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Abstract. Let N be a structure definable in an o-minimal structureM and p ∈
SN (N), a complete N -1-type. If dimM(p) = 1 then p supports a combinatorial
pre-geometry. We prove a Zilber type trichotomy: Either p is trivial, or it is linear,
in which case p is non-orthogonal to a generic type in an N -definable (possibly
ordered) group whose structure is linear, or, if p is rich then p is non-orthogonal
to a generic type of an N -definable real closed field.

As a result we obtain a similar trichotomy for definable one-dimensional struc-
tures in o-minimal theories.

In this paper we prove a trichotomy theorem for one-dimensional types in struc-
tures definable in o-minimal theories. With this we conclude the work started in [4],
of which this is a direct continuation.

Recall that a structure N is said to be definable in an o-minimal structure M if
the universe N , of N , as well as all its atomic relations, are definable sets (possibly
of several variables, possibly using parameters) in the structure M.

In [4] we proved a weak version of Zilber’s trichotomy:

Theorem 1. Let N be a stable structure definable in an o-minimal structure M. If
dimM(N) = 1 then N is 1-based.

The local nature of phenomena in o-minimal theories does not leave room for more
precise global statements in the unstable case. The aim of this paper is to remedy
this situation by applying the results of [4] and [2] to obtain a complete classification
of 1-M-dimensional types in N without any additional global assumptions on N .
Our main result can be summed up by (see definitions below):

Theorem 2. Let M be an o-minimal structure and N definable in M. Let p ∈
SN (N) be one-M-dimensional. Then exactly one of the following holds:

(1) p is trivial.
(2) p is linear, in which case p is non-orthogonal to a generic type of an N -

definable (possibly locally ordered) group G. The structure which N induces
on G is linear, i.e., given by definable (possibly local) subgroups of Gn.

(3) p is rich, in which case it is non-orthogonal to a generic type of an N -
definable real closed field R.

In fact, our results will be more precise and give a stable/unstable dichotomy (see
Theorem 2.1). As a corollary to the above we can complete the analysis of definable
one dimensional structures which began in [4]:
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Theorem 3. Let N be a definable structure in a sufficiently saturated o-minimal
structure M. If dimM(N) = 1 then exactly one of the following holds:

(1) N is degenerate.
(2) N is linear: There exists X ⊆ N eq with dimM(X) = 1 and such that the

structure which N induces on X is either a strongly minimal locally modu-
lar group or elementarily equivalent to a group-interval in an ordered vector
space. Moreover, no field is interpretable in N .

(3) N is rich and interprets a real closed field.

To get the work going we need some preliminaries that we explain in the next
section.

1. Some notation, terminology and background

We start by fixing some conventions of notation and terminology. We fix N a
structure definable in an o-minimal densely ordered structure M, and assume that
M and N are sufficiently saturated. We let M,N denote the universes of M,N ,
respectively and use A,B ⊆ N etc. to denote small sets.

For a ∈ N , and A ⊆ N , we let tpN (a/A) be the type of a over A, in sense of the
structure N . Such types are called N -types. We let SN (A) be the set of complete
N -types over A.

A complete non-algebraic N -type p is called one-M-dimensional if it contains an
N -formula whose M-dimension is one. For simplicity, we will just call those types
one dimensional.

Remark It is worth noting that the notion of M-dimension is not intrinsic to N ,
but depends on the particular interpretation of N in M. E.g., if N is a dense linear
ordering then it can be interpreted in M either as a subset of M , or as a subset
of M2, with the lexicographic ordering. In the first case, every nonalgebraic 1-type
in N is one dimensional while in the second case, there are clearly two dimensional
1-types and also one-dimensional ones: if one fixes two points in the same fibre, the
interval between them gives rise to one-dimensional types.

If p is a one-dimensional N -type then the restriction of aclN (·) to the set of
realizations of p forms a pre-geometry (Exchange holds because it is true in M, but
note that this property of p is independent of the interpretation. This can be also
seen by noting that p has Uþ-rank 1, and this property is intrinsic to N ). Similarly,
aclN induces a pre-geometry on any union of one-dimensional types.

