
A Robust APTAS
for the Classical Bin Packing Problem

Leah Epstein1 and Asaf Levin2

1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel.
Email: lea@math.haifa.ac.il

2 Department of Statistics, The Hebrew University, Jerusalem, Israel.
levinas@mscc.huji.ac.il.

Abstract. Bin packing is a well studied problem which has many appli-
cations. In this paper we design a robust APTAS for the problem. The
robust APTAS receives a single input item to be added to the packing at
each step. It maintains an approximate solution throughout this process,
by slightly adjusting the solution for each new item. At each step, the
total size of items which may migrate between bins must be bounded by
a constant factor times the size of the new item. We show that such a
property cannot be maintained with respect to optimal solutions.

1 Introduction

Consider the classical online bin packing problem where items arrive one by
one and are assigned irrevocably to bins. Items have sizes bounded by 1 and
are assigned to bins of size 1 so as to minimize the number of bins used. The
associated offline problem assumes that the complete input is given in advance.

We follow [12] and allow the “online” algorithm to change the assignment of
items to bins whenever a new item arrives, subject to the constraint that the
total size of the moved items is bounded by β times the size of the arriving item.
The value β is called the Migration Factor of the algorithm. We call algorithms
that solve an offline problem in the traditional way static, whereas algorithms
that receive the input items one by one, assign them upon arrival, and can do
some amount of re-packing using a constant migration factor are called dynamic
or robust. An example we introduce later shows that an optimal solution for
bin packing cannot be maintained using a dynamic (exponential) algorithm.
Consequently, we focus on polynomial-time approximation algorithms.

In our point of view, the main advantage in obtaining an APTAS for the
classical bin packing problem with a bounded migration factor is that such type
of schemes possess a structure. Hence we are able to gain insights into the struc-
ture of the solution even though it results from exhaustive enumeration of a large
amount of information.

Sanders, Sivadasan and Skutella [12] studied the generalization of the online
scheduling problem where jobs that arrive one by one are assigned to identical
parallel machines with the objective of minimizing the makespan. In their gen-
eralization they allow the current assignment to be changed whenever a new job

arrives, subject to the constraint that the total size of moved jobs is bounded by
β times the size of the arriving job. They obtained a dynamic polynomial time
approximation scheme for this problem extending an earlier polynomial time ap-
proximation scheme of Hochbaum and Shmoys [7] for the static problem. They
noted that this result is of particular importance if considered in the context
of sensitivity analysis. While a newly arriving job may force a complete change
of the entire structure of an optimal schedule, only very limited local changes
suffice to preserve near-optimal solutions.

For an input X of the bin packing problem we denote by OPT (X) the min-
imal number of bins needed to pack the items of X, and let SIZE(X) denote
the sum of all sizes of items. Clearly, OPT (X) ≥ SIZE(X). For an algorithm
B we denote by B(X) the number of bins used by B.

It is known that no approximation algorithm for the classical bin packing
problem can have a cost within a constant factor r of the minimum number of
required bins for r < 3

2 unless P = NP. This leads to the usage of the stan-
dard quality measure for the performance of bin packing algorithms which is
the asymptotic approximation ratio or asymptotic performance guarantee. The
asymptotic approximation ratio for an algorithm A is defined to be

R(A) = lim sup
n→∞

sup
X

{
A(X)

OPT (X)

∣∣∣∣∣OPT (X) = n

}
.

The natural question, which was whether this measure allows to find an
approximation scheme for bin packing, was answered affirmatively by Fernandez
de la Vega and Lueker [3]. They designed an algorithm whose output never
exceeds (1 + ε)OPT (I) + g(ε) bins for an input I and a given ε > 0. The
running time was linear in n, but depended exponentially on ε, and such a
class of algorithms is considered to be an APTAS (Asymptotic Polynomial Time
Approximation Scheme). The function g(ε) depends only on ε and grows with
1
ε .

