An APTAS for generalized cost variable sized bin packing

Leah Epsteih Asaf Levint

Abstract

Bin packing is a well known problem which has a large number of applications. Classical bin packing
is a simple model where all bins are identical. In the bin packing problem with variable sized bins, we
are given a supply of a variety of sizes. This latter model assumes, however, that the cost of a bin is
always defined to be its exact size.

In this paper we study the more general problem where an available bin size is associated with a fixed
cost, which may be smaller or larger than its size. The costs of different bin sizes are unrelated. This
generalized problem has various applications in storage and scheduling. In order to generalize previous
work, we design new rounding and allocation methods. Our main result is an APTAS for the generalized
problem.

1 Introduction

Bin packing is a natural and well studied problem which has applications in computer storage, bandwidth
allocation, stock cutting, transportation, and many other important fields. The study of bin packing started
more than thirty years ago [5, 7]. Since then a large amount of research was dedicated to this problem and
its variants (see e.qg. [1, 3, 10]).

An interesting variant of this problem$RIABLE SIZED BIN PACKING, Where the supply of containers
is not only of a single bin type, but some fixed (finite) number of given sizes is available. The cost of using
a bin is simply its size. The first to investigate the variable sized bin packing problem were Friesen and
Langston [4]. Several papers studied this problem in offline and online environments [12, 2, 13, 14].

We consider the following variant of one dimensional bin packing, which is a natural generalization of
both classical bin packing and variable sized bin packing. We are given an infinite supply of bitypes
whose sizes are denoted y< - -- < b; = 1. We denoteB = {by, ..., b, }. Items of sizes if{0, 1] are to
be partitioned into subsets. The set of items is denStethd the items have indices in the §&t2, ..., n}.
The size of itemy is denoted bys;. Each subsef in the partition has to be assigned (packed) to some

bin types, such that the set of items fits into an instance of this bin type,}.es; < b;. A bin typei is

jeJ
associated with a cost. We assume; = 1. Thus, the cost of a solution is the sum of costs of the bins
used, taking multiple subsets which are using the same bin type into account. That is, if the subsets are

k
Ji, ..., Ji, and subset is packed into a bin of typ# (for 1 < ¢ < k), we get the cosd ¢;,. The goal is

to find a feasible solution whose total cost is minimized. Without loss of generalityEWhmh crq1 = 0.
We call this problemGENERALIZED COST VARIABLE SIZED BIN PACKINGand denote it by5CVS.

This problem clearly generalizes the classical bin packing problem (wBete {b;}), and variable
sized bin packing (where = b; for 1 < ¢ < r). Classical bin packing assumes a very simple model with

*Department of Mathematics, University of Haifa, 31905 Haifa, Ishe@@l@math.haifa.ac.il
fDepartment of Statistics, The Hebrew University, Jerusalem, Ideehas@mscc.huji.ac.il.

uniform bin sizes. Although a large number of real-world problems can indeed be defined as such a problem,
an even larger amount of problems involve bins of various sizes. This started the study of variable sized bin
packing. To simplify reality, such models usually assume that the cost per unit of storage area is constant.
Once again, this is not always the case in real life, as can be easily seen from prices of memory sticks and
portable hard disks. Moreover, typically a smaller container has a larger cost per unit of storage, as it is the
case with various storage devices nowadays. On the other hand, we sometimes encounter a phenomenon
where we find that due to technological barriers, the cost of a memory storage device with a twice as large
capacity, is more than twice the cost of the more modest device.

These are just examples to the fact that in reality, the cost of storage containers just cannot be assumed
to be linear in their sizes. Previous studies of generalized costs functions assumed that the price per unit
decreases as the bin size grows. Kang and Park [9] who studied a generalized problem with cost functions
satisfyingg—zj < chj fori > j, suggested an algorithm of asymptotic approximation @tiAnother possibly
reasonable assumption is a concave cost function (see [11]). From the scenarios stated above, showing that
pricing policies can be arbitrary, we deduce that neither options describe the typical real situation. This leads
to the study of general cost functions.

Itis known that no approximation algorithm for the classical bin packing problem can have a cost within
a constant factor of the minimum number of required bins for< % unlessP = N'P. This leads to the
usage of the standard quality measure for the performance of bin packing algorithms whicsigtipotic
approximation ratioor asymptotic performance guaranteEor an algorithmA, we denote its cost on an
input X by A(X). An optimal algorithm is denoted byrT, and its cost of inpult’ is denoted byopPT(X').

The asymptotic approximation ratio for an algoritbiris defined to be

R(A) = limsup sup{ Gl 'OPT(X) = n}

n—oo x | OPT(X)

The natural question, which was whether this measure allows to find an approximation scheme for
classical bin packing, was answered affirmatively by Fernandez de la Vega and Lueker [3]. They designed
an algorithm whose output never exceétls- ¢)oPT(I) + f(e) bins for an input/ and a givere > 0. The
running time was linear im, but depended exponentially en Such a class of algorithms is considered to
be an APTAS (Asymptotic Polynomial Time Approximation Scheme).

Karmarkar and Karp [10] developed an AFPTAS (Asymptotic Fully Polynomial Time Approximation
Scheme) for the same problem. This means that using a similar (but much more complex) algorithm, it is
possible to achieve a running time which depend% @olynomially, without any loss in the approximation
ratio. Karmarkar and Karp [10] also designed an algorithm which uses atarogf) + log?[oPT(I)] bins
for an input!/.

Murgolo [12] designed an APTAS and an AFPTAS for the bin packing problem with variable sized bins.
These results are relatively similar to those of [3, 10] and rely heavily on the fact that the cost of a bin equals
its size.

Outline. In this paper, we design an APTAS f&CVS. In Section 2 we state and prove some reductions
which allow us to seek a slightly simpler structure of solution. These reductions need to be handled carefully
to enable the usage of some simplifying assumptions later. In particular, we define a structure for optimal
packings, which turns out to give a solution which is not very different from an overall optimal solution,
but allows to simplify the search for optimal solutions. Such a solution allows to pack an item into a bin
that is either much larger than the smallest bin that can contain this item, or whose cost is not more than a
constant multiplicative factor (in terms ej away from the cost of such a minimal bin. Before describing

the scheme in full detail, we present an outline in Section 3. In Section 4 we show how to apply grouping
and rounding procedures on the input. We patrtition the input into sets as a function of the smallest bin

they can fit into. In order to be able to apply rounding techniques on each set, we show that the largest
items of every group can be packed according to one of two very different packing rules. We note that the
number of item sizes resulting from the rounding procedure is not a constant. Therefore, many of the known
methods to solve such rounded problems cannot be applied to solve our rounded problem. One example
of a standard approach which fails is to formulate an integer programming formulation for the rounded
problem. However, in our case its dimension is not constant, and therefore we cannot simply use Lenstra’s
algorithm [8] to solve the rounded instance and find an optimal packing for it. Despite these difficulties
we show in Section 5 that we can get a near optimal solution to the original problem using a shortest path
computation. We use the properties proved in Section 2 to reduce the size of the graph in which we look
for the shortest path, to a polynomial size. Our shortest path computation allocates items to bins, where bin
sizes are considered along the path in an increasing order of costs, starting with the cheapest bins. We prove
the correctness of our scheme in Section 6. We conclude this paper by some concluding remarks in Section
7.

