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Abstract

Following the work of Anily et al., we consider a variant of bin packing, caed PACKING
WITH GENERAL COST STRUCTUREYGCBP) and design an asymptotic fully polynomial time
approximation scheme (AFPTAS) for this problem. In the classic bin packing problem, a set of
one-dimensional items is to be assigned to subsets of total size at most 1, that is, to be packed into
unit sized bins. However, iGCBP, the cost of a bin is not 1 as in classic bin packing, but it is
a non-decreasing and concave function of the number of items packed in it, where the cost of an
empty bin is zero. The construction of the AFPTAS requires novel technigues for dealing with
small items, which are developed in this work. In addition, we develop a fast approximation algo-
rithm which acts identically for all non-decreasing and concave functions, and has an asymptotic
approximation ratio of 1.5 for all functions simultaneously.

1 Introduction

Classic bin packing [29, 11, 9, 10] is a well studied problem which has numerous applications. In the
basic variant of this problem, we are giventems of size in(0, 1] which need to be assigned to unit

size bins. Each bin may contain items of total size at most 1, and the goal is to minimize the number
of bins used.

Consider the following possible application. A multiprocessor system, where each bin represents
one processor, is available for one unit of time. However, a processor that executes a large number
of short tasks causes the system a larger load than a processor that executes a smaller number of long
tasks, even if the total duration of the tasks is equal in both cases. This is one motivation to the problem
BIN PACKING WITH GENERAL COST STRUCTUREYGCBP) that we study here. The problem has
additional applications in reliability, quality control and cryptography [1].

In the problemGCBP, the cost of a bin is not, but it depends on the number of items actually
packed into this bin. More precisely, we define the problem as follows. The input consisiteofs
I=1{1,2,...,n}with sizesl > s; > sy > --- > s, > 0,and afunctiory : {0,1,2,...,n} — R,
where f is a monotonically non-decreasing concave function, for whiéh) = 0. The goal is
to partition I into some number of setS;, ..., S,, called bins, such thazjesi s; < 1 for any
1 < i < p,and so thab_!_, f(|Si]) is minimized. We say that a functiofis valid if it has the
properties above, and an instance3EBPis defined not only by its input item sizes but also using
the functionf. Without loss of generality we assume ttfal) = 1 (otherwise we can apply scaling
to the cost functiory).
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Anily, Bramel and Simchi-Levi [1] introduce@CBPand described a number of applications in
detail. We describe their results in what follows. Further result&@BP appear in [6], but these
additional results are not related to this paper. A related model was studied by Li and Chen [25]. In
this model the cost of a bin is a concave and monotonically non-decreasing functionatiairsze
of items in it. Note that this variant is closely related to variable sized bin packing [26, 17].

We use the following notations for approximation algorithms. For an algorithfor a given
problem, we denote its cost by as well. The cost of an optimal algorithm for the same problem
is denoted byorT. We define the asymptotic approximation ratio of an algorithras the infimum
‘R > 1 such that there exists a constanvhich is independent of the input, so that any input satisfies
A < R - 0OPT+ ¢. The absolute approximation ratio of an algoritidnis the infimumR > 1
such that for any inputd < R - oPT. An asymptotic polynomial time approximation scheme is a
family of approximation algorithms such that for every- 0 the family contains a polynomial time
algorithm with an asymptotic approximation ratiolof €. We abbreviatasymptotic polynomial time
approximation schemgy APTAS (also called an asymptotic PTAS). An asymptotic fully polynomial
time approximation scheme (AFPTAS) is an APTAS whose time complexity is polynomial not only
in the input size but also ié. Polynomial time approximation schemes and fully polynomial time
approximation schemes, which are abbreviated as PTAS and FPTAS, are defined similarly, but are
required to give an approximation ratio bft- ¢ according to the absolute approximation ratio.

Anily, Bramel and Simchi-Levi [1] analyzed the worst case performance of some natural bin-
packing heuristics when they are applied @EBP (see Section 2 for the definitions of the heuris-
tics). They showed that many common heuristics for bin packing, such as Firsek-iBést Fit §F)
and Next Fit (F), do not have a finite asymptotic approximation ratio. Even an application of the first
two heuristics on lists of items that are sorted by size in a non-increasing order, i.e., the algorithms
First Fit DecreasingrFD) and Best Fit DecreasingkD), leads to similar results. However, Next Fit
DecreasingNFD) behaves differently, and was shown to have an asymptotic approximation ratio of
exactly 2. Sorting the items in the opposite order gives a better asymptotic approximation ratio of
approximately 1.691 (in this case, the three algorithms First Fit Increasing Best Fit Increasing
(BF1) and Next Fit Increasing\F!) are the same algorithm). Note that these heuristics are independent
of the specific functiory. It is stated in [1] that any heuristic that is independenf ¢fas an asymp-
totic approximation ratio of at Ieaﬁ. Therefore, finding an algorithm with a smaller asymptotic
approximation ratio, and specifically, an asymptotic approximation scheme, requires a strong usage
of the specific functiory.

In this paper, we develop an AFPTAS f&rCBP. We develop a framework, where the action of
the scheme for a given non-decreasing concave fungtiaith f(0) = 0 is based on its exact defi-
nition. We also develop a new approximation algoritMaTCHHALF (MH), which acts obliviously
of f, similarly to the behavior of the algorithms of [1]. We prove that our algorithm has an asymp-
totic approximation ratio of at most 1.5 for any non-decreasing concave fungtath f(0) = 0,
improving over the tight bound of approximately 1.691, proved by Anily et al. [1], on the asymptotic
approximation ratio oNFl.

The classic bin packing problem is clearly a special cas8©BPas one can sef(0) = 0 and
f(@) = 1forall i > 1, where the resulting function is monotonically non-decreasing and concave.
Therefore,GCBP inherits the hardness proof of the classic bin packing problem. Th&GBP
cannot be approximated within an absolute approximation ratio better%tr(anlessP = NP).
However, this does not exclude the possibility of the existence of asymptotic approximation schemes.
We use the asymptotic approximation ratio as the main analytic tool to study approximation algorithms
for GCBP, similarly to previous work for this problem [1] and other bin packing problems (see e.g.



[29,19,20,21,12, 22,18, 3, 4]). Inthis metric we design the best possible result (assuBaIRGP),
i.e., an AFPTAS.

Fernandez de la Vega and Lueker [12] showed that the classic bin packing problem admits an
APTAS. This seminal work introduced rounding methods which are suitable for bin packing problems.
These methods, which were novel at that time, are widely used nowadays. Karmarkar and Karp [22]
employed these methods together with column generation and designed an AFPTAS (see also [26,
28]). In [16], the complexity of two variants of bin packing with unit sized bins are resolved, that is,
an AFPTAS is designed for each one of them. The first oB&nipacking with cardinality constraints
[23, 7, 14], in which an additional constraint on the contents of a bin is introduced. Specifically, there
is a parametek which is an upper bound on the number of items that can be packed in one bin. The
goal is as in classic bin packing, to minimize the number of bins used. The secondBin@#king
with rejection[15, 5, 13], in which each item has a rejection penalty associated with it (in addition to
the size). Each item has to be either packed or rejected, and the goal is to minimize the sum of the
following two factors: the number of bins used for the packed items and the total rejection penalty
of all rejected items. Note that prior to the work of [16], these two problems were already known to
admit an APTAS [7, 15, 5]. The main new tool, used in [16], which allows the design of schemes
whose running time is polynomial @q is a treatment for small items using new methods developed in
that work. The treatment of small enough items for the classic problem is rather simple. Roughly, the
small items can be put aside while finding a good approximate solution, and can be added later in any
reasonable fashion. Already in [7], it was shown that if the same treatment is applied to small items
in the case of cardinality constraints, this leads to poor approximation ratios. Therefore, Caprara,
Kellerer and Pferschy [7] developed an alternative method for dealing with small items. This method
still separates the packing of large items from the packing of small items. The scheme enumerates
a large number of potential packings of the large items, and for each packing, tests the quality of a
solution that is constructed by adding the small items to the packing in a close to optimal way. The
enumeration prevents this method from being used for designing algorithms with running time which
is polynomial in%. The way to overcome this difficulty, used in [16], is to find a good packing of
large items, that takes into account the existence of small items, and allocates space for them. The
packing of large items is typically determined by a linear program, therefore, the linear program needs
to define at least some properties for the packing of small items. Specifically, the linear program does
not decide on the exact packing of small items, but only on the type of a bin that they should join,
where a type of a bin is defined according to the size of large items in the bin for bin packing with
rejection, and on both the size and number of large items, for bin packing with cardinality constraints.

The problem studied in this papegsCBP, is more complex than the ones of [16] in the sense
that the cost of a bin is not just 1. Therefore, even though cardinality constraints are not present, the
number of items packed into each bin must be controlled, in order to be able to keep track of the cost
of this bin. In classic bin packing, and other well known variants, forcing all the bins of a solution
to be completely occupied results in a perfect solution. To demonstrate the difficURZ B, we
show the existence of a non-decreasing concave fungtiwith f(0) = 0, for which such a solution
may still lead to a poor performance with respecfto

In our scheme, cardinality constraints are implied by an advanced decision on the cost that needs
to be paid for a given bin, that becomes a part of the type of the bin. The specific packing of small
items, which is based on the output of the linear program, needs to be done carefully, so that the
solution remains feasible, and to avoid large increases in the cost of the solution. An additional new
ingredient used in our AFPTAS is a pre-processing step, which is performed on small items, where
some of them are packed in separate bins which are not used for any other items. In typical packing



problems, bins which contain only very small items are relatively full, and thus the additional cost
from such bins is close to the total size of these items. However, in our case, such a bin usually
contains many items, and may result in a high cost. Therefore, our scheme always packs some portion
of the smallest items separately, before any methods of packing items through a linear program are
invoked. We show that the increase in the cost of the solution, due to the pre-processing step, is small
enough, yet this allows more flexibility in the treatment of other small items, i.e., an additional bin
would have a small cost compareddeT.

The structure of the paper is as follows. In Section 2 we supply examples showing the unique
nature of the problerfs CBP, accompanied with new properties and some properties used in previous
work. We use all these properties later in the paper. We introduce our fast approximation algorithm
and analyze it in Section 3. Our main result is given in Section 4.

2 Preliminaries

In this section we demonstrate the differences between classic bin packing problef@€; BirdWe
also state some properties proved in [1] and [2] to be used later.

As mentioned in the introduction, common heuristics do not have a finite approximation ratio for
GCBP[1], and other heuristics have a higher approximation ratio than one would expect. Another
difference is that sorting items in a non-decreasing order of their sizes is better than a non-increasing
order.

We start with formal definitions of the heuristics. First FHE), Best Fit gF), and Next Fit (F)
act on arbitrarily ordered lists of items, processing the items and assigning them to bins in the order
which they are given in the listF assigns each item into the bin of minimum index which can receive
this item, and if no such bin exists, it opens a new bin and packs the item into the nes¥ lissigns
each item into the bin which can receive this item and has the least empty space, and if no such bin
exists, it opens a new bin and packs the item into the new Ninkeeps a single active bin at each
time. If an item can be packed into the active bin, thendoes that. Otherwise a new active bin is
created and the item is packed there.

FFD, BFD, andNFD are the variants off, BF, andNF, respectively, which sort the items by non-
increasing size and process them in this order, BFI, andNFI are the variants ofF, BF, andNF,
respectively, which sort the items by non-decreasing size and process them in this order. As mentioned
in the introduction, once the input is sorted by non-increasing size, the last three algorithms are in fact
equivalent since an item which cannot be packed into a bin implies that any subsequent item (which
cannot be smaller) cannot be packed in it.

A class of (concave and monotonically non-decreasing) funcfigins,cn that was considered in
[1] is the following. These are functions that grow linearly (with a slope of 1) up to an integer point
g, and are constant starting from that point. Specificgljyt) = ¢ for ¢t < g andf,(t) = g fort > q.

