Semi-online machine covering for two uniform machines

Xingyu Chen* Leah Epstein Zhiyi Tan*

Abstract

The machine covering problem deals with partitioning a sequence of jobs among a set of machines, so
as to maximize the completion time of the least loaded machine. We study a semi-online variant, where
jobs arrive one by one, sorted by non-increasing size. The jobs are to be processed by two uniformly
related machines, with a speed ratiogof 1. Each job has to be processed continuously, in a time slot
dedicated to it on one of the machines. This assignment needs to be performed upon the arrival of the
job. The length of the time slot, which is required for a specific job to run on a given machine, is equal
to the size of the job divided by the speed of the machine. We give a complete competitive analysis of
this problem by providing an algorithm of the best possible competitive ratio for gveryl. We first
give a tight analysis of the performance of a natural greedy algoriti¥# for the problem. To achieve
the best possible performance for the semi-online problem, we use a combinali®T ofogether with
two alternative algorithms which we design. The new algorithms attain the best possible competitive
ratios in the two intervalg € (1,v/1.5) andq € (2.4856,1 + v/3), respectively, whereas the greedy
algorithm has the best possible competitive ratio for any ajherl.

1 Introduction

In the machine covering problem [7, 6, 19, 2, 3, 14, 8, 18, 15, 5] (also called the Santa Claus problem
[4, 1, 11]),n indivisible goods are to be partitioned amamngclients. The goal is to distribute the goods in
a way that the least satisfied client is still as pleased as possible. Each ¢lidrarel < ¢ < m) values

the goods using a non-negative vector= (r},r?,...,r"). LetJ; C {1,2,...,n} denote the subset of
goods assigned to clientsuch that/; N J;; = () for anyi # . The profitof aclientis F; = > rf The
JjeJ;

objective is to maximize the minimum total profit of a client, that is, to maxin?iénﬁga F;. If the clients
sm

are uniformly related then each of the goods can be assumed to have v;a)ueﬁna each client has a
parametes;, such thatrf = f‘;—ﬂ foranyl < i < mandl < j < n. This situation can occur if the goods

*Department of Mathematics, Zhejiang University, Hangzhou 310027, P. R. Glimggiuchan@gmail.com

fDepartment of Mathematics, University of Haifa, 31905 Haifa, Isi@el@math.haifa.ac.il

tDepartment of Mathematics, State Key Lab of CAD & CG, Zhejiang University, Hangzhou 310027, P. R. China. Supported
by the National Natural Science Foundation of China (10671177, 60021201) and Zhejiang Provincial Natural Science Foundation
of China (Y607079)tanzy@zju.edu.cn

have fixed monetary values. In this case, we hyve- | > p; | /s;. In this paper, we study the problem
JjeJ;
for the case of two clients. The problem is semi-online in the sense that goods arrive one by one, but they

are sorted according to non-increasing valpiesThis type of study is common since the input is processed
as a stream, and the required preprocessing can be performed efficiently.

We next define the problem using the terminology of scheduling. We study the semi-online variant of the
machine covering problem on two uniformly related machines. The job sequence, denétgdiby. . .},
consists of independent jobs which arrive one by one, sorted by non-increasing size. We identify the jobs
with their positive sizes and hayge > p;; for all« > 1. Let M; and M, denote two parallel, uniformly
related machines, where the speedfis s; (for i = 1,2), i.e., the time required fgs; to be executed on
M;is ’S’—J (forj =1,2,---nandi = 1, 2). We assume without loss of generality that s; > so = % for
someq > 1. If ¢ > 1, M is faster thanl/s, andq is the speed ratio of the two machines. We d@dll the
faster machinend M is calledthe slower machinéven ifqg = 1, where the machines aigentical).

Jobs must be considered one by one, and each job is to be assigned without any additional information
on further jobs. Nevertheless, the assignment takes place before time zero, and both jobs and machines
are available at time zero. Furthermore, no preemption is allowed. The load of a machine is the total time
required to complete all jobs assigned to it, i.e., if the set of jobs assigned to machiad; then the load
of Myis | > pj | /si

Pi€Ji

The objective value of an algorithm is the minimum load of any machine. The goal is to assign the jobs

to the machines so as to maximize the objective value.

We measure an algorithm by it@mpetitive ratio Given an input job sef, let C4(I) (abbreviated by
C4, if the inputI is clear from the context) and@*(I) (analogously abbreviated &) be the objective
values of the algorithmd and of an optimal schedule, respectively, of the inhuiThe competitive ratio
of A is a function of the speed ratig which is denoted by-“(q). For everyq > 1, r4(q) is defined to
be the infimunR(¢q) > 1 which satisfie<C* (I) < R(q)C4(I) for any input sequencg, and a set of two
machines with the speed ratjo

A natural greedy algorithm for the problem is defined as follows.

Algorithm LPT. Assign a new job to the least loaded machine. In the case of a tie, i.e., if both machines
have the same load, assign the current job to the faster machine.

Note that we seé P11 as a semi-online algorithm, where the jobs arrive over list in a sorted order. This
is equivalent to an offline variant where jobs are given as a set and at each time, the longest job is selected
to be scheduled.

Intuitively, upon arrival of a new joh, PT tries to increase the minimum load. The choice of the faster

machine in a case of a tie is not arbitrary. This machine requires a larger total size of jobs in order to have
the same load as the slower machine. We call the assignment rLleBfthe L PT rule. Due to theL PT

rule, given a sequence of jobs with non-increasing sizes, the first two jobs are always assigned to different
machines. Specifically; is always assigned tbf; andps is assigned td/,. This last property is crucial in

the case of large enoughsince in such cases, assigning the largest job to the slower machine immediately
results in a large competitive ratio (see Section 6).

Note that another common variantbP71 for related machines assigns a job to the machine that would
achieve a smaller load as a result of this assignment. We refer to this algorithwstdsP1". This variant
performs well for makespan minimization (minimization of the maximum load), while it performs poorly
when the objective is maximization of the minimum load. In fact, in order to achieve a finite competitive
ratio, an algorithm must assign the first two jobs to different machines, which is not always dpostby
LPT.

Previous work. Online machine covering was previously studied for both identical machines and uni-
formly related machines. The offline problem is NP-hard (and strongly NP-hard for an arbitrary number
of machines), but it admits a polynomial time approximation scheme (PTAS) [19, 10]. The best possible
competitive ratio for the online problem with identical machines is (see [19]), and it ig + 1 for two
uniformly related machines [8]. These competitive ratios are obtainddA).

Different approaches were applied in order to overcome these high competitive ratios. Such approaches
were randomization (see [3], for the case of multiple identical machines), and assumptions on the input, that
is, various semi-online models. Several papers considered semi-online variants for two uniformly related
machines. In [2, 8], the variant whe¢&" is constant was investigated. The case where the total size of
jobs is known in advance was studied in [18]. Luo, Sun and Huang [15], and in addition, Cao and Tan [5],
considered the case where the size of the largest job is declared in advance.

The semi-online model studied in this paper, in which jobs arrive sorted by non-increasing size, was
studied in the past for identical machines [7, 6] and for makespan minimization [16, 9].

Deuermeyer, Friesen and Langston [7] studidel’, and showed an upper boundé)bn its competitive
ratio. The tight ratio for this heuristic‘ﬁj, was given by Csirik, Kellerer and Woeginger [6]. The above
papers see the problem as an offline problem, and thus give only upper bounds, but it not difficult to see
(using the examples of [6]) that for two and three machifd3] is the best possible semi-online algorithm.
This implies the competitive rativ.2 for ¢ = 1, which is a special case of our results. Feruniformly

related machines, a tight boundafon the competitive ratio for the semi-online model was shown in [2].

