
Transactional Contention Management

as a Non-Clairvoyant Scheduling Problem ∗

Hagit Attiya† Leah Epstein‡ Hadas Shachnai§ Tami Tamir¶

Abstract

The transactional approach to contention management guarantees consistency by mak-
ing sure that whenever two transactions have a conflict on a resource, only one of them
proceeds. A major challenge in implementing this approach lies in guaranteeing progress,
since transactions are often restarted.

Inspired by the paradigm of non-clairvoyant job scheduling, we analyze the performance
of a contention manager by comparison with an optimal, clairvoyant contention manager
that knows the list of resource accesses that will be performed by each transaction, as
well as its release time and duration. The realistic, non-clairvoyant contention manager is
evaluated by the competitive ratio between the last completion time (makespan) it provides
and the makespan provided by an optimal contention manager.

Assuming that the amount of exclusive accesses to the resources is non-negligible, we
present a simple proof that every work conserving contention manager guaranteeing the
pending commit property achieves an O(s) competitive ratio, where s is the number of
resources. This bound holds for the Greedy contention manager studied by Guerraoui et
al. [3] and is a significant improvement over the O(s2) bound they prove for the competitive
ratio of Greedy. We show that this bound is tight for any deterministic contention man-
ager, and under certain assumptions about the transactions, also for randomized contention
managers.

When transactions may fail, we show that a simple adaptation of Greedy has a com-
petitive ratio of at most O(ks), assuming that a transaction may fail at most k times. If a
transaction can modify its resource requirements when re-invoked, then any deterministic
algorithm has a competitive ratio Ω(ks). For the case of unit length jobs, we give (almost)
matching lower and upper bounds.

∗An extended abstract of this paper appeared in the Proceedings of the 25th Annual ACM Symposium on

Principles of Distributed Computing (PODC 2006), pages 308-315.
†Computer Science Department, The Technion, Haifa 32000, Israel; supported by the Israel Science Foun-

dation (grant number 953/06). E-mail: hagit@cs.technion.ac.il.
‡Department of Mathematics, University of Haifa, Haifa 31905, Israel. E-mail: lea@math.haifa.ac.il.
§Computer Science Department, The Technion, Haifa 32000, Israel. E-mail: hadas@cs.technion.ac.il.
¶School of Computer Science, The Interdisciplinary Center, Herzliya 46150, Israel. E-mail: tami@idc.ac.il.

1

1 Introduction

Conventional methods for multi-processor synchronization rely on mutex locks, semaphores
and condition variables to manage the contention in accessing shared resources. The perils
of these methods are well-known: they are inherently non-scalable and prone to failures. An
alternative approach to managing contention is provided by transactional synchronization. As
in database systems [13], a transaction aggregates a sequence of resource accesses that should
be executed atomically by a single thread. A transaction ends either by committing, in which
case, all of its updates take effect, or by aborting, in which case, no update is effective.

The transactional approach to contention management [5] guarantees consistency by mak-
ing sure that whenever a conflict occurs, only one of the transactions involved can proceed.
A transaction J is in conflict when it tries to access a resource R previously modified by
some active (pending) transaction J ′, that has neither committed nor aborted yet. When
this happens, one of the transactions—J or J ′—is aborted and its effects are cleared. The
aborted transaction is later restarted from its very beginning. This guarantees that committed
transactions appear to execute sequentially, one after the other, without interference.

A major challenge in implementing a contention manager lies in guaranteeing progress.
This requires choosing which of the conflicting transactions (J or J ′) to abort so as to ensure
that work eventually gets done, and all transactions commit. (It is typically assumed that
a transaction that runs without conflicting accesses commits with a correct result; this is
guaranteed, for example, by obstruction-free transactions [5].) This goal can also be stated
quantitatively, namely, to maximize the throughput, measured by minimizing the makespan—
the total time needed to complete a finite set of transactions.

Rather than taking an ad-hoc approach to this problem, we observe that it can naturally
be formulated in the parlance of the non-clairvoyant job scheduling paradigm, suggested by
Motwani et al. [8]. A non-clairvoyant scheduler does not know the characteristics of a job a
priori, and is evaluated in comparison with an optimal, clairvoyant scheduler that knows all
the jobs’ characteristics in advance.

We adapt the non-clairvoyant model to our setting, by viewing each transaction as a job and
assuming that its resource needs are not known in advance. An optimal contention manager,
denoted Opt, knows the accesses that will be performed by each transaction, as well as its
release time and duration. The quality of a non-clairvoyant contention manager is measured
by the ratio between the makespan it provides and the makespan provided by Opt. This ratio
is called the competitive ratio of the contention manager.

Under a natural assumption that the amount of exclusive accesses to the resources is non-
negligible (as formalized in Section 2), taking this approach allows us to present a simple and
elegant proof that every contention manager with the following two properties achieves an O(s)
competitive ratio, where s is the number of resources.

2

Property 1 A contention manager is work conserving if it always lets a maximal set of non-
conflicting transactions run.

Note that work conserving contention managers can be efficiently implemented in our
model. In general, being work conserving requires to solve the maximum independent set
(IS) problem, which is NP-hard and hard to approximate. However, in our model, a job that is
ready for execution requests a single resource in its first action; therefore, the associated con-
flict graph is a collection of disjoint cliques, on which IS is easily solved by arbitrarily picking
one member from each clique.

Property 2 A contention manager obeys the pending commit property [3] if, at any time,
some running transaction will execute uninterrupted until it commits.

Both properties are guaranteed, for example, by the Greedy contention manager, proposed
by Guerraoui et al. [3]: Jobs are processed greedily whenever possible. Thus, a maximal inde-
pendent set of jobs that are non-conflicting over their first-requested resources are processed
each time. When a transaction begins, it is assigned a unique timestamp (which remains fixed
across re-invocations), so that earlier (“older”) transactions have smaller timestamps. Assume
transaction J accesses a resource modified by another pending transaction J ′; if J is earlier
than J ′ (has smaller timestamp) then J ′ aborts, otherwise, J waits for J ′ to complete.1 (Special
accommodation is given to waiting transactions, see [3].) The Greedy contention manager is
decentralized and relies only on local information, carried by the transactions involved in the
conflict.

