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1. How to read these notes?

These notes were written for the tutorial in the Camerino Modnet Summer
school. The main source I used was v.d Dries’ book [1] and many of the proofs here
are based on ideas from that book. I recommend also Macpherson’s survey article
[2]. For material on definable groups, see Otero’s survey [3].

Naturally, the notes cover much more than could be discussed in five lectures, so
I chose to leave the proofs of many small results and observations as problems to the
reader. Thus, these notes can serve as a source for independent study of the basics
of o-minimality. While I expect that most of the problems are “doable” without
much background it is quite possible that some turn out to be more difficult than
I had expected.

Because of lack of time I totally avoided bibliography, but the above texts contain
a very good bibliography list for almost all results mentioned here (except the very
last section).

Please feel free to contact me (see e-mail at the end) for any question on these
notes. They were written quite hastily so contain, I am certain, many errors.

2. The basics of o-minimality

Convention In these notes, the notion of a definable set always allows parameters
in the definition. We sometimes refer to these parameters by writing definable over
A.

2.1. Linearly ordered structures. Assume here that M = 〈M,<, · · ·〉 is a lin-
early ordered structure.

Topology We take the order topology on M and the product topology on Mn.

Problems 2.1. (1) Show that there is a definable family of subsets of Mn which
forms a basis for the topology on Mn. Is every open subset of Mn definable?
(2) For X ⊆Mn a definable set, show that the topological interior and closure of X
are definable. Show that that the sets of isolated points of X and of cluster points
of X are definable.

From now on we assume that the linear order is dense

(3) Assume that f : M →M is definable.
(a) Define what limt→a f(t) means (without using the notion of a converging se-
quence). Show that the function x 7→ limt→x f(t) is definable at every point x at
which this limit exists.
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(b) Show that the set

{x ∈M : f is continuous at x}
is definable.
(5) Show that every linearly ordered (dense) structureM has an elementarily equiv-
alent structure N such that NO sequence in N is convergent, NO definable subset
of N of more than one point is connected, and NO definable infinite subset of N is
compact.

Definably connected sets

Definition 2.2. A subset of X ⊆ Mn is called definably connected if there are no
definable open sets U1, U2 ⊆ Mn such that X ⊆ U1 ∪ U2, X ∩ U1 ∩ U2 = ∅, and
X ∩ U1, X ∩ U2 are nonempty.

Problems 2.3. (6) Show: If M expands the ordered real numbers then a definable
X ⊆ R is connected iff it is definably connected. What about subsets of Rn?
(7) Show that the image of a definably connected set under a definable continuous
function is definably connected.
(8) Show that if X1, X2 ⊆Mn are each definably connected and X1 ∩X2 6= ∅ then
their union is also definably connected.
(9) Show that if X1, X2 ⊆Mn are definable and definably connected and Cl(X1) ∩
X2 6= ∅ then X1 ∪X2 is definably connected.
(10) Assume that a definably connected set X ⊆Mn can be written as an arbitrary
union of definable, pairwise disjoint open sets. Then X must be equal to one of
these sets.
(11) Assume that X is a definably connected subset of Mn and f : X → M is
definable and continuous. Show that graph(f) is definably connected.
(12) (Uniform definability) Let {Xa : a ∈ Mk} be a uniformly definable family of
subsets of Mn (by that we mean that there exist a definable set X ⊆ Mk+n such
that for every a ∈Mn, we have Xa = {b ∈Mn : (a, b) ∈ X}).

Show that the sets of all a ∈Mk such that Xa is a discrete set, closed set, open
set, nowhere dense, bounded, are definable.

What about the set of a’s such that Xa is definably connected?

2.2. O-minimal structures.

Definition 2.4. We assume that M = 〈M,<, · · ·〉 is a linearly ordered structure
(by <). M is called o-minimal if every definable subset of M is a finite union of
points, and open intervals whose endpoints lie in M ∪ {±∞}.