As stated above, makespan minimization is the classical problem in which the goal is to minimize the
maximum load of any machine. The semi-online variant with non-increasing job sizes and two machines
was considered both for identical machines and related machines [13, 12, 17, 9, 16]. The upper bound for
two identical machines follows from Graham [13]. Mireault, Orlin and Vohra [16] gave a complete analysis
of post-L PT as a function of the speed ratio. Finally, a complete analysis of the best possible competitive
ratio for two related machines was given in [9].

2 Main results

In this paper, we find the tight competitive ratio for semi-online machine covering with non-increasing job

sizes.

We start with a complete analysis b7". We find the exact competitive ratio afP7" for all values of
g and prove the following theorem in Section 4.

Theorem 2.1 The exact competitive ratio ¢fPT is

3q9+3
2q+3

q € [y/3,V2~1.41421)

q € [V2, 155 ~1.61803)

g € [1508, 1VT v 1.82288)
S 1+§/ﬁ7QO)

[
[
[
[
g€ [T 1HYI ~ 9 30278)
[
[
[
[

whereqg = 2.4856 is the largest real root of® — 2¢*> — 3 = 0.

Many of the lower bound examples, which are used to show that the analysiBbfis tight, can
be converted into lower bounds for any semi-online algorithm (see Section 6). There exists however two
intervals in which this is not the case. The reason for that becomes clear in Section 5, where two algorithms
of smaller competitive ratios are designed for these specific cases. In fact, these algorithm achieve the best
possible competitive ratio, as follows from the analysis in Section 5 and matching lower bounds which are
proved in Section 6. Specifically, we prove the following theorem.

Theorem 2.2 The optimal competitive ratio for semi-online scheduling on two related machines is

ﬁ gel,q1)
2_q2+\/q442_21;i-2+)12q2+16q+4 q€ [, \/?Ti_l ~ 1.18614)
. ¢ €[S V)
% g€V, 1+2\/5)
r(q) = % VS [1+2\/5’ 1+T\ﬁ)
% ge [1+2xﬁ’ 1+%/ﬁ)
; ge [, 2+3{3T A 2.52259)
oo g €[22 1 4 5)
% q € [1+5,00),

whereq; ~ 1.0382 is the largest real root odg* + 8¢ + 15¢*> + 6¢ — 36 = 0.

Comparing the two functions (see Figure 1), we can concludelilvat is optimal forq = 1, ¢ €
[V1.5,q0] andq € [1 + /3, 00). The total length of intervals whe®PT is not optimal is approximately
0.471. Nevertheless, a careful design and analysis of alternative algorithms is required in order to achieve
tight bounds for these cases. Note that bdtty) andr(q) attain their maximum value & wheng — oo.
In other words, the overall competitive ratios of bethq) andr(q) are2, which is achieved fo — oo.
Moreover,

) 2 i) 2 = @

holds for anyg > 1.

Figure 1:The competitive ratios of. T and the optimal algorithm.

We next give some intuition for the partition into intervals. Both the behavidr®f’, and the semi-
online problem in general, are dependent on the value Ah attempt of performing a uniform analysis of
LPT leads to proofs which do not hold for all valuesgfUsually this simply means that the behavior of
the competitive ratio changes at the infimum (or supremum) point, at which a proof no longer holds. From
the point of view of lower bounds on the competitive ratio, a difficult example typically behaves differently
starting from some point, and this point is often a breakpoint at which the competitive ratio function changes.
In the cases where not every online algorithm can be forced into the same behavior as thé Bfie wie
identified whereL PT acts in a way which causes it to have a weaker performance than what is possible,
and we define algorithms which behave similarlyitB7T except for some special cases.

3 Preliminaries

In the next two sections, we prove the upper bounds on the competitive ratio in all cases by contradiction.
We assume that4 < TAl(q) C*. We us€T; to denote the total size of jobs scheduledidnby Algorithm A,
i = 1, 2. By scaling the instance we can assume @fat= 1, and sdl; + 715 > 1 + % For every value of
we consider a counter example which is minimal with respect to the number of jobs. We consider a specific

optimal schedule to which we compare the performance of our algorithms.

We split out analysis into two situations according to the index of the machine which determines the
objective value of the algorithm. We denote the job set containing thejfjcdis by P;. For each case,
we analyze the potential structure of a minimal counter example. The following properties hold for any
algorithm which assigns specific jobs according to 7" rule (see below) and for any minimal counter

example.
Situation A. C4 = min{T1, ¢} =T < T%(q).
SinceT; < r%(q) <1,wegethh > 1+ — % > L. Denote byp, the last job assigned tb/;

by Algorithm A. Let L; be the job set assigned fd; just afterp; is assigned by the algorithm,= 1, 2.

ConsequentlyP, = Ly U Ly andl = |L1| + | Lo|. Letz; be the total size of jobs which arrive after i.e.,
l
x; =T1 + 1> —) p;. These jobs are clearly assigned\itq.
j=1
If p; is assigned td/, according to thel PT rule, or more precisely; is assigned to the machine with

the smaller current load, théfy > T — x; > q(T» — p;). Hence

>t 1;1 g (1 " ; - r“‘l(q)> N qrj(q) =1+ ;)(1 N rA]L(Q))' @)
By (2), we can obtain upper bounds g | and|Ls|. In fact, since
|L1](1 + 1)(1 - Al) <|Lilp < Ty < %
q r4(q) r4(q)
we have
Bl < DA 1)
On the other hand,
1 1 1
e Ty > q(T2 — pi) = q(|L2lpe — pi) = q(|L2| = V)pr > q(| L2 — 1)(1 + 5)(1 - rT@))'
Therefore,)
N T SV @
Situation B. C4 = min{Ty, ¢Ts} = ¢T» < T%@
SinceT, < qr%@ <o >1+ ;- qul(q) > 1. Denote byp, the last job assigned td/; in

Algorithm A. Let U; be the job set assigned fd; just afterp, is assigned by the algorithm,= 1, 2.

ConsequentlyP, = U; UUs andu = |Uy| + |Us|. Letx,, be the total size of jobs which arrive aftey, i.e.,

U

Ty =T14+To — lej.
j=

We first show that in a minimal counter example we haye= 0. Consider an instance in which
x,, > 0, thus the number of jobs in this instance is at least1. Consider the instance which contains only
the jobs ofP,, and thus containg jobs. The objective value of the algorithmggl’, — z,,). Consider the
schedule obtained from an optimal schedule for the original input, where all jobs except for the jobs of
were removed. The objective value of this solution is at Ieast - =, > 1 —¢T» > 0, since the total size of
jobs removed from each machine is at mogt We haveq(lT;% > q% > r4(q). Therefore, the modified
input can serve as a smaller counter example.

If p, is assigned td/; according to thd.PT rule, we haveyT, > T; — p,. Then

1 1 1
pozTimate> (140 =) g = (L D), ®

Similarly to SituationA, by (5) we have

1
rA(

1
) < (U1] = Vpu = U1lpy —pu <Th — pu < qT < ¢——.

1
(U] =D+ ~)(1 - A (g)

q q)
Hence,
q

(¢+1)(r4(q) — 1)

|U1’ < + 1. (6)

On the other hand, since

1
|U2|(1+5)(1—) < |U2lpu <T <

1
r4(q) T ()
we have)

(¢+1)(r(q) — 1)

Using these inequalities, we can find upper boundd.ehand| Lo|, if Situation.4 occurs, and otherwise
on |U;| and |U,|. These bounds must hold for a minimal counter example. The proof will exclude the
existence of a minimal counter example and therefore of any counter example. This will be typically done
by showingC* < 1 (which contradicts our assumptiofi;} = 1).

|U2| <

(7)

4 Analysis of LPT

In this section, we find the exact competitive ratioflaPT. We break the proof into several lemmas, each
corresponding to a particular subset of intervalg.of

We first discuss several simple cases which may occur in the applicatib#®f In Situation.A, if
|Lo| = 1, thenp; = pe and Ly = {p}, Lo = {p2}. If p1 andps are not assigned td/; together in the

optimal schedule, the@™ < p; + x; = T1 < 1. Otherwise,

C* <qx;=q(T1 —p1) < q(T1 — p2) = q(T1 — T) <Q<TL1@— <1+2—7L1@)> <1,

where the last inequality is due to (1). In SituatiBnif |U;| = 1 (or equivalently|U;| = 0), thenp,, = p;
andU; = {p1}, Uz = 0, which impliesp; > ¢(T1 + T> — p1). Clearly, LPT obtains an optimal schedule
in this situation. So we assunmb;| > 2, |U;| > 2 and|U;| > 1 in the following.