Two later modifications simplified and improved this seminal result. The
first modification allows to replace the function g(ε) by 1 (i.e. one additional bin
instead of some function of ε), see [17], Chapter 9. The second one by Karmarkar
and Karp [10] allows to develop an AFPTAS (Asymptotic Fully Polynomial
Time Approximation Scheme). This means that using a similar (but much more
complex) algorithm, it is possible to achieve a running time which depends on 1

ε
polynomially. The dependence on n is much worse than linear, and is not better
than Θ(n8). In this case the additive term remains g(ε). Karmarkar and Karp
[10] also designed an algorithm which uses at most OPT (I)+log2[OPT (I)] bins
for an input I.

Related work. The classical online problem was studied in many papers,
see the survey papers of [2, 1]. It was first introduced and investigated by Ullman
[15]. The currently best results are an algorithm of asymptotic performance ratio
1.58889 given by Seiden [14] and a lower bound of 1.5401 [16]. From this lower
bound we can deduce that in order to maintain a solution which is very close to
optimal, the algorithm cannot be online in the usual sense. Several attempts were

made to give a semi-online model which allows a small amount of modifications
to the solution produced by the algorithm. We next review these attempts.

Gambosi, Postiglione and Talamo [5, 6] introduced a model where a constant
number of items (or small items grouped together) can be moved after each
arrival of an item. They presented two algorithms. The first moves at most
three items on each arrival and has the performance guarantee 3

2 = 1.5. The
second algorithm moves at most seven items on each arrival and the performance
guarantee 4

3 ≈ 1.33333. The running times of these two algorithms are Θ(n) and
Θ(n log n) respectively, where n is the number of items.

Ivkovic and Lloyd [9] gave an algorithm which uses O(log n) re-packing moves
(these moves are again of a single item or a set of grouped small items). This
algorithm is designed to deal with departures of items as well as arrivals, and
has performance guarantee 5

4 . Ivkovic and Lloyd [9, 8] considered an amortized
analysis as well, and show that for every ε > 0, the performance guarantee 1+ ε
can be maintained, with O(log n) amortized number of re-packing moves if ε is
seen as a constant, and with O(log2 n) re-packing moves if the running time must
be polynomial in 1

ε . However, the amortized notion here refers to a situation that
for most new items no re-packing at all is done, whereas for some arrivals the
whole input is re-packed.

Galambos and Woeginger [4] adapted the notion of bounded space online
algorithms (see [11]), where an algorithm may have a constant number of active
bins, and bins that are no longer active, cannot be activated. They allow complete
re-packing of the active bins. It turned out that the same lower bound as for the
original (bounded space) problem holds for this problem as well, and re-packing
only allowed to obtain the exact best possible competitive ratio having three
active bins, instead of in the limit.

Outline. We review the adaptation of the algorithm of Fernandez de la
Vega and Lueker [3], as it appears in [17], in Section 2. We then state some
further helpful adaptations that can be made to the static algorithm. In Section
3 we describe our dynamic APTAS and prove its correctness. This algorithm uses
many ideas from [3], however the adaptation into a dynamic APTAS requires
careful changes to the scheme. We show that the number of bins used by our
APTAS never exceeds (1 + ε)OPT (X) + 1 where X is the list of items that has
been considered so far. The running time is O(n log n) where n is the number of
items, since the amount of work done upon arrival of an item is a function of ε
times log n. In the full version we show an example in which there is no optimal
solution that can be maintained with a constant migration factor.

2 Preliminaries

We review a simple version of the very first asymptotic polynomial time approx-
imation scheme. This is the algorithm of Fernandez de la Vega and Lueker [3].
The algorithm is static, i.e., it considers the complete set of items in order to
compute the approximate solution. Later in this section we adapt it and present

another version of it, which is still static. This new version is used in our dynamic
APTAS that is presented in the next section.

