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Abstract

We design improved approximation algorithms for two variants of the ADM minimization
problem. SONET add-drop multiplexers (ADMs) are the dominant cost factor in SONET/WDM
rings. The number of SONET ADMs required by a set of traffic streams (lightpaths) in a ring
is determined by the routing and the wavelength assignment of the traffic streams. We consider
both the arc version where the route of each traffic stream is given as input, and the chord
version, where the routing is to be decided by the algorithm. The goal in both cases is to assign
wavelengths so as to minimize the total number of used SONET ADMs.

1 Introduction

The ADM minimization problem originates in Synchronous Optical Networks (SONET) and Wave-
length Division Multiplexing (WDM) rings. In such architectures, each wavelength channel carries
a high-speed SONET ring. The key terminating equipments are optical add-drop multiplexers
(OADM) and SONET add-drop multiplexers (ADM). Each vertex is equipped with exactly one
OADM. The OADM can selectively drop wavelengths at a vertex. Thus, if a wavelength does not
carry any traffic from or to a vertex, its OADM allows that wavelength to optically bypass the
vertex. Therefore, in each SONET ring, a SONET ADM is required at a vertex if and only if it
carries some traffic terminating at this vertex. In this paper we study the problem of minimizing
the total cost incurred by the SONET ADMs.

We next give a mathematical definition of the two problems, which are called the arc version
and the chord version.
The arc version. We are given a set E of (directed) circular-arcs over the vertices 0, 1, . . . , n−1,
where the vertices are ordered clockwise. The vertices form a ring in which every consecutive pair
of vertices is connected by a physical link. An arc (i, j) represents the clockwise path along the
ring from a vertex i to the vertex j. A pair of arcs (i, j), (k, l) is non-intersecting if the clockwise
path along the cycle 0, 1, . . . , n− 1, 0, that connects i to j and the clockwise path that connects k

to l, do not share any link of the ring. A set of arcs is non-intersecting if each pair of arcs from this
set is non-intersecting. A feasible solution is a partition of E into non-intersecting subsets of arcs
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E1, E2, . . . , Ep. The cost of Ei is the number of different vertices of the ring that are endpoints of
the arcs of Ei (where every endpoint counts only once, no matter whether it is an endpoint of just
one arcs, or whether it is the endpoint of two arcs). The cost of the solution is the sum of costs of
Ei for all i. The goal is to find a minimum cost feasible solution.

Liu, Li, Wan and Frieder [10] proved that this arc version of the ADM minimization problem
is NP-hard. Several papers [10, 8, 13, 2, 12, 4] focused on the design and analysis of heuristics for
the problem. Cǎlinescu and Wan [2] provided a 3/2-approximation algorithm called Pim, which
we describe later. Shalom and Zaks [12] obtained a (10

7 + ε)-approximation algorithm. Their
method is based on a preprocessing step that applies a local-search algorithm of [9] for finding an
approximated maximum size sub-collection of 5-sets (sets with at most five elements). The current
best result is a 98/69 ≈ 1.42029-approximation algorithm [4] (which was obtained independently
of [12]). This last algorithm applies greedy steps and steps that find maximum weight matchings
on graphs, but does not use local-search and thus it is very efficient in terms of running time. The
problem on an arbitrary network (not necessarily a ring) was also studied before [3, 1, 6].
The chord version. This variant of the problem is defined as follows. We are given a set E of
chords (or undirected edges) over the vertices 0, 1, . . . , n−1. The first goal is to decide on a routing
(i.e. to convert each chord into an arc by choosing a single direction for it along the ring). This
gives a set of arcs E′, which becomes an input for the arc version of the problem, defined above.
Cǎlinescu and Wan [2] proved that this variant is NP-hard as well, and designed several heuristics,
two of which are 3

2 -approximations. The current best algorithm, which has an approximation ratio
of 10

7 , is due to [5].
Our results. In Section 2, we design an algorithm for the arc version which combines five
different algorithms, and achieves an approximation ratio of at most 47

34 + ε < 1.38236. The chord
version is considered in Section 3. For this version, we combine three algorithms on each connected
component of the input to achieve an approximation ratio of at most 7

5 +ε = 1.4+ε. The algorithms
for the two problems present very different algorithmic methodologies. The first algorithm uses
local-search for finding structures which can be given as output right away (these structures are
then removed from the input), whereas the second algorithm incorporates enumeration in some
cases in which the input contains small connected components.

2 Algorithms for the arc version

2.1 Preliminaries

For an arc (i, j), we define its length as `(i, j) = j − i mod n. For a subset of arcs, the length of
the subset is the total length of its arcs. Throughout the paper, the length of a path is defined to
be the total length of its arcs.

A chain is an open directed path of length at most n − 1, and a cycle is a closed directed
path of length exactly n. Without loss of generality, we can assume that the arcs in each Ei

form a connected component (either a chain or a cycle). This is so because if the arcs in Ei are
disconnected, then we can partition Ei to its connected components without increasing its total
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cost. Therefore, we ask for a partition of E into cycles and (open) chains. Note that the cost of a
feasible solution equals the sum of two terms, which are the value |E| and the number of chains in
the solution.

Let Opt be a given optimal solution to our problem with a cost which is denoted by Opt as
well. Assume that Opt has CYi cycles with i arcs, for i = 2, 3, . . . , n. In addition, assume that
Opt has CHi chains with i arcs, for i = 1, 2, . . . , n− 1. We further assume that CY2 is maximized
among all optimal solutions. For an algorithm A, we also use A to denote the cost of its returned
solution.

