
Semi-online machine covering for two uniform machines

Xingyu Chen∗ Leah Epstein† Zhiyi Tan ‡

Abstract

The machine covering problem deals with partitioning a sequence of jobs among a set of machines, so

as to maximize the completion time of the least loaded machine. We study a semi-online variant, where

jobs arrive one by one, sorted by non-increasing size. The jobs are to be processed by two uniformly

related machines, with a speed ratio ofq ≥ 1. Each job has to be processed continuously, in a time slot

dedicated to it on one of the machines. This assignment needs to be performed upon the arrival of the

job. The length of the time slot, which is required for a specific job to run on a given machine, is equal

to the size of the job divided by the speed of the machine. We give a complete competitive analysis of

this problem by providing an algorithm of the best possible competitive ratio for everyq ≥ 1. We first

give a tight analysis of the performance of a natural greedy algorithmLPT for the problem. To achieve

the best possible performance for the semi-online problem, we use a combination ofLPT , together with

two alternative algorithms which we design. The new algorithms attain the best possible competitive

ratios in the two intervalsq ∈ (
1,
√

1.5
)

andq ∈ (
2.4856, 1 +

√
3
)
, respectively, whereas the greedy

algorithm has the best possible competitive ratio for any otherq ≥ 1.

1 Introduction

In the machine covering problem [7, 6, 19, 2, 3, 14, 8, 18, 15, 5] (also called the Santa Claus problem

[4, 1, 11]),n indivisible goods are to be partitioned amongm clients. The goal is to distribute the goods in

a way that the least satisfied client is still as pleased as possible. Each clienti (where1 ≤ i ≤ m) values

the goods using a non-negative vectorri = (r1
i , r

2
i , . . . , r

n
i ). Let Ji ⊆ {1, 2, . . . , n} denote the subset of

goods assigned to clienti, such thatJi ∩ Ji′ = ∅ for anyi 6= i′. The profit of a clienti is Fi =
∑

j∈Ji

rj
i . The

objective is to maximize the minimum total profit of a client, that is, to maximizemin
1≤i≤m

Fi. If the clients

areuniformly related, then each of the goods can be assumed to have valuespj , and each clienti has a

parametersi, such thatrj
i = pj

si
for any1 ≤ i ≤ m and1 ≤ j ≤ n. This situation can occur if the goods

∗Department of Mathematics, Zhejiang University, Hangzhou 310027, P. R. China.xingyuchan@gmail.com
†Department of Mathematics, University of Haifa, 31905 Haifa, Israel.lea@math.haifa.ac.il
‡Department of Mathematics, State Key Lab of CAD & CG, Zhejiang University, Hangzhou 310027, P. R. China. Supported

by the National Natural Science Foundation of China (10671177, 60021201) and Zhejiang Provincial Natural Science Foundation

of China (Y607079).tanzy@zju.edu.cn

1



2

have fixed monetary values. In this case, we haveFi =

(
∑

j∈Ji

pj

)
/si. In this paper, we study the problem

for the case of two clients. The problem is semi-online in the sense that goods arrive one by one, but they

are sorted according to non-increasing valuespj . This type of study is common since the input is processed

as a stream, and the required preprocessing can be performed efficiently.

We next define the problem using the terminology of scheduling. We study the semi-online variant of the

machine covering problem on two uniformly related machines. The job sequence, denoted by{p1, p2, . . .},
consists of independent jobs which arrive one by one, sorted by non-increasing size. We identify the jobs

with their positive sizes and havepi ≥ pi+1 for all i ≥ 1. Let M1 andM2 denote two parallel, uniformly

related machines, where the speed ofMi is si (for i = 1, 2), i.e., the time required forpj to be executed on

Mi is pj

si
(for j = 1, 2, · · ·n andi = 1, 2). We assume without loss of generality that1 = s1 ≥ s2 = 1

q , for

someq ≥ 1. If q > 1, M1 is faster thanM2, andq is the speed ratio of the two machines. We callM1 the

faster machineandM2 is calledthe slower machine(even ifq = 1, where the machines areidentical).

Jobs must be considered one by one, and each job is to be assigned without any additional information

on further jobs. Nevertheless, the assignment takes place before time zero, and both jobs and machines

are available at time zero. Furthermore, no preemption is allowed. The load of a machine is the total time

required to complete all jobs assigned to it, i.e., if the set of jobs assigned to machineMi is Ji then the load

of Mi is

(
∑

pj∈Ji

pj

)
/si.

The objective value of an algorithm is the minimum load of any machine. The goal is to assign the jobs

to the machines so as to maximize the objective value.

We measure an algorithm by itscompetitive ratio. Given an input job setI, let CA(I) (abbreviated by

CA, if the inputI is clear from the context) andC∗(I) (analogously abbreviated byC∗) be the objective

values of the algorithmA and of an optimal schedule, respectively, of the inputI. The competitive ratio

of A is a function of the speed ratioq, which is denoted byrA(q). For everyq ≥ 1, rA(q) is defined to

be the infimumR(q) ≥ 1 which satisfiesC∗(I) ≤ R(q)CA(I) for any input sequenceI, and a set of two

machines with the speed ratioq.

A natural greedy algorithm for the problem is defined as follows.

Algorithm LPT . Assign a new job to the least loaded machine. In the case of a tie, i.e., if both machines

have the same load, assign the current job to the faster machine.

Note that we seeLPT as a semi-online algorithm, where the jobs arrive over list in a sorted order. This

is equivalent to an offline variant where jobs are given as a set and at each time, the longest job is selected

to be scheduled.

Intuitively, upon arrival of a new job,LPT tries to increase the minimum load. The choice of the faster

machine in a case of a tie is not arbitrary. This machine requires a larger total size of jobs in order to have

the same load as the slower machine. We call the assignment rule ofLPT theLPT rule. Due to theLPT



3

rule, given a sequence of jobs with non-increasing sizes, the first two jobs are always assigned to different

machines. Specifically,p1 is always assigned toM1 andp2 is assigned toM2. This last property is crucial in

the case of large enoughq, since in such cases, assigning the largest job to the slower machine immediately

results in a large competitive ratio (see Section 6).

Note that another common variant ofLPT for related machines assigns a job to the machine that would

achieve a smaller load as a result of this assignment. We refer to this algorithm aspost-LPT . This variant

performs well for makespan minimization (minimization of the maximum load), while it performs poorly

when the objective is maximization of the minimum load. In fact, in order to achieve a finite competitive

ratio, an algorithm must assign the first two jobs to different machines, which is not always done bypost-

LPT .

Previous work. Online machine covering was previously studied for both identical machines and uni-

formly related machines. The offline problem is NP-hard (and strongly NP-hard for an arbitrary number

of machines), but it admits a polynomial time approximation scheme (PTAS) [19, 10]. The best possible

competitive ratio for the online problem withm identical machines ism (see [19]), and it isq + 1 for two

uniformly related machines [8]. These competitive ratios are obtained byLPT .

Different approaches were applied in order to overcome these high competitive ratios. Such approaches

were randomization (see [3], for the case of multiple identical machines), and assumptions on the input, that

is, various semi-online models. Several papers considered semi-online variants for two uniformly related

machines. In [2, 8], the variant whereC∗ is constant was investigated. The case where the total size of

jobs is known in advance was studied in [18]. Luo, Sun and Huang [15], and in addition, Cao and Tan [5],

considered the case where the size of the largest job is declared in advance.

The semi-online model studied in this paper, in which jobs arrive sorted by non-increasing size, was

studied in the past for identical machines [7, 6] and for makespan minimization [16, 9].

Deuermeyer, Friesen and Langston [7] studiedLPT , and showed an upper bound of4
3 on its competitive

ratio. The tight ratio for this heuristic,4m−2
3m−1 , was given by Csirik, Kellerer and Woeginger [6]. The above

papers see the problem as an offline problem, and thus give only upper bounds, but it not difficult to see

(using the examples of [6]) that for two and three machines,LPT is the best possible semi-online algorithm.

This implies the competitive ratio1.2 for q = 1, which is a special case of our results. Form uniformly

related machines, a tight bound ofm on the competitive ratio for the semi-online model was shown in [2].

As stated above, makespan minimization is the classical problem in which the goal is to minimize the

maximum load of any machine. The semi-online variant with non-increasing job sizes and two machines

was considered both for identical machines and related machines [13, 12, 17, 9, 16]. The upper bound for

two identical machines follows from Graham [13]. Mireault, Orlin and Vohra [16] gave a complete analysis

of post-LPT as a function of the speed ratio. Finally, a complete analysis of the best possible competitive

ratio for two related machines was given in [9].



4

2 Main results

In this paper, we find the tight competitive ratio for semi-online machine covering with non-increasing job

sizes.

We start with a complete analysis ofLPT . We find the exact competitive ratio ofLPT for all values of

q and prove the following theorem in Section 4.

Theorem 2.1 The exact competitive ratio ofLPT is

rL(q) =





3q+3
2q+3 q ∈ [1,

√
3
2 ≈ 1.22474)

q q ∈ [
√

3
2 ,
√

2 ≈ 1.41421)
2
q q ∈ [

√
2, 1+

√
5

2 ≈ 1.61803)
2q+2
2q+1 q ∈ [1+

√
5

2 , 1+
√

7
2 ≈ 1.82288)

2q+1
q+2 q ∈ [1+

√
7

2 , 1+
√

13
2 ≈ 2.30278)

3
q q ∈ [1+

√
13

2 , q0)
q2+q
q2+1

q ∈ [q0, 1 +
√

3 ≈ 2.73205)
3q+2
2q+3 q ∈ [1 +

√
3, 1 +

√
5 ≈ 3.23607)

2q
q+2 q ∈ [1 +

√
5,∞),

whereq0 ≈ 2.4856 is the largest real root ofq3 − 2q2 − 3 = 0.