Lemma 4.1 For g € [1,/2), the competitive ratio of PT is

+3 }: SHS qe[1,V15)
q g€ [V15,v2).

3
= e 322

Proof. We prove the upper bound first, and later show that it is tight.
By definition, if 1 < ¢ < v/2, then

1 C (2¢+3 1} 1
= min = < - (8)
r’(q) {3q+3 a) " q

Situation A. By the definition ofr”(q) and (3), (4), we havél,| < 2,|Ls| < 3. We consider several
cases according to the value|df; | and|Ls|.

Case 1.|L;| = 1 and|Ly| = 2.

Obviously, L1 = {p1} and Ly = {p2,p3}. By the pigeon-hole principle, any schedule must have a
machine which processes at least two job£gfwhich holds for an optimal schedule as well. Thus, at most
one job ofP; is assigned to the other machine in the same schedule. Therefore, wé*have(p; + x;) =

qTy < T%(q) < 1 by (8), which leads to a contradiction.

Case 2.|L;| = 1 and|Lq| = 3.

Obviously,L; = {p1} and Ly = {p2, p3,ps}. Consider all possible assignmentsRfin the optimal
schedule. If there exists a machine which processes at least three johshefn we have™ < q(p1+x;) =
qT1 < 1 by (8). Otherwise, both machines process two job&pfRecall thaiy(ps + p3) < p1 sincepy is
assigned ta\/; by LPT, we haveC™ < q(p2 +p3 + 1) < p1 +qv; < q(p1 +x1) = qT1 < 1.

Case 3.|L1| =2 and|Ly| = 2.

Obviously, L1 = {p1,p3} andLs = {p2,ps}. ThenT, = ps + ps < p1 + p3 < T1 < 1. However, by
(8), T, > 1+ % —Ty>1+ % — TL—l(q) > 1, which is a contradiction.

Case 4.|L;| = 2 and|Ly| = 3.

Note that when/1.5 < ¢ < V2, |Ls| < m +1 < 3 by (4). So we can assunmge< /1.5 for
this case. Then by (2, > 1.

If L1 = {p1,ps} andLa = {pa, ps,ps}, thenp; < gpz andq(pz + pa) < p1 + p3. Together with
p1 > ps > 5, we have

qpr +p2+x) < qlg+1)p2+quy < (¢ + 1)(p1 + p3 — qpa) + gy

= (¢+1)(Th — 21— qpa) + g < (¢+ 1)T1 — q(g + 1)ps
e
where the last inequality holds for agy> 1. Otherwise,L1 = {pi,ps}, Lo = {p2,p3,p5}, and thus
q(p2 + p3) < p1 + pa. Together withps > py > ps > 5, we get

< (¢+1)

qpr+p2+a) < qpi+ (1 +pa—ap3) +qx < (¢+1)(p1 + pa+ x1) — 2qpa

29+3 2q
= 17 —2 1 - — =1. 10
(¢+1)Ty qps < (¢ +)3q+3 3 (10)

Since there must exist a machine which processes at least three jBbinahe optimal schedule, at most
two jobs of P; are assigned to the other machine. By (9) and (10), we béve q(p1 + p2 + ;) < 1,
which is a contradiction.

Situation B. By (6) and (7), we havél/;| < 3 and|Uz| < 2. We consider several cases according to
the value oflU; | and|Us,|.

Case 1.|U;| = 2 and|Usz| = 1.

Obviously,U; = {p1,ps}, U2 = {p2}, and thusp; < gp2. Since there must exist a machine which
processes at least two jobsBf in the optimal schedule, we hat& < gp; < ¢%ps = ¢*T» < 1 by (8).

Case 2.|U;| = 2 and|Us| = 2.

Obviously, Uy = {p1,ps} andUsz = {p2,ps}. We havep; < q(p2 + p3) sincep, is assigned to
M. If there exists a machine which processes at least three jolby of the optimal schedule, then
C* < qp1 < ¢*(p2 +p3) = ¢*T» < 1 asin Case 1. Otherwise, both machines process two joBs iofthe
optimal schedule. We also hat& < q(p2 + p3) = ¢T» < 1.

Case 3.|U;| = 3 and|Uz| = 1.

Obviously, Uy = {p1,ps,pa}, Uz = {p2}, and thusp; + p3 < ¢p2. Together with (8), we have
q(p1) < q(p1 +p3) < ¢*p2 = ¢*To < 1, andq(pz + p3) < q(p1 + p3) < ¢’p2 = ¢°T> < 1. Asiin Case 2,
we getC™* < 1.

Case 4.|U;| = 3 and|Usz| = 2.

Note that fory/1.5 < ¢ < /2, |Us| < m < 2 by (7). So we can assume< /1.5 for this case.
Then by (5)p. > 3.

If Uy = {p1,p3,p5} andUs = {pa,psa}, thenp; < gps sinceps is assigned tal/;. Together with
ps > ps > %, we have
2g+3 1> <1,

q(p1 +p2) < qlap2 +p2) = (g + Vp2 = q(g + D)(To — pa) <qlg +1) <q(3q+3) ~3

10

for anyq > 1. OtherwiseU; = {p1,p4,p5} andUs = {p2, ps}, thenp; + ps < q(p2 + p3) sinceps is
assigned ta\/;. Together withpy > p5 > % we have

29+ 3 2q
+p2) < +p3) —patp2) <qllg+ D)To—py—p3) < glg+1) o — T
q(p1 +p2) < qq(p2 +p3) —pa+p2) < q((g+ 1)To — ps — p3)) < q(g)q(3q 3 3

Since there must exist a machine which processes at least three jBhsatihe optimal schedule, we get

thatC* < q(p1 + p2) < 1.
Tight instances. If ¢ < v/1.5, then let the job sequence l@g(qq%), g;r(?;jrqu, %, 1,1} To show that the

sequence is non-increasing, note tlg@% > % holds since this is equivalent &% 4 ¢ > 3, and

g;’(?;jr‘ﬁ > 1 holds since it is equivalent tp+ 3 — ¢* > ¢* + ¢, which holds forg < v/1.5. If ¢ > 1, LPT

assigns the third job td/, since 912 > 232 At this time, the loads argt2- (of M) and 2 (of
3(g+1) 3(g+1) (q+1) 3(g+1)

My). Assigning the next job td/; would result in equal loads (%f(gi—?) Since only one job remains at this

time, we getC” = 33%3 In the optimal schedule, the jobs, p4 andps; are assigned td/; and the other
jobs are assigned tbfy. ThusC* =1 and% = ‘;’g—ig If ¢ = 1 then the third job is assigned fd; and

the fourth job toMs, which gives the same result.

If V1.5 < ¢ < v/2, then let the job sequence l@%, q%, 1— q%}. The sequence is non-increasing for
anyq < 2. Clearly, LPT assigng; to M; andp, to M>, which results in equal loads %f. Since only
one job is left at this time('X = % In the optimal scheduley, ps are assigned td/; andp; is assigned to
Ms. ThusC* = 1and&r = ¢. O

Lemma 4.2 For ¢ € [v/2,1 + /5), the competitive ratio of. PT is

; q € [v2, 100
ggﬁ g€ [1+2\/5’ 1+2ﬁ)
2¢+1 1+v7 1413
rlg) = o2 a€ =7 75
3 g € Y1 gy ~ 2.4856)
— ¢ € 0,1+ V3)
| 353 ge[l+V3,1+V5)

Proof. It can be verified directly that

2 2¢+2 2¢+1 1+13
rL(q) _ { max{g, 2q+1a 3‘qq+22} qc [\@\,ﬁE) (11)
max{%, %i?,ﬁ%} qc [1+2 13 14+V5)
and
2 29+2 ¢? 3q +2
rE(g) > max =, 2412 4 Hd 20T (12)
q 2¢g+1 ¢ +1"29+3

forallq € [V2,1 +/5).
Situation A. By (3), (4) and simple algebraic calculation, we halig| < 3 and|Lq| < 2.