We use the following auxiliary definition. The deficiency of a vertex v, def(v), is defined as
follows. Let in(v) be the number of ingoing arcs of v, and let out(v) be the number of outgoing
arcs of v. Then, def(v) = 1

2 |in(v)− out(v)|.
In what follows, Eulerian subgraphs are discussed. Our notion of a subgraph being Eulerian

allows the subgraph to be disconnected. Thus, by an Eulerian subgraph we mean a union of
Eulerian connected subgraphs, which form a possibly disconnected graph. A feasible solution Sol

induces a partition of the arcs into an Eulerian subgraph and a set of mega-chains as follows: We
consider the set of cycles and chains used by Sol as a set of arcs in directed auxiliary graph over
{0, 1, . . . , n − 1} where cycles are loops of the form (0, 0), and a chain is a directed arc from its
starting vertex to its end vertex. In this directed graph we find a maximal subgraph in which the
in-degree of each vertex equals its out-degree. The remaining arcs define a minimal set of paths,
such that each such path is directed from a vertex whose out-degree is greater than its in-degree,
towards a vertex whose in-degree is greater than its out-degree. Each such path in the auxiliary
graph corresponds to a mega-chain in the original graph (by replacing each arc in the auxiliary
graph by its corresponding chain). Therefore, each mega-chain is not necessarily a valid chain,

Figure 1: An example of a single mega-chain which consists of three chains. The mega-chain starts
at vertex 0 and ends at vertex 3. The first chain contains the arcs (0, 4), (4, 8), the second chain
contains the arcs (8, 2), (2, 5), (5, 6), and the third chain contains the arcs (6, 9), (9, 1) and (1, 3).
The value of n is 10.
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but it can be decomposed into a sequence of valid chains. Note that the number of mega-chains
in Sol is equal to the total deficiency of all vertices. Therefore it is independent of Sol, and is
common to all feasible solutions. See Figure 1 for an example of a set of arcs E which forms a
single mega-chain.

It was noted in [2] that a greedy removal of cycles which consist of two arcs, before the appli-
cation of some algorithm can never degrade the performance, since there always exists an optimal
solution which contains all such cycles as components. Therefore, each algorithm, which we con-
sider, contains a preprocessing phase in which such two-arc cycles are removed from the input. By
the choice of Opt, the value CY2 is the maximum possible number of two-arc cycles which any
algorithm can produce.

2.1.1 Algorithm Pim

We first define the algorithm Iterative Matching (IM), which is used as a subroutine in Algorithm
Pim [2]. The algorithm maintains a set of valid chains of arcs P, which forms a partition of E,
throughout its execution. Initially, P consists of chains each of which is an arc in E. Given a
partition P, the fit graph F(P) is defined as follows. Its vertex set is P, and two of its vertices are
connected by an edge if the two corresponding chains have a common endpoint, and they can be
concatenated to form a valid chain (or a cycle). The algorithm constructs F(P), and if its edge
set is not empty, then it finds a maximum matching M in F(P). Then, it merges each matched
pair of chains of arcs in M into a longer chain. When the edge set of F(P) is empty, P is the valid
solution which is given as output. It was shown in [2] that the approximation ratio of Algorithm
IM is at most 5

3 and at least 3
2 . The lower bound was later improved to 1.6 and to 14

9 if two-arc
cycles are removed before the application of IM [4]. Finally, a tight upper bound of 1.6 (for the
variant without any preprocessing) was proved by Flammini, Shalom and Zaks [7].

The main drawback of IM is that it gives no advantage to cycles over open chains. In a cycle,
the number of ADM’s is equal to the number of arcs, and hence it is better to have cycles rather
than chains. The following algorithm Preprocessed Iterative Matching (Pim) [2] was defined in
order to exploit the advantage of cycles over chains.

1. Preprocessing phase: repeatedly remove cycles consisting of remaining arcs until no more
cycles can be obtained. Give preference to cycles consisting of two arcs.

2. Matching phase: apply Algorithm IM to the arcs remaining after the first phase.

The approximation ratio of this algorithm is 3
2 , where the upper bound follows from [2] and the lower

bound from [4]. A careful analysis of Pim, which resembles the proof of Lemma 19 in [2] and the
proof of Theorem 2 in [4], results in the following theorem (we present its proof for completeness).

Theorem 1 Algorithm Pim returns a solution whose cost is at most 2CY2 +
∑n

i=3b3i
2 cCYi +∑n−1

i=1 b3i+1
2 cCHi.
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Proof. Note that cycles are removed greedily and so Opt may have a very different set of cycles.
However, Pim moves to the second phase only after no cycles remain, and therefore, every cycle of
Opt has at least one arc which is chosen as a part of a cycle of Pim.

Instead of considering the solution obtained by Pim, we analyze an alternative solution whose
cost is at least the cost of Pim. To be precise, we replace the solution of Pim with the solution
obtained by Pim after just one iteration of the matching phase. The cost of this solution is clearly
an upper bound on the cost of Pim. We further replace the solution by a possibly inferior solution
that does not create a maximum cardinality matching, but a feasible matching which we construct.
This matching is constructed by uniting matchings that may be created from the remaining arcs
(after the preprocessing phase, performed by Pim), taken from each component of an optimal
solution Opt (cycle or chain) separately.

Consider a cycle of Opt, which consists of i > 2 arcs. Note that the preprocessing phase of Pim

removes at least one arc of this cycle to participate in some cycle created by Pim. We consider the
arcs remaining after the removal of exactly one arc (the first arc ever removed) and partition them
into consecutive pairs of arcs. If i is even, then one arc remains unpaired. For each pair of arcs, if
none of them is removed in the preprocessing, we match them in the matching which we define. All
other arcs are not matched. We perform a similar process on chains of any number of arcs, only
we do not remove any arcs before applying the pairing process (even if some arcs were removed).
For a cycle where i = 2, we note that by the definition of Pim, both its arcs were removed together
as a cycle in the preprocessing phase.