For one-dimensional types (or more generally, for types of Uþ-rank 1) the definition
of non-orthogonality of minimal types (in the stable context) readily generalises:

Definition 1.1. Let p, q ∈ SN (A) be one-dimensional. Then p and q are nonorthog-
onal over A if there is B ⊇ A and a |= p , b |= q such that tpN (a/B) and tpN (b/B)
are non-algebraic and a, b are inter-algebraic in N over B.

Thus, in order to make clear the statement of Theorem 2 it remains to explain the
definition of rich types. For that purpose we first remind the notion of N -curves.

Definition 1.2. An N -curve is an N -definable set C with dimM(C) = 1.

For simplicity, and as no confusion can arise, we will refer to N -curves simply as
curves.
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1.1. Pre-geometries and nontrivial types. Our main interest in this paper is in
extracting algebraic information from the aclN (.) pre-geometry of a 1-dimensional
type p, along the line of Zilber’s Trichotomy.

We recall that a definable family of curves F = {Cq : q ∈ Q} is called almost
normal if for every q1 ∈ Q, there are only finitely many q2 ∈ Q such that Cq1 ∩ Cq2

is infinite.

Definition 1.3. Let p ∈ SN (A) be a 1-dimensional type.
• p is called trivial if for every a1, a2, a3 |= p and B ⊇ A, if a3 ∈ aclN (a1, a2B)
then a3 ∈ aclN (a1B) or a3 ∈ aclN (a2B).

• p is called rich if for any b |= p there exists a finite set A, independent from
b over N (i.e. tpN (b/AN) is non-algebraic), and an almost normal family
F of curves, N -definable over the set AN , such that {f ∈ F : 〈b, b〉 ∈ f} is
infinite.

• p is linear if p is not trivial and not rich.

We recall the following definitions from [4]:

Definition 1.4. A 1-dimensional structure N definable in M is called degenerate if
for every a1, a2, a3 ∈ N and B ⊆ N , if a3 ∈ aclN (a1, a2B) then a3 ∈ aclN (a1B) or
a3 ∈ aclN (a2B). N is called linear if it is non-degenerate and every definable almost
normal family of curves in N2 has dimension at most 1. It is called rich if there
exists a two-dimensional family of curves in N2.

The goal is to associate to linear types a (type-)definable, possibly ordered, mod-
ule and to rich types a definable infinite field. We first establish several facts:

It is easily checked that any extension of a rich type is rich (one verifies that a
rich type has at least one global rich extension, and thus any global extension of a
rich type is itself rich). However, showing that any extension of a non-trivial type
is non-trivial requires a little more effort. Since we will have to work not only with
the given type p but also with several of its extensions at the same time, it will be
convenient to clarify this technical point already at this stage.

Definition 1.5. For A ⊆ N and one-dimensional types p, q, r ∈ SN (A), we say that
p, q, r form a nontrivial configuration over A if there are a |= p, b |= q and c |= r such
that c ∈ aclN (abA) and each pair of {a, b, c} is N -independent over A (we say that
a, b are N -independent over A if tpN (a/bA) and tp(b/aA) are non-algebraic). Such
{a, b, c} are said to realize a strong nontrivial configuration over A if in addition each
pair is M-independent over A.

In this terminology, a one-dimensional complete N -type over A is nontrivial iff
there is B ⊇ A and extensions q, r, s ∈ SN (B) of p which form a nontrivial con-
figuration over B. In particular, if some complete non-algebraic extension of p is
nontrivial then p is nontrivial as well.

Note that if {a, b, c} realise a nontrivial configuration over A and dimM(abc/A) = 2
then the configuration is strong over A. It follows that if {a, b, c} realise a nontriv-
ial configuration over A and a′b′c′ is an M-generic realisation of tpN (abc/A) then
{a′, b′, c′} realise a strong nontrivial configuration over A.

