
An APTAS for generalized cost variable sized bin packing

Leah Epstein∗ Asaf Levin†

Abstract

Bin packing is a well known problem which has a large number of applications. Classical bin packing
is a simple model where all bins are identical. In the bin packing problem with variable sized bins, we
are given a supply of a variety of sizes. This latter model assumes, however, that the cost of a bin is
always defined to be its exact size.

In this paper we study the more general problem where an available bin size is associated with a fixed
cost, which may be smaller or larger than its size. The costs of different bin sizes are unrelated. This
generalized problem has various applications in storage and scheduling. In order to generalize previous
work, we design new rounding and allocation methods. Our main result is an APTAS for the generalized
problem.

1 Introduction

Bin packing is a natural and well studied problem which has applications in computer storage, bandwidth
allocation, stock cutting, transportation, and many other important fields. The study of bin packing started
more than thirty years ago [5, 7]. Since then a large amount of research was dedicated to this problem and
its variants (see e.g. [1, 3, 10]).

An interesting variant of this problem isVARIABLE SIZED BIN PACKING, where the supply of containers
is not only of a single bin type, but some fixed (finite) number of given sizes is available. The cost of using
a bin is simply its size. The first to investigate the variable sized bin packing problem were Friesen and
Langston [4]. Several papers studied this problem in offline and online environments [12, 2, 13, 14].

We consider the following variant of one dimensional bin packing, which is a natural generalization of
both classical bin packing and variable sized bin packing. We are given an infinite supply of bins ofr types
whose sizes are denoted bybr < · · · < b1 = 1. We denoteB = {b1, . . . , br}. Items of sizes in(0, 1] are to
be partitioned into subsets. The set of items is denotedS, and the items have indices in the set{1, 2, . . . , n}.
The size of itemj is denoted bysj . Each subsetJ in the partition has to be assigned (packed) to some
bin typei, such that the set of items fits into an instance of this bin type, i.e.,

∑
j∈J

sj ≤ bi. A bin typei is

associated with a costci. We assumec1 = 1. Thus, the cost of a solution is the sum of costs of the bins
used, taking multiple subsets which are using the same bin type into account. That is, if the subsets are

J1, . . . , Jk, and subset̀ is packed into a bin of typei` (for 1 ≤ ` ≤ k), we get the cost
k∑

`=1

ci` . The goal is

to find a feasible solution whose total cost is minimized. Without loss of generality we letbr+1 = cr+1 = 0.
We call this problemGENERALIZED COST VARIABLE SIZED BIN PACKINGand denote it byGCVS.

This problem clearly generalizes the classical bin packing problem (whereB = {b1}), and variable
sized bin packing (whereci = bi for 1 ≤ i ≤ r). Classical bin packing assumes a very simple model with

∗Department of Mathematics, University of Haifa, 31905 Haifa, Israel.lea@math.haifa.ac.il .
†Department of Statistics, The Hebrew University, Jerusalem, Israel.levinas@mscc.huji.ac.il.

1

uniform bin sizes. Although a large number of real-world problems can indeed be defined as such a problem,
an even larger amount of problems involve bins of various sizes. This started the study of variable sized bin
packing. To simplify reality, such models usually assume that the cost per unit of storage area is constant.
Once again, this is not always the case in real life, as can be easily seen from prices of memory sticks and
portable hard disks. Moreover, typically a smaller container has a larger cost per unit of storage, as it is the
case with various storage devices nowadays. On the other hand, we sometimes encounter a phenomenon
where we find that due to technological barriers, the cost of a memory storage device with a twice as large
capacity, is more than twice the cost of the more modest device.

These are just examples to the fact that in reality, the cost of storage containers just cannot be assumed
to be linear in their sizes. Previous studies of generalized costs functions assumed that the price per unit
decreases as the bin size grows. Kang and Park [9] who studied a generalized problem with cost functions
satisfyingci

bi
≤ cj

bj
for i > j, suggested an algorithm of asymptotic approximation ratio3

2 . Another possibly
reasonable assumption is a concave cost function (see [11]). From the scenarios stated above, showing that
pricing policies can be arbitrary, we deduce that neither options describe the typical real situation. This leads
to the study of general cost functions.

It is known that no approximation algorithm for the classical bin packing problem can have a cost within
a constant factorr of the minimum number of required bins forr < 3

2 unlessP = NP. This leads to the
usage of the standard quality measure for the performance of bin packing algorithms which is theasymptotic
approximation ratioor asymptotic performance guarantee. For an algorithmA, we denote its cost on an
inputX byA(X). An optimal algorithm is denoted byOPT, and its cost of inputX is denoted byOPT(X).

The asymptotic approximation ratio for an algorithmA is defined to be

R(A) = lim sup
n→∞

sup
X

{
A(X)

OPT(X)

∣∣∣∣∣OPT(X) = n

}
.

The natural question, which was whether this measure allows to find an approximation scheme for
classical bin packing, was answered affirmatively by Fernandez de la Vega and Lueker [3]. They designed
an algorithm whose output never exceeds(1 + ε)OPT(I) + f(ε) bins for an inputI and a givenε > 0. The
running time was linear inn, but depended exponentially onε. Such a class of algorithms is considered to
be an APTAS (Asymptotic Polynomial Time Approximation Scheme).

Karmarkar and Karp [10] developed an AFPTAS (Asymptotic Fully Polynomial Time Approximation
Scheme) for the same problem. This means that using a similar (but much more complex) algorithm, it is
possible to achieve a running time which depends on1

ε polynomially, without any loss in the approximation
ratio. Karmarkar and Karp [10] also designed an algorithm which uses at mostOPT(I) + log2[OPT(I)] bins
for an inputI.

Murgolo [12] designed an APTAS and an AFPTAS for the bin packing problem with variable sized bins.
These results are relatively similar to those of [3, 10] and rely heavily on the fact that the cost of a bin equals
its size.
Outline. In this paper, we design an APTAS forGCVS. In Section 2 we state and prove some reductions
which allow us to seek a slightly simpler structure of solution. These reductions need to be handled carefully
to enable the usage of some simplifying assumptions later. In particular, we define a structure for optimal
packings, which turns out to give a solution which is not very different from an overall optimal solution,
but allows to simplify the search for optimal solutions. Such a solution allows to pack an item into a bin
that is either much larger than the smallest bin that can contain this item, or whose cost is not more than a
constant multiplicative factor (in terms ofε) away from the cost of such a minimal bin. Before describing
the scheme in full detail, we present an outline in Section 3. In Section 4 we show how to apply grouping
and rounding procedures on the input. We partition the input into sets as a function of the smallest bin

2

they can fit into. In order to be able to apply rounding techniques on each set, we show that the largest
items of every group can be packed according to one of two very different packing rules. We note that the
number of item sizes resulting from the rounding procedure is not a constant. Therefore, many of the known
methods to solve such rounded problems cannot be applied to solve our rounded problem. One example
of a standard approach which fails is to formulate an integer programming formulation for the rounded
problem. However, in our case its dimension is not constant, and therefore we cannot simply use Lenstra’s
algorithm [8] to solve the rounded instance and find an optimal packing for it. Despite these difficulties
we show in Section 5 that we can get a near optimal solution to the original problem using a shortest path
computation. We use the properties proved in Section 2 to reduce the size of the graph in which we look
for the shortest path, to a polynomial size. Our shortest path computation allocates items to bins, where bin
sizes are considered along the path in an increasing order of costs, starting with the cheapest bins. We prove
the correctness of our scheme in Section 6. We conclude this paper by some concluding remarks in Section
7.