We are given a value 0 < ε < 1 such that the asymptotic performance
guarantee should be at most 1 + ε, and 1

ε is an integer. Consider an input I for
the bin packing problem. We define an item to be small, if its size is smaller
than ε

2 . Other items are large.
Algorithm FL [3]:
1. Items are partitioned into two sets according to their size. The multiset of
large items is denoted L and the multiset of small items is denoted T . We have
I = L ∪ T .
2. A linear grouping is performed to the large items. Let n be the number of
large items in the input (n = |L|), and let a1 ≥ . . . ≥ an be these items.
Let m = 2

ε2 . We partition the sorted set of large items into m consecutive
sequences Sj (j = 1, . . . , m) of k = d n

me = dnε2

2 e items each (to make the last
sequence be of the same cardinality, we define ai = 0 for i > n). I.e., Sj =
{a(j−1)k+1, . . . , a(j−1)k+k} for j = 1, 2, . . . , m. For j ≥ 2, we define a modified
sequence Ŝj which is based on the sequence Sj as follows. Ŝj is a multiset which
contains exactly k items of size a(j−1)k+1, i.e., all items are rounded up to the
size of the largest element of Sj . The set S1 is not rounded and therefore Ŝ1 = S1.

Let L′ be the union of all multisets Ŝj and let L′′ =
m⋃

j=2

Ŝj .

3. The input L′′ is solved optimally.
4. A packing of the complete input is obtained by first replacing the items of
Ŝj in the packing by items of Sj (the items of Sj are never larger than the
items of Ŝj , and so the resulting packing is feasible), and second, using k bins
to pack each item of S1 in a separate bin. Last, the small items are added to the
packed bins (with the original items without rounding) using Any Fit Algorithm.
Additional bins can be opened for small items if necessary. Step 3 can be executed
in polynomial time by solving an integer programming in a fixed dimension.

Lemma 1. Algorithm FL is a polynomial time algorithm.

We next analyze the performance guarantee of Algorithm FL. For two multisets
A,B, we say that A is dominated by B and denote A ≤ B if there exists an
injection h : A → B such that for all a ∈ A, h(a) ≥ a.

Lemma 2. If A and B are multisets such that A ≤ B, then OPT (A) ≤ OPT (B).

Theorem 1. Algorithm FL is an APTAS.

Algorithm Revised FL: We now design a new static adaptation Algorithm
FL which is later generalized into a dynamic APTAS. We modify only Step 2 as
follows:

– The multisets Sj are defined similarly to before, with the following changes.
The multisets do not need to have the same size, but their cardinalities need
to be monotonically non-increasing. I.e., for all j, |Sj | ≥ |Sj+1|. Moreover,

we require that if nε2 ≥ 8, then |S1| ≤ d ε2n
2 e and |Sm| ≥ |S1|

4 , and otherwise
each set has a single element.

– The rounding is done as follows. Given a multiset Sj which consists of el-
ements c1 ≥ . . . ≥ ck, the elements are rounded up into two values. Let
1 < s ≤ k, then all elements c1, . . . , cs−1 are rounded into c1, and the ele-
ments cs, . . . , ck are rounded into ct for some 2 ≤ t ≤ s.

The proof of Theorem 1 extends easily to this adaptation as well. Specifically,
the amount of distinct sizes in the rounded instance is constant (which depends
on ε) and so is the number of patterns. The mapping is defined similarly, and
the set S1 still satisfies |S1| ≤ d ε2n

2 e so it is small enough to be packed into
separate bins. If the small items which are are added using Any Fit cause the
usage of additional bins, the situation is exactly the same as before. Therefore,
we establish the following theorem.

Theorem 2. Algorithm Revised FL is an APTAS.

In the sequel we show how to maintain the input grouped as required by
Algorithm Revised FL. We also show that the difference between packing of two
subsequent steps is small enough that it can be achieved by using a constant (as
a function of ε) migration factor as in [12].

3 APTAS with f(1
ε
) Migration Factor

In this Section we describe our dynamic APTAS for bin packing with the ad-
ditional property that the migration factor of the scheme is f(1

ε) (i.e., it is a
function f of the term 1

ε), and therefore a constant migration factor for fixed
value of ε.

We use the following notations. The number of large items among the first
t items is denoted n(t). The size of the ith arriving item is bi. The value m is
defined as in the previous section m = 2

ε2 . We denote by OPT (t) the number
of bins used by an optimal solution for the first t items. We assume that after
the first t items, we have a feasible solution that uses at most (1+ ε)OPT (t)+1
bins and show how to maintain such a solution after the arrival of a new item of
index t + 1. Later on we describe several structural properties that our solution
satisfies, and show how to maintain these properties as well. These structural
properties help us to establish the desired migration factor.