It was shown in [1] that focusing on such functions is sufficient when computing upper bounds on
algorithms that act independently of the cost function. Note fhat 1, and thusGCBP with the
cost functionf; is equivalent to classic bin packing.

For an integerk’ > 2, consider inputs consisting of items of two sizesr 1 — % andb = %

Assume first that there is a single item of sizeand2K items of sizeb. NFD packs the large
item together withK of the small items in one bin, and additiorfdlitems in another bin. Consider
the functionfx. The cost of the solution with respect to this functionfis(K + 1) + fx(K) =
2K. A solution that packs all small items in one bin and the large item in another bin has a cost of



fr(1) + fr(2K) = K + 1. Thus, even though both packings use the same number of bins, the cost
of the first packing, which is produced D, is larger by a factor that can be made arbitrarily close

to 2, than the cost of the second packing. Moreover, even though only two bins are used, this proves
a lower bound of 2 on thasymptoti@approximation ratio ofNFD (this bound is tight due to [1]).

Assume now that there a¥€ items of sizex and K2 items of sizeb. An optimal packing for the
classic bin packing problem clearly consistsiofhins, such that each one is packed with one large
item andK small items. Using the functiofix, this gives a cost o 2. A different packing collects
all small items in one bin, and has the céSt fx (1) + fx(K?) = 2K. SinceK can be chosen to
be arbitrarily large, we get that the first packing, which is the unique optimal packing in terms of the
classic bin packing problem, does not have a finite approximation ratio. Note that this first packing
would be created byrFD andBFD, and also byrF, BF andNF, if the input is sorted appropriately.

Throughout the paper, if a specific cost functibis considered, we usePTto denote the cost of
an optimal solutioropT for the original input, which is denoted Wy with respect tof. Similarly, we
useA(]) (or .A) to denote the cost of an algorithrh for the original input with respect t@. Recall
that for an input/ we useoPT(J) to denote both an optimal solution (with respecjjdor the input
J (whereJ is typically an adapted input), and its cost. ThesT = oPT(I). We let fx(A(I)) be
the cost of an algorithrod on I, calculated with respect to the cost functifin and abbreviate it by
fu(A). If f = fi then we haved = f(A) andoPT = f;,(OPT). Thus f1(A(I)) (or f1(A)) is the
number of bins used byl on the inputl, but note thatf; (.A) is equal toA only if f = fi, thatis, if
the classic bin packing problem is considered. The minimum number of bins required td @ack
the cost of an optimal solution for the classic bin packing with the idpig denoted byf; (oPT(1))
or f1(OPT).

For the analysis of our fast heuristic, we use weighting functions. This type of analysis was widely
used for classic bin packing, and many variants of bin packing. The basic technique was used as early
asin 1971 by Ullman [29] (see also [21, 24, 27]). Specifically, the following theorem will be used.

Theorem 1 Consider an algorithmA for classic bin packing. Let;,ws be two weight measures
defined on the inputitems); : I — R, fori = 1,2. LetWW;(I) andW5(I) denote the sum of weights
of all input items ofl, according tow; andwy respectively, and assunm&, (1) < W;(I). Assume
that for every input of the algorithm, the number of bins used by the algoritlisrat mosii, (1) + 7,
for a constant value which is independent df. Denote byW/; the supremum total weight of a set of
items that can be packed into a single bin of the optimal solution, according to measuféen the
asymptotic approximation ratio o4 is no larger thani¥/;.

Proof. Given an inputl we haveA < Wy(I) + 7. Since an optimal algorithm has1(1) bins, with
a weight of at most¥; in each one of them, we get the upper bound on the weight, according to
Wi(I) < Wr-oPT(I). UsingWs(I) < Wi(I), we getA < W;0PT(I) + 7 and the theorem follows.
[ ]

We will make use of adaptations of the following functien: [0,1] — R (that is equal to the
function W1 (p) defined in [2] for anyp > 0). We first define the well known sequeneg i > 1,
which often occurs in bin packing.

Letm = 2, and for: > 1,

T+l = 7TZ'(7T' — 1) +1
Thusmy = 3, m3 = 7, m4 = 43, etc. Forp € (k—}H, 1], we define
1
w(p) = E?



if k= m; — 1forsome; > 1, and otherwise,

Finally, we let
w(0) = 0.

Note thatw is a monotonically non-decreasing function. It was shown in [2] that for a given input

I, > w(s;) > fi(NFD(I)) — 3. Even though both [2] and [1] assume that no zero sized items exist,
iel
clearly, the number of bins used biy¥D andNFI does not increase as a result of the existence of such
items, unless all input items are of size zero, and therefore, this property on the weights still holds
even if zero sized items are allowed.
We further state some lemmas proved in [1] that allow us to simplify our analysis in the next

section.

Lemma 2 [Property 3in [1]] fi(NFI(I)) = fi1(NFD(I)), and therefore)  w(s;) > fi(NFI(I)) — 3.

il
Lemma 3 [Theorem 1 in [1]] Consider a packing heuristid that does not use information on the
function f. If the asymptotic approximation ratio of is at mostR, for any functionf;, (for k > 1),
then the asymptotic approximation ratio dfis at mostR for any non-decreasing concave function
f with f(0) = 0.

A useful packing concept, defined in [1],éensecutive binsRecall that we assumg > so >
-+ > sy, Let By, By, ..., B, be the subsets of items packed into the bins created in some sdfution
that packs the items in bins, whereB; is thei-th bin. The packing has consecutive bins if the union
Uj<sBj is a suffix of the sequenck 2,...,n foranyl < s < u. Thatis, if the firsts bins contain
n' items, then these are thé itemsn — n’ +1,...,n — 1,n (and thus the smallest items). The
following lemma states thatri is the bestheuristic among such with consecutive bins. Consider a
given input/, the cost functiory;, and a feasible packing with consecutive bfhs

Lemma 4 [Corollary 3in [1]] fx(NFI(I)) < fr(B(I)).

A partition of the items (which is not necessarily a valid packing) with consecutive bins is called

an overflowed packing forall 1 <i < u, > s; > 1. Clearly, if u > 2, such a packing must be
JjEB;

infeasible. The following lemma implies a lower bound on the cost of an optimal solution. Consider

a given input/, a cost functionfy, an overflowed packing with consecutive biisand a feasible

packingA.
Lemma5 [Corollary 1in[1]] fx(B(I)) < fr(A(I)).

Using these properties, in order to analy@, it is enough to consider the functiolfigfor k£ > 1.
It was shown in [1] that the asymptotic approximation ratioieffor the functionf, (k > 2) is at most
1+ 1. The asymptotic approximation ratio ofi for f;, that s, for classic bin packing, follows from

o0
the results of [2] and from Lemma 2. This ratio)s ﬁ ~ 1.691. Thus the upper bound af691
i=1""

[1] follows. In the next section we use these pr_operties to develop a new algorithm. The algorithm
needs to carefully keep the approximation ratio for= 2 while improving the approximation ratio
fork =1.



3 A fast approximation algorithm MH

In this section we describe a simple and fast algorithen that does not need to know the functign
in advance. This algorithm is a modification i that tries to combine a part of the relatively large
items (of size larger thaé) in bins together with one additional item. Note that except for possibly
one item,NNFI packs all such items in dedicated bins.

As mentioned aboveyFi has an asymptotic approximation ratio of at mé{i for the function
fr with k£ > 2. Therefore, the difficult case is actually the classic problem. On the other hand, using
heuristics that perform well for the classic problem, suchras may lead to worse results fér> 2
(which in fact is the case forFD). Therefore, we define an algorithm that acts identically o
except for the usage of a pre-processing step.

Algorithm MATCHHALF (MH)
1. Let¢ be the number of items ihwith size in(%, 1] (which are calledarge item§3.

2. Let My = {[1],...,t}, thatis, M is the set of smallegt.] large items, and let/; =
{1,..., 5]} be the remaining large items. L6t= {t + 1,...,n} be called the set of
small items.

=

3. Define the following bipartite graph. One set of vertices consists of the large itefrs.q
The other set of vertices consists of all small items. An edgé) between vertices of
items of sizess, > 1 ands, < 3 exists ifs, + s, < 1, i.e., if these two items can be
placed in a bin together. If this edge occurs, its cost is definettias) = w(b) (using the
functionw of Section 2).

4. Find a maximum cost matching in the bipartite graph. This matching can actually be found
using the following greedy process. Insert the item$ dfito a queue in a sorted order,
with itemt + 1 at the top, and the item¥, are inserted into a queue in a sorted order with
item¢t at the top. At each time, lgtbe the item at the top of the first queue, dride item
at the top of the second queues]f+ s; < 1, these items are matched, and removed from
the queues. Otherwise, iteptannot be matched to any item of the second queue (8jnce
is minimal in that queue), spis removed from the first queue. This process is done until

one of the queues is empty, and is performed in linear time.

5. Each pair of matched items is removed frdmEvery matched pair is packed into a hin
together.

6. Pack the remaining items usimg!.

The greedy process of step 4 finds an optimal matching by a simple exchange argument. We note
that only (approximately) half of the large items are possibly matched in the pre-processing step. A
larger fraction may cause an asymptotic approximation ratio ahéyas can be seen in the following
example. LetK be an integer such th&f > 2. The input sef consists ofK items of size}{ and K
items of sizel — % RunningNFI on this input results in one bin containidg items of size}{ and
K bins containing one larger item. However, if we matchnainaction (for some&) < a < 1) of the
larger items in a pre-processing step, there would lebins with two items. Consider the function
f2. We getfa(NFI(I)) = K + 2, whereas the cost with pre-processing is at ledét+ K. This would
give an approximation ratio of at leakt+ «.



We first analyze the asymptotic approximation ratio for and later we analyze it for all other
functionsf.

An analysis for f1. In this case we use weighting functions for the analysis.
Lemma 6 For any inputl, fi(MH(I)) < 3 f1(oPT((I)) + 3.

Proof. To use Theorem 1, we define a weight measweon items as follows. For every itein

we letwsq (i) = w(s;), except for small items that are matched to large items in the pre-processing
step ofMH. These items receive a weight of zero accordingvto Let X be the number of bins
created by the pre-processing step ahdhe number of bins created yFi (i.e., in Step 6 of the
algorithm). LetI’ be the input after the removal of items in the pre-processing step. By Lemma 2, we

have " wa(i) = > w(s;) > Y — 3. On the other hand, every bin created in the pre-processing step
el el
has a total weight of 1, since each such bin contains a large item (that has a weight of 1) and a small
item of weight 0. Thus)  wq (i) = X and in total}  wa(i) > X +Y — 3 = fi(MH) — 3.
il icl

Next, we define a weight measutg. Consider the large items, and their packing in an optimal
solutionopPT. For any large itemu, which is packed in a bin with at least one other (small) item,
consider the largest small item which is packed wit#lnd denote it by,, breaking ties arbitrarily. If
no such item exists, i.eq, is packed as a single item in a binoPT, we add an item of size zero to
this bin oforTand define it to be,. Thereforez, exists and is defined uniquely for every large item
a. We define the weight of every itefras

w (i) = w(s;),
except for the items, fora = 1, ..., ¢, for which we let

w(SZa).
2

w1 (za) =

In order to showl,(I) < W;(I), we define a valid matching in the auxiliary graph. This
matching is based on the packingas#T. Let Z = {z,|1 < a < t} and denote a set of the largésf]
items inZ = {z,|1 < a <t} by Z’'. We initialize the matching with the items &f being matched
to the large items from their bins ioPT. This matching is valid since by definition &f, each item
in this set is packed ioPTin a different bin, with a different large item. If tH(%} items matched to
them are not exactly itenfs”%}, ..., t, itis possible to replace some large items in the matching by
smaller large items, until this situation is reached. We have< s;, fori; € Z \ Z' andiy € Z'.