This algorithm uses methods of rounding and grouping that are based on ideas from [3] and [12]. How-
ever, as the adaptation of these ideas into a scheme with general costs requires a treatment of the bin types
in a sorted order, we apply a layered graph based scheme for this. Such a scheme (for a scheduling problem)
was given by Hochbaum and Shmoys [6]. In order to be able to design a solution for the most general
problem with no assumptions on the cost function, we additionally apply some novel methods. Note that
the running time of our APTAS depends on the number of bin typgmlynomially (i.e.,r is seen as a part
of the input). Throughout this paper we denotestyfixed positive constant such thak ﬁ and% is an
integer.

2 Some reductions

In this section we show a series of modifications®and restrictions on the optimal solution. We do not
apply any modifications on the input items at this time. In the following sections we will compute a solution
that uses only the modified set of bins, and approximates an optimal solution among the possible solutions
under the specified restrictions. The first reduction keeps at least one optimal solution unaffected, whereas
the other reductions change the optimal solutions and moreover result in an increase in the total cost of an
optimal solution. However, we will show that this increase is bounded by a (multiplicative) factor ef

Lemma 1 Without loss of generality we assume that the valyeme monotonically decreasing (i.e., for
1< 7,¢ > Cj).

Proof. To achieve this we show that given a set of bin types and a solution, we can omit some bids from
and to change any solution (to a given input) into a solution that does not use bins removegl dmafrits
cost is not larger than the cost of the original solution. To achieve this, we apply the following process on
B. While there exist, j such that < j butc; < ¢;, remove bin typg from B. Note that sincé; > b;,
we can move the contents of every bin of shizento a bin of sizeh; without increasing the cost of a given
solution. This is done until no such pair; exists, and thus results in a gétwhere the sequence of values
¢; is monotonically decreasings

Since the process described in Lemma 1 can be applidél wathout changing the cost of optimal
solutions, we use the notatidhfor the set of bin type to which the process was already applied. We assume
in the remainder of the paper that the valugare monotonically decreasing.

The following reductions increase the cost of an optimal solution by a factor of atimest In our
analysis, we compare the cost of our approximation algorithm to the cost of an optimal solution for the
instance resulting from the reductions, and prove an approximation ratiotof)(¢). We get that even

though the “real” approximation ratio (i.e., the approximation ratio with respect to an optimal solution of
the original problem) may be slightly larger, it is at mast ¢ times the approximation ratio that we prove,

and thus our analysis results in an approximation factdr-efO(¢). Therefore, since we are interested in
designing an APTAS for the problem, the reductions are harmless from our point of view. The next lemma
shows that we can assume that the sequence of bin costs decreases geometrically or faster.

Lemma 2 Without loss of generality we may assume that foz’,aclfi >1+e.

Proof. If the claim does not already hold for the input bin types, we apply the following process on the bin
types of the input. Traverse the list of bin types from the largest bin {i.1) to the smallest binj(= r).
During the traversal keep only a subset of the types, and remove the other typeB.fiMa keep the first
bin type (j = 1), and recursively assume that the last bin type that is kept has jnddren, given the value
j,fori =4j+41,7+2,...,aslong as‘;li' < 1+ ¢ andi > j we remove thé-th type from the list of bin
types. We always keep the bin type with smallest indsdch that% > 1+ ¢ andi becomes the new value
of j. If there is no such value af we remove all bin typeg + 1, j i 2,...,rfrom B.

Consider a feasible solution that packs the set of itéhusing a bin of type that is removed during
this process. Then, the set of resulting bins contains a binjtgpeh thatl% < ¢; < ¢j. Then, we modify
the solution by using a bin of typgto pack all the items irt. Applying this procedure on all bins of types
that were removed from, results in a feasible solution to the new instance whose total cost is al mast
times the cost of the original solution. Therefore, the cost of an optimal solution for the new instance is at
most1 + ¢ times the cost of an optimal solution for the original instance. Thus, if we design APTAS for
instances satisfying the assumption of the lemma, then the resulting solution will also be an APTAS for the
original instances. We conclude that it suffices to consider instances satisfying the praperty.

We say that a feasible solutionngce if it satisfies the following condition for every pair of a bin and
an item. Assume that the solution uses a bin of type pack a set of items. For a given; € S, letk;
be the maximum index such that, > s; (i.e., by, is the smallest bin size whefecan be packed). Then,
eitherby, < £5p; or Ck; = e8¢; (or both). This means that an item packed in a bin can either fit into a much
smaller bin or that the smallest (and thus cheapest) bin that can accommodate this item has a cost which
differs from the cost of the current bin by a constant factor. Note that an item that does not fit into any bin
of index strictly larger than immediately satisfies the second condition.

The next lemma shows that we can restrict ourselves to looking for an approximated nice solution.

Lemma 3 Given an instance of th& CV S problem, denote bpprT,, the minimum cost of a nice solution,
and byopTthe cost of an optimal solution (that is not necessarily nice). Them, < (1 + 3¢)OPT.

Proof. Fix an optimal solutionD whose cost i©PT. It suffices to show how to transform it into a nice
solution whose cost is at most + 3¢)oPT. We do the transformation for each packed biiseparately.
Assume thatD uses a bin of typé to pack the item set which is denoted 6y We use a set of bins to
packC' in order to convert the packing @f into a nice packing. To do so, we first identify the sequence
i1,12,.... This sequence is independentfand can be computed as a function afs follows. Leti, be

the smallest value of an indexsuch that, < g6 . ¢;. Then, instead of using just one bin (of typeo
pack the items ir”, we use one bin of typeand in addition, for each= 1,2, ..., we useg% bins of type

ig. This set of bins is used to packas follows. We use the single bin of typéo pack two sets of items.
The first set consists of all items 6f with size larger tham;,. The second set consists of all itegnsuch
thatby; < 5b; (wherek; is as defined above, the index of a smallest type of bin into which jtean fit).
Note that for such items it holds that < <%;. Denote the set of items that we pack using this unique bin
of typei by Cy. The rest of the items frorf' is partitioned into classes, where thh class, denoted by,
contains all items whose size is betwégn, andb;,. l.e.,C; = {a € C\ Cp : b < 8¢ < b, }.

i1

4

Then, the items of sef)y clearly fit into the bin of type, sinceC was originally packed into this bin
andCy C C. The items ofC, for ¢ > 1, are packed using the First-Fit algorithm into at mgé,sbins of
typei,. To see this last claim note thatdf, # () thenb;, > £6b;. Therefore, the total size of the items in

Cpis at most% (as they are packed into a single bin of tyipeSince First-Fit opens a new bin only if the
total size of the items in the previous bin and the new item is at least the capacity of the bin, it has at most
one bin with a total size of less than half the size of the bin, and therefore we conclude that First-Fit, when
applied toC, and bins of typé,, will use at most}6 bins.

