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Abstract

We study a bin packing problem in which a bin can contain at most k items of total size at

most 1, where k ≥ 2 is a given parameter. Items are presented one by one in an online fashion.

We analyze the best absolute competitive ratio of the problem and prove tight bounds of 2 for

any k ≥ 4. Additionally, we present bounds for relatively small values of k with respect to

the asymptotic competitive ratio and the absolute competitive ratio. In particular, we provide

tight bounds on the absolute competitive ratio of First Fit for k = 2, 3, 4, and improve the

known lower bounds on asymptotic competitive ratios for multiple values of k. Our method for

obtaining a lower bound on the asymptotic competitive ratio using a certain type of an input

is general, and we also use it to obtain an alternative proof of the known lower bound on the

asymptotic competitive ratio of standard online bin packing.

1 Introduction

We study a variant of bin packing called bin packing with cardinality constraints (BPCC). In this

problem, the input consists of items, denoted by 1, 2, . . . , n, such that item i has a size si > 0

associated with it, and there is a global parameter k ≥ 2, called the cardinality constraint. The

goal is to partition the input items into subsets, called bins, such that the total size of items of

every bin is at most 1, and the number of items packed into each bin does not exceed k. We believe

that bounding the number of items as well as their total size provides a more accurate model for

packing problems; for example, a data center can usually only store a constant number of files.

BPCC is a well-studied variant in the offline and online environments [17, 18, 16, 5, 1, 8, 10, 11].

In this paper, we study online algorithms that receive and pack input items one by one, without

any information on future input items. A fixed optimal offline algorithm that receives the complete

list of items before packing it is denoted by OPT . For an input I and algorithm ALG, we let

ALG(I) denote the number of bins that A uses to pack I. We also use OPT (I) to denote the
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number of bins that OPT uses for a given input I. The absolute competitive ratio of an algorithm

ALG is the supremum ratio over all inputs I between the number of bins ALG(I) that it uses

and the number of bins OPT (I) that OPT uses. The asymptotic competitive ratio is the limit of

absolute competitive ratios RK when K tends to infinity and RK takes into account only inputs for

which OPT uses at least K bins. Note that (by definition), for a given algorithm (for some online

bin packing problem), its asymptotic competitive ratio never exceeds its absolute competitive ratio.

If the algorithm is offline, the standard terms are approximation ratio and asymptotic approximation

ratio. For an algorithm whose competitive ratio (or approximation ratio) does not exceed R, we

say that it is an R-competitive (or R-approximation). We see a bin as a set of items, and for a bin

B, we let s(B) =
∑

i∈B si be its level or load.

Bin packing problems are often studied with respect to the asymptotic measures. Approximation

algorithms were designed for the offline version of BPCC (that is strongly NP-hard for k ≥ 3) [17,

16, 5, 10], and the problem has an asymptotic fully polynomial approximation scheme (AFPTAS)

[5, 10]. Using elementary bounds, it was shown by Krause, Shen, and Schwetman [17] that the

cardinality constrained variant of First Fit (FF), that packs an item i into a minimum indexed bin

where it fits both with respect to size and cardinality (i.e., the target bin must have at most k − 1

items and its current level must be at most 1− si), has an asymptotic competitive ratio of at most

2.7 − 2.4
k . For k → ∞, the asymptotic competitive ratio of FF is at most 2.7, which follows from

the result of [17] and also from that of [12], since this is a special case of vector bin packing (with

two dimensions).

Next, we survey other known results for BPCC. The case k = 2 is solvable using matching

techniques in the offline scenario, but it is not completely resolved in the online scenario. Liang [20]

showed a lower bound of 4
3 on the asymptotic competitive ratio for this case, Babel et al. [1] improved

the lower bound to
√
2 ≈ 1.41421, and designed an algorithm whose asymptotic competitive ratio is

at most 1+ 1√
5
≈ 1.44721 (improving over the previous bound, which was proved for FF). Recently,

Fujiwara and Kobayashi [11] improved the lower bound to 1.42764. For larger k, there is a 2-

competitive algorithm [1], and improved algorithms are known for k = 3, 4, 5, 6 (whose competitive

ratios are at most 1.75, 1.86842, 1.93719, and 1.99306, respectively) [8].

Note that the upper bound of [17] for FF and k = 3 is 1.9, and an algorithm whose competitive

ratio is at most 1.8 was proposed by [1]. A full analysis of the cardinality constrained variant of

the Harmonic algorithm [19] is given in [8], and its competitive ratios for k = 2 and k = 3 are

1.5 and 11
6 , respectively (its competitive ratio is in [2, 2.69103] for k ≥ 4). As for lower bounds,

until recently, except for the case k = 3 for which a lower bound of 1.5 on the competitive ratio

was proved in [1], most of the known lower bounds followed from the analysis of lower bounds for

standard bin packing [28, 26, 3].

New lower bounds for many values of k were given by Fujiwara and Kobayashi in [11], and in

particular, they proved lower bounds of 1.5 and 25
17 ≈ 1.47058 for k = 4 and k = 5, respectively. For

6 ≤ k ≤ 9, the current best lower bound remained 1.5, which was implied by the lower bound of

Yao [28], and for k = 10 and k = 11, lower bounds of 80
53 ≈ 1.50943 and 44

29 ≈ 1.51724, respectively,

were proved in [11] (see [11] for the lower bounds of other values of k). In this paper we provide

improved lower bounds on the asymptotic competitive ratio of arbitrary online algorithms for
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value of k previous asymptotic LB new LB

5 1.47058 [11] 3/2 = 1.5

7 1.5 [28] 217/143 ≈ 1.51748

8 1.5 [28] 32/21 ≈ 1.52380

9 1.5 [28] 189/124 ≈ 1.52419

10 1.50943 [11] 235/154 ≈ 1.52597

11 1.51724 [11] 209/137 ≈ 1.52554

14 1.52595 [11] 315/206 ≈ 1.52912

15 1.52912 [11] 75/49 ≈ 1.53061

16 1.52567 [11] 72/47 ≈ 1.53191

17 1.52312 [11] 765/499 ≈ 1.53306

18 1.52459 [11] 135/88 ≈ 1.53409

19 1.52678 [11] 30799/20072 ≈ 1.53442

20 1.52912 [11] 2365/1541 ≈ 1.53471

21 1.52941 [11] 13251/8633 ≈ 1.53492

22 1.52914 [11] 10417/6786 ≈ 1.53507

23 1.53004 [11] 49795/32434 ≈ 1.53527

24 1.53086 [11] 152/99 ≈ 1.53535

25 1.53162 [11] 54175/32284 ≈ 1.53539

26 1.53231 [11] 3523/2294 ≈ 1.53574

27 1.53296 [11] 2439/1588 ≈ 1.53589

28 1.53356 [11] 1897/1235 ≈ 1.53603

29 1.53412 [11] 70789/46079 ≈ 1.53625

30 1.53465 [11] 6105/3974 ≈ 1.53623

31 1.53514 [11] 84103/54742 ≈ 1.53635

32 1.53560 [11] 39104/25449 ≈ 1.53656

33 1.53603 [11] 23925/15568 ≈ 1.53680

34 1.53644 [11] 289/188 ≈ 1.53723

35 1.53682 [11] 76195/49569 ≈ 1.53715

Table 1: New lower bounds on the asymptotic competitive ratio. The second column contains the

previously known bounds and the third column contains our improved lower bounds.

k = 5, 7, 8, 9, 10, 11. The values of these lower bounds are 1.5 for k = 5, and approximately 1.51748,

1.5238, 1.5242, 1.526, 1.5255, for k = 7, 8, 9, 10, 11, respectively. We also provide improved lower

bounds for larger values of k, see Table 1.

The methods used in this work differ from the ones used before. In the past, the inputs that

were used for k ≥ 3 consisted of sub-inputs with identical items, such that the number of items

of each kind is equal (and the input may be stopped after a sub-input was presented). We use

this framework too, but the numbers of items will not necessarily be equal. Moreover, unlike the

constructions given in the previous work, in some cases we do not adapt previously used sequences
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(those that were used for proving lower bounds for standard online bin packing [26, 3]), but we

use a different input sequence. To avoid dealing with packing patterns (subsets of items that can

fit into bins), we use weight functions. For that, we provide a general theorem that allows to deal

with inputs coming from a class of inputs, and is useful for proving lower bounds on the asymptotic

competitive ratio for various bin packing problems (we demonstrate it also on standard online bin

packing, getting the lower bound of [3]).

There are few known results for the absolute measures. The asymptotic (1+ ε)−approximation

algorithm of Caprara, Kellerer, and Pferschy [5] uses (1 + ε)OPT (I) + 1 bins to pack the items of

an input I, and thus, choosing ε > 0 to be small (for example ε = 1
100) results in a polynomial

time absolute 3
2 -approximation algorithm. This is the best possible unless P=NP. In the online

environment, it is not difficult to see that given the absolute upper bound of 1.7 on the competitive

ratio of FF for standard bin packing [7], the upper bound of 2.7−2.4/k becomes an absolute one (we

provide the proof here for completeness). In this paper, we also analyze the absolute competitive

ratio, and show a tight bound of 2 on the absolute competitive ratio for any k ≥ 4, and a tight

bound of 1.5 for k = 2. The upper bound for k = 4 is proved for FF. An upper bound for k = 5

is proved using an algorithm that performs FF except for one case. We show that a variant of the

algorithm of [1] has an absolute competitive ratio 2 for any k ≥ 3. In the case k = 3, we provide

a lower bound of 7
4 = 1.75 on the absolute competitive ratio of any algorithm, and show that the

absolute competitive ratio of FF is 11
6 ≈ 1.8333. A complete analysis of the asymptotic competitive

ratio of FF can be found in [6].