We next analyze the cost of the resulting solution. The cost of every two-arc cycle of Opt is
2. We next consider the cost of a cycle consisting of i > 2 arcs. The cost of each pair of arcs is at
most 3. Specifically, this is the cost if this pair of arcs is defined to be a part of the matching, or
if exactly one of the arcs of the pair was removed in the preprocessing. If both arcs of a pair were
removed in the preprocessing, then the cost of the pair of arcs is 2. If i is odd, then adding the
removed arc, the total cost of the cycle is 3(i−1)

2 + 1 = 3i−1
2 , while for even i, we need to consider

the unpaired arc, and we get a total of at most 3(i−2)
2 + 2 + 1 = 3i

2 . A similar calculation for chains
gives a cost of at most 3(i−1)

2 + 2 = 3i+1
2 for odd i and of at most 3i

2 for even i. Thus the cost for a
cycle of i > 2 arcs is b3i

2 c and the cost for a chain of i arcs is b3i+1
2 c , as claimed above.

2.2 New algorithms

We design an algorithm Many, which chooses the best solution out of the solutions produced by
five algorithms. The first algorithm used by Many is the variant of Pim above (which starts with an
optimal removal of two-arc cycles). The other four algorithms Rk (k = 1, 2, 3, 4) combine techniques
from both [4] and [12]. Previously designed algorithms, which can be found in [2, 3] apply just
one phase of processing on the entire input. Their relatively high approximation ratios are caused
by examples, where an optimal solution contains a large number of components of a given type.
A natural approach, which is used by both [4] and [12] is to apply a preprocessing step where
the algorithm is trying to construct such problematic components before applying any general
heuristic. In [4], a number of preprocessing steps is used, in which cycles and mega-chains are
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greedily detected to be removed from the input and are given as output. In [12], the preprocessing
is applied in a single step, which applies an algorithm of [9] (see below) to detect short cycles. The
advantage of the greedy preprocessing steps is that the analysis method developed in [4] allows to
apply several such steps, sequentially. The advantage of using the algorithm of [9] is that it allows
to remove a larger number of components in the preprocessing step. In this paper, we develop a
method which allows to combine the two options. We apply both a greedy preprocessing step, and
a step which uses the algorithm of [9]. The additional novelty is that we use a number of algorithms
with slightly distinct preprocessing phases, in order to deal with multiple problematic inputs.

Each of the algorithms, on which Many is based, applies a number of preprocessing phases, in
which we remove some set of subgraphs, and afterwards we apply the final step for the remaining
arcs in which a set of mega-chains and an Eulerian subgraph are computed in an arbitrary way,
and each one of them is traversed and partitioned greedily. To do so, we apply (similarly to [4]) a
variant of an algorithm studied in [2], called Eulerian Tour-Trail Splitting, which partitions
the remaining arcs into valid chains. In the analysis of these algorithms we allocate costs to arcs.
The cost of an arc consists of a unit cost, which is the minimum cost of ADM’s for an arc, and
in addition, for each n

2 units of length (of the arcs remained for the final step) we will pay one
additional unit. We will also pay 1 for each mega-chain. Hence, the performance guarantee of the
final step for components which are either a cycle of a small number of arcs, or a mega-chain of a
small number of arcs but with a large length, is not good enough. This is exactly the role of the
preprocessing step in the analysis. However, applying just one type of preprocessing is beneficial
for just one type of problematic input. Thus, in each algorithm, we perform a different such step
whose aim is to remove subset of these components. We note that we can remove components only
approximately if the number of elements in the component is at least 3, no matter how this step
is implemented. The approximation ratio of this removal phase, that is, the fraction of required
components which are successfully found, is thus a major factor in our selection of algorithms. We
formulated the resulting approximation ratio if we incorporate any subset of these algorithms, and
each time we identified the bottleneck set of components, that is, the type of cycles or chains which
are the worst case example for the algorithm. In the design of the next algorithm to be added,
these components are the ones to be then removed in the preprocessing. This process is continued
until we can no longer improve the resulting approximation ratio by using additional algorithms.
We next present the resulting set of algorithms, and note that the constants were selected so as to
optimize the resulting approximation ratio (see details below).
Notations. We use the following notations for components of Opt. We consider mega-chains
of Opt neglecting their partition into valid chains. The number of mega-chains in the optimal
solution, which consist of a single arc, is denoted by MC1, and the total length of these mega-
chains is denoted by L1. The number of mega-chains in the optimal solution which have at least
four arcs, and length in [(i − 1)n, in − 1], is denoted by MCi. The mega-chains of two and three
arcs are partitioned into further categories as follows. The partition is due to a different treatment
in some of the algorithms.

MC1
2 is the number of two-arc mega-chains with length in [1, n − 1]. MC2

2 is the number
of two-arc mega-chains with length in [n + 1, 31n/18). MC3

2 is the number of two-arc mega-
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chains with length in [31n/18, 7n/4). MC4
2 is the number of two-arc mega-chains with length in

[7n/4, 11n/6). MC5
2 is the number of two-arc mega-chains with length in [11n/6, 2n− 1]. Finally,

we let MC2 =
5∑

j=1
MCj

2 be the total number of two-arc mega-chains.

MC1
3 is the number of three-arc mega-chains with length in [1, 3n/4). MC2

3 is the number of
three-arc mega-chains with length in [3n/4, n − 1]. MC3

3 is the number of three-arc mega-chains
with length in [n+1, 2n−1]. MC4

3 is the number of three-arc mega-chains with length in [2n, 3n−1].

Finally, we let MC3 =
4∑

j=1
MCj

3 be the number of three-arc mega-chains.