Since the functionv is monotonically non-decreasing, we gét, w(s,,) < 2 > w(s,,). Let

2o €Z za€Z'
n

W(I) = > w(s;). We haveWs(I) = W(I) — ¢(M), wherec(M) is the cost of a matching in the
=1
auxiliary graph, with a maximum cost, afid, () = W(I)— >_ % >W(I)— > w(ss,) >
1<a<t 2,€2'

W(I) — ¢(M) = W(I), sincec(M) is a maximum cost matching on the smallgst large items,
and > w(s,,) Iis the cost of one such matching, which we defined above.

[5+]<a<t

Fir?lally, we need to find an upper bound on the total weight in a binraf according tav,. We
first consider bins that do not contain a large item. For any itersizes; = 3 € (0, 3], we have



wi (i) < %ﬁ. For items of size 0 the weight is 0. Therefore, the total weight of items in such a bin is
no larger than 1.5 (a tighter upper bound of 1.423 is proved in [2]).

Consider next a bin which contains a large item. kdie the large item of this bin, andg, is
chosen as above. ¥, = 0, then the only item in the bin that has a non-zero weight according to

is a, and thus the total weight is 1. Otherwise, jdie such that,, < (m, 1. Any other itemi in

the bin (except fon andza) satisfiesw; (i) < lesz (sinces; < s,, < }). If j = m — 1 for some

i > 1, we havew; (z,) = 5. Otherwisew, (z,) = 4= s.,,.

We have a total weight of at most+ wl(za) + 81— 50— sza) < 1+wi(z) + HL(5 = 820)s

sinces, > %. Inthe first case we use, > ]H, and get at most + 5 5+ m - % 3. In the second
case we get at most+ b, + - — I, = A I, Usmg the same property we get

J 2j 2j
at most3 again. m

An analysis for functions f; with k£ > 2. Note that for a functiory; with & > 2 it holds that a bin
packed with two items incurs exactly the same cost as two bins packed with a single item each. Let
I be the original input on whicivH is executed. Lef denote an input in which every small item,
which is matched with a large item in the pre-processing steypofis replaced with an item of size
s1. Thus, at mosf%] items are increased to the sige If t = 0, then] = I, and otherwise; > 5.
We consider the following solutions and compare their costs. Recall that the cost of the solution of
MH on I, with respect tafy, is denoted byf;,(MH (1)) and the cost of the solution ofri on I, with
respect taofy,, is denoted byf, (NFI(1)). The next solution that we consider is an overflowed solution
that is created fof as follows. The items are sorted by size in a non-decreasing order (that is, order
by indices in a decreasing order). At each time, a minimum prefix of the items of total size larger
than 1 is assigned to the next bin. We denote this solutiof? byd thus the cost of this solution with
respect tofy, is denoted byf,(O(I)). The cost of an optimal solution fdf, with respect tofy, is
denoted byoprT; (7). Finally, we consider a solution fdrwith consecutive bins, which is constructed
from the overflowed solution faf as follows (the construction is similar to the one in [1], except for
the treatment of items if, and the fact that the corresponding itemd iare simply removed). For
every bin of the overflowed solution, if the total size of items exceeds 1 (this is the case with all bins
except for possibly the last bin, or bins with removed items), remove the last item and open a new bin
for it. The additional large items df, which existed as smaller items inand were removed from
1, are assigned to dedicated bins. We denote this solutiar &gd so the cost of this solution, with
respect tofy, is denoted by, (C(1)).

By Lemma 4, we havé, (NFI(I)) < f,(C(I)). By Lemma 5, we havé, (O(I)) < opPT,(I). We
next prove two lemmas after which we will be able to conclyigievH (1)) < 2OIDTk(I) + 3.5.

Lemma 7 fy(MH(I)) < fiu(NFI(D)) + 1.

Proof. Since all small items of that are packed in the pre-processing stepafare large in/, the

small items packed byFi in the two algorithms are the same ones, and bins createdibg the two
algorithms are identical, except for bins that contain a large item. If any of the two applicatiers of
outputs a bin that contains a large item together with other items, we adapt the solution by moving this
item into a separate bin. This modification cannot decrease the cost of a solution, but it may increase
the cost by at most 1. The small items bins, resulting from runrign both solutions (the solution

of MH and the solution ofiF1, possibly with the modification) are now identical. The remaining items



are packed in both solutions either in singles or in pairs. Thus the costs of such bins are equal in both
solutions (sincé > 2). Therefore, the claim followsm

Lemma8 fx(C(1)) < 3 f(0O(I)) + 2.5.

Proof. We first modify both solutions so that none of them combines large items with some small
item in one bin (but the overflowed solution may still have bins with two large items, which are not
modified here). For the overflowed solution, this may require moving one or two large items from a
shared bin to a dedicated bin, so it may increase the cost by at most 2. For the other solution, this may
involve moving one large item to a dedicated bin, and cannot decrease the cost of the solution. We
consider first the bins with small items, that contain at léast1 items in the overflowed solution.
For every such bin, its cost is at ledstAs a result of moving the last item to a dedicated bin (in the
process of creation of the feasible solution), an additional cost of at most 1 is incurred. Thus the cost
increases by at most a factorg).f For any bin containing at mostitems, there is no additional cost
from this step. Note that all bins with large items are in this situation. The cost of bins with large items
in the overflowed solution with the modification is simplyno matter how they are exactly packed,
so packing each one in a dedicated bin does not change the cost. Together with the aq'(%l"tional
large items, the cost of large items becorfid§ < 3 + . Removing small items of, whose size is
different in I, and therefore these items do not need to be packed in the sofitrey are already
packed as items of sizg in dedicated bins), may only decrease the cost. This proves the aaim.

Using Lemma 3, we have proved the following.

Theorem 9 The asymptotic approximation ratio @ is at most 1.5 for any non-decreasing concave
function f with f(0) = 0.

We have shown above that for= 2 (and similarly, for any constari), the bound 1.5 is tight.
Note that the bound 1.5 is tight fdr = 1 as well. Consider an input wittv large items of size
$ + 7, andN (K — 1) small items of size,- (for large enoughV, K, such thatV is divisible by
(K-1)-% _ N(K-3)

4K). MH createsy bins with one large and one small iter, 5T = —5= bins with2K
_3 .
small items each, an@ bins with one large item. This gives a total cost\dft+ N(Q(K 2 An optimal

solution combineg( — 1 small items with every large item, for a costdf For large enouglk, the
ratio is arbitrarily close td.5. It can be seen that this ratio is achieved for any fradliegh o < 1 of
large items that participate in the pre-processing step.

4 An AFPTAS for GCBP

In this section we present our main result, that is, an AFPTASSGBP. We give a sketch which
presents the main ideas and technical difficulties, and give the full description of the AFPTAS and its
analysis later. We first present an auxiliary algorithm caleattional Next-Fit Increasing

4.1 FNFI and its analysis

In this section we prove a property regarding the cost of optimal packings, which is helpful in the
design of our AFPTAS. Itis related to the propertynm stated in Lemma 4, but it is stronger since it
is proven for any non-decreasing concave funcfiavith f(0) = 0, for fractional packing of items. A
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packing is fractional if items can be cut into pieces, where pieces of one item can possibly be packed
in different bins.

To be able to analyze fractional packings, we next defiffler any (real and not necessarily
integral) non-negative value.

Definition 1 If z > nthen letf(xz) = f(n). Otherwise, we defing(q) for ¢ € [0, n] as follows. The
values off for integer values of are unchanged. if < ¢ < ¢ + 1, then

fle)=(+1—q) f(i)+(g—1)  f(i+1).

This function is piecewise linear and continuous, and since it is an extension of a non-decreasing
concave function on integers, it is monotonically non-decreasing and concg@vejn

The cost of a fractional packing is calculated according togéeeralizedunction f, while for
each bin,f is applied on theumber of item# this bin. The number of items in a bin which is packed
fractionally is the sum of fractions in it. This number is not necessarily an integer and it is not related
to sizes of these fractional items, but only to their fractions. More accurately, we define fractions as
follows.

Definition 2 If an item is packed in a bin completely, we say that its fraction packed in the bin is 1. If
a part of sizen of an item of sizeg > 0 is packed in a given bin, we say that the fraction of this item
that is packed in this bin i%.

There is no advantage in packing fractions of size zero of items (which are not zero sized). As for
zero sized items, it is possible to split such an item among several bins, butfsincencave, it is
never profitable to do so. We assume without loss of generality that in every fractional packing, every
bin contains at most one part of each item. If this property does not hold, it is possible to unite parts
of items within a bin without changing the cost.

We consider an algorithm which creates a fractional packing of the items according to the variant
of the NFI heuristic, calledFRACTIONAL NFI (FNFI). This algorithm sorts items by size in non-
decreasing order. At each time, a bin is filled completely, before moving on to the next bin. For this,
we allow the splitting of items into several parts, that is, the last item that is packed in a bin is possibly
just a part of an item. Consequently, the first item packed in the next bin may be the remaining part
of the same item. Note that each bin in the outputiofi contains at most two split items and that in
total only at mosit — 1 items are split (wherg is the number of bins used lnF1). Note thatFNFI
packs all zero sized items into the very first bin.

A simple property ofFNFI is that it creates bins that are sorted in a non-increasing order of the
number of items in them. This holds since given two bing s, bin 4, is completely occupied, and
every item that has a part packed in bjrhas a size no larger than any item that has a part packed in
bin 9.

For any non-decreasing concave functjpwith f(0) = 0, the following lemma states thanFi
is the best heuristic among packings with fractionally packed bins. Consider a giverf jrgpubst
function f and a fractional packing3.

Lemma 10 f(FNFI(])) < f(B(I)).

Proof. Assume by contradiction that for an inplita fractional packings and a functionf, we have
F(FNFI()) > f(B(I)). Assume that the bins & are sorted according to a non-increasing numbers
of items. If the packing3 that satisfies the condition is not unique, consider such a pag¢kimtich
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maximizes the suffix of bins that are packed identically to the packimgief. Consider the first bin
of 55 that is packed differently from the packing mfiFi. If bin i is the very last bin of the packing,
then the bind,, ..., — 1 are packed as in the packingmiiFi, and therefore, bimalso has the same
contents foi3 as it has folIrNFI. Therefore we assume thiis not the last bin of5.

Letj,j +1,...,7 be the indices of items thaFI packs in bin (the first and last items, which
have the indiceg’ andj respectively, may be packed fractionally in this bin). et j; < j’ be an
index of an item such thd packs a smaller part gfi (possibly of size zero) in binthanFNFI does.
Such an item must exist by the following argumenteNiFi fills bin : completely, then since binof
B is packed differently, it cannot have at least the same fraction of every item. Otherws@acks
all the remaining items in bim, so a different packing of bih means that some item has a smaller
fraction inB.

We next consider the case that there exists an jtefor which B packs a larger part in binthan
the packing offNFI. Since the two algorithms pack bids. .., i — 1 identically, only the items of
index up toj’ are available for packing in binsi + 1, ..., where the item of inde)’ may already
be fractional. Out of these itemeNFI packs a maximum prefix into bif) so this item must satisfy
j2 < j. We getthays < j < j;. Sincej; # js by their definitions, we gef < j;.

Denote the fractions gf; andjs in bin i of B by 77 and~,, and the fractions of, andjs in bini
of ENFI by §; andd,. We haved; > +; > 0 and~e > do > 0. Sincey; < 41, and binsl, ... i —1
are packed identically in both algorithms, there exists a furthes’ lthat contains a part of item in
the packing of3. Lete; > 0 be the fraction ofj; in bin i’ of B.