For standard bin packing [25, 13, 14, 15, 19, 28, 21], it is known that the asymptotic competitive

ratio is in [1.5403,1.58889] [3, 22], and the absolute competitive ratio is 5
3 [29, 2] (the absolute

competitive ratio of FF without cardinality constraints is 1.7 [7]). Another related problem is

called class constrained bin packing [9, 23, 24, 27]. In that problem each item has a color, and a bin

cannot contain items of more than k colors (for a fixed parameter k). BPCC is the special case of

that problem where all items have distinct colors (with the same value of k). A lower bound of 2

on the asymptotic competitive ratio was proved for the former problem [24] even for the case where

items have equal sizes, whereas the latter problem (BPCC) has an algorithm whose asymptotic

competitive ratio is 2 [1] (and BPCC is trivial for the case of equal item sizes). Moreover, for

BPCC and k = 2, there is an algorithm whose asymptotic competitive ratio is approximately

1.44721 [1], whereas the more general problem has a lower bound of approximately 1.5652 on the

asymptotic competitive ratio [9]. Thus, it is possible that class constrained bin packing is more

difficult than BPCC.

We start with lower bounds in Section 2, where both the absolute competitive ratio and the

asymptotic competitive ratio are studied. We consider algorithms afterwards, in Section 3, where

we analyze FF for small k, and design algorithms whose absolute competitive ratios are at most 2.

2 Lower bounds

In this section we present lower bounds for the two measures. As the two measures are quite

different, the lower bound constructions are different as well.
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2.1 Lower bounds on the absolute competitive ratio

We show that the absolute competitive ratio is at least 2 for k ≥ 4. Together with the analysis of

Section 3.1, we will find that this is the best possible competitive ratio.

Proposition 1 The absolute competitive ratio of any deterministic online algorithm for k ≥ 4 is

at least 2.

Proof. Let 0 < ε < 1
10k . The input starts with k items, each of size ε, called tiny items. Since an

optimal solution packs them into one bin, if an online algorithm uses two bins, then we are done.

Otherwise the algorithm packs them into one bin, and no further items can be combined into this

bin, since it already has k items. The next two items have sizes of 1
3 + ε. If the algorithm packs

them into two new bins, then the next item has size 2
3 and it requires a new bin. An optimal

solution packs the last item with k− 1 tiny items, and the remaining three items into another bin,

while the algorithm uses four bins. Otherwise, the algorithm packs the two items of sizes 1
3 +ε into

one bin. In this case the last two items have sizes of 1
2 + ε. The algorithm now has four bins, while

an optimal solution has two bins, each with an item of size 1
2 + ε, an item of size 1

3 + ε, and ⌊k2⌋ or

⌈k2⌉ items of size ε each (which is possible since at most k − 2 items of size ε are added; for k = 4,
k
2 = k − 2 = 2 holds, and ⌈k2⌉ ≤

k+1
2 ≤ k − 2 holds for k ≥ 5).

In the case k = 2, a lower bound of 3
2 on the absolute competitive ratio follows from an input

that consists of two tiny items, each of size ε, possibly followed by two larger items, each of size

1 − ε (for 0 < ε < 1
2). If an algorithm packs the first two items into separate bins, then its

absolute competitive ratio is 2, as these items can be packed into one bin. Otherwise, the larger

two items require two new bins, while an optimal solution for the four items consists of two bins,

each containing a tiny item and a larger item.

Next, we present a lower bound of 7
4 on the absolute competitive ratio of any algorithm for

k = 3. Recall that the best asymptotic competitive ratio for k = 3 is in [32 ,
7
4 ]. The upper bound of

[17] for the asymptotic competitive ratio of FF is 2.7−2.4/3 = 1.9, and we will show a tight bound

of 11
6 ≈ 1.83333 on the absolute competitive ratio of FF.

Proposition 2 The absolute competitive ratio of any deterministic online algorithm for k = 3 is

at least 7
4 = 1.75. The absolute competitive ratio of FF algorithm for k = 3 is at least 11

6 ≈ 1.8333.

Proof. Let 0 < ε < 1
24 . The input starts with three tiny jobs of size ε each. Since an optimal

solution can pack them into one bin, to avoid a competitive ratio of at least 2, the algorithm must

do the same. Note that the bin containing these items cannot receive any additional items. Next,

two items of sizes 1
3 + ε arrive. If the last two items are packed into separate bins, an item of size 2

3

is presented. The last three items are packed into three bins, and the algorithm uses four bins for

this input. An optimal solution can pack the items into two bins; the last item is combined with

two tiny items, and the remaining three items are packed into a second bin, which is possible given

the value of ε.

Otherwise, the algorithm has two bins, where the second one can still receive one item of size

at most 1
3 − 2ε. The remaining items will be larger, and thus they will be packed into new bins.
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Now, two items of sizes 1
3 + 3ε arrive. If the algorithm uses two new bins to pack them, then two

items whose sizes are equal to 2
3 − 2ε arrive, and the algorithm is forced to use two new bins for

them, for a total of six bins. An optimal solution uses three bins; two bins contain (each) an item

of size 2
3 − 2ε, an item of size 1

3 + ε, and a tiny item. The remaining three items have total size
2
3 + 7ε and can be packed into a third bin by an optimal solution. Thus, the competitive ratio is 2

in this case.

Otherwise, the algorithm has three bins, where the second and third bins can still receive one

item each, but no item of size at least 1
3 can be packed there. The remaining items will be larger

than 1
3 , and thus they will be packed into new bins. Specifically, there are four items whose sizes

are equal to 2
3 − 4ε > 1

2 . Each such item must be packed into a separate new bin, for a total of

seven bins. An optimal solution can combine each such item with an item of size 1
3 + ε or an item

of size 1
3 + 3ε, and three such bins also receive a tiny item.

Consider the following input for FF (see [6] for an example showing an asymptotic lower bound

of the same value). There are six tiny items of size ε, six medium items of size 1
3 + ε, and six huge

items of size 1
2 + ε. An optimal solution packs six bins containing one item of each size. FF packs

two bins with three tiny items each, three bins with two medium items each, and six bins, each

containing one huge item.

2.2 Lower bounds on the asymptotic competitive ratio

In this section we present a new method for proving lower bounds on the asymptotic competitive

ratio of bin packing problems. This method can be applied for different variants, and we use it

for standard online bin packing (getting the best known lower bound [3] in a simple way), and for

bin packing with cardinality constraints, where it allows us to improve the lower bounds known

for relatively small values of k. The main advantage of this method is that it does not require

the explicit construction of all possible patterns or dominant patterns (patterns are multi-sets of

input items that can be packed into bins). The approach of [3] is to use weights as well, but their

usage is slightly different. Our approach resembles that of proving upper bounds on the asymptotic

competitive ratio of algorithms [25, 15, 22].

Consider an input of the following form for a given bin packing problem Π. Let θ ≥ 2 be a fixed

positive integer. There are θ lists of items, where the list Li (for 1 ≤ i ≤ θ) has identical items,

each of size si, where s1 < s2 < · · · < sθ. For a large integer N > 0, the list Li has αi · N items,

where 0 < αi ≤ 1 is a rational parameter for i = 1, . . . , θ (N will be selected such that αi ·N is an

integer). The items are presented to an online algorithm sorted by non-decreasing sizes (that is,

items are presented sorted by non-decreasing indices of their lists) and the input may be stopped

after all the items of some list were presented. That is, there are θ possible inputs, and we will

examine the behavior of the algorithm for all possible inputs.

Given a set of values wi > 0 for i = 1, . . . , θ, wi is called the weight of an item of list Li, and

the weight of a bin is equal to the total weight of its items. For i = 1, . . . , θ + 1, let Wi denote

the maximum weight of any bin that contains only items of lists i, i + 1, . . . , θ, and no items of

earlier lists (so Wθ+1 = 0), assuming that an unlimited number of items of any size is available.

Obviously, the algorithm has no such bins if the input stops after list Lj , for some j < i. By
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definition, Wi ≥ Wi+1 for i = 1, . . . , θ. For i = 0, . . . , θ, let OPTi denote the cost of an optimal

solution for the input that consists of the items of lists L1, . . . , Li (thus OPT0 = 0), and denote this

input by Li. We have OPTi = Θ(N), as OPTi ≥ αi ·N · si (because this is the total size of items

of list i) and OPTi ≤ i ·N (as this is an upper bound on the number of input items in Li). Let Oi
be an upper bound on OPTi

N for 1 ≤ i ≤ θ and let O0 = 0 (these values are constants depending on

the input parameters).

Theorem 3 The asymptotic competitive ratio of any online (deterministic or randomized) algo-

rithm the bin packing problem Π is at least∑θ
i=1 αi · wi∑θ

i=1(Oi −Oi−1) ·Wi

.

Proof. Consider a deterministic or randomized algorithm A for Π. Algorithm A will receive one of

the inputs Li (for some i ∈ {1, 2, . . . , θ}). Let Xi be the number of new bins (or expected number

of bins) that A opens (uses for the first time) while packing the items of list Li. Assume that the

competitive ratio is R. Let f be a monotonically non-decreasing function where f(n) = o(n) such

that for any input I, A(I) ≤ R · OPT (I) + f(OPT (I)). We have A(Li) ≤ R · OPTi + f(OPTi).