Our result is a significant improvement over the O(s2) upper bound previously known for
Greedy (see [3]). Simulations [3,4] show that this contention manager performs well in prac-
tice; our analysis indicates that these, and in fact even better, results are expected. We remark
that our upper bound for Greedy allows transactions with arbitrary release times (which are
unknown in advance to the contention manager) and arbitrary durations. In contrast, the
analysis of Guerraoui et al. relies on the assumption that transactions are available at the
beginning of the execution and have equal duration.

We show that our analysis is asymptotically tight, by proving that no (deterministic or
randomized) contention manager can achieve a better competitive ratio. This lower bound of
Ω(s) holds even if the contention manager is centralized, not work conserving, and it does not
guarantee the pending commit property. The lower bound holds even if all the transactions
have the same duration and are all available at time t = 0. As implied by the systems
motivating our work, we assume that transactions can modify their resource needs when they
are re-invoked (after being aborted) or if they run at a different time. In Section 4.1 we prove
the lower bound for the case where the first request of each job is fixed. In Section 4.2 we

1This resembles classical deadlock prevention schemes [9] (see [12, Ch. 18]).

3

prove a similar result for the the case of variable first request. The second proof holds even in
the case where each job requests exactly one resource. The randomized versions of the proofs
hold against the standard oblivious adversary [1].

We also study what happens when transactions may fail (not as a result of a conflict).
Guerraoui et al. [4] assume that a transaction may fail at most k times, for some k ≥ 1, and
show a contention manager FTGreedy that has competitive ratio O(ks2). We improve on
their result and show that the competitive ratio is at most O(ks). If a transaction can modify
its resource requirement when re-invoked, or if it is run at a later time, then any deterministic
algorithm has a competitive ratio Ω(ks).

Finally, for the special case of unit length jobs, we give (almost) matching lower and upper
bounds. We present a randomized algorithm whose competitive ratio is O(max{s, k log k}).
This is within logarithmic factor from the lower bound of Ω(max(s, k)), which holds for any
(deterministic or randomized) algorithm. The algorithm operates in phases and the probability
that a pending job will try to run at a given time increases as the number of jobs in the system
drops.

Previous work on non-clairvoyant scheduling assumes that the jobs are not available to-
gether at the start and that the job’s duration is not known when it arrives, while the optimal
scheduler knows the set of jobs, their release times and their duration from the beginning. Mot-
wani et al. [8] allow preemption and assume that a preempted job resumes its execution from
where it was stopped; in addition, their schedulers are centralized. In contrast, in our analysis,
an aborted job is restarted from its beginning; moreover, we mostly study decentralized con-
tention managers. Edmonds et al. [2] study scheduling of jobs that arrive together, but their
characteristics and resource needs change during their execution. Irani and Leung [6] consider
decentralized schedulers but assume unit-length jobs that are executed without interruption.

Kalyanasundaram and Pruhs [7] consider the case where the processors (running the jobs)
may fail and study the makespan and the average response time of online algorithms in com-
parison with an optimal offline scheduler. Their results do not allow preemption, and clearly,
do not account for the added cost of re-invocations.

Herlihy et al. [5] suggest a generic implementation of a contention manager. Our description
follows Scherer and Scott [10], who also evaluate a wide variety of contention managers in [11].
With each resource, we associate the identity of the transaction that most recently modified
it.2 Each transaction has a status field indicating whether it is committed, aborted, or still
active. This way, a transaction accessing a resource can easily verify whether it is “locked”
by another pending transaction, and decide how to proceed—perhaps using additional data
stored for each transaction. All contention managers that fit this generic description are work
conserving. Scherer and Scott [10] provide a survey of contention managers; more recent work

2The implementation also maintains before and after information for rolling back an aborted transaction, an

issue outside the scope of our paper.

4

J1: W(R1) W(R2) Commit
J2: W(R2) W(R1) Abort W(R2) W(R1) Commit
J3: W(R3) W(R2) Abort W(R1) W(R2) Abort W(R3) W(R2) Commit

Figure 1: A possible execution.

is described in [3, 11].

2 Model and Problem Statement

Consider a set of n ≥ 1 transactions (often called jobs below) J1, . . . , Jn and a set of s ≥ 1
shared resources R1, . . . , Rs. Each transaction is a sequence of actions, each of which is an
access to a single resource. The transaction starts with an action and may perform local
computation (not involving access to resources) between consecutive actions. A transaction
completes either with a commit or an abort. The duration of transaction Ji is denoted di.

Formally, an execution is a finite sequence of timed actions. Each action is taken by a single
transaction and it is either a read to some resource R, a write to R, a commit, or an abort. The
times are nonnegative, non-decreasing real numbers. It is assumed that the times associated
with actions of one transaction are increasing, namely, two actions of the same transaction
cannot occur at the same time.

A transaction is pending after its first action, which must be a read or a write, until its last
action, which is a commit or abort; it takes no further actions after a commit or an abort.

As an example, consider the execution described in Figure 1, W (Ri) denotes write to Ri.
Time advances horizontally from left to right. Note that a transaction may request different
resources in different executions. In the above example, when J3 starts, its first request is for
R3. Later, when J3 is reinvoked, its first request is for R1.

We assume that the amount of exclusive accesses to the resources performed by J1, . . . , Jn

is non-negligible, more formally, the total duration of transactions containing a write action is
at least α

∑n
i=1 di, where α ∈ (0, 1] is a constant.

For a scheduling algorithm A and a set, S, of jobs, makespan(A,S) denotes the completion
time of all jobs under A, that is the latest time at which any job of A is completed. S is
omitted when the set of jobs is clear from the context. For randomized algorithms we use
makespan(A,S) to denote the expected latest completion time of any job.