We would like to swap parts of items in the packingi®fspecifically, a part of iterj; from bin
" with a part of itemj, in bin 7. We useu to denote the size of the swapped part. There are three
restrictions oru.. The resulting fraction of; in bin i of B cannot exceed the fraction of this item in
bin i of FNFI, thusp < (61 —71)s;,. We can swap at most a fractien of j;. Moreover, we can swap
at most a fraction ofi, — 2 Of jo, in order to keep a fraction gh in bin i that is at least as large as
the one in bini of FNFI. Therefore, we let: = min{(y1 — d1)s;, (72 — 02)s5,, €155, }. We adapi3
by swapping a part of size of item j; from bin:’ with a part of sizg: from j, in bin i. By definition
of all variablesy > 0, and thus some change occurred.

Let n; andn; be the original numbers of items in binand:’ of B. By our assumptiom; > n,.

Let a; anday be the fractions of itemg; andj, that are swapped. Singe= a1 - s;, = a2 - 5j,,
ands;, < sj,, we haven; > «as. Thus, the change in the costfi$n; — s + 1) + f(ny — a1 +
ag) — f(n;) — f(ny) <0, by concavity. As a result of this process, the total number of items in bin
remains no smaller than the numbers of items in each of thethins i + 2, . . ..

If an itemjo does not exist, it means that bihas a total size of items that is smaller than the total
size of items in bin of FNFI. In particular, it means that binis not fully packed. We define,, 61,

i ande; as before. In this case we can define= min{(y; — d1)s;,, €1s;, . We defineny, n; and
ny as before. Thus, the change in the cosft(is; + a1) + f(ny — a1) — f(ni) — f(ny) <0, by
concavity.

Itis possible to perform this process on bimultiple times, until there is no item that has an item
for which a smaller fraction of it is packed in birof B than it is packed in the same bin fexFi. At
this time these bins become identically packed.

We next show that this situation, where no itgnexists, is reached after a finite number of swaps.
For every itemyjy, it can be performed for every itegia and for every successive bin. This gives a
total of at most:® swaps, and possibly> movements of items to binwithout swaps.

After we reach the situation where biris identical for3 and FNFiI, the binsl,...,i of B are
sorted by a non-increasing number of items. Each remaining bihhas a number of items that is
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no larger than birn. Moreover, bing + 1,7 + 2,... can be sorted so that the list of bins becomes
sorted as required. The changes above can only decrease the cost of the solution, and therefore we get
a contradiction to our assumptiom

4.2 The sketch of the scheme

We define an item to be a small item if its size is smaller thand otherwise it is a large item. Denote

the set of large items i by L. The small items will be partitioned further into two sé&tsand M,
whereM is the set of medium items arfdis the set of smallest items. Our first step is to apply linear
grouping [12] of the large items, that is, we sort them by size and we partition ther@;ir@&dmost)
equal-sized sets of consecutive items (in the sorted list). We pack each item of the set of the largest
items in its own bin, and we round up the size of the items in each other set to the largest size of an
item in that set.

We next partition the items ifi \ L into M U S whereS contains the smallest items such that the
total size of the items i¥' is close to a constant which we define depending.ofihe items ofS are
packed nearly optimally using thenFI heuristic, packing any split item using a dedicated bin. These
bins will enable us to use a constant number of bins with an arbitrary content (of items i)
while paying at most times the cost of the bins which are used to pack the itents ifVe note
that packingS using theNFI heuristic is also possible and leads to a similar performance guarantee.
However, the analysis of usirNFI is simpler.

Our next step is to approximate the cost functjofrom below using a staircase (step) function
with O(log f(n)) steps. We use monotonicity and concavityfdb show that this number of steps in
the function is sufficient to get @ + ¢)-approximation off. We note thabpT(/) > f(n) holds for
any concave functioif.

We next move on to finding a packing of the itemdinJ M (neglecting the largest items which
are packed in dedicated bins). In such an instance, the linear program which we construct allows the
items of M to be packed fractionally. To construct this linear program we define a set of configurations
of large items (which is a relatively standard definition), and a set of extended configurations which
also define the space and cardinality of small items in a configuration (which is a non-standard idea
that was introduced in [16]). The linear program will decide how many bins with a given extended
configuration to open and what type of bins each small item needs to be packed in. These types are
called windows, and we define them as the pair consisting of the total space for the small items and
the total cardinality of small items in a bin with this window. Hence in this linear program we have a
constraint for each size of large items (a constant number of constraints), a constraint for each small
item (a linear number of such constraints), and two constraints for each type of window. We apply
the column generation technique of Karmarkar and Karp [22] to solve the resulting linear program
approximately (we use a separation oracle which applies an FPTAS for the Knapsack problem with
cardinality constraint given by [8]).

Unfortunately the number of fractional entries in a basic solution for this linear program (as we
can assume our solution is indeed a basic solution) is linear in the number of windows types (plus
a constant). The number of windows is indeed polynomial in the input size allowing us to solve the
linear program, but it is not a constant, and we will incur a too large error if we would like to round
up the fractional solution.

Hence, we define a restricted set of windows types with a much smaller set of windows, and we
show how to carefully project our solution to a new solution which is not worse than the original
solution, and whose support uses only windows from this restricted set of windows. Therefore, when
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we count the number of constraints, we can eliminate the constraints corresponding to windows which
do not belong to the restricted set of windows. Thus the new bound on the number of fractional
components in the projected solution is now much smaller. That is, our projected solution which is
an approximated solution to the restricted linear program gives also an approximated solution to the
original linear program with additional constraints by setting the variable to zero if the corresponding
window does not belong to the restricted set of windows.

The next step is to round up the resulting projected solution. If a small item is packed fractionally,
then we pack it in its own dedicated bin. If the fractional solution needs to pack fractional copies of
bins with a given extended configuration, then we round up the number of such bins. The large items
clearly can be packed in these bins according to the configurations of the large items. The small items
are now assigned to windows (by an integral assignment), and not to specific bins. Therefore, our last
steps are devoted to packing the small items.

We first place the small items which are packed in a common window type into the bins with
this window as part of their extended configuration in a round-robin fashion where the small items
are sorted according to their size (this ensures us that the number of items in each such bin will be
approximately the same, and the total size of these items in such bins will be approximately the same).
In this initial packing, some bins may be temporarily packed with a total size which exte@tis
excess needs to be dealt with by removing items and packing them in an alternative way. However,
the excess of size of small items in a bin is relatively small (with respect to the total size of small items
in this bin). In fact it is at most one excess item per bin plus a small size of additional small items
(this additional small size is due to a rounding we have done when we define the set of windows). The
excess items are packed in dedicated bins such%tlaatess items are packed in each dedicated bin.
The additional items of total small size are packed again in dedicated bins such that these items from
% bins are packed into one common dedicated bin. The items which are removed from a bin after
the process of the round-robin allocation are the largest small items of this given excess size. The
resulting scheme is an AFPTAS f&CBP, as claimed by the following theorem.

Theorem 11 The above scheme is an AFPTAS@&CBP.

4.3 A detailed description and analysis of the AFPTAS foilGCBP

Let0 < ¢ < £ be such that is an integer. Recall that(0) = 0 and f(1) = 1.

The input for this problem includes in addition to the list of itemalso the functiory. Therefore,
the running time needs to be polynomial in the following three parameter%:, and the binary
representations of the numbers in the input, including the item sizes, and the valfiesnathe
integersl, ..., n. Thus the length of the representationfat at leastog f(n).

Ifn < % we pack each item into a separate bin. In this case, the cost of the solution is at most

I — 1 < (14 ¢)opT+ L. We therefore assume that> L.
Linear grouping. Anitemj is largeif s; > e. Other items will besmall and would be partitioned
into thesmallestitems andmediumitems. We denote by, the set of large items. We perform linear
grouping of the large items. That is, |i£| > % then form = % we partition L into m classes
Li,...,Ly suchthaf|L|e3] = |L1| > |Lo| > --- > |Ly| = [|L]e?], and L, receives the largest
items fromL \ [L; U---U L,_1]. The two conditions uniquely define the allocation of items into
classes up to the allocation of equal size items. For eyegy2,3,...,m we round up the size of
the elements of ; to the largest size of an elementbf. For an itemi, we denote by the rounded
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up size of the item. IfL| < e% then each large item has its own #gt L, is an empty set, and for
a large itemj we let s;» = s; (i.e., we do not apply rounding in this case). In both cases we have
|Ly| < 2€3|LJ.

For items inL;, we do not round the sizes, and we densét& sjforallj € Ly. Forj € I\ L
we also lets; = s;. We denote by.’ = L\ L;. We consider the instandé consisting of the items in
L' U (I'\ L) with the (rounded up) sizes$. Then, using the standard arguments of linear grouping we
concludeopPT(I’) < opPT(I). The items inL, are packed each in a separate bin. Hebe the set of
different rounded up sizes of large items, and denote the number of iteMsiith sizewv by n(v).
Note that| H| < m. We next describe the packing of the itemd'in

Dealing with the set of the small itemsWe define a partition of the sét\ L of small items into two
partsM andS (called medium items and smallest items, respectively), suchStiet suffix of the
list of input items (i.e., a set of smallest items). Specifically,éf M andj € S, thens] > s;. LetS
be a suffix{n,...,n} of minimum cardinality, such tha& C I \ L, for which the total size exceeds

h(e), whereh(e) is defined as
6¢ (1 g

and/ is an integer defined later, satisfyirig—= O(% + log; . f(n)). Note thath(e) > % is an

integer for any valid choice of. If the total size off \ L is at mosth(¢) then we letS = I\ L and
M = (). Otherwise, the total size of the items®fs at mosti(e) + €. We will pack the items fron$'
independently from other items. That is, there are no mixed bins containing itemsfeord items
not fromS.

The first packing step of the algorithm is to pack the item§ oiing the following heuristic. We
apply FNFI (processing the items in an order which is reverse to their order in the input). This results
in 1+ h(e) bins, unlesss = I\ L. Afterwards, a new dedicated bin is used for every item that was
split between two bins byNFI. There are at most(e) such items.

In order to focus on solutions that pack the itemsSoés we do, we next bound the cost of a
solution that packs the items Hin this exact way (packed IsNFI in separate bins, where split items
are moved to an additional bin). On the other hand, we relax our requirements of a solution and allow
fractional packing of the items if/. The solution clearly needs to pack the itemd.iras well (no
fractional packing can be allowed for large items). We denote the optimal cost of such a solution
by opT(I’). The motivation for allowing fractional packing of the items/df is that our goal is to
bound the cost of solutions to a linear program that we introduce later, and this linear program allows
fractional packing of small items that are considered by it, which are exactly the iteras(afile
the items ofS remain packed as defined above).

Lemma 12 oPT(I') < (1+¢)oPT(I’) + (3h(e) 4+ 3) - f(1) < (1+€)oPT(I) + (3h(e) +3) - f(2).

Proof. Consider an optimal solutiodPT to the following relaxatiorG CBP. of our packing problem.
We need to pack the items &f (with rounded up sizes) ball the items ofM/ U S can be packed
fractionally. The difference with the packirgp1 (') is that items ofS can be packed in an arbi-
trary way, and not necessarily into dedicated bins, as is described above. In particular, they can be
packed fractionally. The difference with the packimgT(1’) is the possibility to pack the small items
fractionally. The cost 0bPTis clearly at mosbpPT(I’) < OPT.

We sort the bins 0dPT in a non-increasing order, according to the number of items (i.e., the sum
of fractions of items) packed in the bin (including large items). &gelbe the total free space in bin
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that is left after packing its large items in it. This is the space which is used by small items, together

with all the free space, if exists. L&t; = i o;. Letp = min{i[%; > > s}}. The integep must
=1 €S
exist since all items of must be packed.J ’

We show that without loss of generality, we can assume that all itenssaseé packed in bins
1,2,...,pin OPT. To show this, consider an optimal solutionG&BP. that minimizes the following
function (among all optimal solutions): the number of existing quadruplgs, as, i2), wherea; <
p < az, i1 € M, iy € S, and there is a non-zero fraction of itempacked in bina;, for j = 1, 2.
Assume by contradiction that such a quadruple i1, as, i) exists. Lety be the fraction of; in bin
a1 andJ the fraction ofiy in bin as.