Although the theory of o-minimal structures does not require any other assump-
tions on the linearly ordered set 〈M,<〉, it is convenient to focus on the case where
〈M,<〉 is densely ordered (it turns out that this is basically the only case where
the structure of definable sets is of real interest).

Problems 2.5. (1) Give several examples of a linearly ordered sets 〈N,<〉 which
are not o-minimal (in the pure <-language).
(2) Try to formulate a necessary and sufficient condition on a linearly ordered set
〈N,<〉 to be o-minimal.

We assume from now on thatM is a densely ordered o-minimal struc-
ture.
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(3) Show that the following are equivalent:
(a) M is o-minimal.
(b) Every definable infinite subset of M has an interior and every definable subset
of M which is bounded from above has a least upper bound.
(c) For every definable X ⊆M , if ∅ 6= X 6= M then its boundary (Cl(X) \ Int(X))
is finite and nonempty.

(4) Let V = 〈V,<,+, λa〉a∈F be an ordered vector space over an ordered field F .
Show how quantifier elimination for V implies that V is o-minimal.
(5) Let R = 〈R, <,+, ·〉 be the ordered field of real numbers. Show how quantifier
elimination for R implies that R is o-minimal.
(6) (o-minimality and QE) Find an expansion of 〈R, <〉 which has quantifier elim-
ination but is not o-minimal.

Find an expansion of 〈R, <〉 which is o-minimal but does not have QE (this is
probably more difficult).

We now assume that M is o-minimal:
(7) Show that every interval in M and more generally, every definable rectangular
box in Mn is definably connected.
(8) Let {Xa : a ∈Mn} be a uniformly definable family of subsets of Mk. Show that
the set {a ∈ Mn : Xa is finite } is definable (this should be done just based on the
definition of o-minimality).
(9) The Intermediate Value Theorem Assume that f, g : I → M are two
definable continuous functions on an open interval, such that for every x ∈ I we
have f(x) 6= g(x). Show that either f < g on I, or g < f on I.

3. O-minimality and elementary equivalence

A Fundamental Question Is o-minimality preserved under elementary equiva-
lence of structures?

Here are several related observations which are not difficult to verify. We denote
by π1 : Mn+1 → Mn the projection on the first n-coordinates. For X ⊆ Mn+1,
and a ∈Mn, we let Xa = {b ∈M : (a, b) ∈ X}.

We still assume that M is o-minimal.

Problems 3.1. (1) Assume that for everyM-definable family {Xa : a ∈Mk} there
exists a number K such that every Xa is the union of at most K-many intervals
and points. Then every structure which is elementary equivalent to M is also o-
minimal.
(2) Assume that for every definable family {Xa : a ∈ Mk} of finite subsets of M
there exists a number K such that for every a ∈ Mk, |Xa| ≤ K. Then every
structure elementarily equivalent to M is o-minimal.
(3) If M is ω -saturated then every elementarily equivalent structure is o-minimal.
(4) Show that “minimality” (in contrast to o-minimality) is NOT preserved under
elementary equivalence. Find infinite structures N1 ≡ N2 such that every definable
subset of N1 is either finite or co-finite, but this fails for N2.

The goal of the next few sections is to establish the assumptions in Problems
(1) and (2) above, and to conclude that o-minimality is indeed preserved under
elementary equivalence.
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3.1. The monotonicity-continuity theorem. First, some preliminary results:

Problems 3.2. Assume that I ⊆M is an open interval and Y1, . . . , Yn are definable
subsets of I such that I =

⋃n
i=1 Yi.

(1) Show that at least one of the Yi’s contains an open interval.
(2) Show that for every a ∈ I there exists a′ > a and i0 such that the open

interval ]a, a′[ is contained in Yi0 .

We use here ]a, b[ to denote open intervals and (a, b) to denote ordered pairs.
Our goal is to prove the monotonicity theorem, denoted by MCT. The main

ingredient is the following.