Therefore, instead of using one bin of typ@hose cost ig;, we use a set of bins whose total cost is at

o0 o0 o0
moste; + > F ¢, Sci+ Y F M0 =0 (1+2Ze"> :ci(1+12—f€> < ¢i(1+ 3¢), where
=1 =1 =1

the last inequality holds since< %

It is clear that the resulting packing 6, into the bin of type satisfies the conditions of a nice packing
since all items violating the condition were removed from this bin. We next prove that the packing of every
newly created bin satisfies the conditions of a nice packing as well. Consider ap ke, (which is
packed into a bin of typé,). We show that this item satisfies the second condition of nice packings. By
definition, ¢;, < e6¢,. Note thati,,; must exist since,; = 0. Consider the bin typ&;. By definition
of Cy, 55 > b;,,,, and thusk; < iq1. However,iy; is the smallest indey for which ¢, < 7. ¢;, and
thuscy, > et ¢; > ey, > €8¢;,.

Application of the above transformation on all the bing€ofesults in a feasible solution that is also nice
(as shown above, by the definition of the s€fdor ¢ > 0) whose cost is at mo$l + 3c)OPT. m

In the sequel we assume that the instance satisfies the assumptions of Lemma 2. We approximate the
minimum cost nice solution whose cost is denotedbpy,,, and construct a feasible solution whose cost is
at most(1 + O(e)) - OPT, + f(%), wheref is some function (which will turn out to be polynomial). Note
that the solution that we obtain is not necessarily nice, since the original problem does not require this (it is
possible however to convert it into a nice solution in polynomial time by applying a construction as above).

3 Outline of the scheme

In this section we provide the outline of the scheme. The complete details will be given in the following
sections.
The first step of the scheme is to pre-process the list of bin sizes so that this list will satisfy the properties
of Lemmas 1 and 2.
We next partition the set of items into types: For a bin of typee say that an item of sizg is large
for a bin of typei if £; < s; < b;. Itis small for a bin of type if s; < £°;, and otherwise it ibuge for
a bin of typei. An itemj is largeif there is a type such that it is large for a bin of type We denote by_
the set of large items. We partitiahinto sets: For alt, £; consists of all the large items for a bin of type
that are huge for a bin of type+ 1, andL, consists of all the large items for a bin of type
The next step of the scheme is to apply linear grouping for €acteparately. We denote I8} the set
of the largest items resulting from the linear groupingCef
Our scheme looks for solutions that satisfy an additional property. That is, fori @aelconsider only
two possibilities for packing: Either we haveS?| dedicated bins of sizig, each of which contains exactly
one item from the sef? and no other item is packed into such a special bin, or the iteri§ afe packed as
small items in much larger bins (note that we do not allow mixtures of the two options, for a given value of
7). We will show that there exists such a solution that does not cost much more than an optimal nice solution.
To find our solution we construct a layered graph. The graph is split into levels, where each level
corresponds to decisions regarding the packing of bins ofityach level consists @i + 1 layers, where

each layer is associated with packing at most one bin of the corresponding type. At the entry for each level
we decide whethe§! is packed in dedicated bins or the items%fare packed as small items in much
larger bins (the graph contains edges of both possibilities). Each vertex encodes the number of (large) items
of each rounded size that still needs to be packed. A vertex encodes also the rounded total size of the small
items (i.e., small for the bin type of its level) that still need to be packed. Each vertex needs to recall the
subset of the indicessuch thatS: is packed as small items only if for the current level the itemSioare

still large items (and not small items).

We then look for a shortest path in this (very large but still polynomial-size) layered graph. This shortest
path corresponds to a well-defined packing of the items that are packed as large items. Afterwards, the
remaining items need to be distributed to the empty slots in the resulting packing. To this end, additional
bins (of each size) are used, if the process of packing small items as indicated by our path, did not result in
packing a large enough total size of small items. We show that these additional bins have a small cost and do
not hurt the returned solution too much. Thus we show that the resulting solution is a good approximation
of an optimal solution.

4 Linear grouping

Recall that for a bin of typé, we say that an item of sizg is large for a bin of type if £%; < s; < b;.
It is small for a bin of type if s; < %b;, and otherwise it isiuge for a bin of typé. An itemj is large if
there is a typeé such that it is large for a bin of type We denote by the set of large items.

We next partitionl into subsets according to the size of the iteifisis the set of large items for a bin
of typer. If we definedl;1,...,L,, thenl; is defined as the intersection of the set of large items for a
bin of typej and the seC \ (L1 U---UL,;).

For each such that£;| < 8% we pack each item of; in a bin of typei by itself (such a bin is called a
dedicated bin). Such a class with at mostE%6 elements is callethin.

Lemma 4 The total cost of packing each item of a thin class into a dedicated bin is atlé%st

Proof. Since each bin type is used to pack at mggtitems, the total cost of these bins is at most the

s

total cost of using+{; copies of every bin in the input sequence. l.e., itisatmast > ¢; < -5 - c1 -
r—1 i 00 i =
> (ﬁ) < 5o > (1—_1%) = L= where the first inequality holds by Lemma d.
= By Lemma 4, we ciafrgJ assume without loss of generality that for each non-empty class of large items, the
class has at Iea§g elements.

Next, we perform a linear grouping of each clags separately. More precisely, l1ef;| = n; (recall
that we assume that > 8%). We sort the elements}, a5, . .. af,, of £; according to their size. That is, we
denote the size of the elemex}tby s;, and we assume without loss of generality tifat> s, > --- > Spie
We partitionf; into —fz subclasses denoted Y, 55, ..., 5'1'/816. The partition is defined by the following
two conditions.|S!| = |n;e'®| or [Si| = [n;e!] forall p > 1, and ifp < ¢ then|S.| > [S!| (thus we
always haveSi| = [n;']). Moreover, we require that if;, € S} andaj, € S; such thap < ¢, then
sh > s;.. ThusS} is a set which contains the larggst;='®| elements ofZ; (breaking ties arbitrarily). In
general, we partitiorf; to approximately equal size sets (sets of lower indices may have one additional item

compared to sets of higher indices) so thatcontains the largest elements frafp\ (S{ U---u S}_l).
We note that;e'0 < |S7| < [ne®| +1 < 3|L; \ Sf| - £'%, where the last inequality can be proved using
simple algebra and the propertigg \ 57| = n; — [5}| > n; — (nie'® + 1), ¢ < 3 andn; > 5.