This algorithm uses methods of rounding and grouping that are based on ideas from [3] and [12]. How-
ever, as the adaptation of these ideas into a scheme with general costs requires a treatment of the bin types
in a sorted order, we apply a layered graph based scheme for this. Such a scheme (for a scheduling problem)
was given by Hochbaum and Shmoys [6]. In order to be able to design a solution for the most general
problem with no assumptions on the cost function, we additionally apply some novel methods. Note that
the running time of our APTAS depends on the number of bin types,r, polynomially (i.e.,r is seen as a part
of the input). Throughout this paper we denote byε a fixed positive constant such thatε < 1

100 and 1
ε is an

integer.

2 Some reductions

In this section we show a series of modifications onB and restrictions on the optimal solution. We do not
apply any modifications on the input items at this time. In the following sections we will compute a solution
that uses only the modified set of bins, and approximates an optimal solution among the possible solutions
under the specified restrictions. The first reduction keeps at least one optimal solution unaffected, whereas
the other reductions change the optimal solutions and moreover result in an increase in the total cost of an
optimal solution. However, we will show that this increase is bounded by a (multiplicative) factor of1 + ε.

Lemma 1 Without loss of generality we assume that the valuesci are monotonically decreasing (i.e., for
i < j, ci > cj).

Proof. To achieve this we show that given a set of bin types and a solution, we can omit some bins fromB

and to change any solution (to a given input) into a solution that does not use bins removed fromB and its
cost is not larger than the cost of the original solution. To achieve this, we apply the following process on
B. While there existi, j such thati < j but ci ≤ cj , remove bin typej from B. Note that sincebi > bj ,
we can move the contents of every bin of sizebj into a bin of sizebi without increasing the cost of a given
solution. This is done until no such pairi, j exists, and thus results in a setB′ where the sequence of values
ci is monotonically decreasing.

Since the process described in Lemma 1 can be applied toB without changing the cost of optimal
solutions, we use the notationB for the set of bin type to which the process was already applied. We assume
in the remainder of the paper that the valuesci are monotonically decreasing.

The following reductions increase the cost of an optimal solution by a factor of at most1 + ε. In our
analysis, we compare the cost of our approximation algorithm to the cost of an optimal solution for the
instance resulting from the reductions, and prove an approximation ratio of1 + O(ε). We get that even

3

though the “real” approximation ratio (i.e., the approximation ratio with respect to an optimal solution of
the original problem) may be slightly larger, it is at most1 + ε times the approximation ratio that we prove,
and thus our analysis results in an approximation factor of1 + O(ε). Therefore, since we are interested in
designing an APTAS for the problem, the reductions are harmless from our point of view. The next lemma
shows that we can assume that the sequence of bin costs decreases geometrically or faster.

Lemma 2 Without loss of generality we may assume that for alli, ci
ci+1

≥ 1 + ε.

Proof. If the claim does not already hold for the input bin types, we apply the following process on the bin
types of the input. Traverse the list of bin types from the largest bin (i.e.,j = 1) to the smallest bin (j = r).
During the traversal keep only a subset of the types, and remove the other types fromB. We keep the first
bin type (j = 1), and recursively assume that the last bin type that is kept has indexj. Then, given the value
j, for i = j + 1, j + 2, . . ., as long ascj

ci
< 1 + ε andi > j we remove thei-th type from the list of bin

types. We always keep the bin type with smallest indexi such thatcj

ci
≥ 1 + ε andi becomes the new value

of j. If there is no such value ofi, we remove all bin typesj + 1, j + 2, . . . , r from B.
Consider a feasible solution that packs the set of itemsS using a bin of typei that is removed during

this process. Then, the set of resulting bins contains a bin typej such that cj

1+ε < ci < cj . Then, we modify
the solution by using a bin of typej to pack all the items inS. Applying this procedure on all bins of types
that were removed fromB, results in a feasible solution to the new instance whose total cost is at most1+ ε

times the cost of the original solution. Therefore, the cost of an optimal solution for the new instance is at
most1 + ε times the cost of an optimal solution for the original instance. Thus, if we design APTAS for
instances satisfying the assumption of the lemma, then the resulting solution will also be an APTAS for the
original instances. We conclude that it suffices to consider instances satisfying the property.

We say that a feasible solution isnice if it satisfies the following condition for every pair of a bin and
an item. Assume that the solution uses a bin of typei to pack a set of itemsS. For a givenj ∈ S, let kj

be the maximum index such thatbkj ≥ sj (i.e., bkj is the smallest bin size wherej can be packed). Then,
eitherbkj ≤ ε6bi or ckj ≥ ε8ci (or both). This means that an item packed in a bin can either fit into a much
smaller bin or that the smallest (and thus cheapest) bin that can accommodate this item has a cost which
differs from the cost of the current bin by a constant factor. Note that an item that does not fit into any bin
of index strictly larger thani immediately satisfies the second condition.

The next lemma shows that we can restrict ourselves to looking for an approximated nice solution.

Lemma 3 Given an instance of theGCVSproblem, denote byOPTn the minimum cost of a nice solution,
and byOPT the cost of an optimal solution (that is not necessarily nice). Then,OPTn ≤ (1 + 3ε)OPT.

Proof. Fix an optimal solutionO whose cost isOPT. It suffices to show how to transform it into a nice
solution whose cost is at most(1 + 3ε)OPT. We do the transformation for each packed bin inO separately.
Assume thatO uses a bin of typei to pack the item set which is denoted byC. We use a set of bins to
packC in order to convert the packing ofC into a nice packing. To do so, we first identify the sequence
i1, i2, This sequence is independent ofC and can be computed as a function ofi as follows. Leti` be
the smallest value of an indexq such thatcq ≤ ε`+6 · ci. Then, instead of using just one bin (of typei) to
pack the items inC, we use one bin of typei and in addition, for each̀ = 1, 2, . . ., we use 2

ε6 bins of type
i`. This set of bins is used to packC as follows. We use the single bin of typei to pack two sets of items.
The first set consists of all items ofC with size larger thanbi1 . The second set consists of all itemsj such
thatbkj ≤ ε6bi (wherekj is as defined above, the index of a smallest type of bin into which itemj can fit).
Note that for such items it holds thatsj ≤ ε6bi. Denote the set of items that we pack using this unique bin
of typei by C0. The rest of the items fromC is partitioned into classes, where the`-th class, denoted byC`,
contains all items whose size is betweenbi`+1

andbi` . I.e.,C` = {a ∈ C \ C0 : bi`+1
< sa ≤ bi`}.

4

Then, the items of setC0 clearly fit into the bin of typei, sinceC was originally packed into this bin
andC0 ⊆ C. The items ofC` for ` ≥ 1, are packed using the First-Fit algorithm into at most2

ε6 bins of
type i`. To see this last claim note that ifC` 6= ∅ thenbi` ≥ ε6bi. Therefore, the total size of the items in

C` is at most
bi`
ε6 (as they are packed into a single bin of typei). Since First-Fit opens a new bin only if the

total size of the items in the previous bin and the new item is at least the capacity of the bin, it has at most
one bin with a total size of less than half the size of the bin, and therefore we conclude that First-Fit, when
applied toC` and bins of typei`, will use at most2

ε6 bins.
Therefore, instead of using one bin of typei whose cost isci, we use a set of bins whose total cost is at

mostci +
∞∑

`=1

2
ε6 · ci` ≤ ci +

∞∑
`=1

2
ε6 · ε`+6 · ci = ci ·

(
1 + 2

∞∑
`=1

ε`

)
= ci

(
1 + 2ε

1−ε

)
≤ ci(1 + 3ε), where

the last inequality holds sinceε ≤ 1
3 .

It is clear that the resulting packing ofC0 into the bin of typei satisfies the conditions of a nice packing
since all items violating the condition were removed from this bin. We next prove that the packing of every
newly created bin satisfies the conditions of a nice packing as well. Consider an itemj ∈ C` (which is
packed into a bin of typei`). We show that this item satisfies the second condition of nice packings. By
definition,ci` ≤ ε`+6ci. Note thati`+1 must exist sincecr+1 = 0. Consider the bin typekj . By definition
of C`, sj > bi`+1

, and thuskj < i`+1. However,i`+1 is the smallest indexq for which cq ≤ ε`+7 · ci, and
thusckj > ε`+7 · ci ≥ εci` ≥ ε8ci` .