Lemma 3.3. (Main Lemma) Let f : I → M be a definable function on some
open interval I and assume that for every x ∈ I we have f(x) > x. Then there
exists d ∈ I such that the set {x < d : f(x) > d} is infinite.

Proof. Let I =]a, b[ (where a and b could be −∞,+∞, respectively), and define

B = {x ∈ I : ∀t ∈]a, x[ f(t) < f(x)}.

Case 1 B is infinite.
In which case, by o-minimality, B contains an open interval J . Take c ∈ J , and

since f(c) > c there exists an element d ∈ I such that c < d ≤ f(c). Now, for every
x in the infinite interval J∩]c, d[, we have f(x) > f(c) ≥ d, as required.
Case 2 B is finite.

Let b0 = minB. By the definition of B, for every t ∈]a, b0[ there exists t′ < t
such that f(t′) > f(t). If we take c ∈]a, b0[ then there exists an infinite sequence
· · · < t2 < t1 < c such that f(c) < f(t1) < f(t2) < · · · . In particular, if we choose
d ∈ I such that c < d ≤ f(c) then there exist infinitely many x < d such that
f(x) > f(c) ≥ d. �

Corollary 3.4. (A definable “Ramsey” theorem) Let I ⊆ M be an open
interval and assume that I2 = X1 ∪ · · · ∪Xr, for definable Xi’s. Then there exists
an open (nonempty) subinterval J ⊆ I and an i = 1, . . . , r such that for every a < b
in J , (a, b) ∈ Xi.

Proof. Using Problem ?? (2) (how?), for every a ∈ I there exists a′ > a and an
i = i(a) ∈ {1, . . . , r} such that

(3.1) ∀t ∈]a, a′[ we have (a, t) ∈ Xi

By Problem 3.2 (1) (why?), there exists an open interval J ′ ⊆ I and a fixed i0 such
that for all a ∈ J ′, we have i(a) = i0. Given a ∈ J ′, let s(a) equal the supremum of
all a′ > a satisfying (3.1) (this supremum may equal +∞). We have s(x) > x for
all x ∈ J ′, hence we may apply the main lemma and get an open interval J ⊆ J ′

and d > J such that for all x ∈ J , s(x) > d. It is now easy to see that for all a < b
in J , we have (a, b) ∈ Xi0 . �

Theorem 3.5. MCT Let f : I →M be a definable function on some open interval
I =]a, b[ (where the endpoints could be ±∞). Then there are a0 = a < a1 < · · · <
an = b such that on each ]ai, ai+1[ the function f is either constant or strictly
monotone and continuous.
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Proof. Monotonicity
Consider the following three definable subsets of M , for � ∈ {=, <,>}:

A� =

x ∈ I :
f is locally constant in a neighbrohood of x (if � is =)
f is strictly increasing in a neighborhood of x (if � is <)
f is strictly decreasing in a enighborhood of x (if � is >)

 .

We claim that A= ∪A< ∪A> covers all but finitely many points in M : Indeed,
assume towards contradiction that the complement B of this union is infinite, so
contains an open interval, call it B again. Consider the sets:

X� = {(x, y) ∈ B2 : f(x)�f(y)},
with � ∈ {=, <,>}. These sets clearly form a partition of B2. By applying
Corollary 3.4, we may find an interval J ⊆ B, and � ∈ {=, <,>}, such that for
every x < y in J , we have (x, y) ∈ X�. If � is = then f is constant on J , hence
J ⊆ A=. If � is < or > then J ⊆ A< or J ⊆ A>, contradicting our choice of B.
Hence, B is indeed finite, and therefore there are a0 = a < a1 < · · · , an = b, such
that each interval ]ai, ai+1[ is contained in one of the A�’s.

