simply given a principal configuration and need to find some corresponding set of jobs. In
general, we need to extend this to the situation when we are also given a subset A of the
set of jobs we are seeking.

Lemma 4.5 Let (w,~n) be a configuration representing A ⊆ J . Let w′ ≥ w and ~n′′ =
scalew→w′(n). Let (w′, ~n′) be a principal configuration satisfying ~n′ ≥ ~n′′, Then there exists
a set of jobs B represented by (w′, ~n′) such that A ⊆ B ⊆ J , and it can be constructed in
linear time.

Proof: Construct B from A as follows. For each i, λ < i ≤ λ2, add n′i − n′′i jobs with
processing time satisfying r(pj) = iδ2w; since (w′, ~n′) is a principal configuration we are
guaranteed that a sufficient number of such jobs exists. Finally, add jobs with pj ≤ δw′ one
by one until their weight is strictly larger than (n′λ−1)δw′. We have sufficiently many of the
small jobs as well since (w′, ~n′) is principal. If any small jobs are added, the final weight is at
most n′λδw

′, as each added job increases the weight by at most δw′. If no small job is added,
A is represented by (w′, ~n′′) by Lemma 4.3, thus Wr(A(w′)) < (n′′λ + 1)δw′ ≤ (n′λ + 1)δw′.
In both cases the set B is represented by (w′, ~n′).

5 The approximation scheme

Given an ε ∈ (0, 1], we choose δ ≤ 1/12 using (F∗) so that λ = 1/δ is an even integer and

(∀x, y ≥ 0)(|y − x| ≤ 8δx → |f(y)− f(x)| ≤ ε

3
f(x)).

9

Definition 5.1 We define the graph G of configurations as follows.
The vertices of G are (i, α(A)), for any 1 ≤ i < m and any A ⊆ J , the source vertex

(0, α(∅)), and the target vertex (m,α(J)).
For any i, 1 ≤ i ≤ m, and any principal configurations (w,~n) and (w′, ~n′) with w′ ≥ w,

let ~n′′ = scalew→w′(~n). There is an edge from (i−1, (w,~n)) to (i, (w′, ~n′)) iff either (w,~n) =
(w′, ~n′), or ~n′′ ≤ ~n′ and W (w′, ~n′−~n′′) ≥ w′/3. The cost of this edge is f(W (w′, ~n′−~n′′)/si).
There are no other edges.

Definition 5.2 Let J1, . . . , Jm be a schedule assigning jobs in Ji to machine Mi. A
sequence {(i, (wi, ~ni))}m

i=0 of vertices of G represents (is a principal representation of, resp.)
the assignment if, for each 1 ≤ i ≤ m, (wi, ~ni) represents (is a principal representation of,
resp.)

⋃i
i′=1 Ji′.

The approximation scheme performs the following steps:

(1) Order the machines with speeds either non-decreasing or non-increasing, according
to the type of the problem and f so that by Lemma 3.1 there exists an optimal
schedule with non-decreasing non-zero weights of the machines. (See step (5) for the
exceptional case when no such optimal schedule exists.)

(2) Construct the graph G.

(3) Find an optimal path in G from source (0, α(∅)) to (m,α(J)). The cost of the path
is defined as the sum, maximum or minimum of the costs of the edges used, and
an optimal path is one with the cost minimized or maximized, as specified by the
problem.

(4) Output an assignment represented by the optimal path constructed as follows: When-
ever the path contains an edge of the form ((i − 1, (w,~n)), (i, (w,~n))), put Ji = ∅.
For every other edge, apply Lemma 4.5, starting from the beginning of the path.

(5) In the case of minimizing the maximum or maximizing the minimum for a bimodal
function f which is first non-decreasing and then non-increasing, repeat the previous
steps also for k = 1, . . . , m−1 so that the k smallest jobs are assigned to the k fastest
machines and these jobs and machines are removed for execution of the previous steps.
Compare all m resulting schedules and choose the best one.

Lemma 4.2 shows that we can construct the vertices of G in time polynomial in n.
Computing the edges of G and their costs is also efficient. Since the graph G is layered,
finding an optimal path takes linear time in the size of G. Given a path in a graph, finding
a corresponding assignment is also fast. Hence the complexity of our PTAS is as claimed.