Application of the above transformation on all the bins ofO results in a feasible solution that is also nice
(as shown above, by the definition of the setsC` for ` ≥ 0) whose cost is at most(1 + 3ε)OPT.

In the sequel we assume that the instance satisfies the assumptions of Lemma 2. We approximate the
minimum cost nice solution whose cost is denoted byOPTn, and construct a feasible solution whose cost is
at most(1 + O(ε)) · OPTn + f(1

ε), wheref is some function (which will turn out to be polynomial). Note
that the solution that we obtain is not necessarily nice, since the original problem does not require this (it is
possible however to convert it into a nice solution in polynomial time by applying a construction as above).

3 Outline of the scheme

In this section we provide the outline of the scheme. The complete details will be given in the following
sections.

The first step of the scheme is to pre-process the list of bin sizes so that this list will satisfy the properties
of Lemmas 1 and 2.

We next partition the set of items into types: For a bin of typei, we say that an item of sizesj is large
for a bin of typei if ε6bi ≤ sj ≤ bi. It is small for a bin of typei if sj < ε6bi, and otherwise it ishuge for
a bin of typei. An itemj is large if there is a typei such that it is large for a bin of typei. We denote byL
the set of large items. We partitionL into sets: For alli, Li consists of all the large items for a bin of typei

that are huge for a bin of typei + 1, andLr consists of all the large items for a bin of typer.
The next step of the scheme is to apply linear grouping for eachLi separately. We denote bySi

1 the set
of the largest items resulting from the linear grouping ofLi.

Our scheme looks for solutions that satisfy an additional property. That is, for eachi we consider only
two possibilities for packingSi

1: Either we have|Si
1| dedicated bins of sizebi, each of which contains exactly

one item from the setSi
1 and no other item is packed into such a special bin, or the items ofSi

1 are packed as
small items in much larger bins (note that we do not allow mixtures of the two options, for a given value of
i). We will show that there exists such a solution that does not cost much more than an optimal nice solution.

To find our solution we construct a layered graph. The graph is split into levels, where each leveli

corresponds to decisions regarding the packing of bins of typei. Each level consists of3n+1 layers, where

5

each layer is associated with packing at most one bin of the corresponding type. At the entry for each level
we decide whetherSi

1 is packed in dedicated bins or the items ofSi
1 are packed as small items in much

larger bins (the graph contains edges of both possibilities). Each vertex encodes the number of (large) items
of each rounded size that still needs to be packed. A vertex encodes also the rounded total size of the small
items (i.e., small for the bin type of its level) that still need to be packed. Each vertex needs to recall the
subset of the indicesi such thatSi

1 is packed as small items only if for the current level the items ofSi
1 are

still large items (and not small items).
We then look for a shortest path in this (very large but still polynomial-size) layered graph. This shortest

path corresponds to a well-defined packing of the items that are packed as large items. Afterwards, the
remaining items need to be distributed to the empty slots in the resulting packing. To this end, additional
bins (of each size) are used, if the process of packing small items as indicated by our path, did not result in
packing a large enough total size of small items. We show that these additional bins have a small cost and do
not hurt the returned solution too much. Thus we show that the resulting solution is a good approximation
of an optimal solution.

4 Linear grouping

Recall that for a bin of typei, we say that an item of sizesj is large for a bin of typei if ε6bi ≤ sj ≤ bi.
It is small for a bin of typei if sj < ε6bi, and otherwise it ishuge for a bin of typei. An item j is large if
there is a typei such that it is large for a bin of typei. We denote byL the set of large items.

We next partitionL into subsets according to the size of the items.Lr is the set of large items for a bin
of typer. If we definedLj+1, . . . ,Lr, thenLj is defined as the intersection of the set of large items for a
bin of typej and the setL \ (Lj+1 ∪ · · · ∪ Lr).

For eachi such that|Li| ≤ 1
ε16 we pack each item ofLi in a bin of typei by itself (such a bin is called a

dedicated bin). Such a classLi with at most 1
ε16 elements is calledthin.

Lemma 4 The total cost of packing each item of a thin class into a dedicated bin is at most1+ε
ε17 .

Proof. Since each bin type is used to pack at most1
ε16 items, the total cost of these bins is at most the

total cost of using 1
ε16 copies of every bin in the input sequence. I.e., it is at most1

ε16 ·
r∑

i=1
ci ≤ 1

ε16 · c1 ·
r−1∑
i=0

(
1

1+ε

)i
≤ 1

ε16 · c1 ·
∞∑
i=0

(
1

1+ε

)i
= 1+ε

ε17 where the first inequality holds by Lemma 2.

By Lemma 4, we can assume without loss of generality that for each non-empty class of large items, the
class has at least1

ε16 elements.
Next, we perform a linear grouping of each classLi, separately. More precisely, let|Li| = ni (recall

that we assume thatni ≥ 1
ε16). We sort the elementsai

1, a
i
2, . . . a

i
ni

of Li according to their size. That is, we
denote the size of the elementai

j by si
j , and we assume without loss of generality thatsi

1 ≥ si
2 ≥ · · · ≥ si

ni
.

We partitionLi into 1
ε16 subclasses denoted bȳSi

1, S̄
i
2, . . . , S̄

i
1/ε16 . The partition is defined by the following

two conditions.|S̄i
p| =

⌊
niε

16
⌋

or |S̄i
p| =

⌈
niε

16
⌉

for all p ≥ 1, and if p < q then|S̄i
p| ≥ |S̄i

q| (thus we
always have|S̄i

1| =
⌈
niε

16
⌉
). Moreover, we require that ifai

j ∈ S̄i
p andai

k ∈ S̄i
q such thatp < q, then

si
j ≥ si

k. ThusS̄i
1 is a set which contains the largest

⌈
niε

16
⌉

elements ofLi (breaking ties arbitrarily). In
general, we partitionLi to approximately equal size sets (sets of lower indices may have one additional item

compared to sets of higher indices) so thatS̄i
j contains the largest elements fromLi \

(
S̄i

1 ∪ · · · ∪ S̄i
j−1

)
.

We note thatniε
16 ≤ |S̄i

1| ≤
⌊
niε

16
⌋

+ 1 ≤ 3|Li \ S̄i
1| · ε16, where the last inequality can be proved using

simple algebra and the properties|Li \ S̄i
1| = ni − |S̄i

1| ≥ ni − (niε
16 + 1), ε < 1

3 andni ≥ 1
ε16 .

6

For all i and allj ≥ 2, we round up the size of all the elements ofS̄i
j to the size of the largest element of

S̄i
j , the set of rounded items is denoted bySi

j , and we denote byσi
j the rounded up size of an item inSi

j . We
also defineSi

1 = S̄i
1. The set of rounded (large) items, resulting fromLi is denoted byL′i, and the set of all

rounded (large) items is denoted byL′. In the APTAS of [3] for the classical bin-packing problem, the set
of the largest elements in the linear grouping is packed using separate bin for each such item. This packing
is applied also for the later APTAS of Murgolo [12] for the variable size bin packing problem. In both
cases, such a packing increases the cost of a packing only by an arbitrarily small factor. In the generalized
problem, the important property that a small number of items ofLi can be packed into separate bins of size
bi does not hold, since an optimal packing may pack many items ofLi into larger bins. Instead, for eachi,
we allow the algorithm to choose between two possibilities: in the first possibility the algorithm packsSi

1

using a separate bin of sizebi for each item inSi
1. This is the typical packing of the set of largest items of

the linear grouping, and it is useful (by the analysis of the algorithm) in cases where most of the items of
Li are packed inOPTn into bins of size smaller thanbi

ε6 . For other cases, we allow the algorithm to pack the
setSi

1, seeing them as a part of the set of small items of larger bins. In this case the algorithm will pack the
elements ofSi

1 using bins of size at leastbi
ε6 . That is, in our scheme the total size of elements ofSi

1 will be
added to the total size of small elements that the algorithm needs to pack using bins whose size is at leastbi

ε6 .
To state the next lemma we consider a fixed optimal nice solution (the optimum among the nice solutions)
denoted byOPTn. We useAi to denote the subset of elements ofLi \ S̄i

1 which OPTn packs into bins of size
smaller thanbi

ε6 . If |Ai| ≥ 1
2 |Li \ S̄i

1| we say thatLi is good.