Let 1 = min{~y - s;,,d - s;,}. Denote the fractions of; and iy of size u by v/ = ﬁ and
0 = % We swap a part of sizg of item i, in bin ay with a part of sizeu of item i, in bin a;.
Sinces;, > s;, (recall thatS contains the smallest items), we get that the fractions safisfy §'.

The number of items in bin; was increased by — ~/, and in bina, it was decreased by — +'.

The sorted order of bins may have changed as a result, but;bian be moved to an earlier spot
while ao may be moved to a later spot, so the set of the firbins does not change. Moreover,
we destroyed at least one quadruple, and did not create new ones, since no parts of ildms of
were moved to bing,...,p and no items ofS were moved to bing + 1,p + 2,.... Letn; and

no be the numbers of items in biag andas before the change. The change in the cost function is
f(ni+0"—+")+ f(na—(8"—+"))— f(n1) — f(n2) <0, sincen; > ny, 8’ —+' > 0, and by concavity.
Therefore, the resulting solution has a cost of at na@st, and the minimality is contradicted.

If no such quadruple exists then there are two cases. If alljbinsl,p + 2, ... contain only
fractions of items of\/ (possibly in addition to large items), then all items$#re in binsl, ... p
and our assumption holds. Otherwise, we have that all hins , p contain no fractions of items in
M. In this case, if there are items §fin any of the bing + 1,p + 2, .. ., then there must be empty
space in bing, ..., p. Parts of items of5 can be repeatedly moved to these bins, until no parts of
items of S existin binsp+1,p+2, . ... In each such step, the number of items in some bin in. , p
increases, and the number of items in some bininl,p + 2, ... decreases. Sorting the bins again
after every such step (according to a non-increasing numbers of items) will contain the same set of
bins in the prefix of bins, and our assumption holds as well. Due to concavity, and since the target
bin cannot contain less items than the source bin, every such step cannot increase the cost.

We next adapbpPT by creating at most(e) + 2 additional bins, and pack the small items of the
first p bins into these bins usingNFI. By the definition ofp, the total size of items of packed into
the firstp bins is at most(e) + €. Thep-th bin may contain items o/ with a total size of less
thano, < 1, where the last item a#/ packed into the-th bin may be packed fractionally, with its
second part packed into tkig + 1)-th bin. Thus, this set of small items may contain items\biof
total size at most + ¢, and the total size of small items which are packed (possibly partially) into the
firstp bins is at mosh(e) + 1 + 2¢ < h(e) + 2. We denote this set of items that is moveddywe
compute the change in the cost and afterwards adapt the solution further so that it complies with the
requirement that the items 6fare packed integrally in separate bins, as is doreeiri.

We define an auxiliary monotonically non-decreasing concave fungtias follows. f(a:) =
f(z+ 1) — f(1). Note thatf(0) = 0. Consider the bins of GPT from which the small items are
removed. Let; anda; denote the numbers of large and small items in these original bins. Clearly,
r; < % By removing the small items, the cost of such a bin decrease§ay+ ;) — f(r;) >
fla; + 1) — f(%) = f(ai), where the inequality is due to concavity ff For every bin which is

£
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created for small items, if it contairts small items, its cost ig(b;) < f(b; + 1) = f(b:) + f(1),
where the inequality is due to monotonicity.

Consider now the packing of the iterfsthat is implied by the solutioPT, with respect to the
function f, and neglecting the large items. The cost of this packing for Ibsir]f(ai). Let A denote
the total cost of all the bins that contain items%fthat is, of the firsp bins. LetB denote the total

cost with respect tg of all the bins that are created i for S. In this case the cost of a biris
f(b;). Thatis, A = i f(a;) andB = h(%+2 f(b;). By Lemma 10 (that holds even though the value
f(1) can be arbitralr;;, we havé > B. .

Let A denote the difference in the cost for the itemsofVe haveA = h(efr? f(b;)— Xp: (f(ri+

Motz - i=1 i=1

a;) — f(r)) < 3 (Fb) + f(1) = X fa) < (h(e) +2)f(L) (by the previous claims and
=1 =1

A> B).

We next convert the packing &f as follows. If there exists a mixed bin, that is, a bin containing
items from bothS and M, we split it into two bins, so that the two subsets/df and of S are
separated. If a mixed bin indeed exisig, # (), and the total size of thg items is more thar(e),
but not more thark(e) + 1. Therefore, the split bin appears as th{e) + 1-th bin created byNFiI.
Moreover, the number of items in titge) + 1-th bin is no larger than the number of items in every
earlier bin. Therefore, if the number of items in thé) + 1-th bin is NV, then the current cost is at
leastf(N)(h(e) + 1) and as a result of the split, the cost increases by an additive factor of at most
f(N). So the multiplicative factor of the increase in the cost is at mastﬁ < 1+ ¢ where the
inequality holds byi(e) > 1.

For a pair of consecutive bins createdryri (excluding at most two bins with items &fn M),
if an item was split between the two bins, it is removed from these bins and packed completely in a
new bin dedicated to it. In addition, there may be at most one iteid @fhich was split between bins
and if it exists, it is moved into a dedicated bin as well. There are at f(@$t+ 1 items that may
have been moved into dedicated bins, so this increases the cost by dtufagst 1) - f(1). At this
time, the items of5 are packed exactly as wp 1 (I).

The total cost is at most

PT+ ((2+¢)h(e) +3 + 2£)f(%)

_ 1

- o)
OPT+ (3h(e) +3)f(g)

(14 €)(OPT+ (h(e) + 2)F(2) + h(e) +1 < (1+¢)-
< (1+e¢)-

(usinge < £ andh(e) > 1). m

We next need to pack the itemsifi= I\ S = M U L'. In the case wher&’ is empty, the proof
of the next corollary follows from Lemma 12. We will show at the end of this section that this results
in an AFPTAS for the casg’ = ().

Corollary 13 If I"” is empty, then the last lemma shows that the resulting solution costs at most
(3h(e) +3)f(3).
We next consider the cagé # ().

Definition 3 Let s,,;, = mins,. LetA = L if M # () and otherwiseA = 1, thatis, A =

el Smin

1 . 1
Clearly, for anyi € S we haves; < s, ands; < x.

min{s'min 75} ’
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Consider the instancg’. In the temporary solutions, we allow fractional packing of the items
of M and we useoPT(I") to denote an optimal packing df’ where small items may be packed
fractionally. This does not change the fact that any bin, packed with items of a total size of at most 1,
can contain a total number of items of at maseven if it contains fractions of items.

Definition 4 We denote the cost of the bins packed with the itensstyf £(.S), that is,oPT (I’) =
oPT(I") + F(S).

The items ofS, if packed byFNFI (which by Lemma 10 is a minimum cost packing for them)
require at leask(¢) full bins, with at leastA items in each. Therefore, we have

F(S) = h(e) - f(A). (2)

On the other hand, at this time, any other valid bin can contain a total number of items of aAmost
These properties are true unlégs= (. In that case, only large items remain to be packed, so the
number of items in any additional bin is at me’gst

Approximating the cost function f. Given the functionf we compute a staircase function, which is
an(1 + ¢)-approximation off from below, withO(% + log, . f(n)) breakpoints. That is, we find a
sequence of integefs= ko < k1 =1 < --- < k% = % < k%ﬂ < -++ < ky = n such that for all
1.141,...,0—1,we havef(ki11) < (1+¢)f(k;). The sequence is constructed as follows. We
definek; = jforj =0,1,..., % Every subsequent valug, for j > % is defined as the maximum
integert > k; such thatf(t) < (1+ ¢)f(k;). Note that this definition is valid since fgr > 1 we
havef(¢+ 1) < f((1+¢)¢) < (1 + ¢)f(¢), where the first inequality holds by the monotonicity of
f, and the second inequality holds by the concavity oThen, by the definition of the sequence, for
everyi =1 141 ... ¢—2 wehavef(kit2) > (1+ ¢)f(k;). This implies

7=

1 1
(<= +1+42logry f(n) < - +1+2logy.. OPT() 3)

and/ < n. Let A be such thata > A andka—; < A. If M = (), we haveA = 1, soky = 1.

The staircase function, which is &h+ ¢)-approximation off from below, is defined as the value of
f for valuesk;, and it remains constant between these points. Using these definitions, and (2) we get

h(e)

F(8) = h(e) fka-1) = 17~

f(ka) - 4)

Configurations and windows.Given the instancé”, we define configurations.

Definition 5 A configuration of a birC is a (possibly empty) set of itemsidfwhose total (rounded
up) size is at most 1. The set of all configurations is denote&d by

SinceL’ contains only H | types of items, a configuration can be viewed as a multiset of items of
H. We next definew for a configuratiorC', and NU M BER(v, C) for a pair of an item type i{
and a configuratiod.

Definition 6 For eachv € H, andC € C°, let VUM BER(v,C') denote the number of items of size
v in configurationC'. We usen to denote the number of large itemsGh that is,

no =Y NUMBER(,C).
veH
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For a configuratiorC' we define an additional value,(C'), which is an approximation of the
available size for small items in a bin with configuration

Definition 7 Let the total (rounded up) size of the itemsirbe denoted by'(C). We IetT(C)
T or )t wheret is the maximum integer such tha ¢ < log; . S, —+ 1ands'(C) + gey = L

For each configuratio’ we defineA + 1 < ¢ + 1 extended configurationg”, ), where0 <
i < A. A bin packed according to an extended configurafiéhii) has large items according to
configurationC, and at mosk; items in total (that are either large or small items, i.e., including the
large items of this configuration). We later slightly relax this condition and allow to increase the
number of items in a bin (in favor of possibly packing a slightly larger number of small items) in a
way that the cost of this bin only increases by a factor efe.

Definition 8 An extended configuratiofC, p), whereC' < Candl < p < A, is called valid or
feasible ifnc < k,. Denote the set of all extended feasible configurations. by

We use the notation(C, p) as an upper bound on the total number of small items that can fit into
a bin packed with the extended configurat{cn p).

Definition 9 The valuen(C, p) is defined as follows. Lete the smallest integer such thiat—nc <
k:. Then we define(C,p) = t.

Recall that the minimum size of an item is denotedshy, = min;e sz s; (note thats,, # 0),
andwe lets’ . = max{ﬁ\t €7, (1+€) < smin } b€ an approximated value of,;, which is an

min
integer power ofl 4 €. The valudog; . S/ : |s polynomial in the size of the input and %n

Definition 10 Let the set

1
W={(——= )|O<t<log1+£, +1,0<a<?}

( ) mln

be called the set of all possible windows. A window is defined as a membér ler two windows,
W' andW? whereW! = (w;, a;) fori = 1,2, we say that?V’! < W?if w; < ws anda; < as.

The intuitive meaning of a window here is a pair consisting of a bound on the remaining capacity
for small items in a bin (this bound is rounded to an integer poweér-pfe), and an upper boungl,
on the number of small items packed into a bin. TH&w| < (¢ + 1) - (log; . S, —+ 2).

Note that each bin that contains large items, packed according to an extended configatatjon
may leave space for small items.

Definition 11 For an extended configuratiof, p) we define the main window ¢f, p) to be
MAIN(C,p) = (1(C),n(C, p)),
wherer(C) is defined in Definition 7 and(C, p) is defined in Definition 9.

Corollary 14 Given an extended configuratidn’, p), the real cost (after adding small items such
that their number is not larger than the number in the main windoWwop), i.e.,n(C, p)) of a bin
that is packed according to this extended configuration, is at ifloste) f (k).
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Proof. Recall that(C, p) = k; if ¢ be the smallest integer such titgt— nc < k. It can be seen that
t < p always holds.