Note that A(Li) =
∑i

j=1Xj . For any set of θ parameters γi ≥ 0 for i = 1, . . . , θ (constants that

are independent of N), we multiply the constraint of index i and take the sum of the resulting

inequalities to find
∑θ

i=1 γiA(Li) ≤
∑θ

i=1 γi(R · OPTi + f(OPTi)). Letting βi =
∑θ

j=i γi we find∑θ
i=1 γiA(Li) =

∑θ
i=1 γi

∑i
j=1Xj =

∑θ
j=1Xj

∑θ
i=j γi =

∑θ
j=1 βj · Xj . Thus,

∑θ
j=1 βj · Xj ≤

R
∑θ

i=1 γi ·OPTi +
∑θ

i=1 γif(OPTi).

As the weight of an item of list Li is wi, the total weight of all items, denoted by W , satisfies

W =
∑θ

i=1wi · αi ·N . By definition, any bin that is opened starting the time when the first item

of list Li arrived has total weight no larger than Wi. The total weight of all items is equal to

the total weight of bins used by the algorithm, which is no larger than
∑θ

i=1Wi · Xi, as Xi bins

are opened by the algorithm when items of Li arrive (these bins may be used also for packing

items of later lists). Letting γi = Wi −Wi+1 for i = 1, . . . , θ, we get βi =
∑θ

j=i γi = Wi. We find

N
∑θ

i=1wi ·αi =W ≤
∑θ

i=1 βi ·Xi. This gives N
∑θ

i=1wi ·αi ≤ R
∑θ

i=1 γi ·OPTi+
∑θ

i=1 γif(OPTi).

Since OPTi = Θ(N), we divide by N and neglect the lower order term to get

θ∑
i=1

wi · αi ≤ R

θ∑
i=1

γi ·
OPTi
N

≤ R

θ∑
i=1

(Wi −Wi+1) ·Oi = R

θ∑
i=1

Wi · (Oi −Oi−1) .

This proves the theorem.

We start with proving the current best known lower bound for standard bin packing using

Theorem 3. Given θ ≥ 4 and 0 < δ < 1
74θ

, define sizes as follows. For i = 2, . . . , θ − 2, si =
1+δ

7θ−i−1 ,

sθ−1 = 1+δ
3 , sθ =

1+δ
2 , and s1 = 1

6·7θ−3 − δ. We also let αi = 1, i.e., there are N items in each list.

The value δ was chosen such that s1 >
1

6·7θ−3+1
. The total size of i items of different lists L1, . . . , Li,

for 1 ≤ i ≤ θ− 2 is at most 1
6·7θ−i−2 − 5δ

6 , as
∑i

j=2
1

7θ−j−1 = 7i−1−1
6·7θ−3 , and s1 +

∑i
j=2 si ≤

1
6·7θ−3 − δ+

(1+ δ)7
i−1−1
6·7θ−3 ≤ 1

6·7θ−i−2 + δ7θ−3−1−6·7θ−3

6·7θ−3 < 1
6·7θ−i−2 − 5δ

6 , as i ≤ θ− 2. The total size of θ− 1 items
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of different lists L1, . . . , Lθ−1 is at most 1−δ
2 as

∑θ−1
j=1 sj =

∑θ−2
j=1 sj +

1+δ
3 < 1

6 −
5δ
6 + 1

3 +
δ
3 = 1

2 −
δ
2 ,

and by the last calculation, the total size of θ items of different lists L1, . . . , Lθ is at most 1. Thus,

we let O1 =
1

6·7θ−3 , Oi =
1

6·7θ−i−2 for 2 ≤ i ≤ θ − 2, Oθ−1 =
1
2 , and Oθ = 1.

We also let wi = 6 · 7i−2 for i = 2, . . . , θ − 2, w1 = 1, and wθ−1 = wθ = 12 · 7θ−4. The weights

of items are approximately proportional to their sizes, with the exception of the largest two sizes

whose weights are equal. We have defined wθ−1 = 2wθ−2, as (by sθ−1 = 1+δ
3 and sθ−2 = 1+δ

7 ),

2sθ−2 < sθ−1 < 3sθ−2.

Claim 4 We have Wi = (7θ−i−1−1) ·6 ·7i−2 = 6 ·7θ−3−6 ·7i−2 for i = 2, . . . , θ−2, W1 = 6 ·7θ−3,

Wθ−1 = 24 · 7θ−4, and Wθ = 12 · 7θ−4.

Proof. Note that for i = 2, . . . , θ−2, (7θ−i−1−1)si =
(1+δ)(7θ−i−1−1)

7θ−i−1 = (1+δ)(1− 1
7θ−i−1 ) ≤ 1+δ−

1
7θ−i−1 ≤ 1+ 1

74θ
− 1

7θ
< 1. Therefore, for these values of i,Wi ≥ (7θ−i−1−1)wi = 7θ−i−1−1) ·6 ·7i−2.

For i = 1, 6 · 7θ−3s1 < 1, and therefore W1 ≥ 6 · 7θ−3.

Since sθ >
1
2 and sθ−1 >

1
3 , at most one item of size sθ can be packed into a bin, and at most

two items of size at least sθ−1, thus Wθ = wθ and Wθ−1 = wθ−1+wθ (the equality holds since these

combinations of items can actually be packed).

Consider a bin B that contains items of lists Li, . . . , Lθ for some 1 ≤ i ≤ θ− 2. To calculate an

upper bound on the total weight, we will apply a process in which we will repeatedly replace some

items with other items such that the total size does not increase, keeping the bin valid, and such

that the total weight does not decrease. The process has two steps, and eventually all the items of

B will be replaced with items of size si. Since during the process of replacement the total weight

does not decrease, we will be able to calculate the maximum total weight of such items that are

packed into one bin by the weight of a maximum number of items of size si that can be packed

into a bin.

If B contains an item of size sθ−1 or an item of size sθ, replace every such item with two items

of size sθ−2 =
1+δ
7 . Since sθ > sθ−1 =

1+δ
3 > 2 · 1+δ

7 , the bin remains valid. As wθ = wθ−1 = 2wθ−2,

the total weight does not change. If i ≥ 2, for any item of size sj for j > i, sj = 7j−isi and

wj = 7j−iwi, thus replacing an item of size sj with 7j−i items of size si does not change the total

size of items, and it does not change their total weight. If i = 1, sj > 6·7j−2s1 while wj = 6·7j−2w1,

and an item of size sj can be replaced with 6 · 7j−2 items of size s1.

Now, we can thus assume that B only has items of size si, and moreover, due to size constraints,

it can contain at most ⌊ 1
si
⌋ items of size si. For i = 1, this value is at most 6·7θ−3. For 2 ≤ i ≤ θ−2,

this value is at most 7θ−i−1−1. Thus, for i = 1, the total weight that can be packed into a bin is no

larger than 6·7θ−3, and for 2 ≤ i ≤ θ−2 it is at most ⌊ 1
si
⌋·wi ≤ (7θ−i−1−1)·6·7i−2 = 6·7θ−3−6·7i−2.

Since these numbers of items can actually be packed, this implies the equality in the values of Wi.

Corollary 5 The parameters chosen here result in a lower bound of 248
161 on the asymptotic com-

petitive ratio for any algorithm for standard online bin packing.
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Proof. We have

θ∑
i=1

αi · wi =
θ∑
i=1

wi = 1 + 6

θ−2∑
i=2

7i−2 + 24 · 7θ−4 = 31 · 7θ−4 .

We use Wi −Wi+1 = 12 · 7θ−4 for i = θ − 2, θ − 1, θ, Wi −Wi+1 = 36 · 7i−2 for 2 ≤ i ≤ θ − 3,

and W1 −W2 = 6. Recall that Oi =
1

6·7θ−i−2 , Oθ−1 =
1
2 , and Oθ=1.

We use
∑θ

i=1(Oi −Oi−1) ·Wi =
∑θ

i=1(Wi −Wi+1) ·Oi and get,

θ∑
i=1

(Wi −Wi+1) ·Oi =
1

7θ−3
+

θ−3∑
i=2

6 · 72i−θ + (
1

6
+

1

2
+ 1)12 · 7θ−4 =

1

7θ−3
+

49θ−4 − 1

8 · 7θ−4
+ 20 · 7θ−4 .

By Theorem 3, we find a lower bound of

31 · 7θ−4

1
7θ−3 + 49θ−4−1

8·7θ−4 + 20 · 7θ−4
=

31
1

72θ−7 + 1
8 + 1

8·72θ−8 + 20
.

Letting θ tend to infinity, we get a lower bound of 31
20.125 = 248

161 ≈ 1.54037.

Our method of proving new lower bounds for BPCC is to use inputs where the numbers of

items in the lists are not necessarily equal. Consider the case k = 5. Let θ = 4, α1 =
1
2 , αi = 1 for

i = 2, 3, 4. Let 0 < δ < 1
2000 , s1 =

1
42 − δ > 0, s2 =

1+δ
7 , s3 =

1+δ
3 , and s4 =

1+δ
2 . In this case, there

are less items of size s1 (than the numbers of other items), since a bin that contains two items of

size s2 and two items of size s3 can only contain one additional item. We use O1 = 1
10 , O2 = 3

10

(as any five items of sizes at most s2 can be packed into a bin), O3 = 1
2 (as a set of five items,

consisting of two items of size s3, two items of size s2, and one item of size s1 can be packed into

a bin), and O4 = 1 (as a set of items consisting of one item of each size can be packed into a bin,

while only half of the bins will contain an item of size s1).