A transaction may access different resources in different invocations, when it is re-invoked
after an abort; this is natural, for example, in the context of a transaction that access resources
according to their functionality, e.g., “the last node in a list”, rather than their address. While
the online algorithm does not know these accesses until they occur, an optimal offline algorithm,
denoted Opt, knows the sequence of accesses of the transaction to resources in each execution.

5

We make the following simple observation on the decisions of Opt.

Claim 1 There is an algorithm Opt that achieves the minimum makespan and schedules each
job exactly once.

Proof: Any execution with minimum makespan can be modified so as to remove all partial
executions. Clearly, this does not increase the makespan and provides the above property.

3 The Greedy Algorithm has O(s)-Competitive Makespan

The greedy algorithm Greedy, suggested in [3], schedules a maximal independent set of jobs
(i.e., jobs that are non-conflicting over their first-requested resources). When a set of jobs is
running, and some of these jobs are conflicting over some resource, Rj , Greedy grants access
to the “oldest” job among them, io. If io needs to perform write, then all other jobs are
aborted; if it performs read, any other “reader” can access Rj too. The algorithm guarantees
the pending commit property: at any time in the execution, at least one job (the oldest) is
guaranteed to complete its execution without being aborted.

Theorem 1 Greedy is O(s)-competitive.

Proof: Consider the sequence of idle time intervals, I1, . . . , Ik in which no job is running
under Greedy, and the sequence of time intervals I ′1, . . . , I ′` in which no job is running under
Opt. We first prove that there exists an optimal schedule in which the total idle time is at
least the total idle time of Greedy. Formally,

Claim 2
∑k

j=1 |Ij | ≤
∑`

j=1 |I ′j |.

Proof: By definition, Greedy is idle at a certain time only after completing all jobs available
at that time. Let I1 = [t1, t2]; this implies that during time interval [0, t1], Greedy is busy
processing some set of jobs S. The processing of S is completed at time t1, and the next job
is released at time t2. There exists an optimal schedule that completes the (sub)instance S at
time at most t1, is idle until t2, and possibly has additional idle intervals during [0, t1]. Such
an optimal schedule exists, since Greedy completes all jobs in S by time t1 and no job is
available before time t2. Since we are interested in a schedule which minimizes the makespan,
it is even possible to simply adopt the schedule of Greedy without violating the optimality
of the schedule.

Therefore, there exists an optimal schedule with total idle time at least t2 − t1 = |I1|
till time t2. Continuing the same way, for each prefix of idle intervals, we get that for any
j, 1 ≤ j ≤ k, there exists an optimal schedule with total idle time at least

∑j
i=1 |Ii| till the

end of Ij . In particular, for j = k this gives the statement of the claim.

6

By assumption, a job accesses at least one resource at any time during its execution. Con-
sider the set of write actions of all transactions. If s+1 jobs or more are running concurrently,
the pigeonhole principle implies that at least two of them are accessing the same resource.
Thus, at least one out of s + 1 writing jobs will be aborted. Claim 1 implies that no job is
aborted in an execution of Opt, implying that at most s writing jobs are running concur-
rently during time intervals that are not idle under Opt, that is, outside I ′1, . . . , I ′`. Thus, the
makespan of Opt satisfies:

makespan(Opt) ≥
∑̀

j=1

|I ′j |+
α

∑n
i=1 di

s
.

On the other hand, whenever Greedy is not idle, at least one of the jobs that are processed
will be completed. Hence, the makespan of Greedy satisfies:

makespan(Greedy) ≤
k∑

j=1

|Ij |+
n∑

i=1

di.

The theorem follows.

We remark that the same proof holds for any work conserving contention manager that
guarantees the pending commit property.

4 Ω(s) Lower Bounds for Contention Managers

4.1 A Lower Bound for Fixed First-request

In the following, we give a matching lower bound to the upper bound derived in Section 3 for
Greedy.

We first prove the lower bound for work conserving contention manager, and then extend it
to any deterministic algorithm. The proof constructs a set of jobs and requests, for which a non-
clairvoyant manager obtains makespan Ω(s2), while the makespan achieved by a clairvoyant
manager is O(s). Intuitively, the idea is to have O(s) sets, each with O(s) unit-length jobs. In
every set, all jobs ask for the same first resource. Thus, only one job from each set can start in
each time slot. A clairvoyant contention manager, which knows the whole set of resources to be
required by each job, can complete a set of O(s) non-conflicting jobs in each time slot, resulting
in makespan O(s). However, for any contention manager, and for each set of jobs selected to be
executed simultaneously, an adversary can determine an identical second requested resource,
enforcing all but one of the jobs to abort. This yields makespan O(s2). The details follow.

Theorem 2 Any deterministic contention manager is Ω(s)-competitive.

7

1 2 3 . . . q

1 (1, 2) (1, 4) (1, 6) . . . (1, 2q)

2 (3, 2) (3, 4) (3, 6) . . . (3, 2q)

3 (5, 2) (5, 4) (5, 6) . . . (5, 2q)

· · · · . . . ·
· · · · . . . ·
q (2q − 1, 2) (2q − 1, 4) (2q − 1, 6) . . . (2q − 1, 2q)

Table 1: The set of jobs used in the proof of Theorem 2 for a work-conserving contention
manager.

Proof: Assume that s is even and let q = s/2.
The proof uses an execution of q2 = s2/4 unit length jobs, described in Table 1: Each

job j requests a pair of resources (Rj1 , Rj2), such that Rj1 is the resource required to begin
the transaction, and Rj2 is an additional resource requested by the job in order to complete
its execution and is not known in advance (the table shows the indices (j1, j2)). All jobs are
released and available at time t = 0. An online algorithm knows only the first resource request
of each job, therefore, the input is in fact a set of q2 jobs, such that for every odd-indexed
resource 2i + 1, 0 ≤ i ≤ q − 1, exactly q jobs request R2i+1 at the start of their execution.
The second resource in each pair will be determined by the adversary during the execution of
the algorithm in a way that will force many of the jobs to abort.