11

Case 1.|L;| = 1 and|Ly| = 2.

Obviously, Ly = {p1}, L2 = {p2,p3}, and thusgps < p;. Consider all possible assignments of
Ps3 in the optimal schedule. Ip, is the only job of P; which is assigned td/;, then it is trivial that
C* < p1+x; =11 < 1. If p is the only job ofP; which is assigned td/,, then by (12),

1
rE(q)

<1

)

. 2 2 2 2
C*"<py+ps+a < —-p1+x <max< —, 13 (p1 + ;) =max< —, 1,71 <maxq —,1
q q q q

sinceps < py < %.

If p1 is assigned together with at least one other jonfthen

C* < qpe+x)=qlp2+T1 —p1) < —qlqg—Vp2 +qT1 < — p2+p3) + ¢Th

q(q—1) q(q—1) (1 1) q
= - Ty +qTh < — 14— — + <1
2 2 q ri(q) rL(q)

where the last inequality is equivalentitb(q) > Z;ﬁ which is valid due to (12).
Case 2.|L;| = 2 and|Lq| = 2.
Obviously, L1 = {p1,p3}, L2 = {p2,ps}, and thusyps < p1 + p3. Consider all possible assignments

of P, in the optimal schedule. If there are at least two job£phssigned tall,, then at most two jobs of
Py are assigned td/;. We obtain by (2) and (12),

q(g—1)
5

1 1 1
C* < pi+pr+a <p1+6(191 +p3) + 1 < (1+§)(P1 +p3+a) —p3 = (1+§)T1 —p3

(g (i)

where the last inequality is equivalentitb(q) > 377,

job of P, assigned td//s andp; is assigned td/7, then

which is valid due to (12). If there is at most one

-1
q(c12)(p2 +pa) + T

C* < qlp2+z) =qp2+T1 —p1 —p3) < —qlg—1)p2 +¢T1 < —

_ ql@-1) _q(g—1) 11 q
= T2+qT1< 2 <1+q rL(q)>+7'L(q)§1

2
as in Case 1. Otherwise, the only jobff which is assigned td/s is p;. By (11), we also have

C*SQ(p1+UCl)—Q(T1—p3)<qu(q)—Q<1+(1]> (1—7;@> <1

2q+1

el and

forvV2<g< % since the last expression is equivalent tgq) >

* 3
o < p2+P3+p4+$1§3p2+$1<6(p1+p3)+a?z

3 3 3 1
< max{,l} (p1 +p3+ml):max{,1}T1<max{,1} <1
q q q

12

When”ig/ﬁ <qg<14++5.
Case 3.|L;| = 3 and|Lg| = 2.

Obviously, L1 = {p1,ps,ps}, L2 = {p2,p5}, and thusgps < p1 + ps + ps. Consider all possible
assignments aP; in the optimal schedule. If there is at most one jolPgfassigned td\/s, then

q 1 1
C* <qp1+x;) =q(T1 —p3 — pa SqT1—2qp5<—2q<1+> <1—> <1,
()=l) rL(q) q rL(q)

where the last inequality is equivalentitb(q) > gg—jﬁ which is valid due to (12). Otherwise, at least two

jobs of P5 are assigned td/-. Since at most three jobs 6% are assigned td/;, we have

p1+p3+p4a

N 1
C* < prt+pr+p3ta<p+ +p3+xz§(1+§)T1—p4

(o) (D) k)
as in Case 2.

Situation B. By (6) and (7), we hav/;| < 4 and|Us| < 1.

Case 1.|U;| =2 and|Uz| = 1.

Obviously,U; = {p1,ps}, Us = {p2}, and thugpp; < gp,. Consider all possible assignmentsifin
the optimal schedule. j#; is the only job ofP; which is assigned td/;, thenC* < p; < gpa = ¢Ts < 1.
If p1 is the only job ofP; which is assigned td/,, then by (12)C* < ps +ps < 2py = 2T < qr%(q) <1.
If p; is assigned together with at least one other jogfthenC* < gpy = ¢T5 < 1.

Case 2.|U;| = 3 and|Uz| = 1.

Obviously,U; = {p1,ps3,p4}, U2 = {p2}, and thusp; + p3 < gp2. Consider all possible assignments
of P4 in the optimal schedule. If there are at least two job&passigned tal/,, we obtain

C* < pi+p2<qpa—p3+p2<(1+qp2—ps3
1 1 1
= 1+ —ps<(l+gq —<1+> (1—>§1,
() ()qu((J) q rL(q)

as in previous cases. If there is at most one jol’phssigned ta\/> andp; is assigned td/,, it is trivial
thatC* < gpy = qT5 < 1. Otherwise, the only job oP; which is assigned td/ is p;. By (5) and (11),
we also have

¥ q 1 1
<qp1 < —p3) < q(qTy — —q(1+-)(1- <1
C* < gp1 < q(gp2 — p3) < q(¢T> — p3) < g ¢ < + q> (TL(q>> =

for\/§§q<%,and

3

C* <py+ps+ps <3p2 <3py =312 < —
qr(q)

<1

for Y13 < ¢ < 14 4/5.

13

Case 3.|U;| =4 and|Uz| = 1.

ObviouslyU; = {pi1,p3,p4,p5}, U2 = {p2}, and thusp; + ps + ps < gp2. Consider all possible
assignments aP; in the optimal schedule. If there is at most one jolPyfassigned tadl/; in the optimal
schedule, then by (5) and (12), we have

q 1 1
C* < qp1 < qgp2 —p3s —pa) < q(qTs —2py) < —2q<1+> <1—> <1
() <l) rL(q) q rL(q)

Otherwise, at least two jobs &t are assigned td/,. By (5) and (12), we also have

C* < pr4+pr+p3<qpa—ps+p2<(1+q)p2—ps=(1+q)T2—ps

e () rtg) o

Tight instanceslf /2 < ¢ < ”2\/5, then let the job sequence bg, 3, 5}. After the assignment of the
first two jobs, the loads af/; and M, (respectively) aréqt and{ > é which holds forg > v/2. Therefore,
LPT assigng, ps to M, andpy to M,, which results inC* = 1. In the optimal schedules,, p3 are

assigned ta\f; andp; is assigned td/>. ThusC* = 1 and gL = %

1+\f 1+\f 2¢+1 1
If < ¢ < *£¥L then let the job sequence E@Q—, 2q(‘1q+1 ' 29 2q} The sequence is non-
increasmg sinc@q® — 1 > 2¢ + 1 is equivalent toy > HT‘[Since2q¢® — 1 < 2¢% + ¢, LPT assigns
p3 to M7. At this time, the loads are both equal%. Since only one job is left at this time, we have

CL = 22t1 |n the optimal schedule; , p, are assigned td/; andps, p4 are assigned td/,. ThusC* = 1

2q+22)
cr _ 2q+
ander = 5.
If LT < g < 113, then let the job sequence K¢, — 2q+1) q(;q+11) q(2q+1 y1- To show that the

1+/13
sequence is non-increasing, we need to shew 1 > ¢+ 2 > ¢? — 1, which holds forl < ¢ < == At

the time when the first two jobs were assigned, the loatlfofs larger than the load a¥/; (‘é;f‘{) versus
2q+1

5 qul)) L PT assigns the next job tbd/; which results in equal loads %ﬁi At this time, only one job is
left and thusCL = Qqq*fl. In the optimal scheduley,, ps3, p4 are assigned td/; andp, is assigned td//s.