We use MC to denote the total number of mega-chains, and CY =
n∑

i=7
CYi to denote the number

of cycles with at least seven arcs. The number of chains which belong to the Eulerian subgraph
and consist of i arcs is denoted by CH i

E .

Building blocks of the algorithms. Each one of the algorithms (R1, R2, R3, R4) consists of
at most five steps as follows which are the common building blocks of all these algorithms.

The first step is a removal of a maximum number of two-arc cycles. This step can be performed
greedily and yields optimal results.

For the second step, it is required to know the exact value of MC1. This value is unknown to
the algorithm, but must take an integer value in [0, |E|]. To overcome the lack of knowledge, each
algorithm is executed |E|+ 1 times and the best solution (that is, the solution which uses the least
number of ADMs) is reported as output. We analyze the solution which uses the correct value of
MC1. The algorithm removes (if possible) exactly MC1 mega-chains of one arc, of maximum total
length. This length is at least L1 for the correct value of MC1. This step can be applied using
an algorithm for a maximum weight b-matching on a bipartite graph, whose parts are the vertices
with non-zero deficiency (see [4] for details of this reduction to maximum b-matching). In order to
achieve a good performance, mega-chains of one arc must receive this special treatment. These are
components of a very large cost per arc, and thus leaving even a small fraction of them for later
results in a very high cost per the single arc of which the mega-chain consists. Even though this
step does not necessarily remove exactly the set of such mega-chains of Opt, still, if the correct
value of MC1 is used, it removes a total length of such chains which is sufficiently large.

The third step is a greedy preprocessing step. In this step the algorithm seeks to create struc-
tures of a given type (which could be cycles or chains, but in our case these are mega-chains of a
given number of arcs and length in a given interval). This step is performed greedily. By greedy
we mean that the algorithm maintains a sub-collection of disjoint structures of the given type, and
as long as this sub-collection can be extended by a disjoint structure (of the given type), we add to
the sub-collection such a structure. It turns out that the components causing high approximation
ratios of previously known algorithms are cycles and mega-chains with few arcs. These are the
structures which receive most attention in this step and the next step.

The fourth step is a local-search step which is performed using a local-search method which
was analyzed by Hurkens and Schrijver [9]. This heuristic receives as an input a collection S of
valid subsets of a given ground set, each containing at most k elements, and finds a sub-collection
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S′ of S such that the intersection of every two members of S′ is empty, and |S′| is at least 2
k − ε of

the size of a maximum cardinality sub-collection of disjoint sets. The running time is polynomial
in the input size (though it is exponential in 1

ε ). In our case, the subsets are either valid cycles or
mega-chains. For a cycle, the subset contains all its arcs. For a mega-chain, the subset contains its
arcs as well as its endpoints, since the removal of the arcs of a mega-chain from the input reduces
the deficiency of its two endpoints. Note that we are dealing with multigraphs, i.e., an arc can exist
multiple times. In addition, endpoints of mega-chains may exist multiple times, but a given vertex
can either be a starting vertex of some mega-chain, or the last vertex of some mega-chain, but not
both. We therefore treat multiple instances of arcs or endpoints as distinct elements.

Note that in both last steps, we require that a removed mega-chain is be partitioned into valid
chains in an optimal way before it becomes part of the output. In these steps, we never remove
mega-chains with more than three arcs, and thus the calculation of an optimal partition requires
constant time per mega-chain.

The fifth step is the creation of chains out of the remaining arcs. First, a set of mega-chains and
an Eulerian subgraph are computed in an arbitrary way. Afterwards, each one of them is traversed
and partitioned greedily. At each time, a maximum length valid chain is chosen to be a part of the
output.

Statement of the algorithms. The first algorithm, R1 applies steps 1,2,4 and 5, and does not
have a third step. In the fourth step, it removes valid cycles which consist of three or four arcs.

The algorithm R2 applies all five steps. In step 3 it performs a greedy removal of two-arc mega-
chains of length in [11n

6 , 2n− 1], and the fourth step is identical to the fourth step of R1, that is, it
removes valid cycles which consist of three or four arcs. The exact choice of the length of “long”
mega-chains is done in order to balance the cost of a shorter mega-chain (which is not considered
to be removed) with a longer one. A mega-chain which has a length shorter than 11n

6 only adds
an additive factor of at most 11

3 in the cost which is based on the last phase (rather than a cost of
almost 4, caused by a mega-chain of length close to 2n). On the other hand, a mega-chain of length
at least 11n

6 which is removed in the preprocessing, is exempt of the cost of the last step, and thus,
a cost of at least 11

3 is saved. Note that increasing the value 11n
6 would increase the maximum cost

of a short mega-chain as well as increasing the saved cost of a long mega-chain.
The algorithm R3 also applies all five steps, but its exact action is different. In step 3 it applies

a greedy removal of two-arc mega-chains of length in [31n
18 , 2n− 1], and in the fourth step, cycles of

at least three and at most six arcs are removed.
The algorithm R4 applies steps 1,2,4 and 5. It does not apply a greedy step (the third step).

In step 4 it removes the following structures at once. Cycles of at most six arcs (and at least three
arcs), mega-chains of two arcs and length in [7n

4 , 2n− 1], and mega-chains of three arcs and length
in [3n

4 , n− 1].