If k, —nc = ki, thenf(n(C,p) + ne) < (1 + ¢) f(kp) clearly holds. Otherwisé;, — nc # ki
holds and ther; > % andt > % so we have:, — nc > k;—1. Hence in this case we conclude that
f(n(C,p)+nc) = f(kitnc) < flketkp—ki1) < fkp)+f(ke) = f (k1) < f(kp)+ef (k1) <
(1 + ¢)f(kp), where the first inequality holds by the definitionto&nd the monotonicity of, the
second inequality holds by the concavity pf(sincek, > k; > k;—1 andk, < k, + ki — ki1
hold, f(k:) + f(kp) > f(kt + kp — ke—1) + f(ke—1)), the third inequality holds becauggk,) <
(1 + ¢)f(ki—1) and the last inequality holds by the monotonicity folnd sincet — 1 < p which
impliesk;—1 < k. m

The main window of an extended configuration is a window (i.e., it belong#)obut W may
include windows that are not the main window of any extended configuration. We notpAthat
is polynomi;’;ll in the input size and i{}l, whereagC| may be exponential ir% (specifically,|C| <
0 (H+1)1e).

Definition 12 Denote the set of windows that are main windows of at least one extended configuration
by W',

We first define a linear program that allows the usage of any window inAfter we obtain a
solution to this linear program, we modify it so that it only uses windowg/6f

Definition 13 A generalized configuratio&' is a pair of pairsG = ((C,p), W = (w, j)), for some
feasible extended configuratig’, p) and soméV € V. The generalized configuratiaH is valid
if W < MAIN(C,p). The set of all valid generalized configurations is denoted bifor W € W
denote byG(WW) the set of valid generalized configuratios= ((C,p), W’) such thati is their
window, i.e.G(W) = {((C,p),W') e G: W =W}

The linear program. We next consider the following linear program. The program is examined but it
is not constructed explicitly by the algorithm. In this linear program we have a varigbtEenoting

the number of bins with generalized configurat@nand variableg; - indicating if the small item

is packed in a window of typ#/ (the exact instance of this window is not specified in a solution of
the linear program).

min > fkp)za
G=((C,p),W)eg
s.t. > NUMBER(v,C)xg > n(v) Yve H (5)
G=((Ct),W)eg
> Yiw >1 Vie M (6)
Wwew
w- Y T > Y S yw VIV = (w,p) e W (7)
GeG(W) ieM
kp- > me > Y yiw YW = (w,p) €W 8
GeG(W) ieM
yiw 20 YW e W,Vi € M.
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Constraints (5) and (6) ensure that each item (large or smally ofill be considered. The large
items will be packed by the solution, and the small items would be assigned to some type of window.
Constraints (7) ensure that the total size of the small items that we decide to pack in window of type
W is not larger than the total available size in all the bins that are packed according to a generalized
configuration, whose window is of tyg& (according to the window size). Similarly, the family of
constraints (8) ensures that the total number of the small items that we decide to pack in a window of
typeW is not larger than the total number of small items that can be packed (in accord with the second
component o#¥) in all the bins whose generalized configuration of large items induces a window of
type W. In what follows we show how to deal with small items and specifically, how to pack most of
them into the windows allocated for them, and how to further deal with some unpacked small items.

Lemma 15 There is a feasible solution to the above linear program that has a cost of at(inest
e)oPT (I").

Proof. The (1 + ¢) factor results from the fact that we define extended configurations, where the
number of items per bin is, (for some value op). The fact that we use a windofw, t), wherek;
belongs to the same sequence of valigswill result in an additional factor of + ¢ on the cost of

the linear program.

We now convert the solution given bypT(1”). To convert the solution, we do not need to
modify any packing of items, but we change the cost calculation of each bin to comply with costs of
generalized configurations. For this, the number of items in every bin must be converted (in favor of
cost calculations) as follows.

Given a bin withn; > 0 items, we defing to be minimal value such tha, > n;. An increase
in the cost can occur ik, > n;. In this casep > 0 and we havé:,_1 < n; < k, and thus
using monotonicity off and the properties of the sequerigave havef(k,) < (1 + ¢)f(kp—1) <
(1+e¢)f(n1). Since windows are never smaller than the real space in bins, both with respect to size and
with respect to the difference between the number of large items and thekyaltithe configuration,
the solution clearly satisfies the constraints (7) and (8) on the packing of small items, and the packing
of large items satisfies the constraints (5). Therefore the adapted solution is a feasible solution of
the linear program. The linear program calculates the cost of a packing using the kalfethe
extended configurations, and as shown above, this increases the oest(df’) by a multiplicative
factor of atmost + ¢. m

Note that in the proof of Lemma 15, the presented solution to the linear program is such that
any variablez, that corresponds to generalized configuratiGhs= ((C,p), W) for which W #
MAIN(C,p), is equal to zero, and any variahbjgy wherelV ¢ W' is equal to zero as well.

The column generation technique.We invoke the column generation technique of Karmarkar and
Karp [22] as follows. The above linear program may have an exponential number of variables and
polynomial number of constraints (neglecting the non-negativity constraints). Instead of solving the
linear program we solve its dual program (that has a polynomial number of variables and an exponen-
tial number of constraints) that we describe next.

The dual variables:,, correspond to the item sizes i, and the dual variables; correspond to
the small items of\/. The intuitive meaning of these two types of variables can be seen as weights of
these items. For eadf € VW we have a pair of dual variableg,, dyy. Using these dual variables, the
dual linear program is as follows. Once again, the program is examined but not constructed explicitly
by the algorithm.
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max Yo n)ay+ > B

veEH ieM
st. Y. NUMBER(v,C)a, + wyw + kidw < f(ky) VG = ((C,p), W = (w,t)) € G (9)
veEH
Bi — siyw — ow <0 Vie M\YW e W (10)
a, >0 Yve H
Bi >0 Vie M
Yw,ow > 0 YW e W.

First note that there is a polynomial number of constraints of type (10), and therefore we clearly
have a polynomial time separation oracle for these constraints. If we would like to solve the above
dual linear program (exactly) then using the ellipsoid method we need to establish the existence
of a polynomial time separation oracle for the constraints (9). However, we are willing to settle
on an approximated solution to this dual program. To be able to apply the ellipsoid algorithm,
in order to solve the above dual problem within a factorlof e, it suffices to show that there
exists a polynomial time algorithm (polynomial im, % log 7 and log f(n)) such that for a
given solutiona* = (a*, 3*,~*,0*) decides whethet* is a feasible dual solution (approximately).
That is, it either provides a generalized configuratien= ((C,p),W = (w,t)) € G for which

>, NUMBER(v,C)aj + wyyy, + kidyy, > f(kp), or outputs that an approximate infeasibility
veEH

evidence does not exist, that is, for all generalized configuratibns ((C,p), W = (w,t)) € G,

>, NUMBER(v,C)ag + wyyy + kg, < (14 €) f(kp) holds. In such a case, we will show that
veEH

% is a feasible dual solution which also satisfies constraints (10), that can be used.

An algorithm for finding approximate infeasibility evidence, using a reduction to a knapsack
problem. Our algorithm for finding an approximate infeasibility evidence uses the following problem
as an auxiliary problem. THeNAPSACK PROBLEM WITH A MAXIMUM CARDINALITY CONSTRAINT
(KCC) problem is defined as follows. Given a set of item typleand an integer valuk, where each
item typev € H has a given multiplicity:(v), a valuez;; and a size, the goal is to pack a multiset of
at mostk items (taking the multiplicity, in which items are taken, into account, and letting the solution
contain at most(v) items of typev) and a total size of at most 1, so that the total value is maximized.
To provide an FPTAS for KCC, note that one can replace an item withvsigen (v) copies of this
item and then one can apply the FPTAS of Caprara et al. [8] for the knapsack problem with cardinality
constraints. The FPTAS of [8] clearly has polynomial time in the size of its input,%arﬁince the
number of items that we give to this algorithm as input is at mgste can use this FPTAS and still
let our scheme have polynomial running time.

A configurationG, that is an approximate infeasibility evidence, can be found by the follow-
ing procedure: For eacW = (w,t) € W, and for every0 < p < ¢, we look for an extended
configuration(C,p) € C such that((C,p), W) is a valid generalized configuration, and such that

> NUMBER(v,C)a} is maximized. To find”, we invoke the FPTAS for the KCC problem with
veH
the following input: The set of items i where for eachy € H there is a valuey;, and a sizev,

the goal is to pack a multiset of the items, so that the total value is maximized, under the following
conditions. The multiset should consist of at mgst- £;_; — 1 large items, (taking the multiplicity
into account, but an item can appear at most a given number of times). The rounded up number of
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small items which are packed {0, p) is k;, and therefore their number is in the interifal_; + 1, &;].
Therefore, the number of large item in such an extended configuration is always &i,mdst | — 1.
By allowing this larger number of large items we only relax the constraints, and hence will get super
optimal solutions which will be sufficient.

If t = 0, we instead search for a multiset with at méstlarge items. The total (rounded up)
size of the multiset should be smaller thar- ;7;, unlessw < s,,,,,, where the total size should
be at most 1 (in this case, the window does not leave space for small items). Since the number of
applications of the FPTAS for the KCC problem is polynomial (i¢é+ 1)|W)|), this algorithm runs

in polynomial time.

The case where a solution with large value is foundln the case that a solution is found, that is, a
configurationC', with at mostk,, — k;—; — 1 large items (oik,, if t = 0), and a total value greater

than f(k,) — wyyy, — ki3, we argue that(C, p), (w, t)) is indeed a valid generalized configuration,

and this implies that there exists a generalized configuration, whose dual constraint (9) is violated.
First, we need to show th&t’, p) is a valid extended configuration. This holds siid¢das at most

ky, —ki—1 — 1 < ky large items (ift = 0 the bound on the number of items holds immediately).

By the definition of windows, the property < s/ .. is equivalent tow = sfg_ig, which is the
smallest size of window (and the smallest sized window forms a valid generalized configuration with
any configuration, provided that the value lgfis small enough). It > 0, sinceC has at most
k, — ki—1 — 1 items, the second component of the main window'oh this case is larger than— 1
and thus no smaller than and the window is no smaller thdwv,t). Therefore, the generalized
configuration((C, p), (w,t)) is valid. If ¢ = 0 then the windowmw, 0) is clearly valid with any
extended configuration (for the current valueugf

If w> s .., recall that the main window ofC, p), M AIN(C,p) = (7(C),n(C, p)) is chosen
so thats'(C') + 7(C) > 1, and thaiC'is chosen by the algorithm for KCC so thé(C) < 1 — 7.

We getl — 7(C) < s'(C) < 1 — 135 and thereforev < (1 + ¢)7(C), i.e.,w < 7(C) (since the

sizes of windows are integer powerslof ¢). SinceC' contains at most, — k;_; — 1 items, we have
n(C,p) > k; and so we conclude thdt’ < MAIN(C,p), and((C,p), W) is a valid generalized
configuration (the same property holds toe= 0). Thus in this case we found that this solution is a
configuration whose constraint in the dual linear program is not satisfied, and we can continue with

the application of the ellipsoid algorithm.