Lemma 5 Assume thatLi is good. Consider a packing where each item ofSi
1 is packed into a separate bin

of sizebi. In this case, the total cost of bins containing the items ofSi
1 is at most6 · ε4 · ψi, whereψi is the

total cost of the subset of bins inOPTn, that consists of all bins that contain at least one item ofAi.

Proof. We first argue that each bin that is used to pack an element ofAi, has size of at leastbi. Since
Ai ⊂ Li, such an item is not large forbi+1, and sincebi+1 < bi this means that it is huge for it and does
not fit into smaller size bins. Therefore, the cost for such a bin is at leastci. Next note that each bin that
is used to pack an element ofAi, packs at most1

ε12 such elements. This follows since each such element
has size of at leastε6bi, and the size of such bin is smaller thanbi

ε6 (due to the definition ofAi). Therefore,

there exist at least|Li\S̄i
1|

2 ε12 bins of OPTn, where each one of them costs at leastci, and each one of them

contains at least one element ofAi. Soψi ≥ |Li\S̄i
1|

2 ε12ci. As already stated in the proof of Lemma 4,
|Si

1| = |S̄i
1| ≤ 3|Li \ S̄i

1|ε16, and therefore|Si
1| is at most6 · ε4 times the number of bins that are used by

OPTn to pack the elements ofAi. The claim follows since each bin used to pack an element ofLi costs at
leastci which is exactly the cost of the bins used to pack each element ofSi

1.

Lemma 6 The total cost of assigning each element ofSi
1 a separate bin, for all values ofi such thatLi is

good, is at most3ε2 · OPTn.

Proof. By Lemma 5, the total cost incurred bySi
1 for a value ofi such thatLi is good, is at most6ε4 times

the total cost of the bins thatOPTn uses to pack elements ofAi. SinceOPTn is nice, and the first property
of nice packings does not hold for the bin sizes that we consider here, we conclude that each of these bins
has a cost of at leastci and at mostci

ε8 . By Lemma 2, there are at most
⌈
log1+ε

1
ε8

⌉
bin types with cost in the

interval
[
ci,

ci
ε8

]
. Therefore, a specific bin can be used byOPTn to pack elements from at most

⌈
log1+ε

1
ε8

⌉
different setsAi. Thus, the total cost of assigning each element ofSi

1 a separate bin for alli such thatLi

is good, is at most6ε4 · ⌈log1+ε
1
ε8

⌉ · OPTn ≤ 3ε2OPTn where the last inequality can be easily verified and
holds sinceε < 1

100 .

7

By Lemma 6, if we allow our scheme to choose one of the two possibilities described above for eachi,
then the cost of the largest sets in the linear groupings can be disregarded if the class is good. We argue in
the next lemma that if the classLi is not good then by deciding to packSi

1 in bins of size at leastbi
ε6 , we

increase the space demand for such bins by a multiplicative factor of at most(1 + 6ε10). This increase does
not cause any harm, since in any case we will have more dominant rounding errors (that will still lead to an
(1 + O(ε))-approximate solution with respect to the asymptotic approximation ratio).

Lemma 7 If Li is not good, then the total size of the elements ofSi
1 is at most6ε10 times the total size of

elements ofLi \ S̄i
1 that are packed inOPTn into bins which are of size at leastbi

ε6 .

Proof. UsingAi < 1
2 |Li\S̄i

1|, we get|Li\(S̄i
1∪Ai)| ≥ 1

2 |Li\S̄i
1| and thus |Si

1|
|Li\(S̄i

1∪Ai)| ≤
3|Li\S̄i

1|ε16

1
2
|Li\S̄i

1|
≤ 6ε16.

Sinceε6bi ≤ si
j ≤ bi for all j, the claim follows.

The next lemma holds by a similar argument to the arguments of [3]. Namely, using the fact that if the
items ofSi

1 are removed for alli, the rounded input can be mapped back into the original input, so that every
item is mapped to an item that is no smaller than it.

Lemma 8 Given an instance of theGCVS problem, then the optimal solution cost of the instance after
applying the linear grouping step as described above (with rounded up sizes), and removing all items inSi

1

for all i, is at most the cost of the optimal solution to the original instance.

5 The main scheme

In this section we show how to use the linear grouping, as it is described in the previous section, to compute
an approximated nice solution. Our method is based on constructing a layered graph, and then computing
a shortest path in this graph. This shortest path is then used to construct a feasible solution of theGCVS
problem.

For i = 1, 2, . . . , r we denote bydi the total size of elements, whose individual sizes are in the interval
(bi+1, ε

6bi). Such elements are huge with respect to bin typesi + 1, i + 2, . . . , r and small elements with
respect to bin typei. They are not large with respect to any type of bin. Ifbi+1 ≥ ε6bi, thendi = 0.

A level in a layered graph is defined as a consecutive set of layers. Our layered directed graphG =
(V, E) is composed ofr + 1 levels, where thei-th level corresponds to decisions regarding the packing of
elements into bins of typei (recall thatbr+1 = 0 and hence there are no elements packed into bins of type
r +1. We add this level to unify the presentation of our scheme). Each level consists of3n+1 layers where
n is the total number of items in the input. Each edge connects a vertex of one layer with a vertex of the
consecutive layer, where the layers are ordered so that first there are the3n + 1 layers of levelr + 1, then
the layers of levelr, and so on up to the layers of level1. We add toG one additional vertex denoted byt,
which is defined to be the very last layer. We partition the levels into phases as follows. A leveli is aphase
p level if bi ∈

(
εp, εp−1

]
. For a bin typei, we denote byBi = {k : bk ∈

[
ε6bi, bi

]
andck ∈

[
ε8ci, ci

]}.
For a phasep level i, a pattern of leveli corresponds to a packing of a bin of sizebi with elements

resulting from the linear grouping, which are of size in the interval[ε6bi, bi]. These are elements in
⋃

k∈Bi
j≥2

Sk
j ∩

{a ∈ S : σa ∈ [ε6bi, bi]}. Each such bin can contain space for smaller items as well, where the space defined
by the pattern is an integer multiple ofε6bi. This integer is calledthe number of slots for small items of the

patternand denoted bynslot. Formally, a pattern of leveli is

(
nslot, (nk

j) k∈Bi
j≥2

)
, wherenk

j is the number of

items fromSk
j that are packed into this bin. In this notation we assume thatnk

j = 0 if σk
j < ε6bi.

8

Lemma 9 The number of possible patterns of leveli is O((nε16+2)
8 log1+ε

1
ε +1

ε16 ·(1
ε6 +1)). I.e., it is bounded

by a polynomial in the input size.

Proof. The numbernslot is an integer in the interval[0, 1
ε6]. The numbernk

j is an integer in the interval
[0, dnε16e]. By Lemma 2,|Bi| is at mostlog1+ε

1
ε8 + 1. Since each such class (whose index belong toBi)

has at most1
ε16 different values of element size, we conclude that the number of possible patterns of leveli

is at mostO((nε16 + 2)
8 log1+ε

1
ε +1

ε16 · (1
ε6 + 1)).