Analysis. For each algorithm, we distribute its cost among the different components of Opt.
This allows us to consider the approximation ratio on each component separately. We calculate
the cost charged to a set of chains, which result from one mega-chain, together. As a first step,
we calculate the cost incurred by each component of Opt. These costs are described in the last
column of Table 1. All these costs are straightforward except for the costs of mega-chains of at
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least two arcs. The cost for a mega-chain of length at most n − 1 is simply the number of arcs
plus 1, since such a mega-chain does not need to be split into chains. On the other hand, the
cost of a mega-chain can never exceed twice the number of arcs, which corresponds to the option
of partitioning it into one-arc chains. For a mega-chain of three arcs which must be split (i.e., of
length of at least n + 1), it needs to either be split into two or three chains, and we consider these
two cases separately. As for a mega-chain of t ≥ 4 arcs and length in [(i− 1)n, in− 1], the number
of chains into which it must be split is at least i.

We use the following upper bound UBL on the total length of all arcs in the input. We later
compute an upper bound on the residual cost remaining after the execution of the first four steps
of each algorithm (either explicitly, or by calculating the reduction in length compared to UBL).

UBL = (
6∑

j=2

CYj + CY )n + L1 +
∞∑

i=1

(CH i
E · n) + MC1

2 · n + MC2
2 ·

31n

18
+ MC3

2 ·
7n

4
(1)

+MC4
2 ·

11n
6

+ MC5
2 · 2n + MC1

3 ·
3n

4
+ MC2

3 · n + MC3
3 · 2n + MC4

3 · 3n +
∞∑

i=1

(MCi · in) .

Next, we explain how to distribute the cost of an algorithm among the components of Opt. We
define a basic cost for a structure of Opt, based on an algorithm which does not apply the third
and fourth steps. Later we extend the costs for our algorithms which apply these steps as well.

We note that the number of chains created in the last step is at most the sum of the following.
The number of mega-chains, and the total length of the arcs, excluding the arcs removed in steps
1 and 2, divided by n

2 . It was shown in [4] that the average length of a chain which is created from
the Eulerian part is more than n

2 , whereas a mega-chain of length in [kn, (k + 1)n − 1] creates at
most 2k + 1 chains. Thus if at the beginning of step 5 the total length of remaining arcs is T , and
the number of remaining mega-chains (after MC1 mega-chains were removed in step 2) is P , then
the number of chains created in the fifth step is at most 2T

n + P .
The reduction in the total length of all arcs, as a result of the application of the first step and

the second step, is at least CY2 · n + L1, thus, the number of chains created by the algorithm is
at most MC1 + UBL−CY2·n−L1

n/2 + P , where P is the number of mega-chains, remaining after step 2.
The cost of the solution is at most this value plus the number of arcs. Thus, the cost assigned to
each structure of Opt is the number of arcs in it, plus some amount which results from the number
of chains.

The cost assigned to a two-arc cycle is 2, as in Opt, and the cost assigned to a one-arc mega-
chain is 2 as well, since it contains one arc, and contributes 1 to the number of mega-chains. The
cost assigned to the other components takes into account the cost of chains created in the fifth
step. In addition to a cost of 1 for every arc, and another cost of 1 for each mega-chain, we need to
distribute a cost of 1 among the components of Opt for each other chain which is created. Given
a component of Opt which is not a two-arc cycle, or one-arc mega-chain, we assign these costs
according to the coefficient of the variable corresponding to the number of such components in Opt

in UBL
n/2 . Thus, for example, a two-arc mega-chain of Opt, with length in [n+1, 31n/18) is assigned
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an additional cost of 31
9 , in addition to the cost of 3 resulting from its arcs, and from it being a

mega-chain.
In the sequel when we analyze the different algorithms, we neglect the ε and assume that a

fraction of 2
k (instead of 2

k − ε) is found during step 4. In order to get a correct upper bound a
small constant (linear in ε) must be added to the approximation ratio.

Analysis of algorithm R1. Consider the first algorithm, R1. In the fourth step, it removes
valid cycles which consist of three or four arcs. Using [9], we find that a fraction of at least 1

2 − ε

of a maximum cardinality set of arc disjoint cycles is found. Let C and D denote the number
of removed cycles of three and four arcs, respectively. A lower bound on the total length of the
structures removed in the first two steps and the local-search step implies a reduction in the total
length of arcs compared to (1) as follows: Cn + Dn + L1 + CY2n. The maximum number of
cycles which can be removed simultaneously in the fourth step is at least CY3 + CY4−MC1, since
the removal of mega-chains can be harmful to cycles of the optimal solution. Neglecting the ε,
we get the inequality C + D ≥ CY3+CY4−MC1

2 . Thus the reduction in length is therefore at least
CY3n

2 + CY4n
2 − MC1n

2 + L1 + CY2n.
The total length of arcs remaining for step 5 is no larger than

CY3 · n
2

+
CY4 · n

2
+ CY5 · n + CY6 · n + CY · n +

MC1 · n
2

+
∞∑

i=1

(CH i
E · n) + MC1

2 · n

+(
5∑

j=2

MCj
2) · 2n + (MC1

3 + MC2
3 ) · n + MC3

3 · 2n + MC4
3 · 3n +

∞∑

i=1

(MCi · in).

We allocate the cost of the solution analogously to the basic case, as follows. Every arc is
charged with 1. In addition, each mega-chain causes an additional cost of 1. Finally, the total
length of arcs which are assigned to chains in step 5 causes a cost of 1 for a length of n

2 . Hence, by
using the upper bound on the total length of arcs remaining for step 5, we allocate the last term
to the different structures of Opt such that if in this upper bound we have β · n

2 times the number
of this structure in Opt, then we assign this structure an additional cost of β. Assigning costs to
structures of Opt using this rule results in the costs of R1 in Table 1.