* Cc* _ 2q+1
ThusC* =landgr = 45

If % < ¢ < qo, then let the job sequence l@é, 1,2, %}, We claim thatL PT assign, ps, pa

to My andps to Ms. After two jobs are assigned, the load & is % while the load ofM5 is g > % for
q > /3, thus the third job is assigned ff;. After the assignment of two jobs ttl, its load becomes
% + 1, while the load ofAf is . Since forg > Hz—m % + £ < £, an additional job is assigned fd;,
which results inC'L = g In the optimal scheduley,, ps3, p4 are assigned td/; andp; is assigned td//s.
_ c* _ 3
ThusC* =landzr = 2.
If g0 < g < 1++/3, then let the job sequence bg,PJra, 16 q% g, q(qul j+e}, wheres > 0is
a small enough real number. ClearlyPT" assigngs to Mo, which results inC’l < p; + py = qg; + 2¢.
In the optimal schedulep;, po are assigned td/; andps, ps are assigned td/,. ThusC* = 1 and

g - gzi‘{ (letting e tend to0).

14

; 2¢+3 21 21 21
If 1+ V3 < ¢ < 1+ /5, then let the job sequence K¢, -ZLt5, o, £, 4ots). The

sequence is non-increasingif + 2 > 2q + 3 > ¢ — 1, which holds forl < ¢ < 1+ /5.

; . ; e 2¢°43 ic _3q+2
After the assignment of the first two jobs, the loadd$ is q&qﬂq) and the load of\/; is q(gqu), SO

the next job is assigned th/;. This results in the Ioaé;(;;’%‘g)l, thus the fourth job is assigned id; as

well, which results in equal loads gf+5. At this time, a single job is left, thus™ = 3. In the optimal
scheduleps, ps, ps, ps are assigned td/; andp, is assigned td/,. ThusC* = 1 and & = 522 O

Lemma 4.3 For g € [1 + v/5, 00), the competitive ratio of, PT is r”(q) = q%qu

Proof. By (4) and (7), we havéLs| < 2 if Situation A occurs andU,| = 0, if Situation B occurs.

Therefore, the upper bound follows from the discussion before.

A tight instance. Let the job sequence g, 1, é}. Clearly, LPT assign®1, p3 to M; andp, to Mo,

which results inCL = % In the optimal scheduley;, po are assigned td/; andps is assigned td\/,.

ThusC* = 1 and &

— 2q
G O

T ogt2

5 Two new algorithms

In this section, we introduce two new algorithms, and analyze their competitive ratios. In the next section
we prove matching lower bounds. In particular, we show that the competitive ratios are smaller than those
of LPT, and thusL PT is not optimal in the intervals discussed here.

The goal of these algorithms is to behave differently ftbiT" in the cases wherBPT clearly makes
an incorrect choice. As we saw in the previous section, the most difficult cases to deal with are the first few
jobs. After many jobs have been assignB@ T becomes a reasonable strategy for all cases. Thus we need
to reconsider the assignment rule of the first few jobs.

For small values of, it is unclear whether assigning the first job to the faster machine is always the
correct thing to do. Our algorithrh A/ 1 always makes the opposite choice. The next job must be assigned
to the faster machine, in order to avoid an unbounded competitive ratio. The assignment of the third job
depends on the exact sizes. An additional interval in wiiiéty” does not achieve the best possible com-
petitive ratio is treated in a similar way. Due to the large value, d@f is impossible to switch places of the
first two jobs, but the third and fourth jobs must be assigned very carefully.

Algorithm LM1

1. Assignp; to Ms, andp, to M.

2. Ifpy > %pz, assigrps to My, otherwise assigps to Ms.

3. Assign the remaining jobs according to th&T rule.

15

Lemma 5.1 For ¢ € [1,+/1.5), the competitive ratio oE M1 is

{ 6 2-q®+ /" +443 + 1242 + 16g + 4 }
r(g) = max . q

2q+ 3’ 2(¢+2)
%% q e [17 Q1)
B 2—q2 4/ +4¢3+12¢2+16¢+4 V/33-1
= 204+2) q S [qla 1)
q g € [V31,VI5).

Claim 5.1 Forany1l < ¢ < V1.5, (1 + &) (55 — (1 +) (1 = 75)) < landr(q) < 4.

L(.\ _ 3q+3 _ 2-*+/ A +4¢3+12¢2 +16q+4
Proof. If ¢ < /1.5, we haver(q) < r%(q) = e < 4. Letr'(q) = oD In
fact,7’(q) is the positive solution of

) Gan (D0 e
with respect ta(¢). Since

(%? —q—1>0,andr(q) > r'(q), we have

VIR a1y = a4tz g \q+2
(1+T(Q))(T(Q) q<1+q)(1 7"((1))) (1+7“(Q))(7”(Q))§(1+T'(Q))(7"I(Q) D
1
= (1 + r/(q))(,r/(q) - q(l + 7)(1 - T'/(Q))) =1
O

In the proof of the competitive ratio, we use the following technical lemma.

Lemma 5.2 LetT;" be the total size of jobs scheduled bf) in the optimal schedule, far= 1, 2. Since
C* = min{TY}, ¢T3}, for anya, b > 0, we have

o < ady —|—qu2*'

- a+b (14)

Proof. SinceC* < T} andC* < ¢T3, anda,b > 0, we get(a + b)C* < aT} + bqT5 .]

In Situation4, we denote by the total size of jobs which arrive after, and are scheduled avi; in the
optimal schedule; = 1,2. Thend; + 05 = x;, and for anya, b > 0, we havend] + bgd; < max{a, bq}x;.
Note that we do not use a similar definition for Situati®since we consider a minimal counter example,
and thus we assume, = 0.

Proof. (Proof of Lemma 5.1).

Situation A. CEM! = min{Ty,¢To} = T1 < ﬁ

16

We havel; < (y<LT>1 + — ?1(1) > l If |Ly| =1, thenpl = p1. No matter which machine
p1 is assigned to in the optimal schedule we hé\7e< qr; = q11 < () < 1. Sowe assumg.s| > 2in
the following, and thus > 3.

Caselp, > @pg.

According to AlgorithmL M 1, ps is assigned td/;. Thusp; must be assigned td/> due to theL. PT
rule, and|L;| > 2. By the definition ofr(¢) and (3),(4), we havéeL;| < 2 and|Lz| < 3. Hence,|L;| = 2
and|Ly| = 2 or 3. We consider several subcases according to the vallig, pf

Case 1.1]Ly| = 2.

Obviously,L; = {p2,p3} andLy = {p1,ps}. Consider all possible assignmentsAfin the optimal

schedule. If there exists a machine which processes at least three Bhsedall thatyp; < po + p3 since
py4 is assigned td/s by the LPT rule, we have

C* <qlpr+x) <p2+ps+aqr < qp2+ps+a)=qh <1

Otherwise, both machines process two job®gfwe haveC* < q(p2 + p3 + x;) = 11 < 1.
Case 1.2]Ly| = 3.

Obviously,L; = {p2,ps} andLy = {p1, p4, ps}, and thusy(p; + p4) < p2 + p3. Since there must exist
a machine which processes at most two job&pin the optimal schedule, by (2) and Claim 5.1, we have

C* < qlpr+p2ta) < <P1 + (q)pl + 561> < (1 + r(qq)) (gp1 + 1)

< (1+T(qq)> (p2 +p3 — qpa + 1) < <1+T(qq)> (Ty — qps)

(o -a)

According to AIgontthMl, ps is assigned td/s. If |Ly| = 2, thenL; = {p2} andLs = {p1,p3}.
Since there must exist a machine which processes at least two jélsrothe optimal schedule, we have

N

Case 2.p; < (Q)

C* < q(p1 + =) <r(q)p2 + qz; < r(q)(p2 + 1) = r(¢)T1 < 1.