Many of the lower bound examples, which are used to show that the analysis ofLPT is tight, can

be converted into lower bounds for any semi-online algorithm (see Section 6). There exists however two

intervals in which this is not the case. The reason for that becomes clear in Section 5, where two algorithms

of smaller competitive ratios are designed for these specific cases. In fact, these algorithm achieve the best

possible competitive ratio, as follows from the analysis in Section 5 and matching lower bounds which are

proved in Section 6. Specifically, we prove the following theorem.

Theorem 2.2 The optimal competitive ratio for semi-online scheduling on two related machines is

r(q) =





6
2q+3 q ∈ [1, q1)
2−q2+

√
q4+4q3+12q2+16q+4

2(q+2) q ∈ [q1,
√

33−1
4 ≈ 1.18614)

q q ∈ [
√

33−1
4 ,

√
2)

2
q q ∈ [

√
2, 1+

√
5

2 )
2q+2
2q+1 q ∈ [1+

√
5

2 , 1+
√

7
2 )

2q+1
q+2 q ∈ [1+

√
7

2 , 1+
√

13
2 )

3
q q ∈ [1+

√
13

2 , 2+
√

31
3 ≈ 2.52259)

3q+2
2q+3 q ∈ [2+

√
31

3 , 1 +
√

5)
2q

q+2 q ∈ [1 +
√

5,∞),



5

whereq1 ≈ 1.0382 is the largest real root of4q4 + 8q3 + 15q2 + 6q − 36 = 0.

Comparing the two functions (see Figure 1), we can conclude thatLPT is optimal forq = 1, q ∈
[
√

1.5, q0] andq ∈ [1 +
√

3,∞). The total length of intervals whereLPT is not optimal is approximately

0.471. Nevertheless, a careful design and analysis of alternative algorithms is required in order to achieve

tight bounds for these cases. Note that bothrL(q) andr(q) attain their maximum value of2 whenq →∞.

In other words, the overall competitive ratios of bothrL(q) andr(q) are2, which is achieved forq → ∞.

Moreover,

rL(q) ≥ r(q) ≥ 2q

q + 2
(1)

holds for anyq ≥ 1.

1.5 2 2.5 3 3.5 4
1.15

1.2

1.25

1.3

1.35

1.4

Figure 1:The competitive ratios ofLPT and the optimal algorithm.

We next give some intuition for the partition into intervals. Both the behavior ofLPT , and the semi-

online problem in general, are dependent on the value ofq. An attempt of performing a uniform analysis of

LPT leads to proofs which do not hold for all values ofq. Usually this simply means that the behavior of

the competitive ratio changes at the infimum (or supremum) point, at which a proof no longer holds. From

the point of view of lower bounds on the competitive ratio, a difficult example typically behaves differently

starting from some point, and this point is often a breakpoint at which the competitive ratio function changes.

In the cases where not every online algorithm can be forced into the same behavior as the one ofLPT , we

identified whereLPT acts in a way which causes it to have a weaker performance than what is possible,

and we define algorithms which behave similarly toLPT except for some special cases.



6

3 Preliminaries

In the next two sections, we prove the upper bounds on the competitive ratio in all cases by contradiction.

We assume thatCA < 1
rA(q)

C∗. We useTi to denote the total size of jobs scheduled onMi by AlgorithmA,

i = 1, 2. By scaling the instance we can assume thatC∗ = 1, and soT1 + T2 ≥ 1 + 1
q . For every value ofq

we consider a counter example which is minimal with respect to the number of jobs. We consider a specific

optimal schedule to which we compare the performance of our algorithms.

We split out analysis into two situations according to the index of the machine which determines the

objective value of the algorithm. We denote the job set containing the firstj jobs byPj . For each case,

we analyze the potential structure of a minimal counter example. The following properties hold for any

algorithm which assigns specific jobs according to theLPT rule (see below) and for any minimal counter

example.

Situation A. CA = min{T1, qT2} = T1 < 1
rA(q)

.

SinceT1 < 1
rA(q)

< 1, we getT2 > 1 + 1
q − 1

rA(q)
> 1

q . Denote bypl the last job assigned toM2

by Algorithm A. Let Li be the job set assigned toMi just afterpl is assigned by the algorithm,i = 1, 2.

Consequently,Pl = L1 ∪ L2 andl = |L1|+ |L2|. Let xl be the total size of jobs which arrive afterpl, i.e.,

xl = T1 + T2 −
l∑

j=1
pj . These jobs are clearly assigned toM1.

If pl is assigned toM2 according to theLPT rule, or more precisely,pl is assigned to the machine with

the smaller current load, thenT1 ≥ T1 − xl > q(T2 − pl). Hence

pl > T2 − T1

q
>

(
1 +

1
q
− 1

rA(q)

)
− 1

qrA(q)
= (1 +

1
q
)(1− 1

rA(q)
). (2)

By (2), we can obtain upper bounds on|L1| and|L2|. In fact, since

|L1|(1 +
1
q
)(1− 1

rA(q)
) < |L1|pl ≤ T1 <

1
rA(q)

,

we have

|L1| < q

(q + 1)(rA(q)− 1)
. (3)

On the other hand,

1
rA(q)

> T1 > q(T2 − pl) ≥ q(|L2|pl − pl) = q(|L2| − 1)pl > q(|L2| − 1)(1 +
1
q
)(1− 1

rA(q)
).

Therefore,

|L2| < 1
(q + 1)(rA(q)− 1)

+ 1. (4)

Situation B. CA = min{T1, qT2} = qT2 < 1
rA(q)

.

SinceT2 < 1
qrA(q)

< 1
q , T1 > 1 + 1

q − 1
qrA(q)

> 1. Denote bypu the last job assigned toM1 in

Algorithm A. Let Ui be the job set assigned toMi just afterpu is assigned by the algorithm,i = 1, 2.



7

Consequently,Pu = U1 ∪U2 andu = |U1|+ |U2|. Letxu be the total size of jobs which arrive afterpu, i.e.,

xu = T1 + T2 −
u∑

j=1
pj .

We first show that in a minimal counter example we havexu = 0. Consider an instance in which

xu > 0, thus the number of jobs in this instance is at leastu + 1. Consider the instance which contains only

the jobs ofPu, and thus containsu jobs. The objective value of the algorithm isq(T2 − xu). Consider the

schedule obtained from an optimal schedule for the original input, where all jobs except for the jobs ofPu

were removed. The objective value of this solution is at least1−q ·xu > 1−qT2 > 0, since the total size of

jobs removed from each machine is at mostxu. We have 1−qxu

q(T2−xu) ≥ 1
qT2

> rA(q). Therefore, the modified

input can serve as a smaller counter example.

If pu is assigned toM1 according to theLPT rule, we haveqT2 ≥ T1 − pu. Then

pu ≥ T1 − qT2 >

(
1 +

1
q
− 1

qrA(q)

)
− q

1
qrA(q)

= (1 +
1
q
)(1− 1

rA(q)
). (5)

Similarly to SituationA, by (5) we have

(|U1| − 1)(1 +
1
q
)(1− 1

rA(q)
) < (|U1| − 1)pu = |U1|pu − pu ≤ T1 − pu ≤ qT2 < q

1
qrA(q)

.

Hence,

|U1| < q

(q + 1)(rA(q)− 1)
+ 1. (6)

On the other hand, since

|U2|(1 +
1
q
)(1− 1

rA(q)
) < |U2|pu ≤ T2 <

1
qrA(q)

,

we have

|U2| < 1
(q + 1)(rA(q)− 1)

. (7)

Using these inequalities, we can find upper bounds on|L1| and|L2|, if SituationA occurs, and otherwise

on |U1| and |U2|. These bounds must hold for a minimal counter example. The proof will exclude the

existence of a minimal counter example and therefore of any counter example. This will be typically done

by showingC∗ < 1 (which contradicts our assumption,C∗ = 1).

4 Analysis ofLPT

In this section, we find the exact competitive ratio ofLPT . We break the proof into several lemmas, each

corresponding to a particular subset of intervals ofq.

We first discuss several simple cases which may occur in the application ofLPT . In SituationA, if

|L2| = 1, thenpl = p2 andL1 = {p1}, L2 = {p2}. If p1 andp2 are not assigned toM1 together in the



8

optimal schedule, thenC∗ ≤ p1 + xl = T1 < 1. Otherwise,

C∗ ≤ qxl = q(T1 − p1) ≤ q(T1 − p2) = q(T1 − T2) < q

(
1

rL(q)
−

(
1 +

1
q
− 1

rL(q)

))
≤ 1,

where the last inequality is due to (1). In SituationB, if |U1| = 1 (or equivalently|U2| = 0), thenpu = p1

andU1 = {p1}, U2 = ∅, which impliesp1 > q(T1 + T2 − p1). Clearly,LPT obtains an optimal schedule

in this situation. So we assume|L2| ≥ 2, |U1| ≥ 2 and|U2| ≥ 1 in the following.

Lemma 4.1 For q ∈ [1,
√

2), the competitive ratio ofLPT is

rL(q) = max
{

3q + 3
2q + 3

, q

}
=

{
3q+3
2q+3 q ∈ [1,

√
1.5)

q q ∈ [
√

1.5,
√

2).

Proof. We prove the upper bound first, and later show that it is tight.