Lemma 1.6. Let p, q, r ∈ SN (A) be one-dimensional types over A ⊆ N forming a
nontrivial configuration over A.
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(1) Suppose that s ∈ SN (A) is nonorthogonal to r. Then there is B ⊇ A and
p1, q1, s1 ∈ SN (B) extending p, q, s, respectively, such that p1, q1, s1 form a
nontrivial configuration over B.

(2) Each of the types p, q and r is nontrivial.

Proof. (1) Assume that B ⊇ A and c, d are such that tpN (c/B), tpN (d/B) are non-
algebraic extensions of r and s respectively, and such that c, d are inter-algebraic in
N over B. By an automorphism argument, there are a, b such that

tpN (a/B), tpN (b/B), tpN (c/B)

form a nontrivial configuration over B and tpN (a/B), tpN (b/B) extend p, q, respec-
tively. It follows from exchange that {a, b, d} realize a nontrivial configuration of
p1, q1, s over B.
(2) Because p, q, r form a nontrivial configuration each of the two types are nonorthog-
onal to each other. In particular, we may apply (1) to p, q, r and take p again for s.
It follows that there are extensions p1, q1, p2 ∈ SN (B), B ⊇ A, of p, q, p, respectively,
which form a nontrivial configuration over B. Applying (1) again (replacing now q1

by an extension of p, we obtain a nontrivial configuration p1, p2, p3 where all types
extend p. It follows that p is nontrivial. ¤

Corollary 1.7. If p ∈ SN (A) is 1-dimensional and non-trivial then every complete
non-algebraic extension of p is non-trivial.

Proof. Assume that B ⊇ A, and q ∈ SN (B) is a non-algebraic extension of a non-
trivial type p ∈ SN (A). Let a |= q.
Because p is nontrivial there are a1, b1, c1 |= p and B′ ⊇ A such that

tpN (a1/B′), tpN (b1/B′), tpN (c1/B′)

form a nontrivial configuration over B′. As we observed above, we may assume that
this is a strong configuration (i.e. every two are also M-independent).

Because a1 ≡A a in N , we may assume that a1 = a. Next, we may also as-
sume that b1c1B

′ is M-independent from B over aA. By that we mean that
dimM(b1c1B

′/aB) = dimM(b1c1B
′/aA). Indeed, this can be done by finding an

M-generic realisation of tpN (b1c1B
′/aA) over aB and calling it b1c1B

′ again.
It follows that a, b1, c1 realize a nontrivial strong configuration over BB′. By

Lemma 1.6 (2), the type tpN (a/BB′) is nontrivial and therefore q = tpN (a/B) is
nontrivial. ¤

Remark Instead of using M-dimension in the above proof, we could use Uþ-rank
considerations. Indeed, the definitions of nonorthogonality and nontriviality make
perfect sense for types of Uþ-rank 1, and the proof of the last lemma goes through
unaltered to the rosy context. However, in order to avoid introducing these concepts,
which will not be used herein, we preferred sticking with o-minimal considerations.

1.2. Stable types. When investigating structures interpretable in o-minimal the-
ories, the stable/unstable dichotomy arises naturally as a main division line in the
analysis. Below we reformulate this division line on the level of type-definable sets,
recalling a variation on a definition of Lascar and Poizat, [8]:

Definition 1.8. Let N |= T sufficiently saturated, for a theory T . A partial type
Φ(x) is unstable in N if there exists an N -formula ϕ(x, y) defined over N and
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〈ai, bi〉i∈ω, ai |= Φ, such that N |= ϕ(ai, bj) iff i < j. If there is no such formula ϕ
then Φ is said to be stable in N .

The following are immediate from the definition (and compactness).
(1) Every extension of a stable partial N -type is stable. (However, there are

complete stable types all of whose formulas are unstable, see Example 2.4
below).

(2) Every partial unstable N -type over a set A can be extended to a complete
unstable N -type over A.