Consider the cases k = 7, 8, . . . , 11. Let θ = 4, the item sizes are the same as the case k = 5,

α1 =
k−6
6 (where α1 < 1), αi = 1 for i = 2, 3, 4. The motivation for the value α1 is that a bin that

has six items of size s2 can contain only k − 6 additional items. We use O1 = k−6
6k , O2 = 1

6 (as a

set of six items of size s2 and k − 6 items of size s1 can be packed into a bin), O3 = 1
2 (as a set

consisting of at most two items of each one of the three sizes s1, s2, s3 can be packed into a bin),

and O4 = 1. Let w2 = 1, w3 = w4 = 2 for all cases. For k = 5, let w1 = 2, for k = 7, 8, let w1 = 1,

for k = 9, let w1 =
1
2 , and for k = 10, 11, let w1 =

1
3 .

Lemma 6 1. For all cases W2 ≤ 6, W3 ≤ 4, and W4 ≤ 2.

2. For k = 5, W1 ≤ 10, for k = 7, 8, W1 ≤ k + 2, for k = 9, W1 ≤ 8, and for k = 10, 11,

W1 ≤ k
3 + 4.

Proof. We start with the first part. The claim regarding W4 holds since W4 = w4 must hold

(as every bin opened for the last list contains exactly one item). In the cases where there may be

items of L3 packed into a bin, any item of size s4 can be replaced with an item of size s3 without

increasing the total size or number of items, and without changing the total weight (as w3 = w4

9



in all cases). Thus, we assume that no such items are packed into the considered bins. Any bin

with items of L3 can contain at most two items and therefore W3 ≤ 2w3. Consider a bin with no

items of list L1. Let y2 be the number of items of size s2, and let y3 ≤ 2 be the number of items of

size s3. Their weight is y2 + 2y3, and their total size is above y2+2y3
7 (and no larger than 1). Thus,

W2 ≤ y2 + 2y3 ≤ 6.

Next, we bound W1 for all values of k considered here. For k = 5, since the weight of any item

is at most 2, and there are at most five items packed into each bin, W1 ≤ 10. Otherwise, consider a

packed bin, and let y2 and y3 ≤ 2 have the same meaning as before, while y1 is the number of items

of size s1. We have that y1 + y2 + y3 ≤ k must hold, and by the value of W2, y2 + 2y3 ≤ 6. The

total size of items is at least y1(
1
42 − δ)+ y2(

1+δ
7 )+ y3(

1+δ
3 ) > y1+6y2+14y3

42 − y1δ. Since y1δ < 1
42 , we

have y1+6y2+14y3 ≤ 42. For k = 7, 8, the weight of the bin is y1+y2+2y3. Since y1+y2+y3 ≤ k

and y3 ≤ 2, W1 ≤ k + 2.

For k = 9, the weight is y1/2+y2+2y3. Adding y1+6y2+14y3 ≤ 42 to 4(y1+y2+y3) ≤ 36, we

get 5y1+10y2+18y3 ≤ 78, or alternatively, y1/2+ y2+2y3 ≤ 7.8+0.2y3. Thus, if y3 ≤ 1, W1 ≤ 8.

If y3 = 2, then by substituting it into the inequalities we get y1 + 6y2 ≤ 14 and y1 + y2 ≤ 7, or

alternatively, y1 + 2y2 ≤ 14− 4y2 and y1 + 2y2 ≤ 7 + y2. If y2 ≥ 2, then the first inequality implies

y1/2 + y2 ≤ 3, and if y2 ≤ 1, then the second inequality implies y1/2 + y2 ≤ 4. In both cases,

y1/2 + y2 + 2y3 ≤ 8.

For k = 10, 11, the weight is y1/3 + y2 + 2y3, and we will show y1 + 3y2 + 6y3 ≤ k + 12.

As y3 ≤ 2, we consider three cases. If y3 = 0, then we find y2 ≤ 6 and y1 + y2 ≤ k. Thus,

y1 + 3y2 ≤ k+ 12. If y3 = 1, then we find y1 + 6y2 ≤ 28, y2 ≤ 4, and y1 + y2 ≤ k− 1. If y2 ≤ 3, we

get y1+3y2+6y3 ≤ (k−1)+2 ·3+6 < k+12. If y2 = 4, then by the first inequality we find y1 ≤ 4,

and y1 +3y2 +6y3 ≤ 4+ 3 · 4+ 6 = 22 ≤ k+12 as k ≥ 10. Finally, if y3 = 2, we get y1 +6y2 ≤ 14,

y2 ≤ 2, and y1+y2 ≤ k−2. If y2 ≤ 1, we get y1+3y2+6y3 ≤ (k−2)+2 ·1+6 ·2 = k+12. If y2 = 2,

then by the first inequality we find y1 ≤ 2, and y1 + 3y2 + 6y3 ≤ 2 + 3 · 2 + 6 · 2 = 20 ≤ k + 12.

We apply Theorem 3 to get the following.

Corollary 7 The following values are lower bounds on the competitive ratios.

• 3
2 = 1.5 for k = 5.

• k2+24k
k2+10k+24

for k = 7, 8. This value is equal to 217/143 ≈ 1.5174825 for k = 7 and to 32
21 ≈

1.5238095 for k = 8.

• 10.5
62/9 = 189

124 ≈ 1.5241935, for k = 9.

• k2+84k
k2+48k+36

for k = 10, 11. This value is equal to 235/154 ≈ 1.525974 for k = 10 and to
209
137 ≈ 1.525547 for k = 11.

Proof. For k = 5,
∑4

i=1 αi · wi = 6 and
∑4

i=1(Oi −Oi−1) ·Wi = 4.

For k = 7, 8,
∑4

i=1 αi · wi =
k+24
6 and

∑4
i=1(Oi −Oi−1) ·Wi =

7
3 + 6

k + k2−4k−12
6k .

For k = 9,
∑4

i=1 αi · wi = 5.25 and
∑4

i=1(Oi −Oi−1) ·Wi =
31
9 .

For k = 10, 11,
∑4

i=1 αi · wi =
k+84
18 and

∑4
i=1(Oi −Oi−1) ·Wi =

7
3 + 6

k + k2+6k−72
18k .
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Note that in the cases k = 6 and k = 12, our methods do not produce improved lower bounds,

and they give exactly the known lower bound.

Next, consider the cases 14 ≤ k ≤ 18. Let θ = 4, αi = 1 for i = 1, 2, 3, 4. Let 0 < δ < 1
2000 ,

s1 = 1
18 − 3δ > 0, s2 = 1+δ

9 , s3 = 1+δ
3 , and s4 = 1+δ

2 . We use O1 = 1
k , O2 = 1

6 (as a set of six

items of size s1 and six items of size s2 can be packed into a bin), O3 = 1
2 (as a set of six items,

consisting of two items of each size out of s1, s2, s3 can be packed into a bin), and O4 = 1 (as a set

of items consisting of one item of each size can be packed into a bin). Let w1 = 1, w2 = 2, and

w3 = w4 = 6.

Lemma 8 We have W4 ≤ 6, W3 ≤ 12, W2 ≤ 16, and W1 ≤ 18.

Proof. As in the proof of Lemma 6, W4 = w4 and W3 = w3 +w4. We will prove upper bounds on

W1 and W2 such that the number of packed items is not necessarily bounded by k. This may only

increase the bounds.

To prove the bound for W2, consider a bin with items of sizes above 1
9 . Replace any item of size

s4 or s3 with three items of size s2. The total size of items cannot increase while the total weight

is unchanged. The bin now contains at most 8 items of size s2, and therefore its weight is at most

16.

To prove the bound for W1, consider a bin B. Replace any item of size s4 or s3 with six items

of size s1, and any item of size s2 is replaced with two items of size s1. The total size of items

cannot increase while the total weight is unchanged. The bin now contains at most 18 items of size

s1, and therefore its weight is at most 18.

We apply Theorem 3 to get the following.

Corollary 9 The value 45k
29k+6 is a lower bound on the asymptotic competitive ratio for k, where

14 ≤ k ≤ 18.

Proof. We have
∑4

i=1 αi ·wi = 15 and
∑4

i=1(Oi −Oi−1) ·Wi = 18/k+16(1/6− 1/k)+12/3+6/2.

Note that in the cases k = 12, 13, our method does not produce improved lower bounds.

Finally, consider the cases k = 19, 20, . . . , 35. Let θ = 5, α1 =
k−18
18 , αi = 1 for i = 2, 3, 4, 5. Let

0 < δ < 1
10000 , s1 = 1

342 − δ, s2 = 1+δ
19 , s3 = 1+δ

9 , s4 = 1+δ
3 , and s5 = 1+δ

2 . In this case, there are

less items of size s1, since a bin that contains 18 items of size s2 can only contain k− 18 additional

items. We use O1 =
k−18
18k (any bin will contain k items), O2 =

1
18 (any bin will contain 18 items of

size s2 and k − 18 items of size s1), O3 = 1
6 (any bin will contain six items of size s3, six items of

size s2, and at most six items of size s1), O4 =
1
2 (any bin will contain two items for each one of the

sizes s2, s3, s4, and at most two items of size s1), and O5 = 1 (any bin will contain one item of each

of the sizes of s2, s3, s4, s5, and at most one item of size s1). Let w2 = 1, w3 = 2, and w4 = w5 = 6.

The value of w1 will differ for the different values of k, and we denote it by ρk, where 0 < ρk < 1.