Lemma 5.3

10

(i) Let {Ji} be an assignment with non-decreasing weights of the machines with non-zero
weights (cf. Lemma 3.1). Then its principal representation {(i, (wi, ~ni))}m

i=0 is a path
in G.

(ii) Let {(i, (wi, ~ni))}m
i=0 be a path in G representing an assignment {Ji} such that if

(wi−1, ~ni−1) = (wi, ~ni) then Ji = ∅. Let C be the cost of a schedule given by the
assignment, and let C# be the cost of the representation as a path in the graph. Then
|C − C#| ≤ εC/3.

Proof: Let ~n′i−1 = scalewi−1→wi
(~ni−1), for 1 ≤ i ≤ m. By Lemma 4.3, (wi, ~n

′
i−1) represents

the set
⋃i−1

i′=1 Ji′ .
(i) First note that we really obtain vertices of G, as (w0, ~n0) = α(∅) and (wm, ~nm) =

α(J). For any i = 1, . . . , m, if Ji = ∅ then (wi−1, ~ni−1) = (wi, ~ni) and by definition
((i − 1, (wi−1, ~ni−1)), (i, (wi, ~ni))) is an edge of G. Otherwise, since (wi, ~n

′
i−1) represents

the set
⋃i−1

i′=1 Ji′ and (wi, ~ni) is the principal representation of its superset
⋃i

i′=1 Ji′ , we
have ~n′i−1 ≤ ~ni. It remains to verify that W (wi, ~ni − ~n′i−1) ≥ wi/3. Since (wi, ~ni) is a
principal representation of

⋃i
i′=1 Ji′ , this set contains a job with pj > wi/2. Since the

assignment has non-decreasing weights, it follows that W (Ji) > wi/2. By Lemma 4.4 we
have W (wi, ~ni − ~n′i−1) ≥ W (Ji)− 2δwi ≥ wi/3 for δ ≤ 1/12. This finishes the proof.

(ii) Let Xi = W (wi, ~ni − ~n′i−1) and let Yi = f(Xi/si) be the cost of the ith edge of
the path. If (wi−1, ~ni−1) = (wi, ~ni), then Ji = ∅ and f(W (Ji)) = f(0) = Yi. Otherwise
by Lemma 4.4, |W (Ji) − Xi| ≤ δ(W (Ji) + 2wi) < δ(1 + δ)(Xi + 2wi) < 8δXi; the last
inequality follows since Xi > wi/3 by the definition of an edge and δ < 1/12. Thus
|Ci −Xi/si| = |W (Ji)/si −Xi/si| ≤ 8δXi/si and by the condition (F∗) and our choice of
δ we get |f(Ci) − Yi| ≤ εYi/3. We get the required bound by summing, maximizing or
minimizing over all edges of the path, as required by the type of the problem.

We now finish the proof of Theorems 2.1 and 2.2 for the minimization versions; the case
of maximization is similar. Let C∗ be the optimal cost, let C# be the cost of an optimal
path in G, and let C be the cost of the output solution of the PTAS. By Lemma 3.1
there exists an optimal schedule with non-decreasing weights. Thus by Lemma 5.3 (i) its
principal representation is a path in G, which cannot be cheaper than the optimal path.
By Lemma 5.3 (ii) C# ≤ (1 + ε/3)C∗. Using Lemma 5.3 (ii) for the output assignment we
get

C ≤ 1

1− ε
3

C# ≤ 1 + ε
3

1− ε
3

C∗ ≤ (1 + ε)C∗.

Thus we have found a required approximate solution.

6 Discussion

To get more insight in the meaning of the condition (F∗), we prove the following charac-
terization for convex functions.

11

Observation 6.1 Suppose f : [0, +∞) → [0, +∞) is on (0, +∞) convex and not identi-
cally 0. Then f satisfies (F∗) if and only if the following conditions hold:

• f(x) > 0 for any x > 0,

• for x → ∞, f(x) is polynomially bounded both from above and below (i.e., for some
constant c, f(x) ≤ O(xc) and f(x) ≥ Ω(1/xc)).

• for x → 0, f(x) is polynomially bounded both from above and below (i.e., for some
constant c, f(x) ≤ O(1/xc) and f(x) ≥ Ω(xc)).