(3) By compactness, if p ∈ SN (A) is stable, then for any φ(x, y) over A, there
exists θ(x) ∈ p such that φ(x, y)∧θ(x) does not have the order property. For
formulas, this notion of stability may be ambiguous, because of the earlier
definition (see for example [13]) of a stable formula (with a given partition
of variables) δ(x, y) as one which does not have the order property, namely,
that for no 〈ai, bi〉i∈ω can it be that |= φ(ai, bi) ⇐⇒ i < j.

In any case, by definition we have:
(4) An N -formula ϕ(x) is stable if and only if for every δ(x, y), the formula

ϕ(x) ∧ δ(x, y) does not have the order property.
Complete stable types are studied in more detail in [3] where it is shown that such

types share many of the good properties of types in stable theories. We give here a
partial list (all results can be found in [2], some can actually be found in [8]).

Fact 1.9. Let N be a sufficiently saturated model of an arbitrary theory.
(1) • If p ∈ SN (aclN (A)) is stable then it is stationary, namely has a unique

non-forking extension (in particular, p does not fork over A).
• If p ∈ SN (A) is stable and stationary then it is definable, namely for
all φ(x, y) over A there is an N -formula ψ(y) over A such that for all
b ∈ A, ψ(b) iff φ(x, b) ∈ p.

• If p ∈ SN (A) is stable then it satisfies the open mapping theorem,
namely, if q ⊇ p is a non-forking extension and φ(x, b) ∈ q then there is
ψ(x) ∈ p which is a finite positive boolean combination of A-conjugates
of φ(x, b).

(2) If Φ is a stable partial type then it defines a stably embedded set, namely every
relatively N -definable subset of Φ(N)k is relatively definable over parameters
realising Φ.

(3) If N is interpretable in an o-minimal theory and p is a one-dimensional stable
type, then U(p) = 1.

2. Statement of the main result

We are now ready to state the finer version of Theorem 2 referred to in the intro-
duction.

Theorem 2.1. Assume that N is a definable structure in a sufficiently saturated
o-minimal M and that p is a one-dimensional N -type over an ℵ0-saturated model
N0 ≺ N . Then one, and only one, of the following holds:

(1) p is trivial (with respect to aclN ).
(2) p is non-trivial and stable: There is an N -definable group G over N0, whose

N -induced structure is locally modular and strongly minimal, such that p is
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non-orthogonal the generic type of G. In particular, p is strongly minimal
and locally modular.

(3) p is nontrivial and unstable: for every a |= p there exist a parameter set
A ⊇ N0 with tpN (a/A) non-algebraic, a formula ϕ(x) ∈ tp(a/A), and an
equivalence relation E on ϕ(N) with finite classes, which is N -definable over
A, such that either
(a) p is linear, in which case the structure which N induces on ϕ(N)/E is

that of an interval in an ordered vector space over an ordered division
ring. Or,

(b) p is rich, in which case the structure which N induces on ϕ(N)/E is an
o-minimal expansion of a real closed field.

It is easy to verify that the above theorem implies Theorem 2. The only additional
observation is that, in the unstable case, if φ(N/E) has the structure of an interval
〈I, 0, <, +〉 in an ordered vector space then, fixing any α > 0 in I we obtain a
definable group G on [0, α) with addition modulo α. The structure induced on G is
clearly linear.

To see that the above theorem also implies 3 for a 1-dimensional definable structure
N , it is sufficient to show that N is non-trivial if and only if there is a non-trivial
1-type in N and that it is rich if and only if there is a rich 1-type. Obviously, ifN has
a non-trivial 1-type it is non-trivial, the converse is given by Lemma 1.5(2). Now, if
such a rich 1-type exists then, by the above, N admits a definable real closed field R
on a set of the form X/E, for X ⊆ N and E of finite classes. The field implies the
existence of a 2-dimensional normal family of curves (graphs of polynomial function
of fixed degree n > 0) on R2 which translates to such a family on N2, hence N is rich.
For the opposite implication, assume thatN is rich as witnessed by F = {Cq : q ∈ Q}
an N -definable 2-dimensional almost normal family of curves in N2. Fix q0 generic
in Q and p0 = 〈a, b〉 generic in Cq0 . We claim that tp(b/q0) is rich. Indeed, if b′ ≡q0 b
then the family {Cq ◦ C−1

q0
: q ∈ Q} is an almost normal family with infinitely many

curves through 〈b′, b′〉.
Remark 2.2. (1) The theorem also implies that, in our setting, complete one-

dimensional nontrivial stable N -types must contain a stable (in fact strongly
minimal) formula (compare with Example 2.4 below).