Lemma 10 We have W2 ≤ 18, W3 ≤ 16, W4 ≤ 12, and W5 ≤ 6.

Proof. As in previous cases, W5 = w5 and W4 = 2 · w4. We will prove upper bounds on W2 and

W3 for bins where the number of packed items is not necessarily bounded by k. This may only
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increase the bounds. Given a bin with items of sizes in {s3, s4, s5}, replace each item of size s4 or

s5 with three items of size s3. As a result, the total size does not increase, and the total weight

is unchanged. Since at most eight items of size s3 can be packed into a bin, W3 ≤ 16. Given a

bin with items of sizes in {s2, s3, s4, s5}, replace each item of size s4 or s5 with six items of size s2,

and each item of size s3 is replaced with two items of size s2. As a result, the total size does not

increase, and the total weight is unchanged. Since at most 18 items of size s3 can be packed into a

bin, W3 ≤ 18.

Consider a bin that possibly contains items of all lists, where the total weight of items of lists

L2, L3, L4, L5 is exactly 18. Let λk denote the maximum number of items of size s1 that the bin

can contain under this condition. Similarly, consider a bin where the total weight of items of lists

L2, L3, L4, L5 is exactly 17. Let ψk denote the maximum number of items of size s1 that the bin can

contain under this condition. Let ρk =
1

ψk−λk (which is well defined, as we will show that ψk > λk
for all k). Recall that for any k, the value w1 is defined by ρk. We define an additional parameter,

ϕk = 18 + ρk · λk for all values of k considered here. These values are displayed in Table 2.

Lemma 11 Let k ∈ {19, 20, . . . , 35}. The values λk and ψk are as in Table 2, and W1 ≤ ϕk.

Proof. We start with proving that the values of λk and ψk given in Table 2 correspond to our

definition of these values. For a given bin, let y2, y3, and y4, be the numbers of items of sizes s2,

s3, and s4 packed into the bin (we replace items of size s5, if such items exist, with items of size

s4, as they are smaller and have the same weight).

If the total weight of the items of size at least s2 is 18, then y2 + 2y3 + 6y4 = 18, and the total

size of items is (1 + δ)(y219 + y3
9 + y4

3 ) =
1+δ
18 (y2 + 2y3 + 6y4)− 1+δ

342 y2 = 1 + δ− 1+δ
342 y2. The bin can

still contain items of size s1 of total size no larger than 1+δ
342 y2 − δ. Let y1 be the number of such

items. We will show y1 = min{k − y2 − y3 − y4, y2} by proving that the total size of y2 + 1 items

of size s1 exceeds 1+δ
342 y2 − δ, while the total size of y2 such items does not exceed this value (and

obviously the bin cannot contain more than k − y2 − y3 − y4 additional items).

We find that y1 ≤ y2, as the total size of y2 + 1 items of size s1 is (y2 + 1)( 1
342 − δ), and

(y2 + 1)( 1
342 − δ) > 1+δ

342 y2 − δ is equivalent to 343δ · y2 < 1, which holds as y2 ≤ 18 and δ < 1
10000 .

On the other hand, y2(
1

342 − δ) ≤ 1+δ
342 y2− δ is equivalent to 343y2

342 ≥ 1 (which holds for y2 ≥ 1), and

therefore if y2 ≥ 1, then y2 items of size s1 can be packed into the bin (in terms of total size).

For any valid triple (y2, y3, y4) of numbers of items, the maximum value of y1 is therefore

min{k − y2 − y3 − y4, y2} items. To find the possible triples (y2, y3, y4), we take into account that

y4 ≤ 2 (as no bin can contain more than two items of sizes above 1
3) and y3 + 3y4 ≤ 8 (as the

total weight of these items is at most W3 ≤ 16, and it is equal to w3 · y3 + w4 · y4 = 2y3 + 6y4).

These patterns are: (2, 2, 2), (4, 1, 2), (6, 0, 2), (2, 5, 1), (4, 4, 1), (6, 3, 1), (8, 2, 1), (10, 1, 1), (12, 0, 1),

(2, 8, 0), (4, 7, 0), (6, 6, 0), (8, 5, 0), (10, 4, 0), (12, 3, 0), (14, 2, 0), (16, 1, 0), and (18, 0, 0). Thus,

λk = max{min{2, k − 6},min{4, k − 7},min{6, k − 8},min{8, k − 11},

min{10, k − 12},min{12, k − 13},min{14, k − 16},min{16, k − 17},min{18, k − 18}} .

The last bound was computed by considering each pattern separately, and computing min{k−y2−
y3−y4, y2}, then removing any entry that is dominated by another entry, for example, min{2, k−8}
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that results from the fourth triple is dominated by min{2, k−6} resulting from the first triple. The

values in the table are with accordance to this calculation.

If the total weight of the items of sizes above 1
19 is 17, then y2 + 2y3 + 6y4 = 17, and the total

size of items is (1 + δ)( y219 +
y3
9 + y4

3 ) =
1+δ
18 (y2 +2y3 +6y4)− 1+δ

342 y2 =
17(1+δ)

18 − 1+δ
342 y2. The bin can

contain items of size s1 of total size no larger than 1+δ
18 + 1+δ

342 y2 − δ. Let y1 be this number. In this

case we show that y1 = min{y2+19, k−y2−y3−y4}. To show y1 ≤ y2+19, we prove that the total

size of y2+20 items of size s1 exceeds 1+δ
18 + 1+δ

342 y2−δ. Indeed, (y2+20)( 1
342 −δ) > 1+δ

342 y2−δ+ 1+δ
18

is equivalent to 1
342 >

343y2δ
342 + 343δ

18 , which holds as y2 ≤ 18 and δ < 1
10000 . On the other hand, it is

possible to pack y2+19 items of size s1 (in terms of total size) as the empty space is 1+δ
342 y2−δ+ 1+δ

18 ,

we saw that y2 items can be packed into a space of 1+δ
342 y2 − δ, and since s1 <

1
342 , 19 items of size

s1 can be packed into a space of 1+δ
18 . Thus, for any triple (y2, y3, y4), it is possible to pack

min{k − y2 − y3 − y4, y2 + 19} items. The possible triples are: (1, 2, 2), (3, 1, 2), (5, 0, 2), (1, 5, 1),

(3, 4, 1), (5, 3, 1), (7, 2, 1), (9, 1, 1), (11, 0, 1), (1, 8, 0), (3, 7, 0), (5, 6, 0), (7, 5, 0), (9, 4, 0), (11, 3, 0),

(13, 2, 0), (15, 1, 0), and (17, 0, 0). Thus,

ψk = max{min{20, k − 5},min{22, k − 6},min{24, k − 7},min{26, k − 10},min{28, k − 11},

min{30, k − 12},min{32, k − 15},min{34, k − 16},min{36, k − 17}} .

The calculation is similar to the one for λk, and the values for ψk in the table are deduced from

this calculation.

Consider a bin B, and let X denote the total weight of items that do not belong to list L1 that

are packed into B. We have X ≤ 18, as W2 ≤ 18.

If X = 18, then the total weight of items is at most X + ρk · y1 ≤ 18 + ρk · λk = ϕk. If X = 17,

then the total weight of items is at most 17+ρk ·ψk = 17+ρk ·(ψk−λk)+ρk ·λk ≤ 18+ρk ·λk = ϕk,

by the definitions of ρk and ϕk.

We claim that otherwise (if X ≤ 16), the total weight of items is no larger than X + ρk · k. For
k ≤ 32, (k − λk)ρk ≤ 2, and therefore X + k · ρk ≤ 16 + 2 + λkρk = ϕk. If k ≥ 33, and X ≤ 15,

since (k− λk)ρk ≤ 3, we also find X + k · ρk ≤ 15+ 3+ λkρk = ϕk. In the case X = 16, there must

be at least four items of lists L2, L3, L4, L5 packed into the bin, as the total weight of three items

is at most 14 (there can be at most two items of weight 6 as their sizes exceed 1
3). Thus, there are

at most k − 4 items whose weights are ρk. We have that (k − 4 − λk)ρk < 2 for k ∈ {33, 34, 35},
and X + (k − 4) · ρk ≤ 16 + 2 + λkρk = ψk in this case as well.

Corollary 12 The values stated in Table 1 are lower bounds on the competitive ratios for k =

19, 20, . . . , 35.

Proof. Recall that α1 = k−18
18 , and αi = 1 for i = 2, 3, 4, 5. Thus,

∑θ
i=1 αi · wi =

k−18
18 · ρk + w2 +

w3 + w4 + w5 =
k−18
18 · ρk + 15.

We have O1 − O0 = k−18
18k , O2 − O1 = 1

k , O3 − O2 = 1
9 , O4 − O3 = 1

3 , and O5 − O4 = 1
2 . Thus,∑θ

i=1(Oi −Oi−1)Wi =
k−18
18k · (18 + ρk · λk) + 18

k + 16
9 + 12

3 + 6
2 = 1− 18

k + ρk·λk
18 − ρk·λk

k + 18
k + 79

9 =
88
9 + ρk · λk( 1

18 − 1
k ).