Proof: If f(x) = 0 for x > 0 then (F∗) holds if and only if f is identically 0 on (0, +∞).
Otherwise let hf (z) = ln f(ez) be as in (F∗∗), note that it is defined everywhere. Since
f is convex, it has both left and right derivatives everywhere (and they are equal almost
everywhere). Thus also hf has both derivatives everywhere, and (F∗∗) (i.e., uniform conti-
nuity of hf) is equivalent to the statement that the derivatives of hf are bounded by some
constants, both from above and below. This is equivalent to the fact that hf is bounded
by linear functions, from above and below, and for z approaching both −∞ and +∞. This
in turn is equivalent with f being polynomially bounded, both from above and below, and
for x approaching both 0 and +∞.

This characterization is related to Conjecture 4.1 of Alon et al. [1] which we now dis-
prove. The conjecture says that for a convex function f , and for the problem of minimizing∑

f(Ci) on identical machines the following three conditions are equivalent: (i) it has a
PTAS, (ii) it has a polynomial approximation algorithm with a finite performance guaran-
tee, (iii) the heuristic LPT, which orders the jobs according to non-increasing processing
times and schedules them greedily on the least loaded machine, has a finite performance
guarantee.

We know that if (F∗) holds, there is a PTAS (for a computable f) [1]. Observation 6.1
implies that if (F∗) does not hold, then LPT does not have a finite performance guarantee;
the proof is similar to Observation 4.1 of [1] (which says that no such algorithm exists for
an exponentially growing function, unless P = NP , by a reduction to KNAPSACK).

Now consider f(x) = xt(x) where t is some slowly growing unbounded function; t(x) =
log log log log x works. It is easy to verify that any such f is convex and does not sat-
isfy (F∗). However, it is possible to find a PTAS on identical machines using the integer
programming approach of [1]. The function f does not satisfy (F∗) on [0, +∞), but it
satisfies (F∗) for any interval [0, T], moreover for a fixed ε the value of δ can be bounded
by ε/O(t(T)). The PTAS algorithm now proceeds in the following way. It computes the
bound on the completion time T as the sum of all processing times and chooses δ and
λ = 1/δ accordingly. Since M is at most singly exponential in the size of the instance,
λ is proportional to a triple logarithm of the instance size. Now we use the integer pro-
gramming approach from [1]. Resulting algorithm has time complexity doubly exponential
in λ, thus the complexity is bounded by the size of the instance. Thus the algorithm is
polynomial.

12

Let us conclude by a few remarks about the problem of minimizing max f(Ci). It is
easy to approximate it for any increasing f satisfying (F∗): just approximate the minimum
makespan, and then apply f to that. Thus our extension to bimodal functions is not very
strong. However, our techniques apply to a wider range of functions f . Suppose for
example that the function f is increasing between 0 and 1, and then again between c and
+∞, with an arbitrary behavior between 1 and c. Then it is possible to prove a weaker
version of Lemma 3.1, saying that for some (almost) optimal schedule, for any i < j,
Ti < µTj (if Ti, Tj > 0). The constant µ depends only on the function f . This is sufficient
for the approximation scheme, if we redefine the edges in G to be the ones with weight
µw′/3 rather than w′/3, and choose the other constants appropriately smaller. We omit
the details and precise statement, since this extension of our results does not seem to be
particularly interesting.

7 Scheduling with rejection

In this section we study the problem from Example 4 in the introduction.

Theorem 7.1

(i) Let f be a non-negative computable function satisfying the conditions (F∗) and (G∗).
Then the problem of scheduling with rejection on uniformly related machine with the
objection to minimize the sum of weights of rejected jobs plus

∑
f(Ci) possesses a

polynomial approximation scheme.

(ii) Let f be a non-negative computable bimodal function satisfying the condition (F∗).
Then the problem of scheduling with rejection on uniformly related machines with the
objection to minimize the sum of weights of rejected jobs plus max f(Ci) possesses a
polynomial approximation scheme.

(iii) If the machines are identical, then the same is true (in both cases above) even if f is
computable and satisfies only the condition (F∗).