Consider a work-conserving contention manager. Being work-conserving, it must select to
execute a set of q non-conflicting jobs, each requesting a different resource as its first requested
resource. The adversary will then determine the second resource of each of these jobs according
to a single column in Table 1. Specifically, the first phase of q jobs is described by the first
column of the table, that is, in order to complete their execution, all jobs request at time 1− ε

the resource R2 as their second resource. Clearly, at most one of these jobs can complete its
execution, while all other q − 1 jobs must abort.

In general, in phase t, the algorithm selects an independent set of q jobs, and the adversary
determines their second requested resource at time t+1− ε to be R2t, as described by column
t of the table. Once again, only one job from this column can complete its execution while all
other jobs must abort.

All aborting jobs request R1 in any subsequent execution. This implies that also after the
first q time-slots at most one job commit in each time slot, resulting in makespan q2.

We now show that there exists an optimal schedule with makespan q: Note that each
diagonal directed from left to right in the table consists of q independent jobs that require
exactly all the resources. Formally, for every odd value z ∈ {1, 3, . . . , 2q−1}, let Iz be the set of

8

jobs for which (Rj1 , Rj2) have the form (r, (r+z) mod 2q), for r = 1, 3, . . . , 2q−1. For example
I1 = {(1, 2), (3, 4), . . . (2q − 1, 2q)} and I2q−5 = {(1, 2q − 4), (3, 2q − 2), (5, 2q), (7, 2), . . . , (2q −
1, 2q − 6)}.

An optimal contention manager runs all q jobs forming each of these sets simultaneously;
the makespan of this schedule is the number of sets, that is, q. The competitive ratio of any
work-conserving algorithm is therefore q2/q = q = Ω(s).

In order to remove the assumption that the algorithm is work-conserving, we modify the
resource requirements as follows: if a job starts its first execution in the first q phases then the
second resource required to complete this job is as in Table 1. However, if a job starts its first
execution in a latter phase, then it requires R1 to complete its execution In phase t, for t ≤ q,
the algorithm selects an independent set of at most q jobs, and the adversary determines their
second requested resource at time t + 1− ε to be R2t, as described by column t of Table 1. As
in the proof for work conserving algorithms, only a single job from this column can complete
its execution, while all other jobs must abort and will require R1 in their next execution. In
phase t, for t > q, the algorithm again selects an independent set of at most q jobs; however,
since all these jobs require R1 at time t + 1− ε, only a single job from each phase can commit
and all other jobs abort and will require R1 for their next execution.

Thus, as described for work-conserving algorithms, the makespan of any algorithm is at
least q2 = Ω(s2). Recall that the optimal scheduler can complete all jobs in q = O(s) time
slots and therefore is not affected by the resource requirement changes at time q. The ratio
between the completion time of the algorithm and the optimal schedule is again Ω(s).

Next we generalize the bound in Theorem 2 to randomized algorithms.

Theorem 3 Any randomized contention manager is Ω(s)-competitive.

Proof: We use an adaptation of Yao’s principle [14] for proving lower bounds for randomized
algorithms. It states that a lower bound on the competitive ratio of deterministic algorithms
using a fixed distribution on the input, is also a lower bound for randomized algorithms and
its value is given by E(makespan(A,S))

Opt(A,S)
.

Assume that q is an integer divisible by 128. We use the following distribution on possible
inputs. As in the proof of Theorem 2, there are q2 jobs in total, denoted by j1, . . . , jq2 .
Moreover, there are q jobs whose first request is 2i+1 for 0 ≤ i ≤ q− 1. The set of jobs whose
first request is 2i + 1 is fixed to be the jobs jik+1, . . . , j(i+1)q. This set of jobs is called Ji. In
other words, Ji is a permutation of the i-th row in Table 1. In the following we argue that, for
the given set of q2 jobs, the expected number of conflicting jobs in each round is non-negligible.
This will force the algorithm to keep running jobs for Ω(q2) rounds in order to complete the
schedule.

Among the q requests whose first request is 2i+1, there is exactly one whose second request
is going to be 2j for 1 ≤ j ≤ q. However, this is not fixed and a permutation of the second

9

requests 2, 4, . . . , 2q for the jobs jik+1, . . . , j(i+1)q is chosen uniformly at random. Note for each
job, the probability to have a given second request is exactly 1

q . Note also that given two jobs
from different sets Ji and Ji′ (i 6= i′), the values of their second requests are independent. This
is clearly not true for a pair of requests from one set Ji. The second request we define for each
job changes exactly at time q to be R1. Until that time it is the second request defined by the
permutation above.

For any possible outcome of the random choices, the set of jobs is the same as before (the
name of the jobs and their order are different). Specifically, given a possible input, there is
exactly one job with a pair of requests (2a + 1, 2b) for 0 ≤ a ≤ q − 1 and 1 ≤ b ≤ q. Thus an
optimal algorithm can still complete all jobs by time q.