We next describe the vertex set of our layered graphG. A vertexu of thei-th level, which is a phasep
level, is associated with a label consisting of the following information which has four parts. The first part
contains information on the numbernk

j (u) of items fromSk
j that still needs to be packed, for relevant values

of k andj, if the current vertex is reached. That is, for everyk ∈ Bi and for allj ≥ 2, the label contains
the numbernk

j (u) of remaining such elements. The second part of the label contains information on the
total sizeD of small elements for a bin of typei that needs to be packed. This information in the label is

nslot(u) =
⌊

D
biε6

⌋
. Note thatD is an approximated sum of such items, which never exceeds the real amount

to be packed. The third part of the label contains approximated sums of items that we decided to pack as
small items, but are still considered to be large items for bins of typei, and thus this information should be
carried over to future phases. To be more precise, if leveli is a phasep level, then the label contains six
integer numbersnp

slot(u), np+1
slot (u), . . . , np+5

slot (u), wherenq
slot(u) · biε

6 (for q = p, p + 1, . . . , p + 5) is an
approximated sum of the sizes of all items whose sizes are in

(
εq, εq−1

]
, and the smallest bin that is large

enough to contain such items is of typek for somek > i such thatck < ε8ci (and thereforek 6∈ Bi). Note
that such items are packed as small items in a nice solution, however they are still large items for a bin of
typei (this is so since for an itemx we haveεq < sx ≤ bk < bi ≤ εp−1 ≤ εq−6 and thereforesx ≥ ε6bi).
The fourth part of the label is described next. For allk ∈ Bi, the label contains the information regarding
whether we decide to pack each member ofSk

1 using its own bin of sizebk, or all elements ofSk
1 are packed

as small items in bins of size at leastbk
ε6 . Therefore, the label encodes a subsetI(u) of the index setBi and

if k belongs to this subset, we decide to pack each element ofSk
1 using a dedicated bin of sizebk.

Lemma 10 The number of vertices in the graph is polynomial in the input size.

Proof. Consider a phasep level i and a given layer of this level. In this layer there is a vertex for each
possible value of the label. Since the number of levels isr + 1 and the number of layers in each level is
3n + 1 (plus one last layer which consists of a single vertex), in order to prove the claim it suffices to show
that the number of possible labels for leveli is polynomial. The numbernk

j (u) is an integer in the range
[0, ni], and therefore there are at mostn + 1 such possibilities. We have to identify this number for the pairs
of indicesk andj such thatbk ∈ [ε6bi, bi], ck ∈ [ε8ci, ci] andj = 2, 3, . . . , 1

ε16 , and by Lemma 2 there
are at most1 + log1+ε

1
ε8 values thatk can have. Therefore, the number of possibilities for the first part of

the label is at most(n + 1)(1+log1+ε
1

ε8
)· 1

ε16 and sinceε is a fixed constant, this number is polynomial in the
input size. Next, consider the number of possibilities fornslot(u). Note that the number of small elements
for a bin of typei is at mostn, and each one of them has size less thanε6bi. Therefore,D < nbiε

6, and we

conclude thatnslot(u) =
⌊

D
biε6

⌋
is an integer in the interval[0, n − 1]. Hence, the number of possibilities

for nslot(u) is at mostn. We next bound the value ofnq
slot(u) for q = p, p + 1, . . . , p + 5. Note that each

item considered so far has a size smaller thanbi, and there are at mostn such items. Therefore, the total size
of these items (that still needs to be packed) is less thannbi. Hence,nq

slot(u) ∈
[
0, nbi

biε6

)
, since this is an

integer, we get that the number of possibilities for this value is polynomial (for a fixed value ofε). It remains
to bound the number of possibilities forI(u). By Lemma 2,|Bi| = log1+ε

1
ε8 + O(1), and the number of

9

possibilities forI(u) is the number of subsets ofBi that isO(2log1+ε
1

ε8) that is a constant (for a fixed value
of ε).

We define five types of edges. The first two types of edges are edges connecting two vertices from a
common level (and consecutive layers). The last types of edges connect vertices from consecutive levels.
The first type of edges has the purpose of assigning a set of items into a bin. The second type allows to
bypass a bin and not use it. The next two types translate configurations of different levels. The last type
allows to terminate all paths in the target vertext.

1. The first type of an edge connects two vertices from two consecutive layers of a common leveli

wherei is a phasep level. It corresponds to a packing of a single bin of sizebi according to a pattern

of level i denoted by

(
nslot, (nk

j) k∈Bi
j≥2

)
. The two vertices connected by such an edge(u, v) have labels

that differ only in the first and second part of the label (soI(u) = I(v) and nq
slot(u) = nq

slot(v) for

q = p, p + 1, . . . , p + 5). The first part of the label changes according tonk
j (v) =

(
nk

j (u)− nk
j

)+
for all

k ∈ Bi and for allj ≥ 2 (where for a real numbera we leta+ = max{a, 0}). That is, the first part of the
the label ofv results from the label ofu by decreasing the amount of items that needs to be packed from the
setSk

j by exactly the number of elements fromSk
j that are packed by the pattern corresponding to this edge.

Similarly, nslot(v) = (nslot(u)− nslot)
+. Such an edge has a cost ofci.

2. The second type of an edge is an edge connecting two vertices in consecutive layers of a common level
with equal labels. Such an edge has a zero cost. Such an edge corresponds to the decision not to pack an
additional bin of the corresponding size.

3. The third type of an edge connects a vertexu that belongs to the last layer of phasep leveli+1, to a vertex
v that belongs to the first layer of leveli where leveli is also a phasep level. In order to obtain the label ofv
from the label ofu we need to apply the following changes: For each value ofk ∈ Bi+1 \Bi, we remove the
entriesnk

j (u), for all j ≥ 2, from the first part of the label ofu. These are items that lost their opportunity to
be packed as large items and must be packed as small items to maintain the properties of a nice packing. Out
of these elements, we compute the total size of elements that need to be packed as small elements according
to u and they are already small elements for bin of typei. We need to add to this total size the value ofdi,
which are items that are immediately small without being large for any previous bin. However, since the two
levels are of the same phase,bi andbi+1 are within a factor of1ε , which implies that such items do not exist
and sodi = 0. Denote the resulting value, which is the sum of all items that became small, byT . Then, the

second part of the label ofv is exactlynslot(v) =
⌊

T
ε6bi

+ nslot(u)·bi+1

bi

⌋
. The first part of the label ofv is

augmented with new entries for the amount of elements ofSi
j that need to be packed forj ≥ 2, we showed

how to compute this number earlier, and it is eitherni
j =

⌊
niε

16
⌋

or ni
j =

⌈
niε

16
⌉

for all j ≥ 2. Note that
Bi \ Bi+1 = {i}, thus these are the only new entries. Forq = p, p + 1, . . . , p + 5, we definenq

slot(v) as
follows: for eachk ∈ Bi+1 such thatck < ε8ci, we computeSizeq

k(u) =
∑

j≥2:σk
j ∈(εq ,εq−1]

nk
j (u) · σk

j . We

sum up all the valuesSizeq
k(u) for all k such thatk ∈ Bi+1 andck < ε8ci, and denote this sum byEq(u).

That is,Eq(u) =
∑

k∈Bi+1:ck<ε8ci

Sizeq
k(u). Then, we letnq

slot(v) =
⌊

nq
slot(u)·bi+1

bi
+ Eq(u)

biε6

⌋
. We finish the

definition of the label ofv by setting eitherI(v) = I(u) ∩ Bi+1 ∩ Bi or I(v) = (I(u) ∩Bi+1 ∩Bi) ∪ {i}
(both edges are constructed, having the exact same cost). The cost of the edge(u, v) is

∑
k∈I(u)\I(v)

|Sk
1 | · ck

and this cost reflects the cost of packing each element ofSk
1 in a separate bin of typek if k ∈ I(u). We

charge this packing of theSk
1 to an edge of type 3 or 4, which is a transition between levels, at the time that

the packing ofSk
1 stops being indicated in the label.