Otherwise|Ly| > 3, and therp; is assigned td\/; by LPT rule, and thugL,| < 2 by the definition of
r(q) and (3). Howeverp, must be assigned tb/; andps + ps < p1 + p3 < q(p1 + p3) implies that at
least one additional job must be assignedfpbeforep, is assigned td/,. ThereforeL,| > 3, which is a
contradiction.

Situation B. C*M1 = min{T7, ng} =qTh <

We havel, < o
we obtain|U; | > 2.

7"(q)
qr(q) > 1. Sincepy € Uy,p1 € Uy andpy < py < Ty < ¢T5,

(q) < E’ Ty

17

Case 1.p; > @p .

According to Algorithm LM 1, ps3 is assigned taVf;. If |U;| = 2, obviouslyU; = {p2,p3} and
Us = {p1}. Since there must exist a machine which processes at least two jaBsinfthe optimal
schedule, we have™ < gp; = ¢T> < 1. So we supposg/;| > 3, andp,,, whereu > 4, must be assigned
by the LPT rule. By (6) and (7), we havg/;| < 3 and|Uz| < 2. Hence|U;| = 3.

Case 1.1JU;| = 1.

Obviously,U; = {p2,ps3,pa} andUs = {p1}. Thusps + p3 < ¢gp1. Consider all possible assignments
of P, in the optimal schedule. If there exists a machine which processes at least three fabtheh we
haveC* < gp1 = ¢T» < 1. Otherwise,

1
C* <q(p2+p3) < Cp = ¢PTh < P—— < 1.
qr(q)

Case 1.21U;| = 2.

Obviously,U; = {p2,ps3,ps} andUs = {p1,ps}. Since there must exist a machine which processes at
most two jobs ofP; in the optimal schedule, by (5) and (13), we have

C* < qlp+p2) <q (pl + é)pl) < =) (q(p1 + pa) — qpa)

()= o5 (g o) () =

Case 2.p; < @pg

According to AlgorithmL M1, ps is assigned td/;. Note thatps + py < q(p1 + p3), p4 is assigned
to M; and sincelM, must be less loaded after the assignmeng,ofthenu > 5, and|U;| > 3. On the
other hand, since, is assigned td\/; by LPT rule, we havdU;| < 3 by (6). Hencel/1 = {p2,p4,ps}
andUsz = {p1,ps}. Consider all possible assignmentsigfin the optimal schedule. Recall that there must
exist a machine which processes at most two job#£50f If these jobs are not the pai andp,, that is,
this is a different pair, or a single job, then we have < q(p1 + p3) = ¢1» < 1. If p;,py are assigned
to My, by Lemma 5.2 and (14), with = 3¢, b = 2, we haveC* < % We use3qT} + 2¢T5 =
3q(p1 +p2) +2q(p3 + pa +ps) < 6gp1 + 6gps = 6T < % and geC™ < gy < marsg < L
where the last inequality is due to the definition-¢f), and the previous one is duedo> 1.
2qTy+3qT5

Otherwise, ifpy, py are assigned td/,, we takea = 2¢,b = 3, and getC* < 5078 In this

case,2qT} + 3¢T5 = 2q(p3 + pa + ps) + 3q(p1 + p2) < 6gp1 + 6gps = 6¢T> < % This gives
* 6

¢ < @@ S - =

Algorithm LM?2

1. Assignp; to M7, andp, to M.

2. If p1 < qr(q)p2, assigrps to M1, otherwise assigps to Mo.

18

3. Denote byT? the total size of jobs scheduled o1y beforep, is scheduled; = 1,2. If T} < 275 +pa,
assignpy to M, otherwise assigp, to Mo.

4. Assign the remaining jobs according to th&T rule.

Lemma 5.3 For ¢ € [qo, 1 + \/3), the competitive ratio of. M 2 is

r(q) = max {3 o 2} = g ¢€ lo, 2+\ﬁ)
q 2q+3 2 ge A 1+Vi)
Proof. It can be verified directly that
2q +2
r(q) > 23 - (15)

for ¢ € [qo,
Situation A. C*M2 = min{T7, ng} =T < @
We haveT; < (j<LTp>1 + — @ % If |Lo| = 1, thenp; = ps andL; = {p1}, Lo = {p2}.
Consider all possible asagnmentngfln the optimal schedule. i, p, are assigned to the same machine,

then

2+\/371)
3)

C*éqxl:q(Tl—pl)§Q(T1_p2)ZQ(T1_T2)<q<7«(1q)_ (14_;_7"(1(1))) =1

by (1). OtherwiseC™* < p; + x; = T < 1. So we assumf.;| > 2 in the following.
Case 1.|Ly| = 2.

If p1 > qr(q)p2, thenps is assigned td/,. Since|Ls| = 2, we havelL; = {p1} andLs = {p2,p3}.
Consider all possible assignmentsffin the optimal schedule. J#; is assigned td/,, then byr(q) > g

C*<pr+ps+a<qr(@)pa+a <p1+x =T <1

If p1 is the only job of P; which is assigned td/;, it is trivial thatC* < p; + x; = T1 < 1. Otherwise, we
have

C* < glpa+a) = a2+ T —p1) < alps + Tt — ar(a)pe) < 4T — alar(a) — 1) (
B _algr(g) — 1) g qlgr(g) — 1) 11
- ah 2 < r(q) 2 (1 T 7“(61)) =h

where the last inequality is equivalent(@ + ¢)r(¢)? — (¢* + ¢ — 1)r(¢) — ¢ > 0, which is valid due to the
following: (¢* + q)r(q)* = (¢* + ¢ —1)r(q) —q = (¢* + @)r(q)(r(q) = 1) +7(q) —q > 3(¢ + 1)(r(q) —
1) +r(q) — g = 3¢+ 4)r(g) — (4¢ +3), by r(q) > 2. Sincer(q) > 3L > 55 for anyq > 1, the
property follows.

P2 + p3
2

Now we consider the cagge < ¢r(q)p2. Thusps is assigned td/;, andZ} = p; + p3, T5 = pa.

19

Case 1.1p1 + p3 < 2p2 + pa.

In this casep, is assigned td\/; andyp; is assigned td//; due to thel PT rule, sincel > 5. By the
definition ofr(q) and (3), we havelL,| < 3. Hence|L:| = 3 andL; = {p1,p3,pa}, L2 = {p2,ps}.

Consider all possible assignments Bf in the optimal schedule. If there exists a machine which
processes at least four jobs#y, then by (2),

C* < qpr+x) = q(T1 — p3 — pa) < q(T1 — 2ps)

q<r(1q>—2<1+;> (1—@)>g?f(:)2—(2q+2)51,

where the last inequality is equivalentit@y) > g’g—ig Otherwise, by (2), (15) angbs < p1 + p3 + p4 Since
ps is assigned td/,, we have

1+Dp3+Dps 1
cr < p1+p2+]93+331<p1+p];p+p3+$z§<1+q>(p1+p3+p4+xz)—p4

(o) () (s () =

Case 1.2p1 + p3 > 2p2 + pa.

According to the definition of Algorithni. A2, p, is assigned ta\/;. Obviously,L; = {pi;,p3} and
Ly = {p2,p4}. Consider all possible assignments ®f in the optimal schedule. Firstly, suppoggis
assigned ta\fs. Then

IA

C* < pp+p3s+pat+a <2pa+pit+a<pr+pst+a =T <1
Secondly, supposg is assigned td/; with at least two other jobs aP;. Then by (1),

C* < qp2+x) =q(pe +T1 — (p1 +p3)) < q(p2 +T1 — (2p2 +pa)) = q(T1 — p2 — p4))

= q(Tl—T2)<q<T(1q)—1—(1J+T(1q)>§l.