Since jobs start at integer times, we consider the first q
8 units of time, and show that the

expected number of jobs that can complete their execution by time q
8 is at most 15q2

128 . This is
done by showing that the expected number of jobs that can be completed in each time unit
is at most 15q

16 . Since in the additional 7q
8 time slots, only q jobs can be completed during

each time slot, only 7q2

8 additional jobs can complete running by time q, which gives a total of
127q2

128 . Since after time q only one job can be completed in each time slot, the makespan of the
algorithm is therefore at least q + q2

128 = Ω(q2).
Consider now the behavior of the algorithm. At every integer time point 0, 1, . . . , q

8 −1, the
algorithm chooses an independent set and runs it. We may assume that this set contains at
least 7q

8 jobs, otherwise we already see that at most 7q
8 jobs are completed, which is less than

15q
16 . Consider a set of 7q

8 jobs running simultaneously sorted in some given order. These jobs
are clearly all from different sets Ji, thus their choices of second resource are independent, by
the definition of these choices. Consider the first 3q

8 jobs in this order. If among these jobs
there are at most q

4 different second resources, this means that at least q
8 of them will not be

completed in this round and we are done. Otherwise, every job out of (at least) q
2 other jobs

in this independent set has a second resource that is chosen independently of the others: it is
chosen uniformly at random among the q options. Let j be a job in this set, and suppose that
j ∈ Ji. We note that after c rounds have taken place, the second resources of at most c jobs of
Ji were revealed to the algorithm; thus, the second resource of j belongs to the set of second
resources that were not assigned to jobs in Ji scheduled in the previous rounds. It follows that
j has at least q− c ≥ 7q

8 options for the choice of second resource. Let g ≥ 7q
8 be the number of

options for job j. Since there are q options for a choice of second resource in general and g of
them are possible for j, at most q− g of the (at least) q

4 second resources requested for the 3q
8

jobs cannot appear as a second request for j. Hence, we get that at least q
4 − (q − g) = g − 3q

4

are choices for a second resource that are possible for j and are already second resources for
at least one job among the first 3q

8 jobs in the ordering. Then, the probability that j chooses

a second resource that is not unique for it in the current round is at least g− 3q
4

g ≥ 1
7 > 1

8 . The
expected number of jobs (among the q

2 jobs that we consider) which do not have a unique

10

second resource (and thus cannot be completed, or make it impossible for some job among the
first q

2 jobs to be completed), is at least q
16 , as we wanted to prove.

4.2 A Lower Bound for Variable First-request

Consider now a generalized model in which a job j may modify its first request while waiting
to be executed. Thus, the online algorithm knows the first resource requested by any job only
when this job starts running. For this model, we show a lower bound of Ω(s).

Theorem 4 Any randomized contention manager in the model where the first resource request
is time dependent has competitive ratio Ω(s).

Proof: We first prove a lower bound of Ω(s) for an arbitrary online deterministic algorithm,
and then show how to adapt it to randomized algorithms. Let s′ = bs/2c.

In our execution, each job will have a single request for a resource. It reveals the information
regarding the resources it is going to need each time it restarts. Thus, the resource requests
are time dependent.

At first, there are 2s′ sets of unit-length jobs A1, ..., A2s′ . Each set contains 2s′ jobs, where
all jobs in one set Ai initially request resource i. For some of the jobs this is changed later on.
Consider the situation after s′ time units.

We define an offline contention manager Off. Partition each set Ai into Bi and Ci. The
set Ci contains all jobs in Ai that the algorithm completes by time s′. Add additional jobs
from Ai to Ci until |Ci| = s′. Let Bi = Ai − Ci. Off runs the jobs of Bi during time units
1, 2, ..., s′. Since each set Bi requested a different resource, at time s′, Off completes all these
jobs. However, the online algorithm did not run any of these jobs yet. Starting at time s′, the
jobs in B2, B3, ..., Bs request resource R1 when they start running. Thus, all waiting requests
need to use the same resource, and the online algorithm needs 2s′2 additional time units to
complete them. In contrast, Off needs only s′ additional time units, since it can now run
the Ci jobs for all i in s′ time units in parallel. We get that the algorithm completes all jobs
at time s′ + 2s′2, whereas Off completes all jobs by time 2s′. This gives a lower bound of
1
2 + s′ = Ω(s).

Assume now that the algorithm is randomized. Instead of defining Ci as before, let Ci

be the set of s′ elements of Ai with the highest probability to be run by the algorithm and
complete by time s′. Let Bi = Ai − Ci, i.e., the jobs with smallest probabilities to terminate
successfully by time s′. As in the deterministic case, Off runs all jobs of all Bi until time s′

and afterward all jobs of Ci. Also, all jobs of Bi request only resource 1 if they are run starting
from time s′ or later.

Let Xi (respectively Yi) be the number of elements of Bi (Ci) that have been completed
by the algorithm by time s′. It holds that E(Xi) ≤ s′

2 . To see this, we use the linearity of
expectation and get E(Xi) ≤ E(Yi) and since Xi + Yi ≤ s′ we have E(Xi) + E(Yi) ≤ s′. Thus,

11

the expected number of elements from all Bi’s that are still waiting to be scheduled by the
algorithm is at least 2s′2

2 = s′2. It follows that the expected makespan is at least s′ + s′2, and
we get a lower bound of Ω(s) for the randomized case as well.

We remark that Greedy is O(s)-competitive also in this generalized model. The proof of
Theorem 1 makes no assumption on the identities of the requested resources, i.e., a job may
modify its resource request as long as it has not started running; also, if a job was aborted and
then restarted, it may initially ask for one resource, and later modify its request.

5 Handling Failures

Consider a system in which jobs may fail; if a job j running at time t fails, the contention
manager subsequently needs to restart the execution of j. Following Guerraoui et al. [4] we
assume that a job may fail at most k times, for some k ≥ 1; after a failure, the job is restarted.
Indeed, for any job j, Greedy may run j almost to completion k times, and then restart its
execution due to a failure. This stretches the processing time of j to (k + 1)dj . In contrast,
an optimal offline algorithm, which knows the entire input in advance, including the potential
failure times of all jobs, may avoid the execution of a job j when j may fail. This implies:

Theorem 5 If each job may fail at most k times, then Greedy is O(ks)-competitive.

5.1 Lower Bounds

For this model, we show a lower bound of Ω(ks) for any deterministic algorithm. The lower
bound is obtained by constructing a job sequence in which failure occurs, for each of the jobs,
shortly before the job completes its execution. Since each job fails k times, the deterministic
online algorithm is forced to start the execution of each job k times.