By definition, if 1 ≤ q <
√

2, then

1
rL(q)

= min
{

2q + 3
3q + 3

,
1
q

}
≤ 1

q
. (8)

Situation A. By the definition ofrL(q) and (3), (4), we have|L1| ≤ 2, |L2| ≤ 3. We consider several

cases according to the value of|L1| and|L2|.
Case 1.|L1| = 1 and|L2| = 2.

Obviously,L1 = {p1} andL2 = {p2, p3}. By the pigeon-hole principle, any schedule must have a

machine which processes at least two jobs ofP3, which holds for an optimal schedule as well. Thus, at most

one job ofP3 is assigned to the other machine in the same schedule. Therefore, we haveC∗ ≤ q(p1 +xl) =
qT1 < q

rL(q)
≤ 1 by (8), which leads to a contradiction.

Case 2.|L1| = 1 and|L2| = 3.

Obviously,L1 = {p1} andL2 = {p2, p3, p4}. Consider all possible assignments ofP4 in the optimal

schedule. If there exists a machine which processes at least three jobs ofP4, then we haveC∗ ≤ q(p1+xl) =
qT1 < 1 by (8). Otherwise, both machines process two jobs ofP4. Recall thatq(p2 + p3) < p1 sincep4 is

assigned toM2 by LPT , we haveC∗ ≤ q(p2 + p3 + xl) < p1 + qxl ≤ q(p1 + xl) = qT1 < 1.

Case 3.|L1| = 2 and|L2| = 2.

Obviously,L1 = {p1, p3} andL2 = {p2, p4}. ThenT2 = p2 + p4 ≤ p1 + p3 ≤ T1 < 1. However, by

(8), T2 > 1 + 1
q − T1 > 1 + 1

q − 1
rL(q)

≥ 1, which is a contradiction.

Case 4.|L1| = 2 and|L2| = 3.

Note that when
√

1.5 ≤ q <
√

2, |L2| < 1
(q+1)(q−1) + 1 ≤ 3 by (4). So we can assumeq <

√
1.5 for

this case. Then by (2),pl > 1
3 .



9

If L1 = {p1, p3} andL2 = {p2, p4, p5}, thenp1 ≤ qp2 andq(p2 + p4) ≤ p1 + p3. Together with

p4 ≥ p5 > 1
3 , we have

q(p1 + p2 + xl) ≤ q(q + 1)p2 + qxl ≤ (q + 1)(p1 + p3 − qp4) + qxl

= (q + 1)(T1 − xl − qp4) + qxl ≤ (q + 1)T1 − q(q + 1)p4

< (q + 1)
2q + 3
3q + 3

− q(q + 1)
3

≤ 1, (9)

where the last inequality holds for anyq ≥ 1. Otherwise,L1 = {p1, p4}, L2 = {p2, p3, p5}, and thus

q(p2 + p3) ≤ p1 + p4. Together withp3 ≥ p4 ≥ p5 > 1
3 , we get

q(p1 + p2 + xl) ≤ qp1 + (p1 + p4 − qp3) + qxl ≤ (q + 1)(p1 + p4 + xl)− 2qp4

= (q + 1)T1 − 2qp4 < (q + 1)
2q + 3
3q + 3

− 2q

3
= 1. (10)

Since there must exist a machine which processes at least three jobs ofP5 in the optimal schedule, at most

two jobs ofP5 are assigned to the other machine. By (9) and (10), we haveC∗ ≤ q(p1 + p2 + xl) < 1,

which is a contradiction.

Situation B. By (6) and (7), we have|U1| ≤ 3 and|U2| ≤ 2. We consider several cases according to

the value of|U1| and|U2|.
Case 1.|U1| = 2 and|U2| = 1.

Obviously,U1 = {p1, p3}, U2 = {p2}, and thusp1 ≤ qp2. Since there must exist a machine which

processes at least two jobs ofP3 in the optimal schedule, we haveC∗ ≤ qp1 ≤ q2p2 = q2T2 < 1 by (8).

Case 2.|U1| = 2 and|U2| = 2.

Obviously, U1 = {p1, p4} and U2 = {p2, p3}. We havep1 ≤ q(p2 + p3) sincep4 is assigned to

M1. If there exists a machine which processes at least three jobs ofP4 in the optimal schedule, then

C∗ ≤ qp1 ≤ q2(p2 + p3) = q2T2 < 1 as in Case 1. Otherwise, both machines process two jobs ofP4 in the

optimal schedule. We also haveC∗ ≤ q(p2 + p3) = qT2 < 1.

Case 3.|U1| = 3 and|U2| = 1.

Obviously, U1 = {p1, p3, p4}, U2 = {p2}, and thusp1 + p3 ≤ qp2. Together with (8), we have

q(p1) < q(p1 + p3) ≤ q2p2 = q2T2 < 1, andq(p2 + p3) ≤ q(p1 + p3) ≤ q2p2 = q2T2 < 1. As in Case 2,

we getC∗ < 1.

Case 4.|U1| = 3 and|U2| = 2.

Note that for
√

1.5 ≤ q <
√

2, |U2| < 1
(q+1)(q−1) < 2 by (7). So we can assumeq <

√
1.5 for this case.

Then by (5),pu > 1
3 .

If U1 = {p1, p3, p5} andU2 = {p2, p4}, thenp1 ≤ qp2 sincep3 is assigned toM1. Together with

p4 ≥ p5 > 1
3 , we have

q(p1 + p2) ≤ q(qp2 + p2) = q(q + 1)p2 = q(q + 1)(T2 − p4) < q(q + 1)
(

2q + 3
q(3q + 3)

− 1
3

)
≤ 1,



10

for any q ≥ 1. Otherwise,U1 = {p1, p4, p5} andU2 = {p2, p3}, thenp1 + p4 ≤ q(p2 + p3) sincep5 is

assigned toM1. Together withp4 ≥ p5 > 1
3 , we have

q(p1 + p2) ≤ q(q(p2 + p3)− p4 + p2) ≤ q((q + 1)T2 − p4 − p3)) < q(q + 1)
2q + 3

q(3q + 3)
− 2q

3
= 1.

Since there must exist a machine which processes at least three jobs ofP5 in the optimal schedule, we get

thatC∗ ≤ q(p1 + p2) < 1.

Tight instances. If q <
√

1.5, then let the job sequence be{ q+2
3(q+1) ,

q+3−q2

3q(q+1) ,
1
3 , 1

3 , 1
3}. To show that the

sequence is non-increasing, note thatq+2
3(q+1) ≥ q+3−q2

3q(q+1) holds since this is equivalent to2q2 + q ≥ 3, and
q+3−q2

3q(q+1) ≥ 1
3 holds since it is equivalent toq + 3− q2 ≥ q2 + q, which holds forq <

√
1.5. If q > 1, LPT

assigns the third job toM2 since q+2
3(q+1) > q+3−q2

3(q+1) . At this time, the loads areq+2
3(q+1) (of M1) and 2q+3

3(q+1) (of

M2). Assigning the next job toM1 would result in equal loads of2q+3
3(q+1) . Since only one job remains at this

time, we getCL = 2q+3
3q+3 . In the optimal schedule, the jobsp3, p4 andp5 are assigned toM1 and the other

jobs are assigned toM2. ThusC∗ = 1 and C∗
CL = 3q+3

2q+3 . If q = 1 then the third job is assigned toM1 and

the fourth job toM2, which gives the same result.

If
√

1.5 ≤ q <
√

2, then let the job sequence be{1
q , 1

q2 , 1 − 1
q2 }. The sequence is non-increasing for

anyq ≤ √
2. Clearly,LPT assignsp1 to M1 andp2 to M2, which results in equal loads of1q . Since only

one job is left at this time,CL = 1
q . In the optimal schedule,p2, p3 are assigned toM1 andp1 is assigned to

M2. ThusC∗ = 1 and C∗
CL = q. 2

Lemma 4.2 For q ∈ [
√

2, 1 +
√

5), the competitive ratio ofLPT is

rL(q) =





2
q q ∈ [

√
2, 1+

√
5

2 )
2q+2
2q+1 q ∈ [1+

√
5

2 , 1+
√

7
2 )

2q+1
q+2 q ∈ [1+

√
7

2 , 1+
√

13
2 )

3
q q ∈ [1+

√
13

2 , q0 ≈ 2.4856)
q2+q
q2+1

q ∈ [q0, 1 +
√

3)
3q+2
2q+3 q ∈ [1 +

√
3, 1 +

√
5).

Proof. It can be verified directly that

rL(q) =

{
max{2

q , 2q+2
2q+1 , 2q+1

q+2 } q ∈ [
√

2, 1+
√

13
2 )

max{3
q , q2+q

q2+1
, 3q+2

2q+3} q ∈ [1+
√

13
2 , 1 +

√
5)

(11)

and

rL(q) ≥ max
{

2
q
,
2q + 2
2q + 1

,
q2 + q

q2 + 1
,
3q + 2
2q + 3

}
(12)

for all q ∈ [
√

2, 1 +
√

5).

Situation A. By (3), (4) and simple algebraic calculation, we have|L1| ≤ 3 and|L2| ≤ 2.



11

Case 1.|L1| = 1 and|L2| = 2.

Obviously, L1 = {p1}, L2 = {p2, p3}, and thusqp2 < p1. Consider all possible assignments of

P3 in the optimal schedule. Ifp1 is the only job ofP3 which is assigned toM1, then it is trivial that

C∗ ≤ p1 + xl = T1 < 1. If p1 is the only job ofP3 which is assigned toM2, then by (12),

C∗ ≤ p2 + p3 + xl <
2
q
p1 + xl ≤ max

{
2
q
, 1

}
(p1 + xl) = max

{
2
q
, 1

}
T1 < max

{
2
q
, 1

}
1

rL(q)
≤ 1,

sincep3 ≤ p2 < p1

q .