Thirdly, if p; is the only job of P, assigned ta\/y, or it is assigned td/; with p3 or with py, thenC* <
p1 + ps +x; = 11 < 1. Finally, suppose, po are assigned td/;. By (14) witha = 4¢,b = 3 and

3q+2 6q

o < 34T7 +3qT5 _ 4q(p1+p2 +67) + 3q(ps + pa + 63)
- 49+ 3 4q+3
4qp1 + 2q(2p2 + pa) + 3qp3 + qpa + (4¢67 + 3¢5)
4943
4qp1 + 2q(p1 + p3) + 4qps + (4997 + 3¢95)
49+ 3
6g(p1 +ps+x) 6qT1 6q 1

= < < . <1
49+ 3 4g+3 ~ 49+3 r(q) —

<

IN

20

Case 2.|Ly| > 3.

If {ps,psa} & Lo or|Ls| > 4, thenp; is assigned td\/, due to theL PT rule, sincel > 5. By the
definition ofr(¢) and (4), we havéLs| < 2, which is a contradiction. Hencéps,ps} C Lo and|Lg| < 3.
In other words,Ly = {p2,ps3,ps} andL; = {p1}. According to AlgorithmL M2, we havep; > qr(q)p2
andp; > 2(p2 + p3) + pa.

Consider all possible assignments Bf in the optimal schedule. If there exists a machine which
processes a single job &, which ispy, thenC* < max{p1 + z;,po+p3s+ps+x;} =p1+x; =11 < 1.
Otherwise, by (1),

C* < qp2+ps+a) <qpr—p2—p3s—pa+x)=q(Th —T2) <q <1 - 1—1+1) <1
r(q) g (g
Situation B. C*2 = min{T1,¢T>} = ¢T3 < ;.
We haveT, < qr—%q) < % Ty >1+ é — q&q) > 1. If |Uy| = 1, thenU; = {p,}, Us = 0. Sincezx,, = 0,
in this case”™* = 0. Thus, we assum@/;| > 2 in the following.
Case 1.|U;| = 2.

Case 1.1f p; < gr(q)p2, thenps is assigned td/; according to AlgorithmZA/2. Obviously,U; =
{p1,p3} andU, = {p2}. Consider all possible assignmentsifin the optimal schedule. |, is assigned
to My, thenC* < max{p1,qpa} < qr(q)p2 = qr(q)T2 < 1. OtherwiseC™* < ps + p3 < 2p2 < qpa =
qls < 1.

Next we consider the option whepe > ¢r(q)p2. According to AlgorithmL M2, ps is assigned td/s,
and thusly = p1, T3 = pa + p3.
Case 1.20; < 2(p2 + p3) + pa.

According to AlgorithmL M2, p,4 is assigned tal/;. Obviously,U; = {p1,ps} andUs = {p2,p3}.
Consider all possible assignmentsifin the optimal schedule. If there exists a machine which processes
only the jobp; in Py, then byr(q) > %

C* < max{pi,p2+p3 + ps} < max{p1,3p2} < max{pi,qr(q)p2}
3
= p1<2(p2+p3)+ps<3(p2+p3) =31, < —— <1

qr(q)
OtherwiseC* < q(p2 + p3) = q1» < 1.
Case 1.31 > 2(p2 + p3) + pa.
According to AlgorithmL M2, p4 is assigned td/s. Thenp,, is assigned td/; by theL PT rule, since
u > 5. By (7), we haveU,| < 1, which is a contradiction.
Case 2.|U;| > 3.

If |Us| > 2, thenp,, is assigned td\/; due to theL PT rule, sinceu > 5. By (7), we havgU,| < 1,
which is a contradiction. S@/»| = 1 andU; 2 {p1,ps,pa}, U2 = {p2}. According to the algorithm, we
havep: < qr(q)p2 andp; + p3 < 2pa + pa.

21

If |U1| = 3, thenU; = {p1,ps3, ps}. Consider all possible assignmentsifin the optimal schedule. If
M, processes exactly one job Bf, then using; < 3,

3

C* <max{pz + p3 + p4,qp2} < 3p2 = 311 < (@ < 1.
Otherwise, by-(¢) > 2,
" 3
C" <p1+p2<2p2+ps—p3+p2<3p2 =31 < (@ <1

If |Uy| = 4, thenU; = {p1,p3,p4,ps}. We havep; + ps3 + ps < gpo by the LPT rule. Consider all
possible assignments &% in the optimal schedule. If there exists a machine which processes at least four

jobs in Ps, then by (5), and by(q) > 3143, we get

C* < qp1 < qlgp2 — p3 — pa) < q(qp2 — 2ps) = ¢*p2 — 2qps

qQTQ—Qq(l—i-;) (1_7~(1@><7=EJ@_2(Q+1)<1_7«(1(1)>51' (16)

If two jobs are assigned tb/; in the optimal schedule, then byq) > g

IN

3
qr(q)

C*" <p1+p2<2p2+ps—p3+p2 <3p2 =31 < <1.

If M, processes three jobs, afhfh processes two jobs (in the optimal schedule), we Ra¥§ + ¢7T5 <
2q(p1 + p2 + p3) + q(ps + ps). By (14) witha = 2¢,b = 1 and (15), we have

or < 2917 + ¢T3 < 2q(p1 + p2 + p3) + q(ps + ps) < 2q(qp2 — pa +p2) +q - 2p4

- 2g+1 2g+1 - 2g+1
2q(q+Vp> _ 29+ DT> . 2¢+2
- 2 +1 2g+1 (2¢ + 1)r(q) '

By the definition ofr(q) and (6), if|U1| > 4, thenp, is assigned by thé& PT rule and therefore

|U1| < 4. The proof is thus completed. O

6 Lower bounds

In this section, we present valid job sequences (i.e., sequence sorted by non-increasing size) which allow
us to prove lower bounds which match the upper bounds from the previous sections. All sequences have at
most five jobs. Let; be the ratio of objective values of the optimal schedule and a schedule given by an
arbitrary algorithmA just afterp, is assigneds > 1. Obviously,% > rgforanys > 1.

Given a job sequence, jf;, po are assigned to the same machine, ther» co. So we only need to
consider algorithms that assign the first two jobs to different machines in the following.

22

Furthermore, for; > @ we haver(q) < q. Therefore, in all cases except for the first two intervals,
we assume that the first job is assignediig. If this is not the case, then a second (and last) job of size
Py = %1 arrives. To avoid an unbounded competitive ratio, this job must be assigiéd M/e getC* = p;
whereags4 = L thusry = g.

6

Interval 1. ¢ € [1,¢1),7(q) = 5,73

The sequence consists of five jobs of Si@q& 2%], 1.3, 51 If p3, ps are assigned to the same machine,
then after four jobsC* > o + 3 = % and the algorithm has a machine with a single job of gizeso
cA < % thereforeyy, > % > r(q). Otherwise, an optimal schedule assigns the last three job§ to

andC* = 1. The algorithm has a machine with just one job of sizeor; > @ = ﬁ =r(q).
6q

33-1 2—q?4++/q4+4q3+12¢2+16¢+4
Interval 2. g € [q1, Y5=1), r(q) = ZEEV I |

It can be verified directly by the definition ofq) thatg + r(q) > r(q)? > r(q)? for q € [q1, %),
which will be used frequently in the following.