(2) Theorem 2.1 does not say much about trivial types, so a few words on the
subject are in place:
The analysis of unstable trivial types could be reduced locally, via Theorem
3.1 below, to that of 1-types in trivial o-minimal structures. Note however
that a trivial one-dimensional type p might not contain any formula whose
structure is trivial, as the second part of Example 2.4 shows. A reasonable
classification of trivial o-minimal structures is given in [9].

In the stable case, note that by a theorem of Lachlan ([7], Theorem 4.6), all
trivial structures which are totally categorical are definable in the o-minimal
structure (Q,≤). It is thus left to treat those trivial N -types which don’t
contain a stable trivial formula ϕ or those for which the structure induced
on ϕ is not totally categorical.

2.1. Some examples. At the suggestion of the referee we add a few examples, show-
ing among others that the statement of the theorem is in some sense the strongest
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possible. First, observe that trivial stable structures interpretable in o-minimal the-
ories need not have any strongly minimal subsets:

Example 2.3. Let L1 := {Pi}i∈N be a language with infinitely many unary predi-
cates, and T1 the L1-theory stating that they are all infinite and pairwise disjoint.
Let L := {Pi,j : i, j ∈ N} be the expansion of L1 with the theory T stating that:

(1) Pi,0 ≡ Pi for all i.
(2) For a fixed i0 the set Pi0,j+1 splits Pi0,j to two infinite sets.

Clearly, T is stable has a one-dimensional interpretation in (R, <) but no formula in
T is strongly minimal.

As we observed earlier, Theorem 2 implies that every one-dimensional stable non-
trivial N -type contains a stable formula. However, stable trivial types might not
contain any such stable formula:

Example 2.4. Let L2 be the expansion of L1 (from 2.3 ) by {≤i}i∈ω, a countable set
of binary relations, and let T2 be the expansion of T1 stating that each ≤i is a dense
linear ordering on Pi with no endpoints. Clearly, T2 has quantifier elimination, so it
is easy to check that the type p := {x /∈ Pi : i ∈ ω} is stable and complete, but every
formula in p is unstable. Indeed, the only stable formulas, even over parameters, are
algebraic.

We can further expand each Pi by an ordered group operation +i : P 2
i → Pi,

making each Gi = 〈Pi, <i,+i〉 into an ordered divisible abelian group. The whole
structure can be interpreted in 〈R, <,+, ·〉, with each Gi living on (i, i + 1) and +i

the image of + under some definable bijection between R and (i, i + 1). In this case,
the above type p is also trivial but does not contain any trivial formula.

Returning to the statement of Theorem 2.1, let us see that the equivalence relation
E (with finite classes) appearing in the statement of the theorem cannot be avoided:

Example 2.5. LetR be an o-minimal expansion of (R,≤) and N := {0}×R∪{1}×R.
Let S := R and consider the two sorted structure N := (N, S, π, · · · ) where π : N →
S is the natural projection, S is taken with all its R-induced structure, and there is
no further structure in N . In particular S is o-minimal. Then a type extending N
is trivial (resp. linear, resp. rich) if an only if its image under π is. But clearly, no
element of N is contained in an N -definable o-minimal structure.

Note that in the unstable case Theorem 2.1 does not imply, when p is linear or
rich, that p/E itself is a generic type of a definable group or real closed field. Instead,
only extensions of p satisfy this. This is unavoidable as the following variant of an
example from [2] shows.