If p1 is assigned together with at least one other job ofP3, then

C∗ ≤ q(p2 + xl) = q(p2 + T1 − p1) ≤ −q(q − 1)p2 + qT1 ≤ −q(q − 1)
2

(p2 + p3) + qT1

= −q(q − 1)
2

T2 + qT1 < −q(q − 1)
2

(
1 +

1
q
− 1

rL(q)

)
+

q

rL(q)
≤ 1,

where the last inequality is equivalent torL(q) ≥ q2+q
q2+1

, which is valid due to (12).

Case 2.|L1| = 2 and|L2| = 2.

Obviously,L1 = {p1, p3}, L2 = {p2, p4}, and thusqp2 < p1 + p3. Consider all possible assignments

of P4 in the optimal schedule. If there are at least two jobs ofP4 assigned toM2, then at most two jobs of

P4 are assigned toM1. We obtain by (2) and (12),

C∗ ≤ p1 + p2 + xl < p1 +
1
q
(p1 + p3) + xl ≤ (1 +

1
q
)(p1 + p3 + xl)− p3 = (1 +

1
q
)T1 − p3

<

(
1 +

1
q

)
1

rL(q)
−

(
1 +

1
q

) (
1− 1

rL(q)

)
≤ 1,

where the last inequality is equivalent torL(q) ≥ 2q+2
2q+1 , which is valid due to (12). If there is at most one

job of P4 assigned toM2 andp1 is assigned toM1, then

C∗ ≤ q(p2 + xl) = q(p2 + T1 − p1 − p3) ≤ −q(q − 1)p2 + qT1 ≤ −q(q − 1)
2

(p2 + p4) + qT1

= −q(q − 1)
2

T2 + qT1 < −q(q − 1)
2

(
1 +

1
q
− 1

rL(q)

)
+

q

rL(q)
≤ 1

as in Case 1. Otherwise, the only job ofP4 which is assigned toM2 is p1. By (11), we also have

C∗ ≤ q(p1 + xl) = q(T1 − p3) <
q

rL(q)
− q

(
1 +

1
q

)(
1− 1

rL(q)

)
≤ 1

for
√

2 ≤ q < 1+
√

13
2 , since the last expression is equivalent torL(q) ≥ 2q+1

q+2 , and

C∗ ≤ p2 + p3 + p4 + xl ≤ 3p2 + xl <
3
q
(p1 + p3) + xl

≤ max
{

3
q
, 1

}
(p1 + p3 + xl) = max

{
3
q
, 1

}
T1 < max

{
3
q
, 1

}
1

rL(q)
≤ 1



12

when 1+
√

13
2 ≤ q < 1 +

√
5.

Case 3.|L1| = 3 and|L2| = 2.

Obviously,L1 = {p1, p3, p4}, L2 = {p2, p5}, and thusqp2 < p1 + p3 + p4. Consider all possible

assignments ofP5 in the optimal schedule. If there is at most one job ofP5 assigned toM2, then

C∗ ≤ q(p1 + xl) = q(T1 − p3 − p4) ≤ qT1 − 2qp5 <
q

rL(q)
− 2q

(
1 +

1
q

)(
1− 1

rL(q)

)
≤ 1,

where the last inequality is equivalent torL(q) ≥ 3q+2
2q+3 , which is valid due to (12). Otherwise, at least two

jobs ofP5 are assigned toM2. Since at most three jobs ofP5 are assigned toM1, we have

C∗ ≤ p1 + p2 + p3 + xl < p1 +
p1 + p3 + p4

q
+ p3 + xl ≤ (1 +

1
q
)T1 − p4

<

(
1 +

1
q

)
1

rL(q)
−

(
1 +

1
q

) (
1− 1

rL(q)

)
≤ 1

as in Case 2.

Situation B. By (6) and (7), we have|U1| ≤ 4 and|U2| ≤ 1.

Case 1.|U1| = 2 and|U2| = 1.

Obviously,U1 = {p1, p3}, U2 = {p2}, and thusp1 ≤ qp2. Consider all possible assignments ofP3 in

the optimal schedule. Ifp1 is the only job ofP3 which is assigned toM1, thenC∗ ≤ p1 ≤ qp2 = qT2 < 1.

If p1 is the only job ofP3 which is assigned toM2, then by (12),C∗ ≤ p2 + p3 ≤ 2p2 = 2T2 < 2
qrL(q)

≤ 1.

If p1 is assigned together with at least one other job ofP3, thenC∗ ≤ qp2 = qT2 < 1.

Case 2.|U1| = 3 and|U2| = 1.

Obviously,U1 = {p1, p3, p4}, U2 = {p2}, and thusp1 + p3 ≤ qp2. Consider all possible assignments

of P4 in the optimal schedule. If there are at least two jobs ofP4 assigned toM2, we obtain

C∗ ≤ p1 + p2 ≤ qp2 − p3 + p2 ≤ (1 + q)p2 − p3

= (1 + q)T2 − p3 < (1 + q)
1

qrL(q)
−

(
1 +

1
q

) (
1− 1

rL(q)

)
≤ 1 ,

as in previous cases. If there is at most one job ofP4 assigned toM2 andp1 is assigned toM1, it is trivial

thatC∗ ≤ qp2 = qT2 < 1. Otherwise, the only job ofP4 which is assigned toM2 is p1. By (5) and (11),

we also have

C∗ ≤ qp1 ≤ q(qp2 − p3) ≤ q(qT2 − p3) <
q

rL(q)
− q

(
1 +

1
q

)(
1− 1

rL(q)

)
≤ 1

for
√

2 ≤ q < 1+
√

13
2 , and

C∗ ≤ p2 + p3 + p4 ≤ 3p2 ≤ 3p2 = 3T2 <
3

qrL(q)
≤ 1

for 1+
√

13
2 ≤ q < 1 +

√
5.



13

Case 3.|U1| = 4 and|U2| = 1.

ObviouslyU1 = {p1, p3, p4, p5}, U2 = {p2}, and thusp1 + p3 + p4 ≤ qp2. Consider all possible

assignments ofP5 in the optimal schedule. If there is at most one job ofP5 assigned toM2 in the optimal

schedule, then by (5) and (12), we have

C∗ ≤ qp1 ≤ q(qp2 − p3 − p4) ≤ q(qT2 − 2p4) ≤ q

rL(q)
− 2q

(
1 +

1
q

) (
1− 1

rL(q)

)
≤ 1.

Otherwise, at least two jobs ofP5 are assigned toM2. By (5) and (12), we also have

C∗ ≤ p1 + p2 + p3 ≤ qp2 − p4 + p2 ≤ (1 + q)p2 − p4 = (1 + q)T2 − p4

< (1 + q)
1

qrL(q)
−

(
1 +

1
q

)(
1− 1

rL(q)

)
≤ 1.

Tight instancesIf
√

2 ≤ q < 1+
√

5
2 , then let the job sequence be{1

q , 1
2 , 1

2}. After the assignment of the

first two jobs, the loads ofM1 andM2 (respectively) are1q and q
2 ≥ 1

q , which holds forq ≥ √
2. Therefore,

LPT assignsp1, p3 to M1 andp2 to M2, which results inCL = q
2 . In the optimal schedule,p2, p3 are

assigned toM1 andp1 is assigned toM2. ThusC∗ = 1 and C∗
CL = 2

q .

If 1+
√

5
2 ≤ q < 1+

√
7

2 , then let the job sequence be{ 2q2−1
2q(q+1) ,

2q+1
2q(q+1) ,

1
2q , 1

2q}. The sequence is non-

increasing since2q2 − 1 ≥ 2q + 1 is equivalent toq ≥ 1+
√

5
2 . Since2q2 − 1 < 2q2 + q, LPT assigns

p3 to M1. At this time, the loads are both equal to2q+1
2(q+1) . Since only one job is left at this time, we have

CL = 2q+1
2q+2 . In the optimal schedule,p1, p2 are assigned toM1 andp3, p4 are assigned toM2. ThusC∗ = 1

and C∗
CL = 2q+2

2q+1 .

If 1+
√

7
2 ≤ q < 1+

√
13

2 , then let the job sequence be{1
q , q+2

q(2q+1) ,
q2−1

q(2q+1) ,
q2−1

q(2q+1)}. To show that the

sequence is non-increasing, we need to show2q + 1 ≥ q + 2 ≥ q2− 1, which holds for1 ≤ q ≤ 1+
√

13
2 . At

the time when the first two jobs were assigned, the load ofM2 is larger than the load ofM1 ( q2+2q
q(2q+1) versus

2q+1
2q(q+1) ). LPT assigns the next job toM1 which results in equal loads ofq+2

2q+1 . At this time, only one job is

left and thusCL = q+2
2q+1 . In the optimal schedule,p2, p3, p4 are assigned toM1 andp1 is assigned toM2.

ThusC∗ = 1 and C∗
CL = 2q+1

q+2 .

If 1+
√

13
2 ≤ q < q0, then let the job sequence be{1

q , 1
3 , 1

3 , 1
3}. We claim thatLPT assignsp1, p3, p4

to M1 andp2 to M2. After two jobs are assigned, the load ofM1 is 1
q , while the load ofM2 is q

3 > 1
q for

q >
√

3, thus the third job is assigned toM1. After the assignment of two jobs toM1, its load becomes
1
q + 1

3 , while the load ofM2 is q
3 . Since forq ≥ 1+

√
13

2 , 1
q + 1

3 ≤ q
3 , an additional job is assigned toM1,

which results inCL = q
3 . In the optimal schedule,p2, p3, p4 are assigned toM1 andp1 is assigned toM2.