10

4. The fourth type of edges connects a vertexu that belongs to the last layer of phasep level i + 1,
to a vertexv that belongs to the first layer of leveli where leveli is a phasep′ level for p′ ≤ p − 1. In
order to obtain the label ofv from the label ofu we need to apply the following changes: For each value
of k ∈ Bi+1 \ Bi, we remove from the first part of the label ofu the entriesnk

j (u) for all j ≥ 2. Out of
these items, we compute the total size of such elements that need to be packed according tou and they are
already small for a bin of typei, we add to this total size the value ofdi. We denote the resulting value by

T . We need to take into account the following termY =
p+5∑

q=max{p,p′+6}
nq

slot(u). The last term corresponds

to items that we previously decided to pack as small items, but were still large for bins of typei + 1, and
now such an itemx satisfiessx < ε5bi, assx ≤ εq−1 andbi > εp′ ≥ εq−6. Note that we slightly relax
the condition of packing items as small, and sometimes allow to pack items that are smaller than a bin by
a factor of at leastε5 (instead ofε6) to be packed as small items in this bin. Then, the second part of the

label ofv is exactlynslot(v) =
⌊

T
ε6bi

+ (nslot(u)+Y)·bi+1

bi

⌋
. The first part of the label ofv is augmented with

new entries for the number of elements ofSi
j that needs to be packed forj ≥ 2, and this number is either

ni
j =

⌊
niε

16
⌋

or ni
j =

⌈
niε

16
⌉

for all j ≥ 2. Forq = p′, p′ + 1, . . . , p′ + 5, we definenq
slot(v) as follows.

For a given value ofq, denote byYq the set of pairs(k, j) such that(k, j) ∈ Yq if an only if k ∈ Bi+1 \ Bi

andσk
j ∈ (εq, εq−1]. We computeEq(u) =

∑
(k,j)∈Yq

nk
j (u) · σk

j . For q 6∈ {p, p + 1, . . . , p + 5} , we denote

nq
slot(u) = 0. Then, forq = p′, p′+1, . . . , p′+5, we letnq

slot(v) =
⌊

nq
slot(u)·bi+1

bi
+ Eq(u)

ε6bi

⌋
. Note that every

entrynq
slot(u) was either translated into a part of the small jobs or into a part of an entrynq

slot(v) but not to
both.

We finish the definition of the label ofv by setting eitherI(v) = I(u) ∩ Bi+1 ∩ Bi or I(v) =
(I(u) ∩Bi+1 ∩Bi) ∪ {i} (again, both edges exist with the same cost). The cost of the edge(u, v) is∑
k∈I(u)\I(v)

|Sk
1 | · ck and this cost reflects the cost of packing each element ofSk

1 in a separate bin of typek

if k ∈ I(u). As in the previous type of edges, we charge this packing of theSk
1 items to the edges the level

transition, where the packing ofSk
1 stops being indicated in the label.

5. The last type of edges connect verticesu of the last layer of level 1 tot. Such a vertexu is adjacent tot
only if all parts of the label ofu except for the last one are either empty sets or are equal to zero. The cost
of such an edge if it exists is

∑
k∈I(u)

|Sk
1 | · ck.

Note thatbr+1 = 0 and thus no items can fit into this bin (that was created so that the levels of the graph
can be created uniformly). Leta be the vertex of the first layer of levelr + 1 whose label is defined as
follows. The first part, which indicates the amounts of items inSj

k for 2 ≤ j ≤ 1
ε16 andk ∈ Br+1, is empty

asBr+1 = ∅. The second part is zero and so are the six amounts in the third part. Finally,I(a) = ∅. Our
scheme finds the minimum cost pathP from a to t. Note that items to be packed are added to the graph as
soon as the first level of any bin that can accommodate them is reached.

We next construct a feasible solution based on the path found by the algorithm. If the path uses an edge
connecting(u, v) where both of them belong to a common leveli and the label ofu differs from the label

of v, then this edge corresponds to a pattern

(
nslot, (nk

j) k∈Bi
j≥2

)
. We open a bin of typei and allocate it

exactlynk
j items ofSk

j for all k ∈ Bi andj ≥ 2 (the actual allocation is of thēSk
j items, but we may assume

that each of them occupies the same space which is the size of anSk
j item), we also reserve a space of size

nslotε
6bi for small items (that will be allocated later to these spaces). We apply this for all edges of the first

type thatP uses. The second type of edges inP do not affect the solution (they have cost zero with an empty
configuration, and are associated with bins that are bypassed). Next assume thatP uses an edge(u, v) of

11

the third or fourth type whereu belongs to thei + 1-th level (andv to level i). The effect of such an edge
except for translation between levels is to assign large items from a setSk

1 such thatk ∈ Bi+1 andk /∈ Bi,
which are supposed to be packed in their own bins, one item per bin. In this case for allk ∈ I(u) \ I(v) we
open|Sk

1 | bins of sizebk and allocate them the items ofSk
1 . It remains to consider the edge of the last type

thatP uses. Assume that this edge is(u, t) then for allk ∈ I(u) we open|Sk
1 | bins of sizebk and allocate

them the items ofSk
1 . Note that the total cost of the bins that we open is exactly the cost ofP.

We next consider the non-allocated items (that are supposed to be packed as small items as implied by
the chosen path). We sort the non-allocated items in a non-increasing size order. We start to allocate them
into the space kept for small items as follows.

Let µi be the number of slots for small items in bins of leveli in the solution as implied by the sum of
valuesnslot in the patterns. LetRi be the number of edges of the first type in the path (inside leveli) that
contain at least one slot for small items. We would like to allow a total size of at leastε6bi(µi +37) that will
be allocated to items to be packed and for that we openRiε

5(1 + ε) + 2 new bins of typei for small items.
We start to allocate the largest remaining item to the space in the smallest type bin (the largest bin), and

keep allocating items according to the sorted list into the space in the bins. While allocating items into bins
of level i, if there is not enough room for the current item in the current space we move to the next space.
We do this as long as there are free slots in the bins that correspond to edges of the first type. We use the
new bins of sizebi and assign small items into them until either we run out of small items to be packed
completely, or we have used all new bins that were opened for leveli as stated above. A new bin that is
opened in this step is called asmall item bin of typei. We later show that our bound (i.e., the number of new
bins per level) is large enough, and we bound the additional cost caused by the new bins.

We conclude this section by noting that since the layered graph has polynomial size, and its construction
takes polynomial time, finding the shortest path inG takes a polynomial time and constructing the solution
based on this path is also polynomial. Therefore, our scheme (for a fixed value ofε) is a polynomial time
algorithm. Hence we establish the following corollary.

Corollary 11 Given a fixed value ofε, the time complexity of the scheme is polynomial.

6 Analysis

In this section we prove that our algorithm is an APTAS forGCVS. We first bound the cost ofP. To do so,
we present a path froma to t in G whose cost is(1 + 3ε2 + 2ε6)OPTn + 1+ε

ε .

Lemma 12 There exists a path̃P froma to t whose cost is at most(1 + 3ε2 + 2ε6)OPTn + 1+ε
ε .

Proof. Consider an optimal solutionOPTn. From this solution, remove all items which belong to thin classes
as such items do not exist in the layered graph.

Before we can define a path in the graph, we make some adaptations to the solution, and specifically, we
convert it into a packing of the rounded items where some of the items that are packed as small items are
converted into tiny items in the packing.

This packing is later translated into a path in the graph, where items that are packed as small need
to be considered carefully. We are going to use the space allocated in the solution to the items ofS̄k

j to
accommodate the items ofSk

j+1, that are (by definition) no larger of items ofS̄k
j . This leaves the items of̄Sk

1

unpacked. Thus we create a new instance of each item ofS̄k
1 = Sk

1 , the additional set with the new instances
of these items is denoted bySk. The room taken by each item of the original setS̄k

1 will be used later for
items ofSk

2 . No adaptations are performed on the placement of a new setSk. The replacement of̄Sk
j items

into theSk
j+1 items is done after a packing for the new setSk is created.