Example 2.6. Consider N := (R, +, ∗, I), where I is a unary predicate interpreted
as the unit interval and ∗ ⊆ I3 is that part of the graph of multiplication contained
in the unit cube. By the trichotomy theorem for o-minimal theories, a real closed
field is definable near each point of N . It is not hard to check that in N every
bounded interval is linearly ordered, but no unbounded interval is. In particular,
no real closed field is definable on an unbounded interval (see [10] for more details).
Now let (R,+, ·,≤) ≺ R∗ and let N ∗ º N be the reduct of R∗ to (+, ∗, I). Let
p := tpN (a/N) for some a ∈ R∗ which satisfies a > b for all b ∈ R. It is not hard to
check that p itself is not a generic type in any definable field (for such a field would
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have to have an unbounded domain), but every realization of p is contained in a
definable real closed field on a bounded interval.

We conclude this set of examples with an example showing that our treatment of
one-dimensional structures does not cover all geometric structures interpretable in
o-minimal ones. Of course, strongly minimal sets interpretable in o-minimal theo-
ries are necessarily geometric structures, and need not be one-dimensional (take for
example the complex field). Here is an unstable example.

Example 2.7. Let N := (Q2,≤∗, Pi)i∈ω where ≤∗ is interpreted as the lexicographic
order on Q2 and Pi = {(i, x) : x ∈ Q} for all i ∈ ω. This description of N shows
that it is definable in (Q, <) but as the Pi are definable subsets with no supremum
in N (with respect to ≤∗) and as there are infinitely many of them, it cannot be
that N has a one-dimensional interpretation in any o-minimal structure. It is not
hard to see that this is a geometric structure (indeed, it is þ-minimal, and has no
algebraicity - i.e. aclN (A) = A for all A ⊆ N). By endowing Q2 with the usual
group operation, we get a nontrivial variation.

3. Proof of the main theorem

We now return to the proof of Theorem 2.1. The proof uses, in addition to results
of the previous sections, two main tools. The first is the Trichotomy Theorem for
o-minimal structures of [11]. The second is a theorem from [2]:

Theorem 3.1. Let N be definable in a saturated enough dense o-minimal structure
M. Let N0 ⊆ N be a small model and p ∈ SN (N0) a one-dimensional unstable
type. Then p has an almost o-minimal extension, namely there is an N -definable
set X0 (possibly over new parameters) with X0 ∩ p(N) infinite, and an N -definable
equivalence relation E on X0 with finite classes such that X0/E (with all its N -
induced structure) is o-minimal.

Remark 3.2. The equivalence relation E appearing in this theorem gives rise to the
one appearing the statement of unstable part of Theorem 2.1.

We will need the following corollary of the above:

Corollary 3.3. Let N be definable in a saturated enough dense o-minimal structure
M. Let N0 ⊆ N be a small model and p ∈ SN (N0) a one-dimensional unstable type.
Then every complete non-algebraic extension of p is unstable.

Proof. This is a special case of the main result of [3], but we give a short self contained
proof for the present setting. Let B ⊇ N0 be a small set, q ∈ SN (B) a non-algebraic
extension of p, and assume that b is an M-generic realisation of q over B.

By Theorem 3.1, there exists an almost o-minimal X0 which is defined over C0 ⊇
N0 such that X0∩p(N) is infinite (we say that the almost o-minimal set X0 is defined
over C0 if the set X0, the equivalence relation E and the linear ordering on X0/E
are all defined in N over C0). Let b0 ∈ X0 ∩ p(M) be M-generic over C0.

Next, we claim that there is B0 ⊆ N which isM-independent from C0 over N0 and
such that b0B0 ≡ bB in M. Indeed, we first take any B1 ⊇ N0 such that b0B1 ≡ bB
in M and then we let B0 be an M-generic realisation of tpN (B1/b0N0) over b0C0.
We now have dimM(B0/b0C0) = dimM(B0/b0N0) as needed.
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Because b and B were M-independent over N0, the same is true for b0 and B0

and hence B0 is M-independent from b0C0 over N0. It follows that

dimM(b0B0C0/N0) = dimM(b0/N0) + dimM(B0/N0) + dimM(C0/N0),

and therefore dimM(b0/B0C0) = 1. This implies that tpN (b0/B0C0) is a non-
algebraic type containing the formula x ∈ X0. Because X0/E is an o-minimal
structure defined over C0, it easily follows that tpN (b0/B0C0) is unstable.