Therefore, using Theorem 3 we find a lower bound of 15+(k−18)ρk/18
88/9+ρkλk(1/18−1/k) on the asymptotic

competitive ratio for k = 19, 20, . . . , 35.
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value of k λk ψk ρk (k − λk)ρk ϕk − 18 = ρkλk

19 8 14 1/6 11/6 4/3

20 8 15 1/7 12/7 8/7

21 9 16 1/7 12/7 9/7

22 10 17 1/7 12/7 10/7

23 10 18 1/8 13/8 5/4

24 11 19 1/8 13/8 11/8

25 12 20 1/8 13/8 3/2

26 12 20 1/8 14/8 3/2

27 12 21 1/9 15/9 4/3

28 12 22 1/10 8/5 6/5

29 13 22 1/9 16/9 13/9

30 14 23 1/9 16/9 14/9

31 14 24 1/10 17/10 7/5

32 15 24 1/9 17/9 5/3

33 16 24 1/8 17/8 2

34 16 24 1/8 18/8 2

35 17 25 1/8 18/8 17/8

Table 2: Auxiliary variables for the analysis of lower bounds for k = 19, 20, . . . , 35.

The construction that was used for k = 19, . . . , 35 can be used for k = 36, but the resulting

lower bound is lower than the known lower bound [11]. It is possible, however, to prove improved

bounds for larger values of k. Consider, for example, the cases k = 43, 44, 45. Let s1 = 1
1806 − δ,

s2 = 1+δ
43 , s3 = 1+δ

7 , s4 = 1+δ
3 , and s5 = 1+δ

2 ; α1 = k−42
42 , and αi = 1 for i = 2, 3, 4, 5. It can

be verified that using the weights w1 = ρk, w2 = 1, w3 = 6, and w4 = w5 = 12, where ρ43 = 1
14 ,

ρ44 = 1
15 , and ρ45 = 1

16 , gives W1 = 42 + ρkλk, W2 = 42, W3 = 36, W4 = 24, and W5 = 12. This

gives lower bound of approximately 1.53903, 1.53906, and 1.53909 on the asymptotic competitive

ratios for k = 43, 44, 45, respectively. This slightly improves the previously known lower bound of

approximately 1.53900 [26] mentioned in [11].

3 Algorithms

In this section we define and analyze algorithms for BPCC, and analyze FF as well.

3.1 A 2-competitive algorithm for all k ≥ 3

In the case k = 2, an algorithm that packs each item into a different bin is 2-competitive in the

absolute sense, as if it uses x bins, no packing can use less than ⌈x2 ⌉ bins. We later show that FF

has a smaller absolute competitive ratio, and focus on the case k ≥ 3 in this section. Kotov et al.

[1] designed an algorithm that is 2-competitive in the asymptotic sense. We present a simplified
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version of that algorithm and prove that it is 2-competitive in the absolute sense. Our algorithm

Thin and Fat (TF) has three kinds of bins.

1. Paired bins. Those are bins partitioned into pairs such that the total size of items for each

pair is strictly above 1, and the total number of items packed into the two bins is at least k.

Those bins will not be used for packing further items.

2. Fat bins. Those are bins (which are not paired) containing exactly k − 1 items.

3. Thin bins. Those are non-empty bins (which are not paired) containing at most k−2 items.

After we define TF, we will prove that if it has at least one fat bin, then it has at most one thin

bin. The algorithm acts as follows. Initially all three sets of bins are empty. Let i ≥ 1 be a new

item. The following steps are processed for i until it is packed.

1. If there is a fat bin B such that s(B) + si > 1, pack i into a new bin, match B and the new

bin, these bins become paired.

2. If there are no thin bins, pack i into a new bin.

3. If there exists a thin bin B such that s(B) + si ≤ 1, then pack i into B. If B becomes fat

and there is a thin bin B′ ̸= B, match B and B′, these bins become paired.

4. If there are no fat bins, pack i into a new bin.

5. Pack i into a fat bin B, match B with a thin bin B′, these bins become paired.

Lemma 13 1. In all cases, the actions described above can be performed, and all items are

packed.

2. For any two thin bins, the total size of items packed into them is above 1.

3. Every two bins that are matched have a sufficient total size of items (a total size above 1) and

a sufficient number of items (at least k items).

4. If there is at least one fat bin, then there is at most one thin bin.

Proof. We start with proving part 1, i.e., we show that any item i can be packed into the bin that

it is assigned to. In steps 1,2, and 4, the item is packed into a new bin. Step 3 is applied provided

that B exists. Such a bin has at most k − 2 items, and has sufficient space. Assume that step 5

is reached. Since i is not packed in step 1, every fat bin can receive i since it has k − 1 items and

sufficient space. Since step 4 was not applied, a fat bin must exist. Since in step 5 the packing is

unconditional, all items will be packed. The only other action that is performed unconditionally is

matching bins in step 5. The thin bin must exist as i was not packed in step 2.

Next we consider part 2. Note that a thin bin can become fat, but a fat bin cannot become thin.

Thus, a new thin bin is created only by packing an item into a new bin. The bin remains thin as
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long as it is not paired, and it has at most k − 2 items. Obviously, the total size packed into a bin

cannot decrease over time. Thus, to prove this part, it is sufficient to prove that a pair consisting

of a thin bin and another thin bin that was just created (and was not paired immediately) have a

total size of items above 1. A new bin B′ that it not paired immediately can be created in steps 2

and 4. In step 2 it becomes the only thin bin. In step 4, it is created since the item was not packed

in step 3, thus for any existing thin bin B, s(B) + s(B′) = s(B) + si > 1.

Consider part 3. Bins are matched only in steps 1,3,5. In step 1, the two bins will have k items

and a total size of items above 1. In step 3, the pair is created only if a thin bin B becomes fat,

i.e., B now has k−1 items and B′ has at least one item. Moreover, since B and B′ were thin, their

total size of items is above 1. In step 5, since step 3 was not applied, we have s(B′) + si > 1, and

the total number of items is at least k + 1.

To verify the last property (part 4), consider the cases where i is packed into a bin that is not

paired immediately. In step 2, there will be a unique thin bin. In step 3, if B becomes fat and it is

not paired, then no thin bins remain. Otherwise, there is no change in the numbers of fat and thin

bins. In step 4, there will be no fat bins after i is packed, as a bin with a single item is thin.

Theorem 14 For any k ≥ 3 and for any input L, TF (L) ≤ 2 ·OPT (L).

Proof. Let p, f , and t be the numbers of paired bins, fat bins, and thin bins when the algorithm

terminates. Let S be the total size of items, and n their number.

Assume first that f = 0. In this case TF (L) = p + t. The total size of items of every two

paired bins is above 1, and moreover, the total size of items of every pair of thin bins is above 1.

If p = 0 and t ≤ 1, the solution is optimal (containing no bins if the input is empty and one bin

otherwise). If p = 0 and t ≥ 2, OPT (L) ≥ S > t
2 , while TF (L) = t. We are left with the case

p > 0 (and therefore p ≥ 2). If t ≥ 2, OPT (L) ≥ S > p
2 +

t
2 , while TF (L) = p+ t. Otherwise, t ≤ 1

and TF (L) ≤ p+ 1 hold, while OPT (L) ≥ S > p
2 , and by integrality of OPT (L), OPT (L) ≥ p+1

2 .

Thus, in both cases, p+ f + t = p+ t ≤ 2OPT (L).

Otherwise, f ≥ 1. In this case t ≤ 1. We have n ≥ p
2 · k + (k − 1)f + t (as every two paired

bins have at least k items, a fat bin has k − 1 items, and a thin bin has at least one item). If

t = 0, then we get n ≥ k
2 (p + f) = k

2 · TF (L), since k − 1 > k
2 . Otherwise, t = 1. We have

n ≥ p
2 · k + (k − 1)f + 1 = k

2 (p + f + 1) + (k2 − 1)f − k
2 + 1 = k

2 (p + f + 1) + (k2 − 1)(f − 1) ≥
k
2 (p+ f + 1) = k

2 · TF (L). Since OPT (L) ≥ n
k , we get TF (L) ≤ 2OPT (L).

3.2 Analysis of the absolute competitive ratio of FF for several cases

In our analysis, any bin created by an algorithm (FF or another algorithm) that has j items for

j ≤ k is called a j-bin, and a bin whose number of items is in [j, k− 1] for some 1 ≤ j < k is called

a j+-bin.

In this section analyze FF. We focus on cases of small k, for which FF has a small absolute

competitive ratio. In particular, for k = 2 it has the best possible absolute competitive ratio, and

for k = 3, its absolute competitive ratio is strictly below 2.

We will use the next two claims.
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Claim 15 Every bin of OPT has at most one item of a 1-bin of FF.

Proof. Assume by contradiction that this is not the case, and items i, j, such that i < j, of one

bin of OPT are packed into 1-bins by FF. When j arrives, since si + sj ≤ 1, FF does not open a

new bin for j, as there is at least one existing bin where it can be packed, a contradiction.

Claim 16 Let 1 ≤ j ≤ k−1. Every j-bin except for at most one bin has level above j
j+1 . Moreover,

every j+-bin except for at most one bin has level above j
j+1 .

Proof. Assume that there exists a j-bin (or j+-bin) whose level is at most j
j+1 . All further j+-bins

(that appear later in the ordering of FF) only have items of sizes above 1
j+1 , and each such bin has

at least j items, so their levels are above j
j+1 .

We start with the simple case k = 2. A simple upper bound of 3
2 is achieved by a greedy

matching algorithm, which is a generalization of FF. It is folklore that this algorithm matches

at least half of the edges that an optimal solution can match and therefore it translates into a
3
2 -competitive algorithm for bin packing (where an edge between two items exists if they can be

packed together into a bin). Moreover, for this case the upper bound 2.7 − 2.4/k is equal to 1.5.