ThusC∗ = 1 and C∗
CL = 3

q .

If q0 ≤ q < 1+
√

3, then let the job sequence be{ q
q+1 +ε, 1

q+1−ε, 1
q+1−ε, 1

q(q+1) +ε}, whereε > 0 is

a small enough real number. Clearly,LPT assignsp3 to M2, which results inCL ≤ p1 + p4 = q2+1
q2+q

+ 2ε.

In the optimal schedule,p1, p2 are assigned toM1 andp3, p4 are assigned toM2. ThusC∗ = 1 and
C∗
CL → q2+q

q2+1
(lettingε tend to0).



14

If 1 +
√

3 ≤ q < 1 +
√

5, then let the job sequence be{1
q , 2q+3

q(3q+2) ,
q2−1

q(3q+2) ,
q2−1

q(3q+2) ,
q2−1

q(3q+2)}. The

sequence is non-increasing if3q + 2 ≥ 2q + 3 ≥ q2 − 1, which holds for1 ≤ q ≤ 1 +
√

5.

After the assignment of the first two jobs, the load ofM2 is 2q2+3q
q(3q+2) and the load ofM1 is 3q+2

q(3q+2) , so

the next job is assigned toM1. This results in the loadq
2+3q+1
q(3q+2) , thus the fourth job is assigned toM1 as

well, which results in equal loads of2q+3
3q+2 . At this time, a single job is left, thusCL = 2q+3

3q+2 . In the optimal

schedule,p2, p3, p4, p5 are assigned toM1 andp1 is assigned toM2. ThusC∗ = 1 and C∗
CL = 3q+2

2q+3 . 2

Lemma 4.3 For q ∈ [1 +
√

5,∞), the competitive ratio ofLPT is rL(q) = 2q
q+2 .

Proof. By (4) and (7), we have|L2| < 2 if SituationA occurs and|U2| = 0, if SituationB occurs.

Therefore, the upper bound follows from the discussion before.

A tight instance. Let the job sequence be{1
2 , 1

2 , 1
q}. Clearly,LPT assignsp1, p3 to M1 andp2 to M2,

which results inCL = q+2
2q . In the optimal schedule,p1, p2 are assigned toM1 andp3 is assigned toM2.

ThusC∗ = 1 and C∗
CL = 2q

q+2 . 2

5 Two new algorithms

In this section, we introduce two new algorithms, and analyze their competitive ratios. In the next section

we prove matching lower bounds. In particular, we show that the competitive ratios are smaller than those

of LPT , and thusLPT is not optimal in the intervals discussed here.

The goal of these algorithms is to behave differently fromLPT in the cases whereLPT clearly makes

an incorrect choice. As we saw in the previous section, the most difficult cases to deal with are the first few

jobs. After many jobs have been assigned,LPT becomes a reasonable strategy for all cases. Thus we need

to reconsider the assignment rule of the first few jobs.

For small values ofq, it is unclear whether assigning the first job to the faster machine is always the

correct thing to do. Our algorithmLM1 always makes the opposite choice. The next job must be assigned

to the faster machine, in order to avoid an unbounded competitive ratio. The assignment of the third job

depends on the exact sizes. An additional interval in whichLPT does not achieve the best possible com-

petitive ratio is treated in a similar way. Due to the large value ofq, it is impossible to switch places of the

first two jobs, but the third and fourth jobs must be assigned very carefully.

Algorithm LM1

1. Assignp1 to M2, andp2 to M1.

2. If p1 ≥ r(q)
q p2, assignp3 to M1, otherwise assignp3 to M2.

3. Assign the remaining jobs according to theLPT rule.



15

Lemma 5.1 For q ∈ [1,
√

1.5), the competitive ratio ofLM1 is

r(q) = max

{
6

2q + 3
,
2− q2 +

√
q4 + 4q3 + 12q2 + 16q + 4

2(q + 2)
, q

}

=





6
2q+3 q ∈ [1, q1)
2−q2+

√
q4+4q3+12q2+16q+4

2(q+2) q ∈ [q1,
√

33−1
4 )

q q ∈ [
√

33−1
4 ,

√
1.5).

Claim 5.1 For any1 ≤ q ≤ √
1.5, (1 + q

r(q))(
1

r(q) − q(1 + 1
q )(1− 1

r(q))) ≤ 1 andr(q) ≤ q
q−1 .

Proof. If q ≤ √
1.5, we haver(q) ≤ rL(q) = 3q+3

2q+3 < q
q−1 . Let r′(q) = 2−q2+

√
q4+4q3+12q2+16q+4

2(q+2) . In

fact,r′(q) is the positive solution of
(

1 +
q

r(q)

)(
1

r(q)
− q

(
1 +

1
q

)(
1− 1

r(q)

))
= 1 (13)

with respect tor(q). Sinceq+2
r(q) − q − 1 > 0, andr(q) ≥ r′(q), we have

(1 +
q

r(q)
)(

1
r(q)

− q(1 +
1
q
)(1− 1

r(q)
)) = (1 +

q

r(q)
)(

q + 2
r(q)

− q − 1) ≤ (1 +
q

r′(q)
)(

q + 2
r′(q)

− q − 1)

= (1 +
q

r′(q)
)(

1
r′(q)

− q(1 +
1
q
)(1− 1

r′(q)
)) = 1.

2

In the proof of the competitive ratio, we use the following technical lemma.

Lemma 5.2 Let T ∗i be the total size of jobs scheduled onMi in the optimal schedule, fori = 1, 2. Since

C∗ = min{T ∗1 , qT ∗2 }, for anya, b > 0, we have

C∗ ≤ aT ∗1 + bqT ∗2
a + b

. (14)

Proof. SinceC∗ ≤ T ∗1 andC∗ ≤ qT ∗2 , anda, b > 0, we get(a + b)C∗ ≤ aT ∗1 + bqT ∗2 . 2

In SituationA, we denote byδ∗i the total size of jobs which arrive afterpl, and are scheduled onMi in the

optimal schedule,i = 1, 2. Thenδ∗1 + δ∗2 = xl, and for anya, b > 0, we haveaδ∗1 + bqδ∗2 ≤ max{a, bq}xl.

Note that we do not use a similar definition for SituationB since we consider a minimal counter example,

and thus we assumexu = 0.

Proof. (Proof of Lemma 5.1).

Situation A. CLM1 = min{T1, qT2} = T1 < 1
r(q) .



16

We haveT1 < 1
r(q) < 1, T2 > 1 + 1

q − 1
r(q) > 1

q . If |L2| = 1, thenpl = p1. No matter which machine

p1 is assigned to in the optimal schedule, we haveC∗ ≤ qxl = qT1 < q
r(q) ≤ 1. So we assume|L2| ≥ 2 in

the following, and thusl ≥ 3.

Case 1.p1 ≥ r(q)
q p2.

According to AlgorithmLM1, p3 is assigned toM1. Thuspl must be assigned toM2 due to theLPT

rule, and|L1| ≥ 2. By the definition ofr(q) and (3),(4), we have|L1| ≤ 2 and|L2| ≤ 3. Hence,|L1| = 2
and|L2| = 2 or 3. We consider several subcases according to the value of|L2|.

Case 1.1|L2| = 2.

Obviously,L1 = {p2, p3} andL2 = {p1, p4}. Consider all possible assignments ofP4 in the optimal

schedule. If there exists a machine which processes at least three jobs ofP4, recall thatqp1 < p2 + p3 since

p4 is assigned toM2 by theLPT rule, we have

C∗ ≤ q(p1 + xl) < p2 + p3 + qxl ≤ q(p2 + p3 + xl) = qT1 < 1.

Otherwise, both machines process two jobs ofP4, we haveC∗ ≤ q(p2 + p3 + xl) = qT1 < 1.

Case 1.2|L2| = 3.

Obviously,L1 = {p2, p3} andL2 = {p1, p4, p5}, and thusq(p1 + p4) < p2 + p3. Since there must exist

a machine which processes at most two jobs ofP5 in the optimal schedule, by (2) and Claim 5.1, we have

C∗ ≤ q(p1 + p2 + xl) ≤ q

(
p1 +

q

r(q)
p1 + xl

)
≤

(
1 +

q

r(q)

)
(qp1 + xl)

<

(
1 +

q

r(q)

)
(p2 + p3 − qp4 + xl) ≤

(
1 +

q

r(q)

)
(T1 − qp5)

<

(
1 +

q

r(q)

)(
1

r(q)
− q

(
1 +

1
q

) (
1− 1

r(q)

))
≤ 1.

Case 2.p1 < r(q)
q p2.

According to AlgorithmLM1, p3 is assigned toM2. If |L2| = 2, thenL1 = {p2} andL2 = {p1, p3}.
Since there must exist a machine which processes at least two jobs ofP3 in the optimal schedule, we have

C∗ ≤ q(p1 + xl) < r(q)p2 + qxl ≤ r(q)(p2 + xl) = r(q)T1 < 1.

Otherwise|L2| ≥ 3, and thenpl is assigned toM2 by LPT rule, and thus|L1| ≤ 2 by the definition of

r(q) and (3). However,p4 must be assigned toM1 andp2 + p4 ≤ p1 + p3 ≤ q(p1 + p3) implies that at

least one additional job must be assigned toM1 beforepl is assigned toM2. Therefore|L1| ≥ 3, which is a

contradiction.