Proof: The proof is a modification of our general PTAS. We give only a brief sketch.
(i) First consider the objective penalty plus

∑
f(Ci). We modify the graph G used in

our PTAS in the following way. We add n auxiliary levels between any two levels of the
original graph, as well as after the last level. Each level again has nodes corresponding
to all principal configurations, the target node now is the node α(J) on the last auxiliary
level. The edges entering the original nodes and their values are as before. The edges
entering the auxiliary levels are as follows. There is an edge from a configuration (w,~n)
to (w′, ~n′) iff the following holds: w < w′, and n′′ = scalew→w′(~n) satisfies ~n′′ ≤ ~n′ and
n′′i = n′i for all i ≤ λ2/2. (The last condition says that (w′, ~n′′ − ~n′) represents only sets
of jobs with all processing times greater than w′/2.) The value of the edge is the smallest
total penalty of a set of jobs represented by (w′, ~n′′ − ~n′). Additionally, there are edges
between identical configurations, with value 0.

13

The size of the graph increases by a factor of n. It is easy to construct the nodes and
edges of the graph. Given an edge entering an auxiliary level, we know the number of jobs
of each size that should be rejected, so we just add penalties of the appropriate number
of jobs with the smallest penalties. Thus also the values of the edges can be computed
efficiently.

A schedule is represented by a sequence of nodes, one on each level, such that on the ith
original level we use the configuration α(A) for the following set of jobs A: let B be the set
of jobs scheduled on the first i machines, let w be the weight of the principal configuration
of B. Then A consist of B together with all jobs j rejected in the schedule such that
pj ≤ w. On the previous auxiliary level we use the configuration α(A′), where A′ is A
minus all jobs scheduled on Mi. On the last level we use the target node. The other nodes
are arbitrary (we are again mainly interested in the representations that are paths in the
graph).

Given a path in the graph, we can construct a schedule represented by it as follows.
We follow the path from the source. Upon traversing an edge entering an auxiliary level,
such that its endpoints have different configurations, we reject a subset of jobs represented
by the difference of the configurations (cf. the definition of the edge), with the smallest
total penalty among such sets. As described above, this can be computed efficiently. We
are guaranteed that these jobs were not scheduled or rejected so far, as their processing
time is greater than the weight of the configuration at the beginning of the edge. The sum
of the values of the edges entering the intermediate nodes is exactly equal to the penalty
of rejected jobs, and the contribution of the machines is bounded as before. Thus the cost
of the path is close to the cost of the schedule.

Given the optimal schedule, we need to show that it is represented by a path. As
before, we may assume that the non-zero weights of machines are non-decreasing. Given
the schedule, the nodes on the original levels of the graph and the preceding intermediate
levels are exactly determined, and connected by edges. Given any A ⊆ B, it is easy to
verify that the node α(A) of an original level is connected by a path with the node α(B)
of the nth intermediate level after it. The total value of the edges of this path is always
at most the total penalty of the jobs in B − A. (Note that here we may have to use more
than one non-trivial edge, as we may be rejecting jobs in different weight ranges; this is the
reason why we use n auxiliary levels.) The value of the machines in the optimal schedule
is bounded as before, and the penalties are lower bounded by the cost of the corresponding
edges. Thus the optimal schedule is not much smaller than the cost of the path. This
finishes the proof for the case of minimizing the penalty plus

∑
f(Ci).

(ii) The case of minimizing the penalty plus max f(Ci) is somewhat different. The
obstacle is that the cost of a path in the graph should be sum of the costs of edges on
certain levels plus the maximum of the costs of edges on the remaining levels; for such a
problem we are not able to use the usual shortest path algorithm.

Let M be some bound on max f(Ci). We use a similar graph as above, with the following
modification. We include an edge entering an original node only if its value would be at
most M ; we set its value to 0. Now the cost of the shortest path is an approximation of

14

the minimal penalty among all schedules with max f(Ci) ≤ M . More precisely, similarly
as in Lemma 5.3, if there is a schedule with max f(Ci) ≤ (1− ε/3)M and total penalty P ,
the shortest path has cost at most P ; on the other hand, from a path with cost P we may
construct a schedule with max f(Ci) ≤ (1 + ε/3)M and penalty P .