If p; is assigned td/;, the sequence consists of five jobs of sizes

{T(Q) (q+3—a*)r(q) (¢+Dr(q) (q+Dr(q) (¢+1)r(q) } .

g’ g+2) 7 oqlg+2) 7 qlg+2) T q(qg+2)

The sequence is of sizes non-increasing siffce 2¢ > ¢+ 3 — ¢> > ¢*> + ¢ foranyl < ¢ < V1.5. If p3
andp, are assigned to the same machine, then

. (2¢+3)r(q)
min{p: +ps,q(p2 +p3)} “qq+2) _ 2¢+3 _ 3q+3
ra 2 = = > r(q).
max{p1, qpa} %‘D q+2 ~ 2¢+3
Otherwise St
. q r\q
> min{ps +pa +ps,q(p1 +p2)} _ “al+2) _ 3q+3 > r(g)
’ max{p1 + pa, ¢(p2 + p3)} % 2¢ +3 ‘

If p; is assigned td/s, the sequence consists of five jobs of sizes

{T(Q) L4 a+r(@) —r(e)’ q+?"(61)—7“(q)2}
g r(g) qr(q) ’ qr(q) '

The sequence of sizes is non-increasing sirige¢ > ¢ > 1 in this interval. Ifps is assigned td/,, then

r(q)

Thus we only need to consider algorithms that asgigio M. In this case, ip, is assigned td/, then

r3 =2
b2

o min{ps +p3. g1} _ {q +r(g) : r(q)} =7(q).

. a+r(q) a+r(a)
o min{ps +p3, g(p1 + pa)} _ () W _ 9t o

_ 9
~ min{ps + p3 + p1,qp1} min { (q+1)T(Q)Zg((;1)+1)—T(Q)2 ’ T(q)} r(q) r(q)?

23

Otherwise, by (13),

. . ¢®2q+2r(q)—2r(q)?
RS min{ps + pa + ps, 4(p1 +p2)} _ mm{ 7 (q) ,q + T(Q)} _q+rle) _)
"= maX{p? + p3,q(p1 + p4)} q+r(q) q+r(q) :

7(q) r(q)
Recall the in the remaining intervals, we only need to consider algorithms that asgigil/; andp,
to Ms.
Interval 3. ¢ € [@, V2),7(q) = q.
The sequence consists of three jobs of sizes;. 1 —).

The sequence is non-increasing sigée< 2. After the first two jobs are assigned, the machines have
equal loads. Thus, we get > + = ¢ = r(q).

Q

In the remaining intervals, the full instances are similar to those shown in Section 4. Therefore, we
have already shown that they are non-increasing (in the cases where this is not immediately seen from the
sequence).

Interval 4. g € [v2, 15Y5), r(q) = 2

The sequence consists of three jobs of s'{z—]e%, 3}. The loads after the first two jobs are assigned are

¢ andg, soC4 < 4 andC* = 1. We getr > L = r(q).

Interval 5. ¢ € 155 153T) (g) = 2042,

The sequence consists of four jobs of &ig%‘{q%, 25 qfl 30 B)

For the prefix of three jobs we hav& = 20°+4_ since an optimal schedule assignsandps to M,

2q(q+1
) q(2g+1)

2
andps to M. If p3 is assigned td/,, thenC4 = zq‘%qﬂ), SOrs = 52y

the machines have an equal load after this assignment, 30°(q).

2q+1
Interval 6. ¢ € [15/7 15Y13) () = T

> r(q) foranyq > 1. Otherwise

The sequence consists of four jobs of sifés_£2 =L qq;qull)}

For the prefix of three job&™* = 2%21 since an optimal schedule assignsandps to M7, andps to

M. If p3 is assigned td/,, thenC4 < 1 sorg > a(a+2) > r(q) foranyg > 1. Otherwise the loads after
p q 2g+1

three jobs are assigned a}% sory > r(q).

MOES?

The sequence consists of four jobs of sii%sé, 3,1}

Interval 7. ¢ € [15y13 2y51)

For the prefix of three job€* = %}3 since an optimal schedule assigasandps to M7, andps to Ms,
and{ > % for g > % If p3 is assigned td/fy, thenC4 < % Sorg > % > r(q) for anyq > 2.
Otherwisery > r(q), since the larger load after three jobslis

Interval 8. ¢ € [22Y31 1+ V/5), r(q) = S,

2 2 2
The sequence consists of five jobs of S|{§$ 23qu32) o +12) s 50 +12), 6o +12)).

24

For the prefix of three job&™ = %3’, since an optimal schedule can assigrandp, to M-, andps to

M, if ps is assigned td/, by the algorithm, the@? < % sors > w = min{g%g, q(gq:;;)} >

r(q), foranyq > 2.5.

Otherwise, ifps is assigned ta/;, we consider the prefix of four jobs. For this prefix we h&ave=

?)g—f;, since an optimal schedule assigns ps andp, to My, andps to Ms. If py is assigned td/s, then

24+3g+1 2g+3
cA < LGty SOT4 2 qu(+%q+)1 > r(q). foranyq > 1.

Finally, if p4 is assigned td/;, the loads of both machines after four jobs have been assigné%r,e
thereforers > r(q).

Interval 9. ¢ € [1 + v/5,00), r(q) = q%

The sequence consists of three jobs of si@g%, %}. Obviously, the best that the algorithm can do is

to assigrps to M. We getrs > —— = r(q).

References

[1] A. Asadpour and A. Saberi. An approximation algorithm for max-min fair allocation of indivisible
goods. InProc. of the 39th Annual ACM Symposium on Theory of Computing (STOC3&08s
114-121, 2007.

[2] Y. Azar and L. Epstein. On-line machine covering.RAroc. of the 5th Annual European Symposium
on Algorithms (ESA97)pages 23-36, 1997.

[3] Y. Azar and L. Epstein. On-line machine coveridgurnal of Schedulingl(2):67—-77, 1998.

[4] N. Bansal and M. Sviridenko. The santa claus problem.38th ACM Symposium on Theory of
Computing (STOC2006pages 31-40, 2006.

[5] S. Cao and Z. Tan. Online uniform machine covering with the known largestfiagress in Natural
Sciencel7:1271-1278, 2007.

[6] J. Csirik, H. Kellerer, and G. Woeginger. The exact LPT-bound for maximizing the minimum comple-
tion time. Operations Research Letterk1:281-287, 1992.

[7] B. Deuermeyer, D. Friesen, and M. Langston. Scheduling to maximize the minimum processor finish
time in a multiprocessor systerSIAM Journal on Discrete Method3:190-196, 1982.

[8] L. Epstein. Tight bounds for online bandwidth allocation on two linkBiscrete Applied Math.
148(2):181-188, 2005.

[9] L. Epstein and L. M. Favrholdt. Optimal non-preemptive semi-online scheduling on two related ma-
chines.J. Algorithms 57(1):49-73, 2005.

25

[10] L. Epstein and J. Sgall. Approximation schemes for scheduling on uniformly related and identical
parallel machinesAlgorithmica 39(1):43-57, 2004.

[11] U. Feige. On allocations that maximize fairnessPhoc. of the 19th annual ACM-SIAM symposium
on Discrete algorithms (SODA20Q8)ages 287-293, 2008.

[12] T. Gonzalez, O. H. Ibarra, and S. Sahni. Bounds for LPT schedules on uniform proceStdlks.
Journal on Computing6(1):155-166, 1977.

[13] R. L. Graham. Bounds on multiprocessing timing anomal&aM J. Appl. Math17:416—-429, 1969.

[14] Y. He and Y. Jiang. Optimal semi-online preemptive algorithms for machine covering on two uniform
machines.Theoretical Computer Sciencg39(2-3):293-314, 2005.

[15] R. Luo, S. Sun, and W. Huang. Semi on-line scheduling problem for maximizing the minimum ma-
chine completion time on two uniform machinedournal of Systems Science and Complexi8
2006.

[16] P. Mireault, J. B. Orlin, and R. V. Vohra. A Parametric Worst Case Analysis of the LPT Heuristic for
Two Uniform MachinesOperations Researcd5:116-125, 1997.

[17] S. Seiden, J. Sgall, and G. Woeginger. Semi-online scheduling with decreasing jolOpeeations
Research Letter27(5):215-221, 2000.

[18] Z. Y. Tan and S. J. Cao. Semi-online machine covering on two uniform machines with known total
size.Computing 78(4):369-378, 2006.

[19] G. Woeginger. A polynomial time approximation scheme for maximizing the minimum machine com-
pletion time.Operations Research Lettei20:149-154, 1997.