For completeness, and as an introductory case for analysis using weights, we show how FF can be

analyzed using weights for the case k = 2.

The usage of weights is slightly different from their usage for proving lower bounds. We usually

use a weight function w, that is applied on sizes of items. Thus, we define w(a) for a ∈ (0, 1],

where the variable a denotes the size of an item. For a set of items A and a set of bins A, let w(A)

and w(A) denote the total weight of all items of A or A. Furthermore, let W = w(I) be the total

weight of all items of the input I. In this kind of analysis, the weights of bins of the algorithm and

of OPT are compared, using the property that for a fixed input, the total weight of items is equal

for all algorithms. The weights will not necessarily be based on sizes, but they may be based on

the packing of an algorithm or of OPT , and in particular, for k = 2, w will be a function of the

items rather than of their sizes. For k = 2, an item of an i-bin of FF is assigned a weight of 1
i (for

i = 1, 2). Obviously, any bin of FF has weight 1, and we analyze the total weight of bins of OPT .

A bin of OPT cannot have two items of 1-bins, and therefore its weight cannot exceed 3
2 . We find

that for any input L, the total weight satisfies FF (L) =W ≤ 1.5 ·OPT (L).
We continue with a simple proof that the upper bound 2.7− 2.4/k on the competitive ratio of

FF holds in the absolute sense for any k ≥ 2, that is based on the proof of [17].

Proposition 17 The absolute competitive ratio of FF is at most 2.7− 2.4/k.

Proof. Let L be a non-empty input, and partition it into two subsequences, L1 that consists of

all items that are packed into bins eventually having k items, and L2 = L \ L1. By the definition

of FF, running it on L1 results in the same bins for these items as in the run on L, and the same

is true for L2, even if FF is applied without taking the cardinality constraint into account. Let

M1 = FF (L1) and M2 = FF (L2) be the resulting numbers of bins, where FF (L) = M1 +M2.

We will use OPT (L) ≥ |L|
k and |L| − |L2| = |L1| = kM1. Since the output for L2 is valid without

cardinality constraints, we have FF (L2) ≤ 1.7OPT (L2).
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First, consider the case M2 ≤ OPT (L). Since every bin of FF has at least one item, we have

|L2| ≥ M2, and therefore M1 +M2 = M1 +M2/k + (1 − 1/k)M2 ≤ |L1|
k + |L2|

k + (1 − 1/k)M2 =
|L|
k + (1− 1/k)M2 ≤ (2− 1/k)OPT (L) ≤ (2.7− 2.4/k)OPT (L), where the last inequality holds for

any k ≥ 2.

Otherwise, as the number of 1-bins is at most OPT (L), and the remaining bins for L2 have at

least two items, thus, |L2| ≥ M2 + (M2 − OPT (L)), and we get M1 +M2 ≤ M1 + 2M2/k + (k −
2)M2/k ≤ |L1|

k +|L2|/k+OPT (L)/k+(k−2)M2/k = |L|/k+OPT (L)/k+(k−2)/k ·1.7OPT (L2) ≤
OPT (L) +OPT (L)/k + (1.7k − 3.4)OPT (L)/k = (2.7− 2.4/k)OPT (L).

3.2.1 The case k = 3

In this section we show that the absolute competitive ratio of FF for k = 3 is exactly 11
6 < 2 (note

that the asymptotic competitive ratio of FF is also equal to this value).

Theorem 18 The absolute competitive ratio of FF for k = 3 is exactly 11
6 .

Proof. The lower bound follows from Proposition 2. Next, we prove the upper bound. Let I be

an input sequence of items. Let OPT = OPT (I).

Restricting our attention to the 2-bins and 1-bins created by FF, we can see that these bins

would have been created by running FF only on the subsequence of the items packed into them,

even if the cardinality constraint is not taken into account. Thus, as in [4], it can be assumed that

there does not exist a 2-bin generated by FF that contains two items that are packed together in

an optimal solution. The last assumption is valid as merging two items that are packed into the

same 2-bin of FF into one item, where the resulting merged item arrives instead of the first item of

the two, would result in the same packing with the exception that the 2-bin of FF becomes a 1-bin

of FF (the property that the output of FF is almost unchanged is valid both for the execution of

FF on the original input and for the execution of FF on the items of 2-bins and 1-bins). Thus,

by merging every such pair of items into one item, we get an input of the required form (and we

assume that I already satisfies this property).

Moreover, if the number of 1-bins is OPT (I), then no bin of the optimal solution contains two

items that are packed into 2-bins of FF (as in [4]). For completeness, we prove the last property.

Assume by contradiction that a bin B∗ of OPT (for the input I) has two items, denoted by i2 and

i3, of 2-bins of FF. These items are packed into distinct bins of FF, as we assume that there are no

two items of one 2-bin of FF are packed into the same bin of OPT . Let their 2-bins packed by FF

be B and B′, such that B appears before B′ in the ordering of FF. Without loss of generality, we

assume that FF packed i2 into B and it packed i3 into B′. Let i1 be the other item of B, and let

B̃∗ be its bin in the packing of OPT (where B̃∗ ̸= B∗). Since no bin of OPT has more than one

item of a 1-bin of FF, while the number of 1-bins is OPT (I), every bin of OPT has such an item

that FF packs in a 1-bin. Let i4 be such an item of B∗, and let i5 be such an item of B̃∗.

We find si3 + si1 + si2 > 1 and si4 + si5 > 1, as i3 was not packed into B, and i4, i5 are

packed into 1-bins (the item out of i4 and i5 that arrives later was not packed with the other

item out of these two items). On the other hand, si3 + si2 + si4 ≤ 1 and si1 + si5 ≤ 1. We have

2 < si1 + si2 + si3 + si4 + si5 ≤ 2, a contradiction.
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We split the analysis into cases.

Case 1. The number of 1-bins is OPT (I). Consider the items of these bins. An optimal solution

has at most one such item packed into each bin, and thus every bin of OPT contains such an item.

Additionally it can contain at most one item packed into a 2-bin by FF. We define a weight function

based on the packing of FF. An item packed into an i-bin has weight 1
i . We find that any bin of

the optimal solution has weight of at most 1 + 1
2 + 1

3 = 11
6 .

Case 2. The number of 1-bins is at most OPT (I) − 1. In this case we define weights that are

based on item sizes. An item of size above 1
2 (called a big item) has weight 2

3 , an item of size in

(14 ,
1
2 ] (called a medium item) has weight 1

2 , and an item of size in (0, 14 ] (called a small item) has

weight 1
3 . Note that there is at most one item packed into a 1-bin whose size does not exceed 1

2

(and moreover, there is at most one bin whose level does not exceed 1
2). If such an item exists,

then we call it the special item. The special item can be small or medium.

LetW denote the total weight. A bin of OPT has weight at most 3
2 if it has no big item. If it has

a big item, it can have at most one medium item, and therefore its weight is at most 2
3 +

1
2 +

1
3 = 3

2 .

Thus, W ≤ 3
2 ·OPT (I).

Given the output of FF, let X1, X2, and X3 denote the numbers of 1-bins, 2-bins, and 3+-bins,

respectively (so FF (I) = X1 +X2 +X3). Recall that in this case we assume X1 ≤ OPT (I)− 1.

Claim 19 If there is a special item and it is small, then any 2-bin of FF has a level above 3
4 . There

is at most of 2-bin of FF that has at least one small item.

Proof. Assume by contradiction that there exist two bins of FF, none of which is a 3-bin, where

each of them has a level no larger than 3
4 at termination, and each of them has at least one small

item. Let such two bins be denoted by B1 and B2, where B2 has a larger index in the ordering of

FF. Then, when a small item of B2 arrives, FF can pack it into B1, contradicting the action of FF.

This proves that at most one 2-bin can have both a level of at most 3
4 and at least one small

item. If there is a special item and it is small, its bin satisfies the condition that its level is at most
3
4 and it has a small item, and therefore any 2-bin has either a level above 3

4 or no small items (or

both).

Claim 20 We have W ≥ 2
3X1 +X2 +X3 − 1

3 .

Proof. We analyze the weights of bins of FF. Any item has a weight of at least 1
3 , thus any 3+-bin

has a total weight no smaller than 1.

Every 1-bin has a weight of 2
3 , except for that of the special item, if it exists. If a 2-bin has a

big item (and its second item is medium or small), or it has two medium items, its total weight is

at least 1. Otherwise, it has at least one small item and its second item is not big, so its level is

no larger than 3
4 . By the previous claim, there is at most one such 2-bin. If such a 2-bin exists, its

total weight is at least 2
3 (since the weight of any item is at least 1

3), and if its level is above 1
2 , it

cannot have two small items, and its total weight is at least 5
6 .

If there is no special item, we find that the total weight of 1-bins and 2-bin is at least 2
3X1+X2−1

3 ,

and at most one 2-bin has a weight of at least 2
3 , and every other 1-bin or 2-bin has a weight of at
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least 1. Similarly, if there is a special item, and every 2-bin has a weight of at least 1, we are done

since the weight of the special item is at least 1
3 . Assume that there exists a 2-bin of weight below

1 and there exists a special item. The special item must be medium since if it is small, there is no

2-bin whose level does not exceed 3
4 , and therefore there is no 2-bin whose weight is below 1.

If the special item is medium, its weight is 1
2 . For the 2-bin whose weight is below 1, its level

is above 1
2 (as there cannot be two bins of levels no larger than 1), and the total weight of 1-bins

and 2-bin is at least 2
3X1 − 1

6 +X2 − 1
6 .