Now we solve the optimization problem by using the procedure above polynomially
many times. Let smin and smax be the smallest and the largest machine speeds, respectively.
Let pmin be the minimal processing time of a job, and let T be the total processing time
of all jobs. In any schedule, any non-zero completion time is between b = pmin/smax and
B = T/smin. Now we cycle through all values x = (1 + δ)ib, i = 0, 1, . . ., such that x ≤ B;
the constant δ is chosen by the condition (F∗), as in Section 5. In addition, we consider
x = 0. The number of such x is polynomial in the size of the number B/b (i.e. in log(B/b)),
which is polynomial in the size of the instance. For each x, we compute M = f(x), and
find a corresponding schedule with the smallest penalty P by the procedure above. (As a
technical detail, we have to round each x to a sufficient precision so that the length of x
is polynomial in the size of the instance; this is possible to do so that the ratio between
successive values of x never exceeds 1 + 2δ, and that is sufficient.) We chose the best
of these schedules, and possibly the schedule rejecting all jobs. Since the relative change
between any two successive non-zero value of x is at most 3δ, the relative change between
the successive values of M is at most ε/3 (by our choice of δ using (F∗)), and we cover all
relevant values of M with sufficient density.

(iii) follows from the proof of (i) and (ii) by noting that no condition is needed to order
the machines.

Acknowledgements.

We thank Yossi Azar and Gerhard Woeginger for useful discussions and introduction to
this problem. We are grateful to Tamir Tassa and anonymous referees for pointing out
errors in the conference version of the paper [7] and other useful comments.

References

[1] N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid. Approximation schemes for schedul-
ing on parallel machines. J. of Scheduling, 1:55–66, 1998.

[2] Y. Azar and L. Epstein. Approximation schemes for covering and scheduling on
related machines. In Proc. of the 1st Workshop on Approximation Algorithms for
Combinatorial Optimization Problems (APPROX ’98), Lecture Notes in Comput. Sci.
1444, pages 39–47. Springer-Verlag, 1998.

[3] Y. Bartal, S. Leonardi, A. Marchetti-Spaccamela, J. Sgall, and L. Stougie. Multi-
processor scheduling with rejection. SIAM J. Disc. Math., 13(1):64–78, 2000.

[4] A. K. Chandra and C. K. Wong. Worst-case analysis of a placement algorithm related
to storage allocation. SIAM J. Comput., 4:249–263, 1975.

15

[5] R. A. Cody and E. G. Coffman. Record allocation for minimizing expected retrieval
costs on drum-like storage devices. J. Assoc. Comput. Mach., 23:103–115, 1976.

[6] J. Csirik, H. Kellerer, and G. J. Woeginger. The exact LPT-bound for maximizing
the minimum completion time. Oper. Res. Lett., 11:281–287, 1992.

[7] L. Epstein and J. Sgall. Approximation schemes for scheduling on uniformly related
and identical parallel machines. In Proc. of the 7th Ann. European Symp. on Algo-
rithms, Lecture Notes in Comput. Sci. 1643, pages 151–162. Springer-Verlag, 1999.

[8] D. K. Friesen and B. L. Deuermeyer. Analysis of greedy solutions for a replacement
part sequencing problem. Mathematics of Operations Research, 6:74–87, 1981.

[9] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP–completeness. Freeman, 1979.

[10] R. L. Graham. Bounds for certain multiprocessor anomalies. Bell System Technical
J., 45:1563–1581, Nov. 1966.

[11] R. L. Graham. Bounds on multiprocessor timing anomalies. SIAM J. Appl. Math.,
17(2):416–429, 1969.

[12] D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for schedul-
ing problems: Theoretical and practical results. J. Assoc. Comput. Mach., 34:144–162,
1987.

[13] D. S. Hochbaum and D. B. Shmoys. A polynomial approximation scheme for schedul-
ing on uniform processors: Using the dual approximation approach. SIAM J. Comput.,
17:539–551, 1988.

[14] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. Sequencing
and scheduling: Algorithms and complexity. In S. C. Graves, A. H. G. Rinnooy Kan,
and P. Zipkin, editors, Handbooks in Operations Research and Management Science,
Vol. 4: Logistics of Production and Inventory, pages 445–552. North-Holland, 1993.

[15] S. Sahni. Algorithms for scheduling independent tasks. J. Assoc. Comput. Mach.,
23:116–127, 1976.

[16] G. J. Woeginger. A polynomial time approximation scheme for maximizing the mini-
mum machine completion time. Oper. Res. Lett., 20:149–154, 1997.

16