For alli and all; > 2, we round up the size of all the eIementsS(;%fto the size of the largest element of
S, the set of rounded items is denoteddfy and we denote by’ the rounded up size of an item . We
also defineSi = Si. The set of rounded (large) items, resulting frdimis denoted byC!, and the set of all
rounded (large) items is denoted BY. In the APTAS of [3] for the classical bin-packing problem, the set
of the largest elements in the linear grouping is packed using separate bin for each such item. This packing
is applied also for the later APTAS of Murgolo [12] for the variable size bin packing problem. In both
cases, such a packing increases the cost of a packing only by an arbitrarily small factor. In the generalized
problem, the important property that a small number of items;afan be packed into separate bins of size
b; does not hold, since an optimal packing may pack many itends ofto larger bins. Instead, for eac¢h
we allow the algorithm to choose between two possibilities: in the first possibility the algorithm gacks
using a separate bin of sizgfor each item inS%. This is the typical packing of the set of largest items of
the linear grouping, and it is useful (by the analysis of the algorithm) in cases where most of the items of
L; are packed iroPT, into bins of size smaller thafg. For other cases, we allow the algorithm to pack the
setS?, seeing them as a part of the set of small items of larger bins. In this case the algorithm will pack the
elements of5? using bins of size at Ieagg. That is, in our scheme the total size of elementsoWwill be
added to the total size of small elements that the algorithm needs to pack using bins whose size igiat least
To state the next lemma we consider a fixed optimal nice solution (the optimum among the nice solutions)
denoted byoPT,. We useA; to denote the subset of elementsipfy S which opT, packs into bins of size
smaller thanks. If [4;] > 1|, \ Si| we say that; is good

Lemma 5 Assume that; is good. Consider a packing where each iten$pfs packed into a separate bin
of sizeb;. In this case, the total cost of bins containing the item§ois at most6 - £* - ¢;, wherey; is the
total cost of the subset of bins @PT,,, that consists of all bins that contain at least one iterof

Proof. We first argue that each bin that is used to pack an elemedt; ofias size of at leadt. Since

A; C L;, such an item is not large fét, 1, and sincey;;1 < b; this means that it is huge for it and does
not fit into smaller size bins. Therefore, the cost for such a bin is at ieadtext note that each bin that

is used to pack an element &f, packs at mosg% such elements. This follows since each such element

has size of at leasf’;, and the size of such bin is smaller thgn(due to the definition of4;). Therefore,

there exist at Ieaét%sl2 bins of opPT,,, where each one of them costs at leasand each one of them
contains at least one elementdf. Sovy,; > %512@. As already stated in the proof of Lemma 4,
IS4 = |Si] < 3|L; \ SiletS, and thereforeS: | is at mosts - £ times the number of bins that are used by
OPT, to pack the elements od;. The claim follows since each bin used to pack an elemed}; abosts at
leaste; which is exactly the cost of the bins used to pack each elemestt o

Lemma 6 The total cost of assigning each elemenfpfa separate bin, for all values afsuch thatZ; is
good, is at mosss? - OPT,,.

Proof. By Lemma 5, the total cost incurred tﬁy for a value ofi such that; is good, is at mosée* times

the total cost of the bins thatPT, uses to pack elements &f;. SinceoPT, is nice, and the first property

of nice packings does not hold for the bin sizes that we consider here, we conclude that each of these bins
has a cost of at leasf and at most;. By Lemma 2, there are at mofslbg1+€ Eis] bin types with cost in the

interval [c;, %]. Therefore, a specific bin can be usedd®r, to pack elements from at mofiog, | . = |

different sets4;. Thus, the total cost of assigning each element’io& separate bin for ail such that’;

is good, is at mosic* - [log; . =5 | - OPT, < 3c20PT, where the last inequality can be easily verified and
holds sinces < 5. =

By Lemma 6, if we allow our scheme to choose one of the two possibilities described above for each
then the cost of the largest sets in the linear groupings can be disregarded if the class is good. We argue in
the next lemma that if the clag® is not good then by deciding to pac in bins of size at Ieasi%, we
increase the space demand for such bins by a multiplicative factor of a{ mest='?). This increase does
not cause any harm, since in any case we will have more dominant rounding errors (that will still lead to an
(1+ O(e))-approximate solution with respect to the asymptotic approximation ratio).

Lemma 7 If £; is not good, then the total size of the eIementS{oifs at most6e!Y times the total size of
elements of; \ 5”{ that are packed iroPT,, into bins which are of size at Iea;%.

Proof. Using.A; < }|£:\S1, we get£;\(SUAy)| 2 1£:\5i| and thug 31l < S < oo

Sinces%,; < s§ < b, for all §, the claim follows. m

The next lemma holds by a similar argument to the arguments of [3]. Namely, using the fact that if the
items ofS¢ are removed for all, the rounded input can be mapped back into the original input, so that every
item is mapped to an item that is no smaller than it.

Lemma 8 Given an instance of th&CVS problem, then the optimal solution cost of the instance after
applying the linear grouping step as described above (with rounded up sizes), and removing all ims in
for all 4, is at most the cost of the optimal solution to the original instance.

5 The main scheme

In this section we show how to use the linear grouping, as it is described in the previous section, to compute
an approximated nice solution. Our method is based on constructing a layered graph, and then computing
a shortest path in this graph. This shortest path is then used to construct a feasible solutic@ ©VtBe
problem.

Fori =1,2,...,r we denote byl; the total size of elements, whose individual sizes are in the interval
(bi+1,%;). Such elements are huge with respect to bin typesl,i + 2,...,r and small elements with
respect to bin typé. They are not large with respect to any type of birb;}f; > £5b;, thend; = 0.

A level in a layered graph is defined as a consecutive set of layers. Our layered directed:gtaph
(V, E) is composed of + 1 levels, where the-th level corresponds to decisions regarding the packing of
elements into bins of typg(recall thatb,.; = 0 and hence there are no elements packed into bins of type
r+ 1. We add this level to unify the presentation of our scheme). Each level consistsiaf layers where
n is the total number of items in the input. Each edge connects a vertex of one layer with a vertex of the
consecutive layer, where the layers are ordered so that first there ae the layers of levelr + 1, then
the layers of level, and so on up to the layers of leviel We add toG one additional vertex denoted by
which is defined to be the very last layer. We partition the levels into phases as follows. Aireglhase
p levelif b; € (eP,eP~1]. For a bin type, we denote byB; = {k : b, € [e%;,b;] andc, € [8¢;, ¢;]}.

For a phase level i, a pattern of leveli corresponds to a packing of a bin of sizewith elements

resulting from the linear grouping, which are of size in the intefsfdl;, b;]. These are elements ifJ Sj’?ﬁ
keB;
i>2

{a € S : 0, € [5;,b;]}. Each such bin can contain space for smaller items as well, where the space defined
by the pattern is an integer multiple gfb;. This integer is callethe number of slots for small items of the

patternand denoted by;,;. Formally, a pattern of levelis (nszot, (né‘?) keB; > : Wher(i‘n;? is the number of
j=2

items fromS* that are packed into this bin. In this notation we assumerthat 0 if o < 50

8logy e 241

Lemma 9 The number of possible patterns of levis O((ne'+2) ™ =15 (& +1)). le., itis bounded
by a polynomial in the input size.