We now conjugate b0, B0 and C0, over N0, with b,B and some C (using an
N -automorphism over N0). It follows that tpN (b/BC) is unstable and therefore
q = tpN (b/B) is also unstable. ¤

Note that Corollary 3.3 is false if the type p is not assumed to be one-dimensional.
E.g. consider the structure N = 〈R2, E, <〉, where E is the equivalence relation
〈x, y〉E〈x′, y′〉 iff x = x′, and < is the natural linear ordering on R2/E. The unique
two-dimensional type in this structure is unstable but the type of every element over
another, E-equivalent, element is stable.

We are now ready to prove Theorem 2.1.

Proof. We assume that p ∈ SN (N0) is a one-dimensional nontrivial type.

Case 1: There is a stable N -formula in p.

Since every formula implying a stable formula is itself stable we can find a stable
ϕ ∈ p with dimM(ϕ(N)) = 1. Let X = ϕ(N). It follows from 1.9 (2), that X is
stably embedded in N . In this case, we may replace N by X and assume that N is
one-dimensional and U(N ) = 1. By Theorem 1, N is necessarily 1-based. Obtaining
a type-definable group in this situation is by now fairly well known, so we will be
brief.

Because p is non-trivial and U(p) = 1, there is a type-definable abelian group G
in N whose generic is nonorthogonal to p (see, Theorem 3 of [5]). Moreover, G is
defined over a realization of p. Since N is now superstable, there is an N -definable
(rather than type-definable) group G0 ⊇ G, with U(G0) = 1. By a theorem of
Gagelman, [1], G0 has finite Morley rank, and moreover the proof shows that this
Morley rank is at most U(G0) = 1. Hence MR(G0) = 1 which implies that G itself
was definable and can be chosen to be strongly minimal. Regarding the parameters
defining G, the type p does not fork over a finite subset of N0, so we can choose
this realization already in N0. It follows that p is strongly minimal and that G is a
locally modular group. The structure of G is given by [6].

Case 2: Every N -formula in p is unstable.

We already saw that it is possible to have stable types all of whose formulas
are unstable. However, we will first show that nontriviality forces the instability
of p. By Theorem 3.1 this will provide us, for every a |= p, with an almost o-
minimal set X0 containing a, with X0 ∩ p(N ) infinite. We will then show that the
o-minimal structure associated with X0 is nontrivial, and complete the proof using
the trichotomy theorem for o-minimal structures.

We fix an N -formula ϕ ∈ p with X = ϕ(N) and dimM(X) = 1.
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Claim p is unstable.

Proof. By a recent result in [3], in a dependent theory every non-trivial stable type
of U-rank 1 must contain a stable formula, therefore p must be unstable. However,
for the sake of completeness we give here a direct proof.

We write p = p(x) and assume towards a contradiction that p is stable.
We first observe that if q ∈ SN (N1) is a non-algebraic extension of p over a model
N1 ⊇ N0 then all of its formulas are unstable (although q is still a stable type).
Indeed, since p is stable with U(p) = 1 and since q is non-algebraic, it is a non-
forking extension of p. Moreover, if φ(x, d) ∈ q defined a stable set then, because
q is a non-forking extension of p, by the Open Mapping Theorem (see 1.9(1)) some
positive boolean combination ψ(x) of N0-conjugates of φ(x, d) is in p(x). But then
ψ(x) itself defines a stable set, contradicting our Case 2 assumption.

Because p is nontrivial there is A ⊇ N0 and a, b, c realising p such that {a, b, c}
realise a strong nontrivial configuration over A. Let R ⊆ X3 be a ternary relation
which is N -definable over A, witnessing this nontriviality. Namely,
(i) R(a, b, c) holds.
(ii) The projection map of R on any of its two coordinates is a finite-to-one map and
its image is two dimensional.
(iii) For every a1, the set {〈b1, c1〉 : R(a1, b1, c1)} is either empty orM-one-dimensional.
(All of this can be obtained for R because the notion ofM-dimension for N -definable
subsets of Xn is N -definable using the fact that ∃∞ is first order in N ).