Situation B. CLM1 = min{T1, qT2} = qT2 < 1
r(q) .

We haveT2 < 1
qr(q) < 1

q , T1 > 1 + 1
q − 1

qr(q) > 1. Sincep2 ∈ U1, p1 ∈ U2 andp2 ≤ p1 ≤ T2 ≤ qT2,

we obtain|U1| ≥ 2.



17

Case 1.p1 ≥ r(q)
q p2.

According to AlgorithmLM1, p3 is assigned toM1. If |U1| = 2, obviouslyU1 = {p2, p3} and

U2 = {p1}. Since there must exist a machine which processes at least two jobs ofP3 in the optimal

schedule, we haveC∗ ≤ qp1 = qT2 < 1. So we suppose|U1| ≥ 3, andpu, whereu ≥ 4, must be assigned

by theLPT rule. By (6) and (7), we have|U1| ≤ 3 and|U2| ≤ 2. Hence|U1| = 3.

Case 1.1|U2| = 1.

Obviously,U1 = {p2, p3, p4} andU2 = {p1}. Thusp2 + p3 ≤ qp1. Consider all possible assignments

of P4 in the optimal schedule. If there exists a machine which processes at least three jobs ofP4, then we

haveC∗ ≤ qp1 = qT2 < 1. Otherwise,

C∗ ≤ q(p2 + p3) ≤ q2p1 = q2T2 < q2 1
qr(q)

≤ 1.

Case 1.2|U2| = 2.

Obviously,U1 = {p2, p3, p5} andU2 = {p1, p4}. Since there must exist a machine which processes at

most two jobs ofP5 in the optimal schedule, by (5) and (13), we have

C∗ ≤ q(p1 + p2) ≤ q

(
p1 +

q

r(q)
p1

)
≤

(
1 +

q

r(q)

)
(q(p1 + p4)− qp4)

≤
(

1 +
q

r(q)

)
(qT2 − qp5) <

(
1 +

q

r(q)

) (
1

r(q)
− q

(
1 +

1
q

)(
1− 1

r(q)

))
≤ 1.

Case 2.p1 < r(q)
q p2.

According to AlgorithmLM1, p3 is assigned toM2. Note thatp2 + p4 ≤ q(p1 + p3), p4 is assigned

to M1 and sinceM2 must be less loaded after the assignment ofpu, thenu ≥ 5, and|U1| ≥ 3. On the

other hand, sincepu is assigned toM1 by LPT rule, we have|U1| ≤ 3 by (6). Hence,U1 = {p2, p4, p5}
andU2 = {p1, p3}. Consider all possible assignments ofP5 in the optimal schedule. Recall that there must

exist a machine which processes at most two jobs ofP5. If these jobs are not the pairp1 andp2, that is,

this is a different pair, or a single job, then we haveC∗ ≤ q(p1 + p3) = qT2 < 1. If p1, p2 are assigned

to M1, by Lemma 5.2 and (14), witha = 3q, b = 2, we haveC∗ ≤ 3qT ∗1 +2qT ∗2
3q+2 . We use3qT ∗1 + 2qT ∗2 =

3q(p1 + p2) + 2q(p3 + p4 + p5) ≤ 6qp1 + 6qp3 = 6qT2 < 6q
r(q) , and getC∗ < 6

(3q+2)r(q) ≤ 6
(2q+3)r(q) ≤ 1,

where the last inequality is due to the definition ofr(q), and the previous one is due toq ≥ 1.

Otherwise, ifp1, p2 are assigned toM2, we takea = 2q, b = 3, and getC∗ ≤ 2qT ∗1 +3qT ∗2
2q+3 . In this

case,2qT ∗1 + 3qT ∗2 = 2q(p3 + p4 + p5) + 3q(p1 + p2) ≤ 6qp1 + 6qp3 = 6qT2 < 6q
r(q) . This gives

C∗ < 6
(2q+3)r(q) ≤ 1. 2

Algorithm LM2

1. Assignp1 to M1, andp2 to M2.

2. If p1 < qr(q)p2, assignp3 to M1, otherwise assignp3 to M2.



18

3. Denote byT s
i the total size of jobs scheduled onMi beforep4 is scheduled,i = 1, 2. If T s

1 < 2T s
2 +p4,

assignp4 to M1, otherwise assignp4 to M2.

4. Assign the remaining jobs according to theLPT rule.

Lemma 5.3 For q ∈ [q0, 1 +
√

3), the competitive ratio ofLM2 is

r(q) = max
{

3
q
,
3q + 2
2q + 3

}
=

{
3
q q ∈ [q0,

2+
√

31
3 )

3q+2
2q+3 q ∈ [2+

√
31

3 , 1 +
√

3).

Proof. It can be verified directly that

r(q) ≥ 2q + 2
2q + 1

(15)

for q ∈ [q0,
2+
√

31
3 ).

Situation A. CLM2 = min{T1, qT2} = T1 < 1
r(q) .

We haveT1 < 1
r(q) < 1, T2 > 1 + 1

q − 1
r(q) > 1

q . If |L2| = 1, thenpl = p2 andL1 = {p1}, L2 = {p2}.
Consider all possible assignments ofP2 in the optimal schedule. Ifp1, p2 are assigned to the same machine,

then

C∗ ≤ qxl = q(T1 − p1) ≤ q(T1 − p2) = q(T1 − T2) < q

(
1

r(q)
−

(
1 +

1
q
− 1

r(q)

))
≤ 1

by (1). OtherwiseC∗ ≤ p1 + xl = T1 < 1. So we assume|L2| ≥ 2 in the following.

Case 1.|L2| = 2.

If p1 ≥ qr(q)p2, thenp3 is assigned toM2. Since|L2| = 2, we haveL1 = {p1} andL2 = {p2, p3}.
Consider all possible assignments ofP3 in the optimal schedule. Ifp1 is assigned toM2, then byr(q) ≥ 3

q ,

C∗ ≤ p2 + p3 + xl < qr(q)p2 + xl ≤ p1 + xl = T1 < 1.

If p1 is the only job ofP3 which is assigned toM1, it is trivial thatC∗ ≤ p1 + xl = T1 < 1. Otherwise, we

have

C∗ ≤ q(p2 + xl) = q(p2 + T1 − p1) ≤ q(p2 + T1 − qr(q)p2) ≤ qT1 − q(qr(q)− 1)
(

p2 + p3

2

)

= qT1 − q(qr(q)− 1)
2

T2 <
q

r(q)
− q(qr(q)− 1)

2

(
1 +

1
q
− 1

r(q)

)
≤ 1,

where the last inequality is equivalent to(q2 + q)r(q)2− (q2 + q− 1)r(q)− q ≥ 0, which is valid due to the

following: (q2 + q)r(q)2 − (q2 + q − 1)r(q)− q = (q2 + q)r(q)(r(q)− 1) + r(q)− q ≥ 3(q + 1)(r(q)−
1) + r(q) − q = (3q + 4)r(q) − (4q + 3), by r(q) ≥ 3

q . Sincer(q) ≥ 3q+2
2q+3 ≥ 4q+3

3q+4 for anyq ≥ 1, the

property follows.

Now we consider the casep1 < qr(q)p2. Thusp3 is assigned toM1, andT s
1 = p1 + p3, T

s
2 = p2.



19

Case 1.1p1 + p3 < 2p2 + p4.

In this case,p4 is assigned toM1 andpl is assigned toM2 due to theLPT rule, sincel ≥ 5. By the

definition ofr(q) and (3), we have|L1| ≤ 3. Hence,|L1| = 3 andL1 = {p1, p3, p4}, L2 = {p2, p5}.
Consider all possible assignments ofP5 in the optimal schedule. If there exists a machine which

processes at least four jobs inP5, then by (2),

C∗ ≤ q(p1 + xl) = q(T1 − p3 − p4) ≤ q(T1 − 2p5)

< q

(
1

r(q)
− 2

(
1 +

1
q

)(
1− 1

r(q)

))
≤ 3q + 2

r(q)
− (2q + 2) ≤ 1,

where the last inequality is equivalent tor(q) ≥ 3q+2
2q+3 . Otherwise, by (2), (15) andqp2 ≤ p1 + p3 + p4 since

p5 is assigned toM2, we have

C∗ ≤ p1 + p2 + p3 + xl < p1 +
p1 + p3 + p4

q
+ p3 + xl ≤

(
1 +

1
q

)
(p1 + p3 + p4 + xl)− p4

≤
(

1 +
1
q

)
T1 − p5 <

(
1 +

1
q

)
1

r(q)
−

(
1 +

1
q

)(
1− 1

r(q)

)
≤ 1.

Case 1.2p1 + p3 ≥ 2p2 + p4.

According to the definition of AlgorithmLM2, p4 is assigned toM2. Obviously,L1 = {p1, p3} and

L2 = {p2, p4}. Consider all possible assignments ofP4 in the optimal schedule. Firstly, supposep1 is

assigned toM2. Then

C∗ ≤ p2 + p3 + p4 + xl ≤ 2p2 + p4 + xl ≤ p1 + p3 + xl = T1 ≤ 1.

Secondly, supposep1 is assigned toM1 with at least two other jobs ofP4. Then by (1),

C∗ ≤ q(p2 + xl) = q(p2 + T1 − (p1 + p3)) ≤ q(p2 + T1 − (2p2 + p4)) = q(T1 − p2 − p4))

= q(T1 − T2) < q

(
1

r(q)
− 1− 1

q
+

1
r(q)

)
≤ 1.