Similarly to Algorithm Revised FL we treat small items and large items
differently. Recall that an item is small, if its size is smaller than ε

2 . When a
small item arrives, we use Any Fit Algorithm to find it a suitable bin.

It remains to consider the case where the t + 1-th item is a large item, i.e.,
bt+1 ≥ ε

2 . We keep the following structural properties throughout the algorithm.

1. If n(t) ≥ 4m + 1 then the sorted list of large items which arrived so far is
partitioned into M(t) consecutive sequences S1(t), . . . , SM(t)(t), where 4m+
1 ≤ M(t) ≤ 8m + 1 such that |S1(t)| ≥ |S2(t)| = |S3(t)| = · · · = |SM(t)(t)|.

Otherwise, if n(t) ≤ 4m then the sorted list of large items which arrived so
far is partitioned into n(t) consecutive sequences each of them has a single
large element S1(t), . . . , Sn(t)(t).

2. Denote K(t) = |SM(t)(t)|, then |S1(t)| ≤ 4K(t).
3. There are two special subsets of S1(t) denoted by S′1(t) and S′′1 (t) (these sets

might be empty at some times). Each of these two sets contains at most K(t)
items. The sets are special in the sense that we treat them as separate sets
while rounding, and in the rounded up instance S′1(t) and S′′1 (t) are rounded.
However in the analysis the cost of the solution is bounded allowing each
element of S1(t) to be packed in its own bin.

The time index t can be omitted from the notation of a set or a parameter
if the time it belongs to is clear from the context. Therefore, when e.g. we
discuss the set S1 this is the set S1(t) that is associated with the discussed time.
The size of the set S1 is defined according to algorithm Revised FL. We have
n ≥ MK > 4mK, and therefore S1 ≤ 4K < n

m = nε2

2 .
Note that for n ≤ 4m each element has its own list, and therefore we solve

optimally the instance of the large items excluding the largest item.
We turn now to discuss steps, where each step is an arrival of a large item. We

partition the steps into three types, which are, regular steps, creation steps and
union steps. An insertion of a new large item operation takes place in all types
of steps. A creation of new sets operation takes place only in creation steps. A
union of sets operation takes place only in union steps.

We also maintain the following property. During regular steps or creation
steps, no set is rounded to a pair of values but for each set Sj (j ≥ 2), the items
of Sj are rounded up to the largest size of any element of Sj . However, during
union steps, each set is rounded up to a pair of values (as in Algorithm Revised
FL).

Lemma 3. The arrival of a small item and allocating it according to Any Fit
Algorithm maintains the structural properties.

We next define a series of operations on the sequences so the properties are
maintained after a new item arrives, and the migration factor of the resulting
solution is constant. When a new item arrives, we first apply the insertion of a
new large item operation. Afterwards if the current step is a creation step, we
apply the creation of new sets operation, whereas if the current step is a union
step, we apply the union of sets operation.

When we bound the migration factor, note that changes to the allocation of
items into bins are made only when large items arrive. Hence, the size of the
arriving item of index t + 1 is at least ε

2 . Therefore, if we can prove that the
allocation is changed only for a set of items that we allocated to a fixed number
of bins (their number is a function of ε) then we get a constant migration factor
throughout the algorithm.

Insertion of a new large item. When a large item arrives then if n ≤
4m + 1 we add a new list that contains the new item as its unique element.
Note that in this case the resulting set of lists satisfies the structural properties.

Otherwise (i.e., n ≥ 4m + 2) we first compute the list to which it belongs, and
add it there. The list to which it belongs, Sj , is defined as follows. If the new
item is larger than an existing item in S1, then this list is S1. Otherwise, we
find the set Sj+1 of smallest index such that the new item is larger than all its
elements, and the list to which the item belongs is Sj . We move up items from
Si to Si−1 for all 2 ≤ i ≤ j, this operations is defined as follows. We move the
largest item of Si to Si−1 and afterwards we change the value which the size
of the items of Si is rounded up to, into the size of the new largest item of Si.
When we consider the effect this operation has on the feasibility of the integer
program, we can see that the right hand side does not change (the size of Sr

is not affected for all values of r such that 2 ≤ r ≤ M), however new patterns
arise as the size of the rounded up instance is smaller (and so we can pack more
items to a bin in some cases). The additional patterns mean new columns of the
feasibility constraint matrix. Note that adding the new large item into its list
takes O(log n) time (as we need to maintain sorted lists of the large elements).