Theorem 6 Assume that the first request of a job for a resource is time dependent, and each
job may fail at most k times, for some k ≥ 1, then any deterministic contention manager has
competitive ratio Ω(ks).

Proof: Define the sets Ai, Bi and Ci as in the proof of Theorem 4. The sequence is the
same until time 2s′ (= 2bs/2c) at which Off completes all jobs. After this time, we define
failure times as follows. Consider the schedule of the algorithm. If a running job already failed
k times then it is not interrupted; otherwise, it fails just before completion. Thus, all jobs
except for at most 2s′2 +s′ fail exactly k times. Since the failure of any job occurs almost upon
completion, the remaining 2s′2 − s′ jobs are completed only after (k + 1)(2s′2 − s′) additional
times units. We get a total of (k +1)(2s′2− s′)+2s′ time slots, and a lower bound of Ω(ks).

We also obtain a lower bound for randomized algorithms.

12

Theorem 7 Assume that the first request of a job for a resource is time dependent, and each
job may fail at most k times, for some k ≥ 1, then any (deterministic or randomized) contention
manager has competitive ratio Ω(max{s, k}).

The assumption of an oblivious adversary means that the input is fixed according to the
a priori probabilities of the algorithm’s transitions, rather than the actual transitions made in
an execution. In the proof, we define potential failure times for each job and choose one of
two sequences of failure times for each job. The choice depends on the probability that a job
is running at a given time. If the job is indeed running at the pre-defined failure time, then
it fails; otherwise, if the job is not running at one of its pre-defined failure times, then this
potential failure time does not take effect.

Proof: Assume that k ≥ 5, otherwise the deterministic bounds can be applied. A lower
bound of Ω(s) follows from Theorem 4. To prove a lower bound of k consider an input with two
jobs j1 and j2, each having (a different) one of the two sets of failure times: {1, 3

2 , 2, 5
2 , . . . , k+1

2 }
or {1

2 , 1, 2, 5
2 , . . . , k+1

2 }. Both sets contain all multiples of 1
2 (up to and including k+1

2) except
one such number: the first set does not contain 1

2 whereas the second one does not contain 3
2 .

Assume that s = 1, thus, the issue of resources may be ignored. An offline algorithm can run
the job with the first failure times sequence at time 0, until time 1, and the other job at time
1, until time 2.

Consider an online algorithm. Let p1 be the probability that job j1 is running just before
time 1

2 and p2 that j2 is running. We have p1 + p2 ≤ 1 (since it may be the case that no job
is running). If p1 ≤ p2, we assign the first failure times sequence to j1 and the second one to
j2, and otherwise we do the opposite assignment. The only way that all jobs are completed
by time 2, is that some job is completed by time 1, and thus this job needs to be running just
before time 1

2 , and not interrupted at time 1
2 . The probability for that is p1 in the first case

and p2 in the second case. However, in the first case p1 ≤ 1
2 and in the second case p2 ≤ 1

2 , so
with probability at least 1

2 , at least one job can run to completion only after time k+1
2 . Thus,

the expected completion time is at least 1
2 · 2 + 1

2 · (k+1
2 + 1) = Ω(k).

Next we describe a randomized algorithm that matches this bound within a logarithmic
factor for the case where all jobs require unit processing time. We start with a description of
a centralized scheduler, and later explain how to make it decentralized.

5.2 Algorithm Phases

Let J be the set of pending jobs, and |J | be its size. Initially, J is the set of all jobs, and its
size |J | is n.

Phase 1. While |J | > 2k repeat the following steps.

13

Choose randomly and uniformly a permutation of the J jobs, and assign the jobs in this
order to run (one job at a time) in the next |J | time units. The algorithm is oblivious
to aborts or failures of jobs, and keeps the schedule unchanged even if it becomes idle.
Update J .

Phase 2. For j = 1, . . . , d3 log2 ke repeat the following steps.

Choose randomly and uniformly an assignment of the pending jobs, to the 2k time
slots (such that each job receives one random time slot among the 2k slots, and some
slots possibly remain idle). Assign jobs to run at most one at a time, according to the
assignment, in the next 2k time units. Update J .

Phase 3. While |J | > 0 repeat the following steps.

Select a pending job from J and schedule it at every integer time point until it runs to
completion. Update J .

Even though the algorithm is randomized, its worst case total running time is bounded:
Phase 1 terminates after at most k + 1 iterations, since each job can be interrupted at most
k times. The same holds for Phase 2 and Phase 3. Thus, in the worst case, the algorithm
completes all jobs after O(nk + k2) time units.

Next, we analyze the expected running time of the algorithm.

Theorem 8 The competitive ratio of Phases is at most O(max{s, k log k}).

Proof: Our proof consists of examining the expected duration of each of the three phases.
We show that the first phase consumes expected time of O(n) and the second and third phases
consume expected time O(k log k). Since Opt ≥ max{1, αn

s }, this would give the competitive
ratio as claimed. Note that if n is initially small, it may be the case that Phase 1 is skipped,
or the other phases are skipped. Moreover, it is possible that either Phase 2 or Phase 3 are
skipped, since the number of pending jobs can drop quickly in an iteration of a previous phase.

Let ni be the number of pending jobs when Phase i starts.
Consider Phase 1. Let Xi be a random variable which denotes the length of iteration i

of this phase; clearly, X1 = n1 = n. We claim that E(Xi) ≤ Xi−1

2 for i ≥ 2. Each job has
equal probability to be assigned to each time slot, and since n > 2k during this phase, the
probability of a job to run to completion during iteration i− 1 is at least 1

2 . This holds since
there are at most k times where a job may fail while running, so there are at least k options
to schedule it so that it does not fail. Since this holds for any value of Xi, and due to linearity
of expectation, we conclude that E(Xi) ≤ E(Xi−1)

2 . By induction, E(Xi) ≤ 1
2i−1 n1 = 1

2i−1 n.
Let t be the number of iterations in Phase 1, which is at most k + 1. Therefore, the expected
length of Phase 1 is at most

∑t
i=1 E(Xi) =

∑t
i=1

1
2i−1 n ≤ 2n.