Therefore, in this case we get W ≥ FF (I)− 1
3 −

X1
3 ≥ FF (I)− 1

3 −
OPT (I)−1

3 = FF (I)− OPT (I)
3 .

Together with W ≥ 3
2OPT (I) we find that FF (I) ≤ 11

6 OPT (I).

3.2.2 The case k = 4

We prove that FF is 2-competitive in the absolute sense for k = 4.

Theorem 21 The absolute competitive ratio of FF for k = 4 is exactly 2, which is the best possible.

The lower bound follows from Proposition 1. We define weights as follows. A big item, i.e. any

item whose size exceeds 1
2 has weight 1. A medium item, i.e., an item of size in (14 ,

1
2 ] has weight

1
2 . A small item, i.e., an item of size at most 1

4 has weight 1
4 . Recall that the total weight of the

items is denoted by W .

Lemma 22 The weight of any bin of OPT is at most 2.

Proof. Consider a bin B of OPT . Bin B can contain at most one big item. If B does not contain

a big item, then the weight of any item is at most 1
2 , and since |B| ≤ 4, the total weight is at most

2. Suppose now that B contains a big item. Out of the remaining (at most) three items, at most

one item can be medium, and the total weight is at most 1+ 1
2 +2 · 14 = 2, and the claim follows.

Claim 23 Every bin that has a big item has total weight of at least 1. Every 4-bin has total weight

of at least 1. Every 2+-bin that does not have any small items has total weight of at least 1. Every

bin that has items of total size above 3
4 has total weight of at least 1.

Proof. The first property holds as the weight of a big item is 1. The second property holds as the

weight of any item is at least 1
4 . The third claim holds as two medium items have total weight of

1. Finally, we prove the last claim. Given the previous claims, it is sufficient to consider a 2-bin

without a big item. If the bin has two medium items, then their total size is 1. There are no other

cases as the total size of a small item and another item that is not big is at most 1
4 + 1

2 = 3
4 . If a

3-bin only has small items, then the total size of its items is at most 3
4 . A 3-bin that has at most

two small items has an item of weight at least 1
2 , so its total weight is at least 1.

Claim 24 Given an input L, the total weight of the input items is at least FF (L)− 3
4 .

Proof. We calculate the total weight based on the packing of FF. Every 1-bin, except for possibly

one such bin, has a big item, thus there is at most one 1-bin whose weight is below 1 (and this
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weight is at least 1
4). If all 2+-bins have weights of at least 1, then we are done as all 2+-bins, all

4-bins, and all 1-bins except for possibly one bin (that has weight of at least 1
4) have total weights

of at least 1.

Otherwise, there must be a 2+-bin of level of at most 3
4 , that does not have a big item, and

its weight is strictly below 1. Consider the first such bin according to the ordering of FF, and call

it B. This bin must have a small item, as the weight of any item that is not small is at least 1
2 ,

and the total weight of at least two such items is at least 1. All items that are packed into bins

that appear later in the ordering of FF can only be medium or big. Thus, all further 2+-bins have

total weights of at least 1, and if there is a 1-bin that does not have a big item, then it must have

a medium item. Moreover, if B has level of at most 1
2 , then all 1-bins have big items. In this last

case, all bins except for B have weights of at least 1, while B has weight of at least 1
2 . Otherwise, if

the level of B is in (12 ,
3
4 ], then we have the following cases. If B is a 2-bin, then it has one medium

item and one small item, and its weight is 3
4 . If B is a 3-bin, then it has weight of 3

4 as well (as its

weight is below 1, and a 3-bin has weight of at least 3
4). Thus, all bins except for B and possibly

one 1-bin with a medium item have total weights of at least 1, while these two bins have weights

of at least 3
4 and 1

2 , respectively, and the claim follows.

We have W ≤ 2 ·OPT (L) and W ≥ FF (L)− 3
4 . Thus, FF (L)−2 ·OPT (L) ≤ 3

4 , which implies

(by integrality) FF (L) ≤ 2 ·OPT (L).

3.3 A simple algorithm with an absolute competitive ratio 2 for k = 5

In the cases k ≥ 5, FF has a strictly higher absolute competitive ratio (than 2), as can be seen

from the following simple example. Consider an input consisting of 2k items of size 1
2 + ε, 2k items

of size 1
3 + ε, and 2k(k− 2) items of size ε, where 0 < ε < 1/(6k). An optimal solution has 2k bins,

each containing one item of size 1
2 + ε, one item of size 1

3 + ε, and k− 2 items of size ε. If the items

are given sorted by non-decreasing size, FF creates 2(k − 2) bins, each packed with k items of size

ε, k bins, each packed with two items of size 1
3 + ε, and 2k bins, each packed with one item of size

1
2 + ε. The absolute competitive ratio is 5k−4

2k = 2.5− 2
k > 2 for k ≥ 5.

For k = 5, we present a different algorithm that is based on an adaptation of FF, and its

absolute competitive ratio is 2. For this algorithm, as for FF, the ordering (or indexing) of bins

is by the time of opening, that is, a bin appears earlier in the ordering if it received its first item

earlier. The algorithm ALG acts as follows. A new item i is assigned into a minimum indexed bin

B that satisfies the following conditions. The first condition that its level is at most 1 − si, the

second condition is that its current number of items is at most 4, and the third condition is that

if B currently contains four items, then after assigning i, its level will be at least 1
2 . If there is no

such bin, then the item is packed into an empty bin.

A regular bin is a bin of ALG that is a 2-bin or a 3-bin. We treat 1-bins, 4-bins, and 5-bins

separately. A large 1-bin is a 1-bin containing an item of size above 1
2 .

Lemma 25 • The level of any 5-bin is at least 1
2 .

• The level of any regular bin, except for at most one bin is at least 2
3 .
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• For a pair of bins B, B′, the total size of items packed into B and B′ is above 1 in the

following two cases.

1. None of the bins contains more than three items.

2. One of the bins is a large 1-bin, and the other contains four items.

Proof. By the third condition, ALG never creates a 5-bin whose level is below 1
2 . For regular bins,

ALG simply applies FF (without cardinality constraints) on the subsequence of items of these bins,

and thus the claim follows from Claim 16.

Assume without loss of generality that B′ appears after B in the ordering of ALG. If B contains

at most three items, then when the first item of B′ is packed, the third condition is irrelevant, the

second condition holds, and thus the first condition does not hold, and the total size of items packed

into the two bins exceeds 1.

We are left with the case that B contains four items when the unique item i of B′ arrives, and

si >
1
2 (the case that B′ has four items but B has one item was already considered). Thus, if i is

packed into B, the third condition must hold, and therefore the first condition does not hold, and

the total size of items packed into the two bins exceeds 1.

Consider an input L. For the output of ALG applied on L, let f denote the number of 4-bins,

let d1 be the number of 1-bins whose items have sizes above 1
2 (such bins are called large 1-bins),

and let d0 be the number of 1-bins whose items have sizes no larger than 1
2 (such bins are called

small 1-bins). By Lemma 25, d0 ≤ 1 must hold.

Theorem 26 The absolute competitive ratio of ALG is exactly 2.

Proof. By Proposition 1, it is sufficient to prove an upper bound. We distinguish two cases as

follows.

Case 1. f < d1. We match 4-bins and large 1-bins into pairs arbitrarily, leaving at least one large

1-bin unmatched. The remaining bins that are not 5-bins (regular bins, and a small 1-bin, if it

exists) are also matched into pairs, and if the number of these bins is odd, one of them is matched

to an unmatched large 1-bin. The total size of items of any matched pair is above than 1, the level

of every remaining large 1-bin is above 1
2 , and the level of any 5-bin is at least 1

2 , by Lemma 25.

We find that the total size of items S satisfies S ≥ ALG
2 , thus OPT (L) ≥ S ≥ ALG

2 .

Case 2. f ≥ d1. For an item of size x, we define its weight to be w(x) = 1 + 3x. Let W denote

the total weight of all items of L. For any bin, the total weight of its items is at most 8, as it has

at most five items of a total size of at most 1. Match every large 1-bin to a 4-bin. For each such

pair, the total size is above 1, and the number of items is 5, thus the total weight of the items of

every such pair of bins is at least 8. Every remaining 4-bin has four items, and their total weight

is at least 4. Similarly, every 5-bin has a total weight above 5. Every regular bin, except for at

most one such bin, has a total size of items of at least 2
3 , and at least two items, so its weight is

at least 2 + 2
3 · 3 = 4. Thus, on average, all bins have weights of at least 4, except for possibly a

small 1-bin, if it exists, and a regular bin of level below 2
3 , if it exists. If none of those exists, we

find 8 ·OPT (L) ≥W ≥ 4 ·ALG(L), and we are done. If both such bins exist, then the total size of
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items in those bins is above 1 by Lemma 25, and there are at least three items, so the total weight

is at least 6. We find W ≥ 4 · (ALG(L) − 2) + 6. If d0 = 1 but no regular bin of level below 2
3

exists, then the weight of the small 1-bin is at least 1, and W ≥ 4 · (ALG(L) − 1) + 1. If d0 = 0,

but there is a regular bin of level below 2
3 , then the weight of this regular bin is at least 2, and

W ≥ 4 · (ALG(L)−1)+2. In all three last cases, 8OPT (L) ≥W ≥ 4 ·ALG(L)−3, or alternatively,

ALG(L) ≤ 2 ·OPT (L) + 3/4. By integrality, we get ALG(L) ≤ 2 ·OPT (L).
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