Theorem 3. [Corollary 17.2a, [13]] Let A be an integral m×d matrix such that
each sub-determinant of A is at most ∆ in absolute value, let û and u′ be column
m-vectors, and let v be a row d-vector. Suppose max{vx|Ax ≤ û; x is integral}
and max{vx|Ax ≤ u′; x is integral} are finite. Then, for each optimum solution y
of the first maximum there exists an optimum solution y′ of the second maximum
such that ||y − y′||∞ ≤ d∆ (||û− u′||∞ + 2).

Lemma 4. Let A be the constraint matrix of the feasibility integer program. Let
d be the number of columns of A and let ∆ be the maximum value in absolute
value of a sub-determinant of A. Then, throughout the algorithm d ·∆ is bounded
by a constant (for a fixed value of ε).

The proof of the following lemma is similar to the analysis of [12].

Lemma 5. Assume that before the arrival of the current large item, there is a
feasible solution y to the feasibility integer program of the rounded up instance
L′′. After we apply an insertion of a new large item operation, if the feasibility
integer program is feasible then there is a solution to it y′ such that it is suffices
to re-pack the items that reside in a constant number of bins.

Proof. Denote by Ay = u the constraints of the feasibility integer program of
the rounded up instance. The matrix A is the constraint matrix and u is the
right hand side. Note that the columns of A correspond to patterns and the rows
correspond to different sizes of items. The constraint that corresponds to an item
size a has the following meaning. The amount of the items that we allocate along
all possible patterns of items with size a is exactly the number of items in the
rounded up instance with size a.

We first assume that n(t) ≥ 4m+1. Now consider the change in the constraint
matrix A when a new large item of size bt+1 arrives. Let A′ denote the modified
A, which is the feasibility constraint matrix for all the items in L′′ and the one
extra new element of S1. First, the cardinality of S1 increases by 1, (at the end

of the move up operation), and this does not change the constraint matrix as we
do not have a constraint associated with S1. Next, we consider the decrease in
the size of rounded up items. Note that all the patterns that were feasible in the
previous stage clearly remain feasible (given a set of items that can be packed
in a single bin, decreasing the size of some of the items still allows to pack them
into a single bin). Therefore, the matrix A of the previous stage is a sub-matrix
of the matrix after we apply the insertion of a new large item operation. The
difference is a possible addition of columns (that correspond to patterns that
were infeasible before we decrease the size of some items and before we add the
new item, however these patterns are now feasible).

To bound the change in u, denote the new right hand side by u′. The set S1 is
not represented in A, therefore there is no change and u′ = u. Let û = u. Then,
in the case where n(t) ≥ 4m + 1 the change in the right hand side is bounded
by a constant, i.e., ||u′ − û||∞ = 0.

Otherwise, n(t) ≤ 4m and the feasibility integer program has a new row
that corresponds to the new large item and whose right hand side value is 1.
Note that all the patterns that were feasible in the previous stage clearly remain
feasible. Therefore, the matrix A of the previous stage is a sub-matrix of the
matrix after we apply the insertion of a new large item operation. The difference
is a possible addition of columns that pack the new item as well, and a new row
that corresponds to the new item. To bound the change in u, denote the new
right hand side by u′. Let û be a right hand side equal to u′ beside one entry that
is in the component that correspond to the new row of A where it equals zero.
In this case ||u′− û||∞ = 1. In the remainder of this proof we do not distinguish
between the case where n ≥ 4m + 1 and the case where n ≤ 4m.

We can extend y to a vector ŷ that is a feasible solution of A′ŷ = û. To do so,
we define the entries of y that correspond to the new columns in A′ compared
to A to be zero. In the other components (whose columns exist in A) the value
of ŷ is exactly the value of y.