Proof. The numbemg,; is an integer in the intervab, 8%]. The numbem? is an integer in the interval
[0, [ne'f]]. By Lemma 2B is at mostiog; . E% + 1. Since each such class (whose index belong;jo
has at moss% different values of element size, we conclude that the number of possible patterns of level

8logy 4 2+1

isatmostO((ne6 +2) < . (L +1)). m

We next describe the vertex set of our layered gr@plA vertexw of thei-th level, which is a phasg
level, is associated with a label consisting of the following information which has four parts. The first part
contains information on the numbej’(u) of items fromS]’? that still needs to be packed, for relevant values
of £ andj, if the current vertex is reached. That is, for evérg B; and for allj > 2, the label contains
the numbem;?(u) of remaining such elements. The second part of the label contains information on the
total sizeD of small elements for a bin of typethat needs to be packed. This information in the label is

Ngiot(U) = % . Note thatD is an approximated sum of such items, which never exceeds the real amount

to be packed. The third part of the label contains approximated sums of items that we decided to pack as
small items, but are still considered to be large items for bins of typad thus this information should be
carried over to future phases. To be more precise, if Iei®la phase level, then the label contains six
integer numbers?, , (u), n’" 1 (u), ..., n"">(u), wheren?, ,(u) - beb (for ¢ = p,p +1,...,p + 5) is an
approximated sum of the sizes of all items whose sizes afeqimqfl], and the smallest bin that is large
enough to contain such items is of typdor somek > i such that;, < e8¢; (and thereforé: ¢ B;). Note

that such items are packed as small items in a nice solution, however they are still large items for a bin of
type: (this is so since for an item we haves? < s, < b, < b; < P~ < 976 and therefore, > <%b;).

The fourth part of the label is described next. Forkalt B;, the label contains the information regarding
whether we decide to pack each membespiising its own bin of sizé;, or all elements of} are packed

as small items in bins of size at Ieegst Therefore, the label encodes a subidet) of the index se3; and

if k& belongs to this subset, we decide to pack each elemésit nging a dedicated bin of sizg.
Lemma 10 The number of vertices in the graph is polynomial in the input size.

Proof. Consider a phasg level i and a given layer of this level. In this layer there is a vertex for each
possible value of the label. Since the number of levels4s1 and the number of layers in each level is

3n + 1 (plus one last layer which consists of a single vertex), in order to prove the claim it suffices to show
that the number of possible labels for levat polynomial. The numbezné?(u) is an integer in the range

[0, n;], and therefore there are at mast 1 such possibilities. We have to identify this number for the pairs

of indicesk andj such thath, € [%;,b], ¢, € [e%¢i,¢;] andj = 2,3,..., 15, and by Lemma 2 there

are at most + log; . Eig values thak can have. Therefore, the number of possibilities for the first part of

the label is at mostn + 1)(1+1°g1+€ =)21s and since: is a fixed constant, this number is polynomial in the
input size. Next, consider the number of possibilitiesrfgg, (u). Note that the number of small elements

for a bin of typei is at mostr, and each one of them has size less tfan Therefore,D < nb;e%, and we

conclude that g (u) = {%J is an integer in the intervd0, n — 1]. Hence, the number of possibilities

for nge(u) is at mostn. We next bound the value ef!, (u) forq = p,p+1,...,p + 5. Note that each

slot
item considered so far has a size smaller thaand there are at mostsuch items. Therefore, the total size
of these items (that still needs to be packed) is less #ifanHencen?, ,(u) € {0, ZLI;@) since this is an

integer, we get that the number of possibilities for this value is polynomial (for a fixed vaijelbfemains
to bound the number of possibilities féfv). By Lemma 2,/B;| = log, . E% + O(1), and the number of

possibilities forl () is the number of subsets & that isO(2'°%1+ 58) that is a constant (for a fixed value
ofe). m

We define five types of edges. The first two types of edges are edges connecting two vertices from a
common level (and consecutive layers). The last types of edges connect vertices from consecutive levels.
The first type of edges has the purpose of assigning a set of items into a bin. The second type allows to
bypass a bin and not use it. The next two types translate configurations of different levels. The last type
allows to terminate all paths in the target vertex

1. The first type of an edge connects two vertices from two consecutive layers of a common level
wherei is a phasep level. It corresponds to a packing of a single bin of dizeccording to a pattern

of level i denoted by<nslot, (n?)keBi>. The two vertices connected by such an e@lgey) have labels
Jj=2

(u) = n? (v) for

slot

that differ only in the first and second part of the label (§a) = I(v) andn?

slot

Jr
q=p,p+1,...,p+5). The first part of the label changes accordingf¢v) = (né‘?(u) — nf) for all

k € B; and for all; > 2 (where for a real number we leta™ = max{a,0}). That is, the first part of the
the label ofv results from the label of by decreasing the amount of items that needs to be packed from the
setSf by exactly the number of elements fro‘_ﬂi that are packed by the pattern corresponding to this edge.

Similarly, 740 (v) = (ng0e(1) — ngor) 7. Such an edge has a costepf

2. The second type of an edge is an edge connecting two vertices in consecutive layers of a common level
with equal labels. Such an edge has a zero cost. Such an edge corresponds to the decision not to pack an
additional bin of the corresponding size.

3. The third type of an edge connects a venig¢Rat belongs to the last layer of phasleveli+1, to a vertex

v that belongs to the first layer of levialvhere level is also a phasg level. In order to obtain the label of

from the label ofu we need to apply the following changes: For each value®fB; \ B;, we remove the
entrieSnf(u), forall j > 2, from the first part of the label af. These are items that lost their opportunity to

be packed as large items and must be packed as small items to maintain the properties of a nice packing. Out
of these elements, we compute the total size of elements that need to be packed as small elements according
to u and they are already small elements for bin of typ#/e need to add to this total size the valuelgf

which are items that are immediately small without being large for any previous bin. However, since the two
levels are of the same phaggandb; ; are within a factor o%, which implies that such items do not exist

and sad; = 0. Denote the resulting value, which is the sum of all items that became smdll, Digen, the

second part of the label afis exactlyng,:(v) = {% + %J The first part of the label of is

augmented with new entries for the amount of elemenﬁj.cbhat need to be packed fgr> 2, we showed
how to compute this number earlier, and it is eith?r: | nictf| orn§ = [n;e'0] for all j > 2. Note that
B; \ Biy1 = {i}, thus these are the only new entries. kot p,p + 1,...,p + 5, we definen?, ,(v) as
follows: for eachk € B;1; such thai, < e®c;, we computeSize! (u) = 3 nk(u) - of. We
j>2:0k e (9,697
sum up all the valueSize] (u) for all k such that € B; 1 andc;, < £8¢;, and denote this sum by, (u).
a -0; . .
That is, Eq(u) = > Sizej(u). Then, we let?, ,(v) = L”S“’t(;‘,) bty]f)‘%iZ)J. We finish the
kEB;+1:c<e8¢; ! !
definition of the label ob by setting eitheld (v) = I(u) N B;11 N B; or I(v) = (I(u) N Bi+1 N B;) U {i}
(both edges are constructed, having the exact same cost). The cost of the.eddge > |SF|
keI(u)\I(v)
and this cost reflects the cost of packing each elemestdh a separate bin of type if & € I(u). We
charge this packing of th&/ to an edge of type 3 or 4, which is a transition between levels, at the time that
the packing ofS¥ stops being indicated in the label.