14

Consider Phase 2. Since n2 ≤ 2k, each iteration admits an assignment of all jobs to time
slots. Consider a specific job scheduled in an iteration. This job may be assigned to any of the
2k time slots starting at integer times with equal probability. However, out of these slots, at
most k can prevent a successful completion of the job. Thus, the job is completed in a given
iteration with probability at least 1

2 .
We next bound (from above) the probability that the algorithm reaches Phase 3. The

probability of a given job to be pending, even after d3 log2 ke iterations of Phase 2, is at most
(1
2)d3 log2 ke ≤ 1

k3 . Using the sum of probabilities as an upper bound, the probability that at
least one job is left for Phase 3 is at most n2

k3 ≤ 2k
k3 = 2

k2 . Thus, with probability at most 1− 2
k2 ,

the algorithm does not reach Phase 3, and the overall running time for Phases 2 and 3 is at
most 2k · d3 log2 ke.

Phase 3 lasts at most k + 1 times units for every job, and thus takes at most n3(k + 1) ≤
2k(k +1) time units. This happens with probability at most 2

k2 , and gives expected additional
time of at most 4(k+1)

k < 5. We get for Phases 2 and 3 an expected total running time of
O(k log k), which completes the proof.

5.3 A Decentralized Implementation of Phases

We describe a decentralized implementation of Algorithm Phases, assuming a synchronized
system. Crucial to the algorithm is the assumption that pending jobs are aware of |J | (the
number of pending jobs), at the beginning of each iteration of Phase 1, and at the end of
each of the first two phases. (This can be achieved by collecting global information.) Initially,
|J | = n.

As before, Phase 1 ends when fewer than 2k jobs remain. The length of each iteration
i ≥ 1 in this phase is equal to the number of remaining jobs at the beginning of this iteration,
denoted mi. In iteration i of Phase 1, any job which has not completed and did not fail yet in
this iteration runs in the next time slot with probability 1

mi
. Denote by S` the set of jobs that

attempt to run in slot ` of some iteration, then conflicts are resolved by selecting randomly
and uniformly a single job in S` to run; all other jobs in S` need to restart. Jobs follow Phase
2 in a similar manner, except that the length of each iteration in this phase is 2k, and each
of the remaining jobs runs in the next slot with probability 1

2k . The number of iterations in
Phase 2, denoted y, will be determined later.

In Phase 3, jobs start running in time slots that are integral multiples of k +1. Each of the
remaining jobs starts running in the next scheduling point. Conflicts are resolved by selecting
the oldest job to run in the next k + 1 slots, while the remaining jobs need to restart.

The pseudocode of the algorithm appears in Figure 2.
We next analyze the algorithm and show that it is a decentralized implementation of

algorithm Phases, where the expected running time increases by a constant factor.

15

Initially, i = 0.

Phase 1. While |J | > 2k repeat the following steps.
i = i + 1
mi = |J |
For ` = 1 to mi do

S` = ∅
For any j ∈ J do

If j did not fail yet in iteration i then with probability 1/mi S` = S` ∪ {j}.
If there are conflicting jobs in S`, select randomly and uniformly one job j ∈ S`

to run in slot `, and S` = {j}.
J = J \ S`

Phase 2. For i = 1 to y do
For ` = 1 to 2k do

S` = ∅
For any j ∈ J do

If j did not fail yet in iteration i then with probability 1/2k S` = S` ∪ {j}.
If there are conflicting jobs in S`, select randomly and uniformly one job j ∈ S`

to run in slot `, and S` = {j}.
J = J \ S`

Phase 3. ` = 0
While |J | > 0 do

S` = ∅
For any j ∈ J do S` = S` ∪ {j}.
If there are conflicting jobs in S`, run the oldest job jo ∈ S` in the next

k + 1 slots, and S` = {jo}.
J = J \ S`

` = ` + k + 1

Figure 2: Algorithm Decentralized Phases

Theorem 9 The expected running time of the decentralized implementation of Phases is
O(n + k log k).

Proof: We show that the expected length of Phase 1 is O(n), while the expected length of
Phases 2 and 3 is O(k log k).

Consider Phase 1. Suppose that some job J` tries to run in slot j of iteration i. The

16

probability that no other job attempts to run in this slot is at least

(1− 1
mi

)mi−1 ≥ mi

mi − 1
e−2 ≥ e−2. (1)

If job J` runs alone in some slot in iteration i and does not fail, then J` completes in this
iteration. To lower bound the probability that job J` completes in iteration i, let Goodi denote
the set of (at least) mi − k time slots that are good for J` in iteration i, i.e., if J` runs in any
of these slots then it does not fail. Also, let Ai

j be the event “In iteration i, job J` runs for the
first time in slot j, and conflicts with no other job in this slot,” then the probability that J`

completes in iteration i is at least

∑

j∈Goodi

Prob(Ai
j) ≥

∑

j∈Goodi

(1− 1
mi

)j−1 · 1
mi

· 1
e2

≥
mi∑

j=k+1

(1− 1
mi

)j−1 1
e2mi

= (1− 1
mi

)k
1− (1− 1

mi
)mi−k

e2

≥ (1− 1
mi

)mi/2 1
e2

(1− (1− 1
mi

)mi/2)

since k ≤ mi/2

≥ 1
e3

(1− 1√
e
)

since e−1 ≤ (1− 1
mi

)mi/2 ≤ e−1/2

The first inequality follows from (1), and the second from the fact that, for the lower bound,
we may assume that Goodi are the last (mi−k) slots in iteration i. Letting δ = e−3(1−1/

√
e),

we get that
E[Xi] ≤ (1− δ)E[Xi−1] ,

where Xi is a random variable denoting the length of iteration i of Phase 1 (as in the analysis
of Phase 1 in algorithm Phases). It follows that the expected length of Phase 1 is bounded
by

∑
i≥1(1− δ)i−1n = n

δ .
For Phase 2, we set the number of iterations to be

y = log(2(k + 1)/ log k)/ log(1/(1− δ)),

and get that its length is 2k · y = O(k log k).
For Phase 3, recall that the number of remaining jobs at the beginning of Phase 2 is

bounded by 2k; the probability that a job that started Phase 2 does not complete by the end
of the phase is at most (1− δ)y < log k

2(k+1) . Since each of the jobs starting Phase 3 gets (k + 1)

17

time slots, the expected length of this phase is at most (1− δ)y · 2k(k + 1) = O(k log k). This
completes the proof.