In order to prove the claim it is enough to show that there is a feasible
solution y′ such that ||ŷ − y′||∞ is a constant (then we re-pack the items from
the bins that correspond to the difference between ŷ and y′). Recall that we
assume that Ay = û is feasible integer program. Therefore, the assumptions of
Theorem 3 are satisfied. Therefore, by Theorem 3, there is a feasible integer
solution y′ such that ||ŷ− y′||∞ ≤ d∆ (||û− u′||∞ + 2). We would like to bound
by a constant the right hand side of the last inequality.

By Lemma 4, d and ∆ are bounded by a constant. We have already bounded
||û− u′||∞ by the constant 1 and this completes the proof. ut

Therefore, the moving up operation causes constant migration. However in
order to prove the performance guarantee of the algorithm we need to show how
to maintain the structural properties. To do so, note that the only sets whose
cardinality increases during the moving up operation is S1, and therefore we
need to show how to deal with cases where S1 is too large.

Creation of new sets: After S1 has exactly 3K items we start a new
operation that we name creation of new sets that lasts for K steps (in each such

step a new large item arrives and we charge the operation done in the step to this
new item). We consider the items c1 ≥ c2 ≥ · · · ≥ c3K of S1. We create new sets
S′1 and S′′1 where eventually S′1 = {cK+1, . . . , c2K} and S′′1 = {c2K+1, . . . , c3K}.
In each step we will have already rounded i items from S′1 and from S′′1 to its
target value and i is increased by 1 each step. So after i steps of this creation
of new sets operation, the rounded up instance has i copies of the items cK+1

and c2K+1. Then, the resulting instance can be solved in polynomial time where
we put each item of S1 that has not already rounded up to either cK+1 or
to c2K+1 in a separate bin. Rounding up two items at each step results in a
constant change in the right hand side of the feasibility integer programming
and therefore increase the migration factor within an additive constant factor
only as we prove in Lemma 6 below. At the end of K steps we declare the sets
S′1 and S′′1 as the new S2 and S3 and increasing M by two. Each of the new
sets contains exactly K elements and the new S1 contains exactly 2K elements,
and therefore if M(t) ≤ 8m− 1 we are done while keeping a constant migration
factor. Otherwise, next time the creation new sets operation takes place we will
violate the second structural property, and therefore we currently initiate the
union of sets operation that lasts for K steps as well. Note that we never apply
both the creation of new sets and the union of sets operations at the same step.

The moving up procedure during the insertion of a new large item operation
will increase S1 further, and this case we also apply this procedure to S′1 and S′′1
and thus decreasing the value to which we round up the items that belong to S′1
and S′′1 . So in fact during the creation of new sets operation S1 is partitioned
into five sets S1

1 , S′1, S
2
1 , S′′1 , S3

1 such that the items in S1
1 are the largest items of

S1, S2
1 contains the items with size that is smaller than the items in S′1 but they

are larger than the items in S′′1 , and S3
1 contains the other items of S1. Then,

in each step we increase the size of S1
1 , S′1 and S′′1 by one item each, whereas

the size of S2
1 and S3

1 is decreased by one. This means that during the move up
operation we will move up items also in these collection of the five subsets of S1.

Lemma 6. Assume that before we apply the creation of new sets operation and
after we finish the insertion of a new large item operation, there is a feasible
solution y′ to the feasibility integer program of the rounded up instance L′′. After
we apply the creation new sets operation, if the feasibility integer program is
feasible then there is a solution to it y′′ such that it is enough to re-pack the
items that reside in a constant number of bins.

Union of sets: When the number of sets reaches 8m + 1 we start the following
operation that lasts for K steps (where again a step means an arrival of a large
item). First we declare each pair of consecutive sets as a new set. That is for
2 ≤ j ≤ 4m + 1 we let Sj(t + 1) be S2j−1(t) ∪ S2j−2(t), but we still do not
change the way the rounding is performed. So in the resulting partition into
sets, each set has exactly 2K items, and we declare this the new value of K, i.e.,
K(t+1) = 2K(t), and the number of sets now is M = 4m+1. However, each set
is rounded to a pair of values, and this is something we will recover in the next
steps. While the rounding of each set is to two values, denote by S′j the items

that we round to the largest item of Sj and by S′′j = Sj \S′j . In each step for all
j ≥ 2 we move the largest item of S′′j to S′j . Thus, we round this moved item to
the largest element of Sj and do not change the value to which we round up the
items of S′′j . Both these changes do not increase the migration factor by much
as we prove below in Lemma 7. At the end of this procedure we end up with
a collection of subsets each rounded to a common value and finish the union of
sets operation.