10

4. The fourth type of edges connects a vertethat belongs to the last layer of phasdevel i + 1,

to a vertexv that belongs to the first layer of leveéwhere level; is a phase’ level forp’ < p — 1. In
order to obtain the label af from the label ofu we need to apply the following changes: For each value
of k € B;y1 \ Bi, we remove from the first part of the label ofthe entriemg‘?(u) for all j > 2. Out of
these items, we compute the total size of such elements that need to be packed accarding tioey are

already small for a bin of typg we add to this total size the value &f We denote the resulting value by
p+5
T. We need to take into account the following te¥m= > nl, ,(u). The last term corresponds
g=max{p,p’+6}
to items that we previously decided to pack as small items, but were still large for bins af typeand
now such an item: satisfiess, < £%b;, ass, < €7~ ! andb; > e > 776, Note that we slightly relax
the condition of packing items as small, and sometimes allow to pack items that are smaller than a bin by

a factor of at least® (instead of=%) to be packed as small items in this bin. Then, the second part of the
label of v is exactlyn . (v) = L 7; + W&J The first part of the label af is augmented with

5b;
new entries for the number of elementsﬂjfthat needs to be packed fpr> 2, and this number is either
nh = |nie'®] ornf = [n;e'] forall j > 2. Forg = p/,p’ +1,...,p’ 4 5, we definenf, ,(v) as follows.
For a given value of, denote byY; the set of pairgk, j) such thatk, j) € Y, ifanonly if k € Biy1 \ B;
ando’ € (7,697 1]. We computeF, (u) = (k;y nk(u)-of. Forq & {p,p+1,...,p+ 5}, we denote
7] e q

q b
nd (u)=0.Then, forg=p' p'+1,....p +5, weletn!, (v)= ["Szoi(:i) bis1 LZ%(b“)J Note that every

slot

entryn?, ,(u) was either translated into a part of the small jobs or into a part of an efjiryv) but not to
both.

We finish the definition of the label aof by setting either/(v) = I(u) N Biy1 N B; or I(v) =
(I(u) N Biy1 N B;) U {i} (again, both edges exist with the same cost). The cost of the @dg¢ is

> |S¥| - ¢ and this cost reflects the cost of packing each elemefif ofi a separate bin of type
keI(u)\I(v)
if k € I(u). As in the previous type of edges, we charge this packing ofthigems to the edges the level
transition, where the packing 6 stops being indicated in the label.

5. The last type of edges connect vertieesf the last layer of level 1 to. Such a vertex is adjacent ta
only if all parts of the label of. except for the last one are either empty sets or are equal to zero. The cost
of such an edge if it exists is>_ |SF| - cx.
kel(u

Note thath,;; = 0 and thusf rio items can fit into this bin (that was created so that the levels of the graph
can be created uniformly). Let be the vertex of the first layer of level4+ 1 whose label is defined as
follows. The first part, which indicates the amounts of itemS;jn‘or 2<j< 8%6 andk € B,41, is empty
asB,1 = (). The second part is zero and so are the six amounts in the third part. Fijally= (). Our
scheme finds the minimum cost p&@from « to ¢. Note that items to be packed are added to the graph as
soon as the first level of any bin that can accommodate them is reached.

We next construct a feasible solution based on the path found by the algorithm. If the path uses an edge
connecting(u, v) where both of them belong to a common leveind the label of, differs from the label

of v, then this edge corresponds to a pattém;lot, (né?)kesi > We open a bin of typé and allocate it
i>2

exactlyn” items of S¥ for all k € B; and; > 2 (the actual allocation is of the" items, but we may assume

that each of them occupies the same space which is the sizeﬂjfimm), we also reserve a space of size
ns10:£%b; for small items (that will be allocated later to these spaces). We apply this for all edges of the first
type thatP uses. The second type of edge®ido not affect the solution (they have cost zero with an empty
configuration, and are associated with bins that are bypassed). Next assuffeutiest an edgéu, v) of

11

the third or fourth type where belongs to the + 1-th level (andv to level:). The effect of such an edge
except for translation between levels is to assign large items from%f satch thatc € B;,; andk ¢ B;,
which are supposed to be packed in their own bins, one item per bin. In this caseifar alk.) \ I(v) we
open|S¥| bins of sizeb;, and allocate them the items 6f. It remains to consider the edge of the last type
that P uses. Assume that this edge(is t) then for allk € I(u) we open|S¥| bins of sizeb, and allocate
them the items of¥. Note that the total cost of the bins that we open is exactly the cd3t of

We next consider the non-allocated items (that are supposed to be packed as small items as implied by
the chosen path). We sort the non-allocated items in a non-increasing size order. We start to allocate them
into the space kept for small items as follows.

Let u; be the number of slots for small items in bins of levat the solution as implied by the sum of
valuesny,; in the patterns. LeR; be the number of edges of the first type in the path (inside Bubht
contain at least one slot for small items. We would like to allow a total size of atd&ast:; + 37) that will
be allocated to items to be packed and for that we dpen(1 + <) + 2 new bins of type for small items.

We start to allocate the largest remaining item to the space in the smallest type bin (the largest bin), and
keep allocating items according to the sorted list into the space in the bins. While allocating items into bins
of level 4, if there is not enough room for the current item in the current space we move to the next space.
We do this as long as there are free slots in the bins that correspond to edges of the first type. We use the
new bins of sizeé; and assign small items into them until either we run out of small items to be packed
completely, or we have used all new bins that were opened for ieaglistated above. A new bin that is
opened in this step is calledsaall item bin of typé. We later show that our bound (i.e., the number of new
bins per level) is large enough, and we bound the additional cost caused by the new bins.

We conclude this section by noting that since the layered graph has polynomial size, and its construction
takes polynomial time, finding the shortest patlGitiakes a polynomial time and constructing the solution
based on this path is also polynomial. Therefore, our scheme (for a fixed vailiésc polynomial time
algorithm. Hence we establish the following corollary.

Corollary 11 Given a fixed value of, the time complexity of the scheme is polynomial.

6 Analysis

In this section we prove that our algorithm is an APTAS®CVS. We first bound the cost @?. To do so,
we present a path fromto ¢ in G whose cost i§1 + 32 + 2¢%)opT, + 1£=.

Lemma 12 There exists a pati® froma to t whose cost is at mo$t + 3¢2 + 2¢5)opT, + e,

Proof. Consider an optimal solutiodPT,,. From this solution, remove all items which belong to thin classes
as such items do not exist in the layered graph.

Before we can define a path in the graph, we make some adaptations to the solution, and specifically, we
convert it into a packing of the rounded items where some of the items that are packed as small items are
converted into tiny items in the packing.

This packing is later translated into a path in the graph, where items that are packed as small need
to be considered carefully. We are going to use the space allocated in the solution to the ilﬁgﬁm of
accommodate the items SfH, that are (by definition) no larger of items 6}. This leaves the items &ff
unpacked. Thus we create a new instance of each ite¥fi ef ST, the additional set with the new instances
of these items is denoted I8F. The room taken by each item of the original $étwill be used later for
items of S5. No adaptations are performed on the placement of a ne#*séthe replacement (ﬁf items
into theSj%rl items is done after a packing for the new Sétis created.