In the decentralized implementation of Phases, the worst case length of Phase 1 is un-
bounded. The following adaptation of the algorithm results in bounding the length of Phase
1 by O(nk). When the phase reaches iteration z = log(k/2)/ log(1/1 − δ), every remaining
job starts running in the next time slot. Conflicts are resolved as before, by random selection
of one job in the conflict set. Clearly, this implies that in the next (k + 1)n time units all
jobs complete. Note that, with this modification, the expected length of Phase 1 is at most
O(n) +

∑n
`=1(1 − δ)z(k + 1). The left term reflects the expected running time of the original

decentralized algorithm, and the second term gives the expected number of slots used after
iteration z. Here, we consider only jobs which have not completed by iteration z and assign
to each of these jobs (k + 1) time slots. Since

∑n
`=1(1− δ)z(k + 1) < 3n, the expected running

time remains O(n). The lengths of the other two phases are bounded.

6 Discussion

We take the perspective of non-clairvoyant scheduling to analyze the behavior of transactional
contention managers. Our framework can be extended to models not considered here such as
the case where the amount of exclusive accesses to the resources is negligible, i.e., when there
are many read-only jobs.

Another problem that remains open is the optimality of work-conserving contention man-
agers. The lower bound of Ω(s) presented in Theorem 2 holds for non work-conserving con-
tention managers; however, for work-conserving contention managers the lower bound is suit-
able also for more powerful systems in which the resource requests of a transaction do not
change when it is re-executed.

The analysis of Algorithm Phases hinges on the fact that the probability of a job trying
to execute in a phase depends on the number of pending jobs. Scherer and Scott [10] describe
a practical randomized contention manager that flips a coin to choose between aborting the
other transaction and waiting for a random time. Our analysis suggests that this contention
manager can be more effective by biasing the coin in a way that depends on (at least) an
estimate of the number of jobs waiting to be executed.

Another interesting avenue for further research is to evaluate other complexity measures,
in particular, those that evaluate the guarantees provided for each individual transaction, like
the average response or waiting time or the average punishment.

Acknowledgments We would like to thank Rachid Guerraoui, MichaÃl KapaÃlka and Bastian
Pochon for helpful discussions, and the anonymous referees for their comments.

18

References

[1] A. Borodin, R. El-Yaniv. Online computation and competitive analysis Cambridge Uni-
versity Press. 1998.

[2] Jeff Edmonds, Donald D. Chinn, Tim Brecht and Xiaotie Deng, Non-Clairvoyant Multi-
processor Scheduling of Jobs with Changing Execution Characteristics. Journal of Schedul-
ing, 6(3): 231-250 (2003).

[3] Rachid Guerraoui, Maurice Herlihy and Bastian Pochon, Toward a Theory of Transac-
tional Contention Management. In Proceedings of the 24th Annual ACM Symposium on
Principles of Distributed Computing (PODC), pages 258–264, 2005.

[4] Rachid Guerraoui, Maurice Herlihy, MichaÃl KapaÃlka and Bastian Pochon, Robust Con-
tention Management in Software Transactional Memory. In Synchronization and Concur-
rency in Object-Oriented Languages (SCOOL) workshop, in conjunction with OOPSLA
2005. http://urresearch.rochester.edu/handle/1802/2103.

[5] Maurice Herlihy, Victor Luchangco, Mark Moir and William N. Scherer III, Software
Transactional Memory for Dynamic-Sized Data Structures. In Proceedings of the 22nd
Annual ACM Symposium on Principles of Distributed Computing (PODC), pages 92–101,
2003.

[6] Sandy Irani and Vitus Leung, Scheduling with Conflicts, and Applications to Traffic Signal
Control. In Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 85–94, 1996.

[7] Bala Kalyanasundaram and Kirk R. Pruhs, Fault-Tolerant Scheduling. SIAM Journal on
Computing, 34(3): 697 - 719 (2005).

[8] Rajeev Motwani, Steven Phillips and Eric Torng, Non-Clairvoyant Scheduling. Theoretical
Computer Science, 130(1): 17–47 (1994).

[9] Daniel J. Rosenkrantz, Richard E. Stearns and Philip M. Lewis II, System Level Concur-
rency Control for Distributed Database Systems. ACM Transactions on Database Systems,
3(2): 178-198 (1978).

[10] William N. Scherer III and Michael Scott, Contention Management in Dynamic Software
Transactional Memory. In PODC Workshop on Concurrency and Synchronization in Java
Programs, pages 70–79, 2004.

[11] William N. Scherer III and Michael Scott, Advanced Contention Management for Dynamic
Software Transactional Memory, In Proceedings of the 24th Annual ACM Symposium on
Principles of Distributed Computing (PODC), pages 240–248, 2005.

19

[12] Abraham Silberschatz and Peter Galvin, Operating Systems Concepts, 5th edition, John
Wiley and sons, 1999.

[13] Gottfried Vossen and Gerhard Weikum, Transactional Information Systems, Morgan
Kaufmann, 2001.

[14] A. C. C. Yao. Probabilistic computations: towards a unified measure of complexity. In
Proc. 18th Symp. Foundations of Computer Science (FOCS), pages 222–227. IEEE, 1977.

20