The case where a solution with large value is not found: Constructing a feasible dual solution.
In the case that a solution is not found, it holds for any pair of a win@iow= (w, t), and a value
0 < p < ¢, that any configuratior®' of total rounded up size less than- 1%5 (or at most 1, if
w < s)..), with at mostk, — k;—; — 1 items, has a value of at moét + €)(f(k,) — w~jy, —
ko) < (14 ¢€)f(kp) — wyyy — kidyy. We prove that in this case, all the constraints of the dual
linear program are satisfied by the solutiﬁﬁ. Consider an arbitrary valid generalized configuration
G = ((C,p),(®,7)). We have(®,j) < MAIN(C,p). If 7(C) < s, then® = 7(C). Since
s'(C) < 1 for any configuration, anél; < n(C, p), we prove that the number of itemsdhis at most
kp—Fk;_1—1(if 7 = 0 then the number of items il is immediately at most, and there is nothing to
prove). Assume by contradiction that the number of itents is at leask, —k;_;. Then by definition,

we haven(C, p) < k;_1, which is impossible. Thug(, p) is a possible extended configuration to be
used with the window, 7) in the application of the FPTAS for KCC, or equivalentlyis a possible
configuration to be used with the parametemnd the window( @, j) in the application of the FPTAS

for KCC. Assume next thah < 1, then when the FPTAS for KCC is applied & = (w, j), C
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is a configuration that is taken into account 1t sinces’(C') < 1 — T1(+Cs) <1- 1%8 where the
first inequality holds by definition of (C'), andC' has at mosk, — k;_; — 1 items. If @ = 1 then
1>7(C)>aw=1,so7(C) = 1. A configurationC; that contains at least one large item satisfies
s'(C1) > €,508'(Ch) + 4= > 1+1€++:2 > 1. Therefore if the main window of a configuration has
size 1 (its first component), this configuration is empty, affd’) = 0. In this case, the extended
configuration(C, p) is valid for any0 < p < ¢. We haven(C, p) = k, for the empty configuration,
and foranyl < j <p, k, —kj_1 —1 >0, and forj = 0, k, > 0. This empty configuration is
considered with any windoW” = (w, j) € W wherej > 0 in the application of KCC. Note that if

j = 0, the configuration has no items at all (large or small).

The cost of the approximate primal solution.We denote by X, Y') the solution to the primal linear
program that we obtained. Since the number of variables is exponential, we use a short representation
of this sparse vector, where we list pairs of non-zero components and their values.

Lemma 16 The cost of X, Y) is at most(1 + ¢)20PT(I").

Proof. The solution(X,Y") is a(1 + ¢) approximation for the optimal solution to the linear program.
By Lemma 15, there exists a feasible solution to the primal linear program with a cost of at most

(1+ ¢)orPT(I"). We conclude that > fkp))Xe < (14 ¢)?0PT(1"). m
GZ((C,p),((,U,t))Eg

Modifying the solution to the linear program so that all windows in W \ W’ can be neglected.

We modify the solution( X, Y") to the primal linear program into a different feasible solution of the
linear program, without increasing the goal function. Using the short representatidowfthe non-

zero components of this vector, we create a list of generalized configurations Whossponent

is positive. From this list of generalized configurations, we find a list of windows that are the main
window of at least one extended configuration induced by a generalized configuration in the list. This
list of windows is a subset ofV’ defined in Definition 12. We would like the solution to use only
windows fromW'.

The new solution will have the property that any non-zero componed,oK 4, corresponds
to a generalized configuratic = ((C,p), W), such thati” € W'. We still allow generalized
configurationgz = ((C,p), W) whereW # M AIN(C,p), as long asV € W'. This is done in the
following way. We firstlet X', Y') = (X,Y"). Since the vectofX, Y') will be modified, we will use
the copy(X’, Y”) to recall the original values of the solution to the linear program.

Given a windowV ¢ W', we defineBINS(V) = > X’é. The following is done for

GeG(V)
every generalized configuratia®’ = ((C,p),V), whereV ¢ W' and such tha/,, > 0, where
W = MAIN(C,p) andW > V (butV # W). We letG = ((C,p),W). For everyi € M,
an amount O%YZV is transferred fronY; v to Y; . We modify the values{s and X as
follows. We increase the value &f; by X/, and letX = 0.

We claim that at the end of the modification process, it holdsYhat= 0, for any: € M and
V' ¢ W'. To see this, we note that the total reductioYjr is GIGXG:(V) %YZV =Y}y, where
the last equality holds by the definition BffN.S(V).

Lemma 17 The new vectof.X,Y') is a feasible solution to the linear program with the same value
of the objective function.
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Proof. We consider the modifications. For every extended configurdtiym), the sum of com-
ponents ofX, that correspond to generalized configurations whose extended configuration of large
items is(C, p), does not change. Therefore, the value of the objective function is the same, and the
constraints (5) still hold. We next consider the constraint (6):fdor a given small item € M.

Since the sum of variablés ;- does not change, this constraint still holds.

As for constraints (7) and (8), for a windoW ¢ V', the right hand side of each such constraint
became zero. On the other hand, for window3\ity every increase in some variahl&; for G =
((C,p),W = (w,t)), that is originated in a decrease & for G = ((C,p),V = (w',t')) is
accompanied with an increase efZX,Gi’X,GY;,V = #I%(V)Yi,v in Y; w, for everyi € M. This

GeG(V)

: . X', . : . .
results in an increase of Wg(v)s; -Y; v in the right hand size of the constraint (7) #6f, and an
ieM

increase ofv- X, inthe left hand side. Since we hawe BINS(V) > w’-BINS(V) > > s.-Yiv

ieM
before the modification occurs (since constraint (7) holds for the solution before modification for the
window V), we get that the total increase of the left hand side is no smaller than the total increase in

the right hand side. There is an increase)Xaf % -Y; v in the right hand size of the constraint
ieM

S(

(8) for W, and an increase of, - X/, in the left hand side. Since we hawg - BINS(V) >
ky - BINS(V) > > Yy, we get that the increase of the left hand side is no smaller than the
increase in the righzter%nd sida.

Now, we can temporarily delete the constraints of (7) and (8) that correspond to windows in
W\ W'. We call the resulting linear prograi?;,,,,. We consider a basic solution &, that is
not worse than the solution we obtained above (which was created as a solufié}),gftoo). Such
a basic solution can be found in polynomial time. We denote this basic solutioA’ky). This is
clearly a basic solution to the original linear program as well.

In order to obtain a feasible packing, we will use the solufidh)’). However, this solution may
contain fractional components. We can show the following bound on the number of these components.

Lemma 18 Consider the solutiofX’, ). Let Fy be the number of small items that are assigned to
windows fractionally according to the solution, i.€y = [{i € M, such that the vectot; w )wew

is fractional}|. Let F'x be the number of fractional componentsifi.e., the number of configurations
assigned a non-integer number of copies in the solution. Ther Fx < |H| 4+ 2\W'|. If M = (),
thenFy + Fx < |H].

Proof. The linear progrand.P,,,, consists of H| + 2|W'| 4 | M| inequality constraints, and hence in
a basic solution (a property that we assume (Aat)) satisfies) there are at mgsf| + 2|W'| + | M|
basic variables. For evetyc M, there is at least one windoW such thaty; y is a basic variable,
and therefore there are at most| + 2|)V'| additional fractional components {&x, ). If M = 0,
then there are onlyH | constraints in the linear program, so there are at ifdsbasic variablesm

Rounding the solution. We apply several steps of rounding to obtain a feasible packing of the items
into bins. LetC',p be the cost obtained in the linear program by the vectar)). By Lemma 16,
this cost is at mostl + ¢)2orPT (I”).
For eachi € M such that the vectd; w )w e is fractional,i is packed in a dedicated bin. We
can therefore assume that for every small iteen M/ to be packed(); w)wew is integral. Without
loss of generality, we assume that it has one component equal to 1, and all other components are zero.
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(If this is not the case, we can modify the vector without changing the feasibility of the solution, or
the value of the objective function.)

Let X be the vector such that; = [X¢] for all G € G. The number of bins allocated to
generalized configuratiof is X¢;.

We pack the items of’ = L\ L, first. We initialize bins according to generalized configurations,
and assign large items into these bins according to the associated configurations (some slots may
remain empty).

Lemma 19 The cost of the additional bins, dedicated to small items for wfdghy )w ey is frac-
tional, and the cost of additional bins that are created as a result of replagingy X is at most
f(ka) - (|H|+2\W)). If M = () then the additional cost is at mogt1)|H|.

Proof. We calculate the cost of bins opened in addition to the cost implied by the so(utioM).
At most one bin containing at moak items was opened for every fractional componenigf At
most one bin containing a single item was opened for every small item that was assigned fractionally
to windows. The cost of a bin of the first type is at m@éta ). The cost of every bin of the second
typeisf(l) =1 < f(%) < f(ka). The total number of the two types of bins together is at most
|H| +2)W'| by Lemma 18. IfM = {), then by definitionk = 1, and the number of additional bins
isatmostH|. m
Before moving on to the specific assignment of small items, we complete the packing of the
original large items. Each large item of the rounded up instance is replaced by the corresponding item
of I. The method of rounding implies that the space allocated to the rounded items is sufficient for the
original items. Moreover, every item is replaced by at most one item, so the cost does not increase.
Each item ofL; is packed into one dedicated bin.

Lemma 20 The cost of the bins dedicated to the itemg pfs at mos2e?orPT(I).

Proof. It suffices to show thaf (1)|L;| < 2¢20PT(I). To see this last claim note thit;| < 2|L|e3
and each item it has size at leastand therefore the number of bins usedd®r(/) is at leastL|e,
where each of them costs at legigl ). Thereforef(1)|L1| = |L1| < 2¢?0PT(I). m

Since the bound of the cost of the solution, before the rounding of fractional variables, and before
taking the bins of items of; = L\ L’ into account wag1 + ¢)20pPT(I"”), the current bound is
(1 + e)20PT(I") + f(ka) - (|H| + 2)W'|) + 2¢20PT(I). If M = (), then the bound is at most
(14¢)?0PT(I")+ f()-|H|+2¢*0PT(I), in which case the current solution implies a valid packing
(together with the packing &f, whose cost ig'(.S), see Definition 4), and thus the following bound
on the final cost is established.

Lemma 21 If M = (), then the algorithm returns a solution that costs at mast- ¢)20PT(I”) +
f(2)-|H| + 2e%0PT(I) 4+ F(S).

By the constraints (5), the allocation of the items.6to slots reserved for such items is success-
ful. At this time, we have removed some small items into new bins, and possibly increased the space
allocated to other small items.

Packing the small items. We next consider the packing of the small items that are supposed to
be packed (according ) in bins with windowWV. Assume that there at¥ (W) such bins (i.e.,

X(W) = . ((gj) ) X¢). Denote byS(W) the set of small items o/ that according tQV are
= 7p b
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supposed to be packed in bins with winddW (for some of these items we will change this decision

later). Then, by the feasibility of the linear program we conclude that s, < w - X(W) and
ieS(W)

|ISW)| < k- X(W) foranyW = (w,t) € W'

We next show how to allocate almost all the itemsSg#V’) to the X (W) bins with window
W = (w,t) such that the total size of items §{IW) in each such bin will be at most+ . and
the total number of items & (17) in each such bin will be at mos.

To do so, we sort the items ifi(1/) according to non-increasing size (assume the sorted list of
item indices ishy < by < ...bjgw). Then, allocate the items to the bins in a round-robin manner,
so that binj (1 < j < X(W)) receives items of indicels;, .. x () for all integersg > 0 such that
Jj+q- X(W) <|S(W)|. We call the allocation of items for a given valuegod round of allocations

. . . . S in
This process is applied for every winddW = (w,t) € W'. If w = 7z then there are no small

items assigned to this window. We therefore assume that a window for which the process is applied
satisfiesw > s/ . . The resulting (possibly invalid) solution is call&@ L s,

Lemma 22 In the solutionSO L+, the last bin of indexX' (W) received at most ag((lv) fraction

|S(W)]
of the total size of the items, which i$_  s,.
=1

Proof. We artificially add at mosk (W) — 1 items of size zero to the end of the list (these items are
added just for the sake of the proof), and allocate them to the bins that previously did not receive an
item in the last round of allocations, that is, bins. ., X (W) such that bin- — 1 < X (W) originally
received the last item. If biX (1V) received the last item then no items are added. Now the total size
of small items remained the same, but every bin got exactly one item in each round. Since the last bin
received the smallest item in each round, the claim follows.

On the other hand, we can apply the following process, at everyitin& (177), remove the first
(largest) small item from bin. As a result, the round-robin assignment now starts from ki and
bin i becomes the bin that receives items last in every round, and thus by the previous proof, the total

IS
Sp..
size of items assigned to it (after this removal) is at még% (since the total size of items does
not increase in each step of removal).