12

We next define a packing of the itemsd&hfor 1 < i < r. For every such such thatZ; is good, i.e., if
OPT, packs at least half of the elementshfusing bins of size smaller tha?%, we put each item af’ into
a bin of sizeb;. We earlier showed in Lemma 6 that this transformation increases the cost of the solution by
at most an additive factor 8£20PT,,.

We would like to pack the items @’ for values ofi such thatZ; is not good. This packing is composed
of several steps. These items are converted into “sand”, which are infinitely small items. We insert a set of
empty bins into the packing, and bound the resulting increase in the cost. Next, then we show that these bins
are sufficient to accommodate all sand resulting from items of theSééts values ofi, such thatC; is not
good. We do not convert the items into their original sizes since these items are small for the bins into which
they are packed, and the graph only takes into account an approximated sum of sizes of such items rather
than the specific sizes. Given the list of bins usedlpy;,, we do the following. LetV; be the number of
bins of typei used byorT,,. We open anothei2N;e%] < 2N;e% + 1 bins of typei. This increases the cost
of the solution by an additive factor of at m@sforT,, + 1% (the last term is found by summing up on the
costs of all types, similarly to the summation in the proof of Lemma 4).

By Lemma 7, the space required for the sand resulting from &’sgthere£; is not good) is at most
610 times the total size of items if; \ Si that are packed into bins of size at Ieégsl The valueD, ., is
now defined for values af k such thatZ; is not good, and;, > b;. We letD, ;, be the sum of sizes of the
items of £; \ S¢ that are packed into bins of tygeas small items for these bins. For other values, &f
we letD; , = 0. We associate a total size of (at m@i}ODM of sand created from items 6F with these
items, and specifically, for every item it \ Si packed in a bin of typé such thatD; ,, > 0, which has
sizex, we associate a total size of sandbet’z, which is a part of the sand resulting frasi. This is done
unless the amount of sand that is not associated with any items is smaller, and in this case we associate the
remainder and stop. Due to Lemma 7, every portion of the sand is associated with some item. For every bin
sizeb;, the total size of sand associated with items packed in these bins is therefore ét {fdsb;. Thus
this sand can be packed into the new bins.

We now replace thS]’-C items byS]’?H items. We have a solution for the rounded items, where all items
are packed, but some items that are packed as small (not all of them) are seen as sand. We say that an item
j is tiny for bin i if the smallest bin that can be used for packinbas sizeb;, such thath, < £%b;. We
next convert all items that are packed as tiny items for their bins into sand. We would like to convert the

total amount of sand in a bin of tygeto be an integer multiple af®s;,. Given a bin with a total amount of

sand which isA, we keep an amount ak’ = {ﬁ by, and move the remainder of total size— A/

to the new bins of this type. The total size of sand that these new bins need to accommodate increases to at
most6eO Nyby, + €06, Vi, < 2N,e50,,. Thus the new bins have enough space to accommodate these items.
Empty bins are removed from the solution.

The cost of the current solution is at m@s$t+ 3¢2 + 2¢%)opPT, + % We show a path in the graph
with at most the cost of the current solution.

In order to proceed, we identify a subset of the vertex(ses follows. Consider a vertexof level,
we define a set of indice$(u) C B; as follows. For every: € B;, k € J(u) if and only if the items of
S* are packed in separate bins, i.e £jfis good. The sel/ is defined to contain the vertexif and only if
I(u) = J(u). We also define € U.

Then,a € U by definition, we start the path inand proceed to define the path edge by edge tisil
reached. We show a path in the induced subgraph over U whose cost is at most the cost of the current
solution.

Since the number of layers in a level of the grapBris+ 1 (corresponds to the packing of at mast
bins), we show that for all values &f the number of bins of typé in the current solution never exceeds
3n. Clearly,N;, < n, sinceoPT,, packs at least one item in every bin. Therefore, welget- [2Nk561 <
Ni(1+2¢5%) +1 < 3n.

13

We are ready to construct the path. The first vertex in the pathAs$ each step, we need to show which
edges are traversed inside levels, and which edges are used between levels.

When we reach a first vertex of a level, we traverse an edge for every bin, except for bins of the solution
that contain single items ;. The cost of these bins is added to the cost of the path in the edges of the third,
fourth, and fifth type. For a given bify Denote byA the total size of the items that are tiny items for a bin of
typei, which are packed into this bin. Recall theis an integer multiple of®b;, unless this is the last bin of
sand. If there is at least one item in the bin that is not sand, we further calculate the wj’fmb'aeems from

Skforall k € B; and for allj > 1. Then we use in our path an edge of patt@rg,; = EGAbi, (nk =vF)).
For every bin which contains only sand, we traverse an edge of paitgpn = 8%, (ng? = 0)). The edges
that are traversed are these that decreggeby the largest possible value (i.e., E&y unlessng,,; is smaller
than this value at some point, and then it becomes zero in the next vertex).

The remaining edges connecting vertices inside lewall be the zero cost edges.

Next, we need to define the edges we traverse that connect levels. However, since we only use the subset
U of vertices, there is a unique edge connecting the last vertex we reached in a level to a vertex of the next
level. For an outgoing edgés, v) the label ofv is defined by the label af and the vertex séf. Therefore,
there is a unique edge left for every

Therefore, this identifies a path in the network. The cost of the path up to the last layer of level 1 is
identical to the cost of the adapted solution.

Finally, we need to show that the path reaches vert&ince there is one to one correspondence between
the location of items, that are defined to be packed not as tiny items, in the packing and in the path, we need
to consider items that are packed as tiny. That is, we need to show that in the last vertex of the last level
which we defined for the path, the valuerngf,, is zero.

Since the sum of items that are to be packed as tiny in the graph is only rounded down and never rounded
up, the space in the solution, that is used for sand, is large enough to pack these items. In the packing, the
total size of sand in a bin of typeis always an integer multiple ef b, except for possibly the last bin that
contains only sand. However, we allow the edge of the graph that corresponds to this bin to use the complete
bin for sand, which may only result in allocation of additional space for items that are packed as tiny.

Denote byg the set of indices such thatZ; is good. Then, we note that non-tiny itemsdnT,, that are
not in Ui¢g8i, are transformed to sand if and only if they are tiny, and the itemgé'gsi transformed to
sand (items inJ;cgS* are not transformed to sandi

We next need to consider the paththat the algorithm finds. For this path we show how a packing is
created, and bound its cost.

Clearly, the cost of is at most the cost dP.