Analysis of algorithms R2 and R3. We next analyze the two algorithms R2 and R3 together.
The fraction of the cycles which algorithm R3 removes in step 4 (out of the maximum feasible set
that can be removed simultaneously) is at least 1

3 , while for R2 it is 1
2 . The outline of the analysis

is as follows. We first consider the basic cost of each structure in Opt. This basic cost is defined
by allocating a unit cost for each arc, an additional unit cost for each mega-chain, and another
unit cost for each n

2 units of lengths. Then, we use the combinatorial structure of steps 2,3 and 4
to conclude that this basic cost has decreased in a sufficient way such that the resulting allocation
cost is as in the table. The cost decreases due to a decrease in the total length of arcs, but on the
other hand, there is an increase which is caused by the fact that the removed mega-chain is invalid.
We next describe this in detail.

We use the following notations. Let α (α = 11
6 or α = 31

18) be such that the mega-chains of
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two-arcs which are removed in step 3 must have length in [α · n, 2n − 1]. Let k be the maximum
number of arcs in cycles which can be removed in step 4 (k = 4 or k = 6).

In order to find how many structures remain to be considered in step 4, after some structures
were removed in steps 2 and 3, we use some additional notations. Let MCC

1 denote the number of
arcs removed in the second step which belong to cycles of the optimal solution, and let MCM

1 =
MC1 −MCC

1 denote the number of other removed arcs, which is an upper bound on the number
of arcs of the removed mega-chains in step 2 which are part of mega-chains of Opt. We denote
the number of cycles of j arcs removed in the fourth step by Cj , and the number of mega-chains
removed in the third step by B. Out of these arcs, we let BC be the number of arcs of the removed
mega-chains which belong to cycles in Opt, and BM = 2B − BC . Let K denote the number of
two-arc mega-chains of length at least αn in Opt, and let J denote the number of cycles of at least
three and at most k arcs in Opt.

We use these notations to state the fact that the third step stops only when no two-arc mega-
chains of sufficient length remain. At this time, at least one endpoint or arc was removed from each
such mega-chain of Opt. Thus K ≤ 2B + BM + 2MC1 + MCM

1 = 4B −BC + 3MC1 −MCC
1 . On

the other hand, arcs of removed mega-chains affect the fourth step only if they are arcs of cycles
of Opt. Thus

∑k
j=3 Cj ≥ J−BC−MCC

1
k/2 . Multiplying the first inequality by 0 < γ ≤ 1 and adding

the resulting inequality to k
2 times the second one, we get k

2 (
∑k

j=3 Cj) + γ(4B − BC + 3MC1 −
MCC

1 ) ≥ γK + J − BC −MCC
1 or using BC ≤ 2B, MCC

1 ≤ MC1 and γ < 1, we conclude that
k
2 (

∑k
j=3 Cj) + (2 + 2γ)B + (2γ + 1)MC1 ≥ γK + J .

The upper bound on the total length is reduced during steps 2,3 and 4 by nCY2 + L1 +
(
∑k

j=3 Cj)n + Bαn ≥ nCY2 + L1 + 2γ
k Kn + 2

kJn − 2(2γ+1)
k MC1n + B(αn − 4(γ+1)n

k ), thus due
to the total reduced length, the cost of the algorithm in the last step is reduced by 2CY2 + 2

nL1 +
4γ
k K + 4

kJ − 4(2γ+1)
k MC1 + 2B(α − 4(γ+1)

k ). However the cost increases by B since the cost of a
mega-chain of two arcs of a length which exceeds n is 4, and not 3, as the charge for it, excluding
the charge for the length as defined in the basic costs. Hence the total reduction of the cost (with
respect to the basic cost) is at least 2CY2 + 2

nL1 + 4γ
k K + 4

kJ − 4(2γ+1)
k MC1 + 2B(α− 4(γ+1)

k − 1
2).

We now characterize this bound for each of the algorithms R2 and R3.
For the case of R2, we have k = 4, γ = 1

3 , α = 11
6 , K = MC5

2 and J = CY3 +CY4. We conclude
that the cost decreases by at least 2CY2 + 2

nL1 + 1
3MC5

2 + CY3 + CY4 − 5
3MC1. This implies the

costs in the table.
For the case of R3, we have k = 6, γ = 5

6 , α = 31
18 , K = MC3

2 + MC4
2 + MC5

2 and J =
CY3 + CY4 + CY5 + CY6. We conclude that the cost decreases by at least 2CY2 + 2

nL1 + 5
9(MC3

2 +
MC4

2 + MC5
2 ) + 2

3CY3 + 2
3CY4 + 2

3CY5 + 2
3CY6 − 16

9 MC1. This implies the costs in the table.

Analysis of algorithm R4. To analyze R4, we use the following notations. Denote by X

the number of two-arc mega-chains with length in [7n
4 , 2n − 1] which we removed during step 4.

Denote by Y the number of three-arc mega-chains and length in [3n
4 , n − 1] which we removed

during step 4. Denote by Z the number of cycles of at most six arcs (and at least three arcs)
which we removed during step 4. Since each one-arc mega-chain which we removed in step 2 may
intersect at most three structures of Opt, we conclude by the performance guarantee of the local-
search procedure that X + Y + Z ≥ CY3+CY4+CY5+CY6+MC4

2+MC5
2+MC2

3−3MC1

3 . Note that the total
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length reduction resulting from applying step 4 is at least 7
4Xn + 3

4Y n + Zn. Since each two-arc
mega-chain which we removed costs 4 and not 3, as the charge for it excluding the charge for the
length as defined in the basic costs, the total decrease of cost due to applying step 4 is at least
7
2X + 3

2Y + 2Z −X ≥ 3
2(X + Y + Z) ≥ CY3+CY4+CY5+CY6+MC4

2+MC5
2+MC2

3−3MC1

2 . This implies the
costs in the table.

Bounding the cost of Many. We conclude the entries in the table by the following theorem.