We create an intermediate soluti®® L;,:.... In order to create this solution we apply the follow-
ing process. The largest small item from each bin which received small items is removed (call them
the removed small itepsEach removed small item is indeed small and therefore its size is at most
¢. We pack the removed small items in new bins, so that each bin cor%taiems. There may be at
most one resulting bin with less tha}n’tems.

The solutionSO L;,., is not necessarily valid because our definitionuefis larger than the
available space for small items in such bin. If we temporarily relax the condition on the total size of
items in a bin, we can compute its cost. Since the assignment of small items into bins is done using a
round-robin method, the number of small items in a bin with a windawp) is at mostk,,.

Lemma 23 The total cost oS5O L, iS at most the sum g‘f(%) plus (1 + ¢)? times the cost of the
solution prior to the allocation of the small items into bins, that is, it is at most

(1+¢)* (1 +€)?0PT(I") + f(ka) - (|H| +2IW']) + 2e*0PT(1)) + f(%)-
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Proof. The first multiplicative factor ofl + ¢ follows from Corollary 14. We next calculate the

cost of the additional bins. We allocate a costg‘i(%) to each removed small item. Then, the total
allocated cost covers that cost of all new bins except for at most one bin that has a cost of at most
f(%). Consider a removed iternand leta be the real number of items (including large items) that

the bin from whichi is removed, contains before the removal. Thus, the bin is charged with a cost
of at leastf(a) (the linear program may have charged it wjtfk,,) for somek, < «a, but the current
charge for this bin in our estimation of the total costis+ ¢)f(k,) > f(a), by Corollary 14).

As a result of removal of, the real cost of the bin is no larger thgfe — 1). We therefore next
show thate f(1) + f(a — 1) < (1+¢)f(a). If a > 1, then using monotonicityf(1) < f(a) and
1

f(a—1) < f(a) so the claim holds. Otherwise, we hafgl) = f(a) + Z (f(4) — f(G—1)).
Jj=a+1

By concavity, we have forevery + 1 < j < % fla) — f(a—1) > f(4) — f(j — 1). Therefore

f(2) < f(a) + 1(f(a) — f(a—1)). Rewriting this gives the required clainm

We note that the total size of small items assigned to such (original) bin is atun(st before
removing the items we allocate the last bin a total size that is at mastd after the removal of items
each bin has total size which is at most the total size of the last bin before the removal).

Recall that the intermediate soluti®tO L;,.:., may be infeasible. We create the final solution
SOLyina as follows. Consider a bin of the intermediate solution in which large items are packed
according to configuratiod’, and small items have total size at mest We do not change the
packing of large items. As for the small items, we remove them from the bin and start packing the
small items again into this bin greedily in non-decreasing order of the item sizes, as long as the total
size of items packed to the bin does not exceed 1. The first item that does not fit into the bin is called
the special item Additional items that do not fit are called tbgcess items

We collect the special items from all bins, and we pack these items in separate bins, so that each
such separate bin will contaibspecial items from different bins &fO L;,,...., except perhaps for the
last such bin.

By the definition of windows, the actual space in a bin with windew ¢), that is free for the use
of small items, is at least of sizﬁﬁ—s. After the removal of the packed items and the special item, we
are left with the excess items. Lat < w be the space occupied by small items in the bin, before
the removal of the special item and the excess items. Then the total size of excess items is at most
w' — T4 < w — 1%5 < 51%’5 < ¢. Similar considerations can be applied to the cardinality of these
items. Letp be the number of excess items. Since we insert the items into the bin sorted by a non-
decreasing order of size, the largest items are the ones that become excess items. Thus, since there
are at most; small items, the total size of thelargest items is at leag - 2 s0e > £
Thus for a windoww, t), the number of excess items is at meokt.

The last rounding step is defined as follows. We can pack the unpacked (excess) items of every
% bins of SOL;,:. Using one additional bin. Specifically, we sort the subsets of excess items ac-
cording to a non-increasing order of the second component of the windows to which these items were
originally assigned, we call it thimdex of the subsefThen, according to this order, we assign every
consecutivéE subsets to a bin. The last bin may contain a smaller number of subsets. This completes
the scheme. We get our final solutiSiV L 7,4

Bounding the cost of the resulting solution.

Lemma 24 The cost o5 OL f;q is at most(1 + 2¢) times the cost 08O Liyer plus f(ka) + f(2).
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Proof. Similarly to the proof of Lemma 23, the bins which are used for packing the special items are
feasible bins and they addtimes the cost o650 L., t0 the total cost of the packing pllfﬁ{%). It
remains to bound the additional cost of the bins which are used for the excess items.

We usex () to denote the index of theth subset. Let denote the number of bins created, and

the number of subsets (we hai’fgi < u < 7). The number of items in theth bin, fori > 2, is at
1

mosti ekﬁ(d +) < kn(ﬂ). The number of items in the first bin is at ma&t< ka. The cost of

the bins is therefore at mog{A) + Z f (k () ) On the other hand, the cost 80 L;,;., that is

charged to the bin which was supposed to getittresubset of excess items is at legét,. ;) ) (since
for agenerallzed conflgurathr@C p), (w,t)) we havek; < k), thus the cost 06O Ly, is at least

Z f(keiiy) > 1 Z f ( n(2) ) Thus the additional cost is at mastimes the cost 060 L;e plus

f(A). ]
First assume that/ # (). By Lemmas 23, 24, and by using< % the cost ofSOL ¢y, is at
most

(1+2¢)- ((1 +¢)?. (1+ e)20PT(I") + f(ka) - (|H| +2W|) + 2520PT(I)) + f(i)) +f(lm)+f(%)

< (1+&)orT(I") 4 3f(ka) - (|H| +2)W'| +1) + 3f(%) + 6e20PT(I).

SOLyina is a packing ofL U M. In order to get the cost of the entire input, we need to add the
cost of the packing of', which was denoted b¥'(S) (see Definition 4), which gives a total cost of at
most

(14 &)%oPT(I") +3f(ka) - (|H| +2)W'| +1) + F(S) + 3f(%) + 6e20PT(I).

Using (4) this is at most

3(JH|+2W'|+1)
h(e)

Since every element af’ is the main window of an extended configuration, we havg < |C|.
Every configuration has at mostitems, of|H| sizes, and an extended configuration has a second
component which is an integer {i,2,..., A}, whereA < ¢, so we haveC| < ¢ - (|H| + 1)% <
- (& 4+ 1)V¢ Inaddition,1 < [H| < |W'| < £- (% + 1)Y/¢. This gives3(|H| + 2W'| + 1) <
120 - (?13 +1)1/¢ = 2¢ - h(e), using the definition of(¢) in (1). Thus the value of (11) is at most

(1+&)PoPT(I")+ (1 +¢) ( + 1) F(S) + 3f(%) + 6e%0PT(I)  (11)

(1+¢€)%oPT (") + (1 +&)(1+ 2¢)F(S) + 3f(%) + 6e20PT(I)
< (1+¢)%oPT(I") + F(S)) + 3f(%) + 6e%0pPT(I)
By Definition 4, and by Lemma 12 and usiag< % again, this is at most
(1+¢)%(oPT(I') + 3f(%) + 6e20PT([) (12)
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+ (3h(e) + 3) f( 1 ) + 3f(%) + 6e20PT(1) (13)

< (1+e)°%(1+e)orT(I "

~—

o | =

< (14 22¢)oPT(I) + f(=)(17h(e) + 20)

To complete the proof, starting from equation (12), we use only properties which hold even if
M = (), so that we can reduce the remaining cases to the current case. We next use the property that
by concavity off we havef(z) < z - f(1) = z for anyz > 1. Therefore,f() < 1, and using the
bound or¢ (Equation (3)), we get that the last amount is at most

0L +1)e 20
€2

£

h(e)

e
1

< (1+22¢)oPT(I) + ? ;202G + 1) (1 + 14 2logy OPT(I)> (14)

2
(14+22¢e)oPT(I) + 17 + ?0 < (1+22¢)oPT(I) + 102

™ |

€2

We note that the last bound can be written(&is- 22¢) - OPT + ¢(¢) - logy OPT + 7)(e) where
¢ and are some (exponential) functions @f To show that the resulting scheme is an AFPTAS it

2
suffices to argue that(¢) - log, OPT < eOPT+ (@) + 4. To see this last inequality note that if

logy OPT < % the claim clearly holds. Otherwise,dfPT < 16 and¢(e) < 1 the claim holds. It
remains to consider the case wheret > 16 or ¢(¢) > 1. Note that if¢(e) > 1, then since we
assumedog, OPT > @ > E% > 9 and thereforeopPT > 16 holds as well. Thus, we only need to
consider the caserT > 16. For anyx > 16 we have,/z > log, x and byoPT > 16, we get,/OPT >
log, OPT > @. ThereforecOPT = ¢4/OPT/OPT > @\/OTW > @ log, OPT > ¢(¢) log, OPT

and the claim follows. 1
Thus, lettingg(e) = 25! - (log; | 2) - (& + 1)=) the amount in (14) is equal to

o |=

1
(1+22¢)oPT(I) + 2—80 + 102((52;1” (1 + 1> + ¢(¢) log, OPT(I)

1 % 2
< (1+22¢)oPT(I) + 2?0 + m«i;l)) (1 - 1> +eopPT(I) + (gb(;)> +4

1
€

Since(1 + a)% > 2, we havdog, .2 < 1, s0¢(e) < 280734((%3 +1)
cost is at mostl + 23¢)oPT(I) + v(e), where

), so the upper bound on the

1
€

1 1\’
v(e) = 20 + 102(( + <) (1 + 1) + (204(EZ4+ Y ) +4.

€ €2

If M = (), we getka = % so f(ka) < % Assume thatl” = M U L' = (. In this case we
showed in Corollary 13 that the cost of the returned solution is at (3ast) + 3) - f(2). The cost
of the solution is at most the amount in (13), so the previous proof covers this case and thus we get an
AFPTAS in this case as well.

It remains to consider the cadé = () (andL’ # (). In this case there are no small items to be
packed by the linear program, and we saw in Lemma 21 that the the cost is dtlmastorT (1) +

f(2)-|H| + 2¢%0PT(I) 4+ F(S).
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Thus usingH| < 5%,, we conclude that the cost of the returned solution is at most
1
(1+¢)*(orPT(I") + F(S)) + f(g) |H| + 2¢%0PT(I)
1
< (1+¢)orPT(I') + i 2e20PT(1)

The last expression exceeds the value of (12) by at n};qstnd therefore, we obtain an AFPTAS in
this last case as well, and we have established the correctness of Theorem 11.
To conclude, we summarize the core of the AFPTAS presented in this section.

A sketch of the main steps of the AFPTAS

1. Partition the input inta)i™ , L; U M U S. Pack each item of; into a dedicated bin. Usg
rounded values of other items.

2. PacksS usingFNFI; repack split items in dedicated bins.
3. Determine a set of breakpoints ffito get a staircase approximation.

4. Use the column generation technigue to approximately solve the dual linear program of the
configuration linear program, repeatedly calling the FPTAS of [8]. The solution is given
in a compact way.

5. Modify the solution so that all the windows which are not main windows of any configu-
ration are not used. This is done by replacing the windows by larger windows.

6. Convert the solution to a basic solution to the linear progfafy,,,.

7. Round the solution to get an integer number of instances of each generalized configuration.
Every small item which was not assigned integrally into a window type is packed into a
dedicated bin.

8. Pack the rounded large items to bins according to the configurations of the solution

9. Assign the small items. For each type of window, and a set of items assigned to this type
of window by the solution, consider all bins whose configuration has this window. Assign
the small items in a round-robin manner.

10. Remove one item from each bin that has small items, and pack those items sepérately (
items per bin).

11. Remove additional small items until all bins are packed up to a total size of atlrrersd
pack those small items separately, so that the items removed from—iebdny are packed
into a common bin.

12. Revert to the original values of the large items.
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