12

We next define a packing of the items inSi for 1 ≤ i ≤ r. For every suchi such thatLi is good, i.e., if
OPTn packs at least half of the elements ofLi using bins of size smaller thanbi

ε6 , we put each item ofSi into
a bin of sizebi. We earlier showed in Lemma 6 that this transformation increases the cost of the solution by
at most an additive factor of3ε2OPTn.

We would like to pack the items ofSi for values ofi such thatLi is not good. This packing is composed
of several steps. These items are converted into “sand”, which are infinitely small items. We insert a set of
empty bins into the packing, and bound the resulting increase in the cost. Next, then we show that these bins
are sufficient to accommodate all sand resulting from items of the setsSi for values ofi, such thatLi is not
good. We do not convert the items into their original sizes since these items are small for the bins into which
they are packed, and the graph only takes into account an approximated sum of sizes of such items rather
than the specific sizes. Given the list of bins used byOPTn we do the following. LetNi be the number of
bins of typei used byOPTn. We open anotherd2Niε

6e ≤ 2Niε
6 + 1 bins of typei. This increases the cost

of the solution by an additive factor of at most2ε6OPTn + 1+ε
ε (the last term is found by summing up on the

costs of all types, similarly to the summation in the proof of Lemma 4).
By Lemma 7, the space required for the sand resulting from a setSi (whereLi is not good) is at most

6ε10 times the total size of items inLi \ S̄i
1 that are packed into bins of size at leastbi

ε6 . The valueDi,k is
now defined for values ofi, k such thatLi is not good, andbk ≥ bi. We letDi,k be the sum of sizes of the
items ofLi \ S̄i

1 that are packed into bins of typek as small items for these bins. For other values ofi, k

we letDi,k = 0. We associate a total size of (at most)6ε10Di,k of sand created from items ofSi with these
items, and specifically, for every item inLi \ S̄i

1 packed in a bin of typek such thatDi,k > 0, which has
sizex, we associate a total size of sand of6ε10x, which is a part of the sand resulting fromSi. This is done
unless the amount of sand that is not associated with any items is smaller, and in this case we associate the
remainder and stop. Due to Lemma 7, every portion of the sand is associated with some item. For every bin
sizebi, the total size of sand associated with items packed in these bins is therefore at most6ε10Nibi. Thus
this sand can be packed into the new bins.

We now replace thēSk
j items bySk

j+1 items. We have a solution for the rounded items, where all items
are packed, but some items that are packed as small (not all of them) are seen as sand. We say that an item
j is tiny for bin i if the smallest bin that can be used for packingj has sizebk such thatbk < ε6bi. We
next convert all items that are packed as tiny items for their bins into sand. We would like to convert the
total amount of sand in a bin of typek to be an integer multiple ofε6bk. Given a bin with a total amount of

sand which is∆, we keep an amount of∆′ =
⌊

∆
ε6bk

⌋
ε6bk, and move the remainder of total size∆ − ∆′

to the new bins of this type. The total size of sand that these new bins need to accommodate increases to at
most6ε10Nkbk + ε6bkNk ≤ 2Nkε

6bk. Thus the new bins have enough space to accommodate these items.
Empty bins are removed from the solution.

The cost of the current solution is at most(1 + 3ε2 + 2ε6)OPTn + 1+ε
ε . We show a path in the graph

with at most the cost of the current solution.
In order to proceed, we identify a subset of the vertex setU as follows. Consider a vertexu of level i,

we define a set of indicesJ(u) ⊆ Bi as follows. For everyk ∈ Bi, k ∈ J(u) if and only if the items of
Sk are packed in separate bins, i.e., ifLk is good. The setU is defined to contain the vertexu if and only if
I(u) = J(u). We also definet ∈ U .

Then,a ∈ U by definition, we start the path ina and proceed to define the path edge by edge untilt is
reached. We show a path in the induced subgraph ofG overU whose cost is at most the cost of the current
solution.

Since the number of layers in a level of the graph is3n + 1 (corresponds to the packing of at most3n

bins), we show that for all values ofk, the number of bins of typek in the current solution never exceeds
3n. Clearly,Nk ≤ n, sinceOPTn packs at least one item in every bin. Therefore, we getNk + d2Nkε

6e ≤
Nk(1 + 2ε6) + 1 ≤ 3n.

13

We are ready to construct the path. The first vertex in the path isa. At each step, we need to show which
edges are traversed inside levels, and which edges are used between levels.

When we reach a first vertex of a level, we traverse an edge for every bin, except for bins of the solution
that contain single items ofSi. The cost of these bins is added to the cost of the path in the edges of the third,
fourth, and fifth type. For a given binf , Denote by∆ the total size of the items that are tiny items for a bin of
typei, which are packed into this bin. Recall the∆ is an integer multiple ofε6bi, unless this is the last bin of
sand. If there is at least one item in the bin that is not sand, we further calculate the numberνk

j of items from

Sk
j for all k ∈ Bi and for allj ≥ 1. Then we use in our path an edge of pattern(nslot = ∆

ε6bi
, (nk

j = νk
j)).

For every bin which contains only sand, we traverse an edge of pattern(nslot = 1
ε6 , (nk

j = 0)). The edges
that are traversed are these that decreasenslot by the largest possible value (i.e., by1

ε6 , unlessnslot is smaller
than this value at some point, and then it becomes zero in the next vertex).

The remaining edges connecting vertices inside leveli will be the zero cost edges.
Next, we need to define the edges we traverse that connect levels. However, since we only use the subset

U of vertices, there is a unique edge connecting the last vertex we reached in a level to a vertex of the next
level. For an outgoing edges(u, v) the label ofv is defined by the label ofu and the vertex setU . Therefore,
there is a unique edge left for everyu.

Therefore, this identifies a path in the network. The cost of the path up to the last layer of level 1 is
identical to the cost of the adapted solution.

Finally, we need to show that the path reaches vertext. Since there is one to one correspondence between
the location of items, that are defined to be packed not as tiny items, in the packing and in the path, we need
to consider items that are packed as tiny. That is, we need to show that in the last vertex of the last level
which we defined for the path, the value ofnslot is zero.

Since the sum of items that are to be packed as tiny in the graph is only rounded down and never rounded
up, the space in the solution, that is used for sand, is large enough to pack these items. In the packing, the
total size of sand in a bin of typek is always an integer multiple ofε6bk, except for possibly the last bin that
contains only sand. However, we allow the edge of the graph that corresponds to this bin to use the complete
bin for sand, which may only result in allocation of additional space for items that are packed as tiny.

Denote byG the set of indicesi such thatLi is good. Then, we note that non-tiny items inOPTn that are
not in∪i/∈GSi, are transformed to sand if and only if they are tiny, and the items in∪i/∈GSi transformed to
sand (items in∪i∈GSi are not transformed to sand).

We next need to consider the pathP that the algorithm finds. For this path we show how a packing is
created, and bound its cost.

Clearly, the cost ofP is at most the cost of̃P.
Since the total cost of the bins corresponding to the patterns that belong toP is at most the total cost of

P̃, we conclude that the total cost ofP is at most(1 + 3ε2 + 2ε6)OPTn + 1+ε
ε . We denote the total cost of

P by c(P). Since the total cost of the solution is partitioned into the total cost of the pathP and the total
cost of the small item bins of typei for all i. Therefore, in order to prove that our scheme is an APTAS, it
suffices to show that the total cost of the small item bins is at mostε4c(P) + 2

ε .

Lemma 13 The total cost of the small item bins is at mostε4c(P) + 2(1+ε)
ε .