Lemma 7. Assume that before we apply the union of sets operation and after
we finish the insertion of a new large item operation, there is a feasible solution
y′ to the feasibility integer program of the rounded up instance L′′. After we apply
the union of sets operation, if the feasibility integer program is feasible then there
is a solution to it y′′ such that it is enough to re-pack the items that reside in a
constant number of bins.

We now describe the algorithm we apply each time a new item arrives denoted
as Algorithm Dynamic APTAS. If the new arriving item is small then we
use Any Fit Algorithm to pack it into an existing bin or open a new bin for it if
it cannot fit into any other existing bin (when we need to pack a small item, we
consider the original sizes of large items that are already packed and not their
rounded sizes). In the case where the new small items causes an addition of a
new bin, we maintain the solution to the feasibility integer program by adding
a bin whose pattern is the empty pattern that does not pack any large item.

Otherwise, the item is large and we are allowed (while still getting a constant
migration factor) to re-pack the items of a constant number of bins. We consider
the optimal rounded-up solution y before the current item has arrived. Note
that y is the integer solution after the previous large item was added with the
possibility of introducing empty patterns bins in case we open new bins to small
items.

Then, after we apply the insertion of a new large item operation, we use
Lemma 5 and look for a feasible packing of the resulting new rounded-up in-
stance, y′ that is close to y (i.e., the norm infinity of their difference is at most a
constant that is given by the proof of Lemma 5). The restriction that y′ is close
to y is given by linear inequalities, and therefore we can solve the resulting fea-
sibility integer program in polynomial time (for fixed value of ε). If the resulting
integer program is infeasible, then we must open a new bin for the new rounded
up instance, and then we can put the new item in the new bin and the rest of
the items as they were packed in the solution before the insertion of a new large
item operation occurs. Otherwise, we obtain such an integer solution y′ that is
close to y.

Similarly, if we need to apply either the creation of new sets operation or the
union the sets operation we construct a solution y′′ that is close to y′ (the norm
infinity of their difference is a constant). This restriction is again given by linear
inequalities and therefore we can solve the resulting feasibility integer program
in polynomial time (for fixed value of ε). If the resulting integer program is
infeasible, then we must open a new bin for the new rounded up instance, and

then we can put the new item in the new bin and the rest of the items as they
were packed in the solution before the insertion of a new large item operation
occurs. Otherwise, we obtain such an integer solution y′′ that is close to y. If we
did not apply the creation of new sets operation or the union the sets operation,
then we denote y′′ = y′.

Note that during creation steps our algorithm packs the items from S′1 ∪ S′′1
according to their packing in the feasibility integer program. I.e., the integer
program has a row for S′1 and a row for S′′1 . However, in the analysis of the
performance guarantee of the algorithm in Theorem 4 below we bound the cost
of the solution by a different solution that packs each item of S1 in its own bin
(this is also with for the items of S′1 ∪ S′′1). Such a solution is not better than
our resulting solution as it corresponds to a solution to the integer program that
choose such patterns for its covering of the elements of S′1 ∪ S′′1 .

It remains to show how to construct a solution to the bin packing instance
using the vector y′′. For each pattern we change the packing of max{yp − y′′p , 0}
bins that were packed according to pattern p. For pattern p we select such bins
arbitrarily (from the bins that we pack according to pattern p). We complete the
packing of the items to a packing that correspond to y′′. This will pack all the
large items and all the small items that were not packed in the bins we decided
to re-pack. Then, we apply Any Fit Algorithm for the small unpacked items.

This algorithm re-packs a constant number of bins in case a large item arrives
and it does not change the packing in case a small item arrives.