The formula φ(x, y) := ∃zR(x, y, z) is an N -formula over A with N |= φ(a, b).
Let N1 ⊆ N be a small model containing aA such that dimM(b/N1) = 1. Because a
is M-independent from b over N0, we can also find a0 |= p with φ(a0, b), such that
dimM(a0, b/N1) = 2 and in particular, the partial type {φ(a0, y) ∧ φ(a, y)} ∪ p(y) is
non-algebraic. It follows from our above observation that φ(a0, y)∧φ(a, y) is unstable
and therefore there is a complete (non-algebraic) unstable type r(y) ∈ SN (a0N1),
with φ(a0, y) ∧ φ(a, y) ∈ r. Fix b0 an M-generic realisation of r over a0N1.

By assumption, N |= φ(a0, b0) and hence there exists c0 such that R(a0, b0, c0)
and therefore b0 ∈ aclN (a0c0A). Since dimM(b0a0/N1) = 2, it is easy to see that
{a0, b0, c0} realize a strong nontrivial configuration over N1.

Because r = tpN (b0/a0N1) is unstable so is tpN (b0/N1) and therefore, by Corol-
lary 3.3, the type tpN (b0/c0N1) (which is nonalgebraic) is also unstable.

Finally, a0 and b0 are inter-algebraic over c0N1 hence tpN (a0/c0N1) is also un-
stable. Because this last type extends p, the type p is unstable as well. End of
Claim.

We now proceed with the proof of Theorem 2.1. Since p is unstable, for every
a |= p we can find, (using the same arguments as in the proof of Corollary 3.3),
an almost o-minimal X0 which is N -definable over a parameter set C ⊇ N0, with
dimN (a/C) = 1. Let E be the associated N -definable equivalence relation with
finite classes, such that X0/E (with all the induced N -structure) is o-minimal.

Let X denote the N -interpretable o-minimal structure induced on X0/E. Note
that we do not know whether X0/E is stably embedded in N . Therefore, it could
be that the structure X depends on the model N ′ ≺ N ) in which we consider its
induced structure. Thus, we fix such a (saturated enough) N ′ once and for all and
consider the structure it induces on X0/E. The model N ′ will not play any role from
now on.
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Let d := a/E denote the E-class of a in X0, and let q0 := tpX (d/C). Our aim
is to show that (regardless of our choice of N ′) q0 is rich (resp. linear) iff p is rich
(resp. linear). Because p is nontrivial, it follows from Lemma 1.7 that tpN (a/C) is
also nontrivial and therefore (since the classes of E are finite) that q0 is nontrivial
as well in X .

We now consider d as a generic element in the o-minimal structure X . The Tri-
chotomy Theorem for o-minimal structures [12], implies that the structure which X
induces on some interval I ⊆ X0 around d is either that of an interval in an ordered
vector space or that of an o-minimal expansion of a real closed field.

Assume that p is a rich type in N . We are still working with a fixed one-
dimensional N -definable X ⊇ p(N) defined over N0. Then there exists a set A ⊇ N0,
with dimN (a/A) = 1 and an A-definable infinite almost normal family of curves in
X ×X, all going through 〈a, a〉. We may assume (using automorphism arguments)
that A is M-independent from C over N0 and hence that all the curves are actually
contained in X0 ×X0. Because the family is normal, there exists a number m such
that every curve in the family is definable by any m-distinct points on it. It follows
that if we endow X0 with all N -definable sets over A then the type of a is rich in
this structure. It easily follows that q0 is rich, and hence the N -induced structure
on a neighbourhood of d is that of an o-minimal expansion of a real closed field.

If p is linear then it easily follows that q0 must be linear as well and therefore the
structure of X around d is that of an interval in an ordered vector space over an
ordered division ring. This completes the proof of Case 2, and with it the proof of
Theorem 2.1. ¤
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