Theorem 2 The approximation ratio of Many is at most 47
34 + ε.

Proof. Since Many chooses the best solution out of the five outputs, its cost is no larger than any
convex combination of the costs. For each structure S of Opt mentioned in Table 1 (that is, a row
in the table), we denote the cost of an algorithm A on S (as we define it above, for each one of the
algorithms) by A(S). We compute an upper bound on 1

34(15Pim(S)+9R1(S)+2R2(S)+6R3(S)+
2R4(S)). It suffices to show that this upper bound is at most 47 times the cost of Opt on S. For
most structures S, the result follows from the column 34 · Many, which contains the numerical
value of 15Pim(T ) + 9R1(T ) + 2R2(T ) + 6R3(T ) + 2R4(T ), and then by computing 47Opt(S) one
can verify the correctness of the claim for these structures. Among these note that for a mega-chain
of three arcs and length in [n + 1, 2n− 1], if Opt = 5, it means that there exists a pair of arcs in
this mega-chain that can form a chain together, and therefore, Pim can also create such a chain
and we charge it with the same cost.

It remains to consider the rows for which the entry of 34 · Many(S) is non-numerical (and
depends on some parameter). For these structures we prove in the sequel the claimed ratio.

For a cycle of i ≥ 7 arcs, we have Many(T )

Opt ≤ 41.5i+38
34i ≤ 41.5+38/7

34 < 47
34 .

For a mega-chain of t ≥ 4 arcs, note that the cost of Pim follows from a cost of 3j+1
2 for a chain

of j arcs. Thus the cost is 3
2 times the number of arcs, plus 1

2 times the number of chains. Using
t ≥ 4, we have 7.5k + 38i + 41.5t + 19 ≤ 7.5k + 38i + 46.5t ≤ 7.5(t + k) + 39(t + i) < 47 ·Opt.

For chains of the Eulerian subgraph, we have Many(S)

Opt ≤ 41.5i+45.5
34(i+1) ≤ 45.5

34 < 47
34 .

3 The chord version

In this section, we assume that the graph of chords is connected. Otherwise, the algorithm should be
applied on every connected component separately. Since any solution must consider each connected
component separately, the outputs for different connected components are independent, and an
upper bound on the approximation ratio of the algorithm for connected graphs implies the same
approximation ratio for disconnected graphs.

We use the same definitions as for the arc version for dealing with the chord version. Note that
for this problem, the removal of two-chord cycles is not optimal and can harm the performance of
algorithms [2, 5].

The algorithms IM and Pim above can be converted into algorithms for the chord version. IM

can act on chords instead of arcs, where chords are assigned a routing only when they are matched
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The structure of Opt Pim R1 R2 R3 R4 34 ·Many Opt

A two-arc cycle 2 2 2 2 2 68 2
A three arc cycle 4 4 4 13/3 4.5 139 3
A four arc cycle 6 5 5 16/3 5.5 188 4
A five arc cycle 7 7 7 19/3 6.5 233 5
A six arc cycle 9 8 8 22/3 7.5 282 6

A cycle of i ≥ 7 arcs 3i/2 i + 2 i + 2 i + 2 i + 2 83i
2 + 38 i

A mega-chain of a single arc 2 3 11/3 34/9 3.5 94 2
Mega-chains of two arcs:

length in [1, n− 1] 3 5 5 5 5 140 3
length in [n + 1, 2n− 1] 4 7 20/3 58/9 6.5 188 4

Mega-chains of three arcs:
length in [1, n− 1] 5 6 6 6 5.5 188 4

length in [n + 1, 2n− 1], Opt = 5 5 8 8 8 8 227 5
length in [n + 1, 3n− 1], Opt = 6 6 10 10 10 10 280 6

A mega-chain, t ≥ 4 arcs
length in [(i− 1)n, in− 1] k/2+ 2i+ 2i+ 2i+ 2i+ 15k

2 + 38i t + k ≥
which Opt splits into k chains 3t/2 t + 1 t + 1 t + 1 t + 1 +83t

2 + 19 t + i

A chain of Opt with i arcs
(a part of the Eulerian subgraph) 3i+1

2 i + 2 i + 2 i + 2 i + 2 83i
2 + 91

2 i + 1

Table 1: An analysis of Many

to another chord or to an existing chain. Pim can remove cycles allowing every chord to be routed
in one of its possible directions.

To motivate our improved algorithm, consider first a special case in which the (connected) input
does not contain any cycles. Note that a pair of edges which have a common endpoint can always
be routed in a way that a two-arc chain can be created out of them. Therefore, in this case, we are
guaranteed that the solution returned by Pim (or IM) has at most a single chain consisting of a
single chord, while all other chains contain at least two edges each. This unique chain causes the
analysis of the algorithm in [5] to be loose. Note that this one chain can be discarded if the input
is large (i.e., if |E| = ω(1

ε ), then this chord increases the cost of the solution by at most O(ε)Opt).
Therefore, in this case we would like to restrict ourselves to inputs in which the number of chords
is large. Such a restriction is possible, if we solve other (small) inputs optimally (via exhaustive
enumeration). The same situation holds also if the input contains cycles, but in this case, the
accounting of the number of single chord chains should be made more carefully. Specifically, the
removal of a cycle may disconnect the remaining set of edges into some connected components,
but the removal of a cycle is sufficiently beneficial, so that it can compensate for the creation of
additional chains consisting of a single chord.