Since the total cost of the bins corresponding to the patterns that bel@his tat most the total cost of
P, we conclude that the total cost Bfis at most(1 + 32 + 2£%)opPT,, + 1< We denote the total cost of
P by ¢(P). Since the total cost of the solution is partitioned into the total cost of the7pathd the total
cost of the small item bins of typefor all . Therefore, in order to prove that our scheme is an APTAS, it
suffices to show that the total cost of the small item bins is at afe$P) + g

Lemma 13 The total cost of the small item bins is at mest(P) + @

Proof. We first prove that items packed as tiny items of bins of tiypee of size at most®b;. To prove this

it is enough to show by induction that for every levethe items that were supposed to be packed as tiny

in levels1,...,i as implied by the selected path can indeed be packed in such bins. These are items that
are large for bing + 1, ..., r but are not packed as large items there according to the path, and items that
belong to some sef! that are supposed to be packed as tiny in bins of types , 4. The claim must hold

for i = 0, before any tiny items are packed, since no such items exist. Assume that the claim holds for a

14

level k£ — 1. This means that the items that need to be packed in kewein smaller bins are no larger than
e%b.. The loss of a factor of (i.e., the reason that we conside€b, and nots5b,) is due to the fact that
levels are partitioned into phases and we may allow a large item for a bin oftigbe packed in bin of
typek as tiny, if its size is at most’b;, and it is supposed to be packed as tiny in a bin. This only happens if
it belongs to some seif wherec, < 8¢

The edges of the path assign spaces for the sum of all items (in terms of sand) except an amount that was
lost when rounding down was applied. Such rounding for the current level was applied at most 37 times, one
such time is in the calculation of the total number of slots needed for the tiny items. The other times were
applied on the information on items that had to be packed as tiny, but were not small enough just yet, that
was kept in six components. Each such component is updated at most six times (it is changed only between
phases and not between every pair of levels) before it is added to the total amount of tiny items.

Thus by increasing the space, reserved for items which are packed as tiny in this le¥l(tq + 37),
the allocated space is large enough for the items if they are packed as sand.

We conclude that here may be an additional amount of sand at3Td$t.. Thus, if we make sure that
at least this total sum of items can always be packed in bins of keyel (unless all tiny items are packed,
and no additional tiny items remain to be packed into smaller bins), the inductive claim is proved. We need
to take into account that the real items are not sand, but of size atbpst

If no new bins for small items are opened in levelve are done since this means that all remaining
unpacked items are packed. Assume therefore that in ke\adlleast one bin for small items was opened.
When the items are packed greedily into the existing bins, the space that is reserved in each bin is filled
except for possibly a remainder of size at mo3t; in a bin of sizeb;. The reason is that some item of size
at most5b; did not fit in it. This is true for the original bins as well as for the new bins.

The total size of tiny items that can be packed into the original bins of this level is therefore at least
80y, i, —°by, Ry, whereRy, is the number of edges in the path which belong to Iésid correspond to non-
empty patterns. After the original bins are used, new ones are opened, where each new one is opened only
after a previous bin is full up to a level of at leagt— c°b;.. Thus, if we keep opening bins until all required

items are packed, the number of additional bins is at &&M] <1 +e)(Rp +37e) +1<

%)
Rpe®(1 + ¢) + 2. The inequalities hold since < 10 . Since the algorithm opens this number of bins, we
can conclude that it succeeds to pack all required items. The claim is therefore proved fér level

We next calculate the additional cost, on top of the cost of the path. $;hce< Z (1+8 7 = 1+€ , we
=1

conclude that if we ignore the last tvgmall item binf each type, and consrder onIy the remaining small
item bins, it suffices to show that the total cost of these bins is at megP). However this holds since

the original cost is at least |, R;¢; (recall thatR; is the number of edges of the first type inside levidlat
=1

contain some tiny items), and the additional cosZs;5(1 +e)(Ric;) < Z 4(R;ic;) (sinces(1 +¢) < 1).
=1 =1
[

We next show our main result of this paper, i.e., that our scheme is an APTASIWIS.
Theorem 14 The main scheme is an APTAS E€VS.

Proof. Recall thats is a fixed positive constant. Then, by Corollary 11, finding a feasible solution based
on our scheme can be done in polynomial time. It remains to bound the performance guarantee of our
algorithm.

By Lemmas 4, 12 and 13, we conclude that the total cost of the solution is at mest')((1 4 32 +
266)0PT, +112) + U2 1 2009 < (144¢2) 0P, + 5; (sinces < 1f;). By Lemma30PT, < (1—|—35)OPT

£

and therefore, the cost of the solution returned by the scheme is af miegt?) (1 + 3€)OPT—|— —$-. Taking

15

the value ofoPT before applying Lemma 2 the performance guarantee increagesitdes?)(1 + 3¢)(1 +
£)oPT+ -%;. The claim follows from(1 +) (1 + 4¢2)(1 + 3¢) < 1+ 6e = 1 + O(e) (sinces < 13;) and
from %, = 0(1). m

7 Concluding remarks

We showed how to obtain an APTAS for the variant of variable sized bin packing where the cost of a bin
of sizeb; is a general cost and not necessabijlyln order to establish our scheme we needed to reduce the
problem using lemmas 2 and 3. We note that even though the reduction in Lemma 2 uses standard tricks,
the property of the nice solution is a novel method and is the crucial tool in the construction of our scheme.
It is clear that the notion of a nice solution is the main combinatorial structure that allowed us to reduce the
time complexity of the scheme into a polynomial scheme. We argue that similar approaches can provide
generalizations of approximation results for unweighted problems into approximations for weighted variants
(using different notions of nice solutions that would be tailored per problem).

References

[1] E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms for bin packing: A survey.
In D. Hochbaum, editoApproximation algorithmsPWS Publishing Company, 1997.

[2] J. Csirik. An online algorithm for variable-sized bin packirrta Informatica 26:697—709, 1989.

[3] W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved withia in linear time.
Combinatorica 1:349-355, 1981.

[4] D. K. Friesen and M. A. Langston. Variable sized bin packi8tAM Journal on Computind.5:222—
230, 1986.

[5] M. R. Garey, R. L. Graham, and J .D. Ullman. Worst-case analysis of memory allocation algorithms.
In Proc of the 4th Symp. Theory of Computing (STOG'papes 143-150, 1972.

[6] D.S. Hochbaum and D. B. Shmoys. A polynomial approximation scheme for scheduling on uniform
processors: Using the dual approximation appro&AM Journal on Computind.7:539-551, 1988.

[7] D. S. JohnsonNear-optimal bin packing algorithm$hD thesis, MIT, Cambridge, MA, 1973.

[8] H. W. Lenstra Jr. Integer programming with a fixed number of variablégthematics of Operations
Research8:538-548, 1983.

[9] J. Kang and S. Park. Algorithms for the variable sized bin packing probEumopean Journal of
Operational Researgl147(2):365-372, 2003.

[10] N. Karmarkar and R. M. Karp. An efficient approximation scheme for the one-dimensional bin-
packing problem. IfProceedings of the 23rd Annual Symposium on Foundations of Computer Science
(FOCS’82) pages 312-320, 1982.

[11] C.-L. Liand Z.-L. Chen. Bin-packing problem with concave costs of bin utilizatidaval Research
Logistics 53(4):298-308, 2006.

[12] F. D. Murgolo. An efficient approximation scheme for variable-sized bin pack#igM Journal on
Computing 16(1):149-161, 1987.

16

[13] S.S. Seiden. An optimal online algorithm for bounded space variable-sized bin paskdig.Journal
on Discrete Mathematic44(4):458-470, 2001.

[14] S. S. Seiden, R. van Stee, and L. Epstein. New bounds for variable-sized online bin p&Riking.
Journal on Computing32(2):455-469, 2003.

17