It is left to see that if f is locally constant or locally strictly monotone near
every x in ]ai, ai+1[ then it is globally so, on the whole interval. We leave it as an
exercise. �
Continuity

We may assume that f : I →M is strictly increasing. As above, it is sufficient to
prove that I contains an interval on which f is continuous. Since f is not constant,
its image contains an open interval J =]c, d[. But now, for every c < c1 < d1 < d,
the pre-image of ]c1, d1[, must be the interval ]f−1(c1), f−1(d1)[ (notice that f is
one-to-one on I). In particular, f is continuous on f−1(J). �

Problems 3.6. (1) Assume that for some open interval J , a definable function f
is locally constant (strictly monotone) near every x ∈ J . Show that f is constant
(strictly monotone) on the whole of J .

(2) Let f be a definable continuous function from an interval ]a, b[ into Mk. Use
MCT to show that if f(t) is bounded then it has limits in Mk as t tends to a and
to b.

3.2. Sparse subsets of M2. By problem 3.1 (2), in order to prove that o-minimality
is preserved under elementary equivalence it is sufficient to prove that any definable
family {Xa : x ∈Mk} of finite subsets of M has a uniform bound on their size. Our
goal in the next section is to prove that for the case k = 1, namely for 1-parameter
definable families of subsets of M .

Definition 3.7. A definable set X ⊆M2 is called sparse if for all but finitely many
a ∈M , the fiber Xa is finite.

And by induction, a definable X ⊆ Mn+1 is sparse if for all a ∈ Mn outside a
sparse subset of Mn the fiber Xa is finite.

Notice that the union of finitely many sparse sets is again a sparse set. Our goal
is to prove:

Theorem 3.8. Given X ⊆M2 sparse, there is K ∈ N such that for every a ∈M ,
if Xa is finite then |Xa| ≤ K.

We prove the theorem through a sequence of lemmas.
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Lemma 3.9. For X ⊆M2 a definable set, the following are equivalent:

(1) X is sparse.
(2) The interior of X is empty.
(3) X is nowhere dense in M2.

Proof. We first show that (2) implies (1): If X is not sparse then, by o-minimality,
there is an interval I ⊆M such that for every a ∈ I, the fiber Xa contains a whole
open interval. Given a ∈ I, we let s1(a) ∈ M ∪ {−∞} be the infimum of the first
open interval in Xa and let s2(X) ∈M ∪ {+∞} be the supremum of the first open
interval in Xa. The functions are definable (why?) and we have s1(a) < s2(a).
By MCT, we may assume that they are both continuous on a subinterval J ⊆ I.
But then the set {(x, y) : x ∈ J&s1(x) < y < s2(x)} is an open subset of X, so
Int(X) 6= ∅.

(1) ⇒ (3): Let U ⊆ M2 be a definable open set. Because X is sparse the set
Xc ∩ U is not sparse. But then, by what we just proved, Int(Xc ∩ U) 6= ∅. It
follows that X is not dense in U , so X is nowhere dense. The fact that (3) implies
(2) is immediate. �

One corollary of the above is that the definition of a sparse set in M2 does
not depend on the ordering of the coordinates, hence if X is sparse then after
permutating of the first and second coordinate we still have a sparse set.

Corollary 3.10. If X ⊆M2 is sparse then Cl(X) is sparse.

Proof. X sparse ⇒ X is nowhere dense ⇒ Cl(X) is nowhere dense ⇒ Cl(X) is
sparse. �

Lemma 3.11. Let X ⊆M2 be definable and sparse.
(i) If π1(X) is infinite then X contains the graph {(x, f(x)) : x ∈ I}, of a continuous
definable function f on an open interval I.
(ii) If X contains the graph of a definable continuous function f : I →M as above
then there exist x0 ∈ I and an open rectangular box U 3 (x0, f(x0)) such that
X ∩ U = Graph(f) ∩ U .