Thirdly, if p1 is the only job ofP4 assigned toM1, or it is assigned toM1 with p3 or with p4, thenC∗ ≤
p1 + p3 + xl = T1 < 1. Finally, supposep1, p2 are assigned toM1. By (14) with a = 4q, b = 3 and

r(q) ≥ 3q+2
2q+3 ≥ 6q

4q+3 whenq ≤ 6, we have

C∗ ≤ 4qT ∗1 + 3qT ∗2
4q + 3

=
4q(p1 + p2 + δ∗1) + 3q(p3 + p4 + δ∗2)

4q + 3

≤ 4qp1 + 2q(2p2 + p4) + 3qp3 + qp4 + (4qδ∗1 + 3qδ∗2)
4q + 3

≤ 4qp1 + 2q(p1 + p3) + 4qp3 + (4qδ∗1 + 3qδ∗2)
4q + 3

=
6q(p1 + p3 + xl)

4q + 3
<

6qT1

4q + 3
≤ 6q

4q + 3
· 1
r(q)

≤ 1.



20

Case 2.|L2| ≥ 3.

If {p3, p4} 6⊆ L2 or |L2| ≥ 4, thenpl is assigned toM2 due to theLPT rule, sincel ≥ 5. By the

definition ofr(q) and (4), we have|L2| ≤ 2, which is a contradiction. Hence,{p3, p4} ⊆ L2 and|L2| ≤ 3.

In other words,L2 = {p2, p3, p4} andL1 = {p1}. According to AlgorithmLM2, we havep1 ≥ qr(q)p2

andp1 ≥ 2(p2 + p3) + p4.

Consider all possible assignments ofP4 in the optimal schedule. If there exists a machine which

processes a single job ofP4, which isp1, thenC∗ ≤ max{p1 +xl, p2 + p3 + p4 +xl} = p1 +xl = T1 < 1.

Otherwise, by (1),

C∗ ≤ q(p2 + p3 + xl) ≤ q(p1 − p2 − p3 − p4 + xl) = q(T1 − T2) < q

(
1

r(q)
− 1− 1

q
+

1
r(q)

)
≤ 1.

Situation B. CLM2 = min{T1, qT2} = qT2 < 1
r(q) .

We haveT2 < 1
qr(q) < 1

q , T1 > 1 + 1
q − 1

qr(q) > 1. If |U1| = 1, thenU1 = {p1}, U2 = ∅. Sincexu = 0,

in this caseC∗ = 0. Thus, we assume|U1| ≥ 2 in the following.

Case 1.|U1| = 2.

Case 1.1If p1 < qr(q)p2, thenp3 is assigned toM1 according to AlgorithmLM2. Obviously,U1 =
{p1, p3} andU2 = {p2}. Consider all possible assignments ofP3 in the optimal schedule. Ifp1 is assigned

to M1, thenC∗ ≤ max{p1, qp2} < qr(q)p2 = qr(q)T2 < 1. OtherwiseC∗ ≤ p2 + p3 ≤ 2p2 ≤ qp2 =
qT2 < 1.

Next we consider the option wherep1 ≥ qr(q)p2. According to AlgorithmLM2, p3 is assigned toM2,

and thusT s
1 = p1, T s

2 = p2 + p3.

Case 1.2p1 < 2(p2 + p3) + p4.

According to AlgorithmLM2, p4 is assigned toM1. Obviously,U1 = {p1, p4} andU2 = {p2, p3}.
Consider all possible assignments ofP4 in the optimal schedule. If there exists a machine which processes

only the jobp1 in P4, then byr(q) ≥ 3
q ,

C∗ ≤ max{p1, p2 + p3 + p4} ≤ max{p1, 3p2} ≤ max{p1, qr(q)p2}
= p1 < 2(p2 + p3) + p4 ≤ 3(p2 + p3) = 3T2 ≤ 3

qr(q)
≤ 1.

Otherwise,C∗ ≤ q(p2 + p3) = qT2 < 1.

Case 1.3p1 ≥ 2(p2 + p3) + p4.

According to AlgorithmLM2, p4 is assigned toM2. Thenpu is assigned toM1 by theLPT rule, since

u ≥ 5. By (7), we have|U2| ≤ 1, which is a contradiction.

Case 2.|U1| ≥ 3.

If |U2| ≥ 2, thenpu is assigned toM1 due to theLPT rule, sinceu ≥ 5. By (7), we have|U2| ≤ 1,

which is a contradiction. So|U2| = 1 andU1 ⊇ {p1, p3, p4}, U2 = {p2}. According to the algorithm, we

havep1 < qr(q)p2 andp1 + p3 < 2p2 + p4.



21

If |U1| = 3, thenU1 = {p1, p3, p4}. Consider all possible assignments ofP4 in the optimal schedule. If

M2 processes exactly one job ofP4, then usingq < 3,

C∗ ≤ max{p2 + p3 + p4, qp2} ≤ 3p2 = 3T2 <
3

qr(q)
≤ 1.

Otherwise, byr(q) ≥ 3
q ,

C∗ ≤ p1 + p2 < 2p2 + p4 − p3 + p2 ≤ 3p2 = 3T2 <
3

qr(q)
≤ 1.

If |U1| = 4, thenU1 = {p1, p3, p4, p5}. We havep1 + p3 + p4 ≤ qp2 by theLPT rule. Consider all

possible assignments ofP5 in the optimal schedule. If there exists a machine which processes at least four

jobs inP5, then by (5), and byr(q) ≥ 3q+2
2q+3 , we get

C∗ ≤ qp1 ≤ q(qp2 − p3 − p4) ≤ q(qp2 − 2p5) = q2p2 − 2qp5

≤ q2T2 − 2q

(
1 +

1
q

)(
1− 1

r(q)

)
<

q

r(q)
− 2(q + 1)

(
1− 1

r(q)

)
≤ 1. (16)

If two jobs are assigned toM1 in the optimal schedule, then byr(q) ≥ 3
q ,

C∗ ≤ p1 + p2 < 2p2 + p4 − p3 + p2 ≤ 3p2 = 3T2 <
3

qr(q)
≤ 1.

If M1 processes three jobs, andM2 processes two jobs (in the optimal schedule), we have2qT ∗1 +qT ∗2 ≤
2q(p1 + p2 + p3) + q(p4 + p5). By (14) witha = 2q, b = 1 and (15), we have

C∗ ≤ 2qT ∗1 + qT ∗2
2q + 1

≤ 2q(p1 + p2 + p3) + q(p4 + p5)
2q + 1

≤ 2q(qp2 − p4 + p2) + q · 2p4

2q + 1

≤ 2q(q + 1)p2

2q + 1
=

2q(q + 1)T2

2q + 1
<

2q + 2
(2q + 1)r(q)

< 1.

By the definition ofr(q) and (6), if |U1| ≥ 4, thenpu is assigned by theLPT rule and therefore

|U1| ≤ 4. The proof is thus completed. 2

6 Lower bounds

In this section, we present valid job sequences (i.e., sequence sorted by non-increasing size) which allow

us to prove lower bounds which match the upper bounds from the previous sections. All sequences have at

most five jobs. Letrs be the ratio of objective values of the optimal schedule and a schedule given by an

arbitrary algorithmA just afterps is assigned,s ≥ 1. Obviously, C∗
CA ≥ rs for anys ≥ 1.

Given a job sequence, ifp1, p2 are assigned to the same machine, thenr2 → ∞. So we only need to

consider algorithms that assign the first two jobs to different machines in the following.



22

Furthermore, forq ≥
√

33−1
4 we haver(q) ≤ q. Therefore, in all cases except for the first two intervals,

we assume that the first job is assigned toM1. If this is not the case, then a second (and last) job of size

p2 = p1

q arrives. To avoid an unbounded competitive ratio, this job must be assigned toM1. We getC∗ = p1

whereasCA = p1

q , thusr2 = q.

Interval 1. q ∈ [1, q1), r(q) = 6
2q+3 .

The sequence consists of five jobs of sizes{ 1
2q , 1

2q , 1
3 , 1

3 , 1
3}. If p3, p4 are assigned to the same machine,

then after four jobs,C∗ ≥ 1
2q + 1

3 = 2q+3
6q , and the algorithm has a machine with a single job of size1

2q , so

CA ≤ 1
2 , therefore,r4 ≥ 2q+3

3q > r(q). Otherwise, an optimal schedule assigns the last three jobs toM1

andC∗ = 1. The algorithm has a machine with just one job of size1
3 , sor5 ≥ 1

q( 2q+3
6q

)
= 6

2q+3 = r(q).

Interval 2. q ∈ [q1,
√

33−1
4 ), r(q) = 2−q2+

√
q4+4q3+12q2+16q+4

2(q+2) .

It can be verified directly by the definition ofr(q) thatq + r(q) > r(q)3 > r(q)2 for q ∈ [q1,
√

33−1
4 ),

which will be used frequently in the following.

If p1 is assigned toM1, the sequence consists of five jobs of sizes

{
r(q)
q

,
(q + 3− q2)r(q)

q2(q + 2)
,
(q + 1)r(q)
q(q + 2)

,
(q + 1)r(q)
q(q + 2)

,
(q + 1)r(q)
q(q + 2)

}
.

The sequence is of sizes non-increasing sinceq2 + 2q ≥ q + 3− q2 ≥ q2 + q for any1 ≤ q ≤ √
1.5. If p3

andp4 are assigned to the same machine, then

r4 ≥ min{p1 + p4, q(p2 + p3)}
max{p1, qp2} =

(2q+3)r(q)
q(q+2)

r(q)
q

=
2q + 3
q + 2

>
3q + 3
2q + 3

> r(q).