Proof. We first prove that items packed as tiny items of bins of typei are of size at mostε5bi. To prove this
it is enough to show by induction that for every leveli, the items that were supposed to be packed as tiny
in levels1, . . . , i as implied by the selected path can indeed be packed in such bins. These are items that
are large for binsi + 1, . . . , r but are not packed as large items there according to the path, and items that
belong to some setS`

1 that are supposed to be packed as tiny in bins of types1, . . . , i. The claim must hold
for i = 0, before any tiny items are packed, since no such items exist. Assume that the claim holds for a

14

levelk − 1. This means that the items that need to be packed in levelk or in smaller bins are no larger than
ε5bk. The loss of a factor ofε (i.e., the reason that we considerε5bk and notε6bk) is due to the fact that
levels are partitioned into phases and we may allow a large item for a bin of typek to be packed in bin of
typek as tiny, if its size is at mostε5bk and it is supposed to be packed as tiny in a bin. This only happens if
it belongs to some setS`

1 wherec` < ε8ck.
The edges of the path assign spaces for the sum of all items (in terms of sand) except an amount that was

lost when rounding down was applied. Such rounding for the current level was applied at most 37 times, one
such time is in the calculation of the total number of slots needed for the tiny items. The other times were
applied on the information on items that had to be packed as tiny, but were not small enough just yet, that
was kept in six components. Each such component is updated at most six times (it is changed only between
phases and not between every pair of levels) before it is added to the total amount of tiny items.

Thus by increasing the space, reserved for items which are packed as tiny in this level, toε6bk(µk +37),
the allocated space is large enough for the items if they are packed as sand.

We conclude that here may be an additional amount of sand at most37ε6bk. Thus, if we make sure that
at least this total sum of items can always be packed in bins of levelk + 1 (unless all tiny items are packed,
and no additional tiny items remain to be packed into smaller bins), the inductive claim is proved. We need
to take into account that the real items are not sand, but of size at mostε5bk.

If no new bins for small items are opened in levelk we are done since this means that all remaining
unpacked items are packed. Assume therefore that in levelk, at least one bin for small items was opened.
When the items are packed greedily into the existing bins, the space that is reserved in each bin is filled
except for possibly a remainder of size at mostε5bi in a bin of sizebi. The reason is that some item of size
at mostε5bi did not fit in it. This is true for the original bins as well as for the new bins.

The total size of tiny items that can be packed into the original bins of this level is therefore at least
ε6bkµk−ε5bkRk, whereRk is the number of edges in the path which belong to levelk and correspond to non-
empty patterns. After the original bins are used, new ones are opened, where each new one is opened only
after a previous bin is full up to a level of at leastbk − ε5bk. Thus, if we keep opening bins until all required

items are packed, the number of additional bins is at most
⌈

ε5bkRk+37ε6bk
bk−ε5bk

⌉
≤ ε5(1 + ε)(Rk + 37ε) + 1 ≤

Rkε
5(1 + ε) + 2. The inequalities hold sinceε < 1

100 . Since the algorithm opens this number of bins, we
can conclude that it succeeds to pack all required items. The claim is therefore proved for levelk.

We next calculate the additional cost, on top of the cost of the path. Since
r∑

i=1
ci ≤

r∑
i=1

1
(1+ε)i ≤ 1+ε

ε , we

conclude that if we ignore the last twosmall item binsof each typei, and consider only the remaining small
item bins, it suffices to show that the total cost of these bins is at mostε4c(P). However this holds since

the original cost is at least
r∑

i=1
Rici (recall thatRi is the number of edges of the first type inside leveli that

contain some tiny items), and the additional cost is
r∑

i=1
ε5(1+ ε)(Rici) ≤

r∑
i=1

ε4(Rici) (sinceε(1+ ε) < 1).

We next show our main result of this paper, i.e., that our scheme is an APTAS forGCVS.

Theorem 14 The main scheme is an APTAS forGCVS.

Proof. Recall thatε is a fixed positive constant. Then, by Corollary 11, finding a feasible solution based
on our scheme can be done in polynomial time. It remains to bound the performance guarantee of our
algorithm.

By Lemmas 4, 12 and 13, we conclude that the total cost of the solution is at most(1 + ε4)((1 + 3ε2 +
2ε6)OPTn+1+ε

ε)+ (1+ε)
ε17 +2(1+ε)

ε ≤ (1+4ε2)OPTn+ 8
ε17 (sinceε < 1

100). By Lemma 3,OPTn ≤ (1+3ε)OPT,
and therefore, the cost of the solution returned by the scheme is at most(1+4ε2)(1+3ε)OPT+ 8

ε17 . Taking

15

the value ofOPT before applying Lemma 2 the performance guarantee increases to(1 + 4ε2)(1 + 3ε)(1 +
ε)OPT+ 8

ε17 . The claim follows from(1 + ε)(1 + 4ε2)(1 + 3ε) ≤ 1 + 6ε = 1 + O(ε) (sinceε < 1
100) and

from 8
ε17 = O(1).

7 Concluding remarks

We showed how to obtain an APTAS for the variant of variable sized bin packing where the cost of a bin
of sizebi is a general cost and not necessarilybi. In order to establish our scheme we needed to reduce the
problem using lemmas 2 and 3. We note that even though the reduction in Lemma 2 uses standard tricks,
the property of the nice solution is a novel method and is the crucial tool in the construction of our scheme.
It is clear that the notion of a nice solution is the main combinatorial structure that allowed us to reduce the
time complexity of the scheme into a polynomial scheme. We argue that similar approaches can provide
generalizations of approximation results for unweighted problems into approximations for weighted variants
(using different notions of nice solutions that would be tailored per problem).

References

[1] E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms for bin packing: A survey.
In D. Hochbaum, editor,Approximation algorithms. PWS Publishing Company, 1997.

[2] J. Csirik. An online algorithm for variable-sized bin packing.Acta Informatica, 26:697–709, 1989.

[3] W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved within1 + ε in linear time.
Combinatorica, 1:349–355, 1981.

[4] D. K. Friesen and M. A. Langston. Variable sized bin packing.SIAM Journal on Computing, 15:222–
230, 1986.

[5] M. R. Garey, R. L. Graham, and J .D. Ullman. Worst-case analysis of memory allocation algorithms.
In Proc of the 4th Symp. Theory of Computing (STOC’72), pages 143–150, 1972.

[6] D. S. Hochbaum and D. B. Shmoys. A polynomial approximation scheme for scheduling on uniform
processors: Using the dual approximation approach.SIAM Journal on Computing, 17:539–551, 1988.

[7] D. S. Johnson.Near-optimal bin packing algorithms. PhD thesis, MIT, Cambridge, MA, 1973.

[8] H. W. Lenstra Jr. Integer programming with a fixed number of variables.Mathematics of Operations
Research, 8:538–548, 1983.

[9] J. Kang and S. Park. Algorithms for the variable sized bin packing problem.European Journal of
Operational Research, 147(2):365–372, 2003.

[10] N. Karmarkar and R. M. Karp. An efficient approximation scheme for the one-dimensional bin-
packing problem. InProceedings of the 23rd Annual Symposium on Foundations of Computer Science
(FOCS’82), pages 312–320, 1982.

[11] C.-L. Li and Z.-L. Chen. Bin-packing problem with concave costs of bin utilization.Naval Research
Logistics, 53(4):298–308, 2006.

[12] F. D. Murgolo. An efficient approximation scheme for variable-sized bin packing.SIAM Journal on
Computing, 16(1):149–161, 1987.

16

[13] S. S. Seiden. An optimal online algorithm for bounded space variable-sized bin packing.SIAM Journal
on Discrete Mathematics, 14(4):458–470, 2001.

[14] S. S. Seiden, R. van Stee, and L. Epstein. New bounds for variable-sized online bin packing.SIAM
Journal on Computing, 32(2):455–469, 2003.

17