Corollary 1. Algorithm Dynamic APTAS has a constant migration factor for
fixed value of ε.

The proof of the following theorem is based on the analysis of Algorithm Revised
FL.

Theorem 4. Algorithm Dynamic APTAS is a polynomial time algorithm that
has a constant migration factor and uses at most (1 + ε)OPT (t) + 1 bins after
t items arrives.

Remark 1. The feasibility integer program to find vectors y′ and y′′ (in the
notations of the algorithm), which are close to y, can be solved by only one
integer program of a fixed size.

4 Concluding Remarks

A similar approach allows to prove the following result. Given bins of size 1 + ε
instead of size 1, it is possible to design a dynamic algorithm which uses at time
t, at most OPT (t) bins to pack the items. The algorithm works as follows. Items
are partitioned into large (at least ε

4) and small (all other items). The sizes of
large items are rounded up into powers of 1 + ε

4 . This rounding is permanent
and the original size is ignored in all steps of the algorithm. Feasible patterns of
large items are defined similarly to [12]. At each arrival of a large item we check

whether the previous amount of bins still allows a feasible solution. It is possible
to show that in such a case, a limited amount of re-packing is needed. Otherwise
the new item is packed in a new bin. Small items are packed greedily using Any
Fit Algorithm.

A question that is left open is whether there exists a robust AFPTAS for the
classical bin packing problem. It would be interesting to find out which other
problems can benefit from the study of robust approximation algorithms.

References

1. E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms for
bin packing: A survey. In D. Hochbaum, editor, Approximation algorithms. PWS
Publishing Company, 1997.

2. J. Csirik and G. J. Woeginger. On-line packing and covering problems. In A. Fiat
and G. J. Woeginger, editors, Online Algorithms: The State of the Art, pages
147–177, 1998.

3. W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved within 1+ ε
in linear time. Combinatorica, 1:349–355, 1981.

4. G. Galambos and G. J. Woeginger. Repacking helps in bounded space online bin
packing. Computing, 49:329–338, 1993.

5. G. Gambosi, A. Postiglione, and M. Talamo. On-line maintenance of an approxi-
mate bin-packing solution. Nordic Journal on Computing, 4(2):151–166, 1997.

6. G. Gambosi, A. Postiglione, and M. Talamo. Algorithms for the relaxed online
bin-packing model. SIAM Journal on Computing, 30(5):1532–1551, 2000.

7. D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for
scheduling problems: theoretical and practical results. Journal of the ACM,
34(1):144–162, 1987.

8. Z. Ivkovic and E. L. Lloyd. Partially dynamic bin packing can be solved within 1 +
ε in (amortized) polylogarithmic time. Information Processing Letters, 63(1):45–
50, 1997.

9. Z. Ivkovic and E. L. Lloyd. Fully dynamic algorithms for bin packing: Being
(mostly) myopic helps. SIAM Journal on Computing, 28(2):574–611, 1998.

10. N. Karmarkar and R. M. Karp. An efficient approximation scheme for the one-
dimensional bin-packing problem. In Proceedings of the 23rd Annual Symposium
on Foundations of Computer Science (FOCS’82, pages 312–320, 1982.

11. C. C. Lee and D. T. Lee. A simple online bin packing algorithm. Journal of the
ACM, 32(3):562–572, 1985.

12. P. Sanders, N. Sivadasan, and M. Skutella. Online scheduling with bounded mi-
gration. In Proc. of the 31st International Colloquium on Automata, Languages
and Programming (ICALP2004), pages 1111–1122, 2004.

13. A. Schrijver. Theory of Linear and Integer Programming. John Wiley&Sons, 1986.
14. S. S. Seiden. On the online bin packing problem. Journal of the ACM, 49(5):640–

671, 2002.
15. J. D. Ullman. The performance of a memory allocation algorithm. Technical

Report 100, Princeton University, Princeton, NJ, 1971.
16. A. van Vliet. An improved lower bound for online bin packing algorithms. Infor-

mation Processing Letters, 43(5):277–284, 1992.
17. V. V. Vazirani. Approximation Algorithms. Springer-Verlag, 2001.