Otherwise

r5 ≥ min{p3 + p4 + p5, q(p1 + p2)}
max{p1 + p4, q(p2 + p3)} =

3(q+1)r(q)
q(q+2)

(2q+3)r(q)
q(q+2)

=
3q + 3
2q + 3

> r(q).

If p1 is assigned toM2, the sequence consists of five jobs of sizes

{
r(q)
q

, 1,
q

r(q)
,
q + r(q)− r(q)2

qr(q)
,
q + r(q)− r(q)2

qr(q)

}
.

The sequence of sizes is non-increasing sincer(q) ≥ q > 1 in this interval. Ifp3 is assigned toM2, then

r3 ≥ min{p2 + p3, qp1}
p2

= min
{

q + r(q)
r(q)

, r(q)
}

= r(q).

Thus we only need to consider algorithms that assignp3 to M1. In this case, ifp4 is assigned toM1, then

r4 ≥ min{p2 + p3, q(p1 + p4)}
min{p2 + p3 + p4, qp1} =

q+r(q)
r(q)

min
{

(q+1)r(q)+q(q+1)−r(q)2

qr(q) , r(q)
} =

q+r(q)
r(q)

r(q)
=

q + r(q)
r(q)2

> r(q).



23

Otherwise, by (13),

r5 ≥ min{p3 + p4 + p5, q(p1 + p2)}
max{p2 + p3, q(p1 + p4)} =

min
{

q2+2q+2r(q)−2r(q)2

qr(q) , q + r(q)
}

q+r(q)
r(q)

=
q + r(q)

q+r(q)
r(q)

= r(q).

Recall the in the remaining intervals, we only need to consider algorithms that assignp1 to M1 andp2

to M2.

Interval 3. q ∈ [
√

33−1
4 ,

√
2), r(q) = q.

The sequence consists of three jobs of sizes{1
q , 1

q2 , 1− 1
q2 }.

The sequence is non-increasing sinceq2 ≤ 2. After the first two jobs are assigned, the machines have

equal loads. Thus, we getr3 ≥ 1
1
q

= q = r(q).

In the remaining intervals, the full instances are similar to those shown in Section 4. Therefore, we

have already shown that they are non-increasing (in the cases where this is not immediately seen from the

sequence).

Interval 4. q ∈ [
√

2, 1+
√

5
2 ), r(q) = 2

q .

The sequence consists of three jobs of sizes{1
q , 1

2 , 1
2}. The loads after the first two jobs are assigned are

1
q and q

2 , soCA ≤ q
2 andC∗ = 1. We getr3 ≥ qp1

qp2
= r(q).

Interval 5. q ∈ [1+
√

5
2 , 1+

√
7

2 ), r(q) = 2q+2
2q+1 .

The sequence consists of four jobs of sizes{ 2q2−1
2q(q+1) ,

2q+1
2q(q+1) ,

1
2q , 1

2q}.
For the prefix of three jobs we haveC∗ = 2q2+q

2q(q+1) , since an optimal schedule assignsp1 andp3 to M1,

andp2 to M2. If p3 is assigned toM2, thenCA = 2q2−1
2q(q+1) , sor3 = q(2q+1)

2q2−1
> r(q) for anyq ≥ 1. Otherwise

the machines have an equal load after this assignment, sor4 ≥ r(q).

Interval 6. q ∈ [1+
√

7
2 , 1+

√
13

2 ), r(q) = 2q+1
q+2 .

The sequence consists of four jobs of sizes{1
q , q+2

q(2q+1) ,
q2−1

q(2q+1) ,
q2−1

q(2q+1)}.
For the prefix of three jobsC∗ = q+2

2q+1 , since an optimal schedule assignsp1 andp3 to M1, andp2 to

M2. If p3 is assigned toM2, thenCA ≤ 1
q , sor3 ≥ q(q+2)

2q+1 > r(q) for anyq ≥ 1. Otherwise the loads after

three jobs are assigned areq+2
2q+1 , sor4 ≥ r(q).

Interval 7. q ∈ [1+
√

13
2 , 2+

√
31

3 ), r(q) = 3
q .

The sequence consists of four jobs of sizes{1
q , 1

3 , 1
3 , 1

3}.
For the prefix of three jobsC∗ = q+3

3q , since an optimal schedule assignsp1 andp3 to M1, andp2 to M2,

and q
3 ≥ q+3

3q for q ≥ 1+
√

13
2 . If p3 is assigned toM2, thenCA ≤ 1

q , sor3 ≥ q+3
3 > r(q) for anyq > 2.

Otherwiser4 ≥ r(q), since the larger load after three jobs isq
3 .

Interval 8. q ∈ [2+
√

31
3 , 1 +

√
5), r(q) = 3q+2

2q+3 .

The sequence consists of five jobs of sizes{1
q , 2q+3

q(3q+2) ,
q2−1

q(3q+2) ,
q2−1

q(3q+2) ,
q2−1

q(3q+2)}.



24

For the prefix of three jobsC∗ = q+3
3q , since an optimal schedule can assignp1 andp2 to M1, andp3 to

M2, if p3 is assigned toM2 by the algorithm, thenCA ≤ 1
q , sor3 ≥ min{p1+p2,qp3}

1
q

= min{5q+5
3q+2 , q(q2−1)

3q+2 } >

r(q), for anyq > 2.5.

Otherwise, ifp3 is assigned toM1, we consider the prefix of four jobs. For this prefix we haveC∗ =
2q+3
3q+2 , since an optimal schedule assignsp1, p3 andp4 to M1, andp2 to M2. If p4 is assigned toM2, then

CA ≤ q2+3q+1
q(3q+2) , sor4 ≥ q(2q+3)

q2+3q+1
> r(q). for anyq ≥ 1.

Finally, if p4 is assigned toM1, the loads of both machines after four jobs have been assigned are2q+3
3q+2 ,

thereforer5 ≥ r(q).

Interval 9. q ∈ [1 +
√

5,∞), r(q) = 2q
q+2 .

The sequence consists of three jobs of sizes{1
2 , 1

2 , 1
q}. Obviously, the best that the algorithm can do is

to assignp3 to M1. We getr3 ≥ 1
p1+p3

= r(q).

References

[1] A. Asadpour and A. Saberi. An approximation algorithm for max-min fair allocation of indivisible

goods. InProc. of the 39th Annual ACM Symposium on Theory of Computing (STOC2007), pages

114–121, 2007.

[2] Y. Azar and L. Epstein. On-line machine covering. InProc. of the 5th Annual European Symposium

on Algorithms (ESA’97), pages 23–36, 1997.

[3] Y. Azar and L. Epstein. On-line machine covering.Journal of Scheduling, 1(2):67–77, 1998.

[4] N. Bansal and M. Sviridenko. The santa claus problem. In38th ACM Symposium on Theory of

Computing (STOC2006), pages 31–40, 2006.

[5] S. Cao and Z. Tan. Online uniform machine covering with the known largest size.Progress in Natural

Science, 17:1271–1278, 2007.

[6] J. Csirik, H. Kellerer, and G. Woeginger. The exact LPT-bound for maximizing the minimum comple-

tion time. Operations Research Letters, 11:281–287, 1992.

[7] B. Deuermeyer, D. Friesen, and M. Langston. Scheduling to maximize the minimum processor finish

time in a multiprocessor system.SIAM Journal on Discrete Methods, 3:190–196, 1982.

[8] L. Epstein. Tight bounds for online bandwidth allocation on two links.Discrete Applied Math.,

148(2):181–188, 2005.

[9] L. Epstein and L. M. Favrholdt. Optimal non-preemptive semi-online scheduling on two related ma-

chines.J. Algorithms, 57(1):49–73, 2005.



25

[10] L. Epstein and J. Sgall. Approximation schemes for scheduling on uniformly related and identical

parallel machines.Algorithmica, 39(1):43–57, 2004.

[11] U. Feige. On allocations that maximize fairness. InProc. of the 19th annual ACM-SIAM symposium

on Discrete algorithms (SODA2008), pages 287–293, 2008.

[12] T. Gonzalez, O. H. Ibarra, and S. Sahni. Bounds for LPT schedules on uniform processors.SIAM

Journal on Computing, 6(1):155–166, 1977.

[13] R. L. Graham. Bounds on multiprocessing timing anomalies.SIAM J. Appl. Math, 17:416–429, 1969.

[14] Y. He and Y. Jiang. Optimal semi-online preemptive algorithms for machine covering on two uniform

machines.Theoretical Computer Science, 339(2-3):293–314, 2005.

[15] R. Luo, S. Sun, and W. Huang. Semi on-line scheduling problem for maximizing the minimum ma-

chine completion time on two uniform machines.Journal of Systems Science and Complexity, 19,

2006.

[16] P. Mireault, J. B. Orlin, and R. V. Vohra. A Parametric Worst Case Analysis of the LPT Heuristic for

Two Uniform Machines.Operations Research, 45:116–125, 1997.

[17] S. Seiden, J. Sgall, and G. Woeginger. Semi-online scheduling with decreasing job sizes.Operations

Research Letters, 27(5):215–221, 2000.

[18] Z. Y. Tan and S. J. Cao. Semi-online machine covering on two uniform machines with known total

size.Computing, 78(4):369–378, 2006.

[19] G. Woeginger. A polynomial time approximation scheme for maximizing the minimum machine com-

pletion time.Operations Research Letters, 20:149–154, 1997.