For an input consisting of large number of chords, the algorithm which we apply is similar to
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the one of [5]. That algorithm combines a pair of algorithms, DDag and a variant of Pim, choosing
the solution of the smaller cost as an output. DDag routes all chords in a specific way, creating
an acyclic input for the arc version. This destroys all potential cycles, and it works relatively well
for inputs where Opt has many chords in most components, since just one edge of a component
is routed in the opposite direction compared to the routing in Opt. The second algorithm is the
variant of Pim for the chord problem, in which cycles of two edges are considered last (here we do
not give preference to cycles of a larger number of edges). It works well on the complement set
of the instances, since due to its greediness, it works well on components with a small number of
edges. The improved bound on the cost of Pim allows us to prove a tighter approximation ratio.
For inputs consisting of a small number of chords, we solve the problem optimally, and hence the
approximation ratio in this case is proven trivially.

More accurately, algorithm DDag acts as follows. It chooses an arbitrary link of the ring, and
orients all chords so that they do not contain this link. As a result, the collection of arcs is acyclic,
and an optimal algorithm for this set of arcs, called Greedy Sweeping, due to [8], is applied.

The following lemma is proved in [5].

Lemma 3 The cost of DDag is at most
n∑

i=1

(i + 3)CHi +
n∑

i=2

(i + 2)CYi.

Let ε > 0. We define an algorithm CombEnum, for which we prove an approximation ratio
of 7

5 + ε. If the graph contains at most 2
5ε chords, the algorithm returns an optimal solution by

enumerating all possible solutions. Each potential solution is a partition of edges into subsets. A
subset is valid if it implies a single cycle or chain.

Otherwise, CombEnum returns the best solution out of the two solutions returned by DDag

and Pim. Note that the variant of Pim used here is the algorithm which removes valid cycles of
arbitrary length from the input until no such cycles remain (i.e., unlike the algorithm in [5], we do
not delay the removal of two-arc cycles until there are no other cycles), and applies IM afterwards.

In order to complete the analysis, we are interested in the performance of Pim as a function of
the values CHi for i ≥ 1 and CYi for i ≥ 2.

Lemma 4 The cost of Pim on a connected graph of chords is at most
n∑

i=1

3i

2
· CHi +

n∑

i=2

(
3i

2
− 1

2

)
CYi +

1
2

.

Proof. We assign costs to cycles and chains of Opt, such that the sum of all assigned costs
is at least the total cost of Pim, possibly excluding a cost of 1

2 incurred by Pim, which remains
unassigned. Specifically, we assign a cost of 3

2 to every edge, except every edge which has the
property that it is the first edge ever removed of some cycle of Opt, and such an edge gets a cost
of 1. Note that every cycle has at least one edge which is removed during the preprocessing, and
hence a cycle of p edges has a total assigned cost of 3

2(p − 1) + 1 = 3p
2 − 1

2 . Moreover, a chain of
Opt with p edges, is assigned a cost of 3p

2 .
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We analyze an algorithm which performs a single iteration of IM after the preprocessing phase
is over. Clearly, similarly to the arc version, the algorithm may perform better by applying multiple
iterations of IM. We next show that the entire cost of Pim is indeed assigned, except for possibly
a residue of 1

2 which remains unassigned.
Let d be the number of connected components resulting from removal of cycles. Let c be the

number of such edges which are removed and have cost 3
2 . Let c′ be the number of removed edges.

The removal of the first edge of a cycle of Opt does not create a new connected component,
therefore d ≤ 1 + c′ − c.

We next show that given a connected component of g edges (resulting from the removal of
cycles), it is possible to partition it into a set of valid chains of length 2, and in addition, at most
one chain of length 1. Therefore, an application of a single iteration of IM on this component would
result in a cost of 3g

2 if g is even and otherwise, the cost would be 3g−1
2 +2 = 3g+1

2 . Such a partition
can be created inductively. Consider a DFS tree of a connected component, which contains at least
two edges. If there exists a leaf which has at least two back edges, such a pair of edges can be
chosen without violating connectivity, and can be routed to result in a valid chain. Otherwise, if
some leaf has one back edge, pair this back edge with the edge to the parent. If no leaf has a back
edge, take a leaf v of maximum depth, denote its parent by u. If u has at least one other child w,
use the edges (u, v) and (u,w), which is possible since by definition, w is a leaf as well, and none
of v and w has a back edge. If u has no other children, but there exists a back edge (u, x), use the
pair of edges (u, x) and (u, v). Finally, if no such back edge (of u) exists, then u cannot be the root
of the tree, and denote its parent by y. In this case, the pair of edges is (u, v) and (y, u).

We therefore get a total cost of c′ + 3 |E|−c′
2 + d

2 ≤ 3|E|+1−c
2 . On the other hand, the total cost

assigned to edges is 3|E|−c
2 , which proves our claim.

Theorem 5 The approximation ratio of CombEnum is at most 7
5 + ε.

Proof. Note that |E| =
n∑

i=1
iCHi +

n∑
i=2

iCYi > 2
5ε . Since Opt =

n∑
i=1

(i + 1)CHi +
n∑

i=2
iCYi, we have

COMB = min{Pim,DDag} ≤ 1
5
· (4 ·Pim + DDag)

=
1
5
·
[

n∑

i=1

(
4 · 3i

2
+ i + 3

)
CHi +

n∑

i=2

(
4 ·

(
3i

2
− 1

2

)
+ i + 2

)
CYi + 2

]

≤ 1
5
·
[

n∑

i=1

(7i + 7)CHi +
n∑

i=2

7iCYi

]
+ ε

(
n∑

i=1

(i + 1)CHi +
n∑

i=2

iCYi

)
=

(
7
5

+ ε

)
·Opt .

4 Conclusion

In this paper, we addressed an open problem regarding the arcs version stated in [12], asking
whether using both their methods, and methods of greedy preprocessing as in [4] could lead to
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better results. We answer this question affirmatively. It is left as an open problem to find whether
local-search can be helpful for the chord version.
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