Proof. (i) We may assume that π1(X) is an open interval I0 ⊆M . For every x ∈ I0
let f(x) be the minimal y such that (x, y) ∈ X. By MCT, there exists an interval
I ⊆ I0 on which f is continuous.
(ii) For every x ∈ I, let

f1(x) = max{y < f(x) : (x, y) ∈ X} and if there is no such y, take f1(x) = −∞.

f2(x) = min{y > f(x) : (x, y) ∈ X} and if there is no such y, take f1(x) = +∞.
Again, by MCT, there exists an open interval J ⊆ I on which all three func-

tions, f1 < f < f2 are continuous, and moreover, for every a ∈ J , we have
Xa∩ ]f1(a), f2(a)[ = {f(a)}. The result now easily follows from the continuity of
the three functions. �

Lemma 3.12. Let X ⊆ M2 be a definable sparse set, and X1 ⊆ X definable
such that π1(X) is infinite. Then there exists an open definable U ⊆ M2 such
that (U ∩X) ⊆ X1 and furthermore this intersection is the graph of a continuous
function on some open (nonempty) interval.
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Proof. We first apply Lemma 3.11(i) to X1 and obtain a continuous function f
whose graph is contained in X1. We then apply (ii) to X and to f . �

An immediate corollary is:

Corollary 3.13. Let X ⊆M2 be a definable sparse set. Then Cl(X) \X is finite.

Proof. By Lemma 3.10, Cl(X) is also sparse. We now consider X1 = Cl(X)\X. If
X1 was infinite then either π1(X1) or π2(X1) were infinite. Because of the symmetry
we discussed above we may assume that π1(X1) is infinite. If we now apply Lemma
3.12 to X1 ⊆ Cl(X), we obtain an open U such that (U ∩ Cl(X)) ∩X = ∅ (while
U ∩ Cl(X) 6= ∅), contradiction. �

Given X ⊆ M2, let G(X) be the set of all (x, y) ∈ X for which there exists
an open rectangular box I × J 3 (x, y) such that X ∩ (I × J) is the graph of a
continuous function f : I →M . Notice that if X is definable then so is G(X).

Lemma 3.14. If X ⊆M2 is definable and sparse then the projection of X \G(X)
onto the first coordinate is finite.

Proof. Let X1 = X \G(X). By Lemma 3.12, we must have π1(X1) is finite. �
Given X ⊆ M2 and a ∈ π1(X), we say that X is bounded near a if there exists

an open interval I 3 a such that X ∩ (I ×M) is bounded in M2.

Problems 3.15. Assume that X ⊆ M2 is a sparse set. Show that for all but
finitely many a ∈ π1(X), the set X is bounded near a (hint: use the functions
sM (x) = sup(Ax) and sm(x) = inf(Ax)).

We now complete the proof of Theorem 3.8 as follows:
Given a sparse X ⊆ M2, we remove all points a ∈ π1(X) such that (1) a ∈

π1(Cl(X) \ X) and (2) X is not bounded near a. By Lemma 3.12 and Problem
3.15 there are only finitely many such points. By partitioning π1(X) into finitely
many open intervals, we may assume:
(i) π1(X) is an open interval I.
(ii) X is relatively closed in I ×M .
(iii) X is bounded near every a ∈ π1(X).

The proof of the theorem will be finished once we prove:

Lemma 3.16. If X ⊆M2 is a sparse set satisfying (i)-(iii) above and if X = G(X)
then for all a1, a2 ∈ I, we have |Xa1

| = |Xa2
|.

Proof. For n ∈ N, let X(n) = {a ∈ I : |Xa| = n}. We claim that X(n) is open:
Indeed, let a ∈ X(n) and let Xa = {b1, . . . , bn}. Because each (a, bi) is in G(X),

there are pairwise-disjoint open intervals J1, . . . , Jn, bi ∈ Ji, and an open interval
I ′ 3 a such that for each i = 1, . . . , n, X ∩ (I ′ × Ji) is the graph of a continuous
function fi whose domain is I ′. Moreover, we may assume that X is bounded in
I ′ ×M (by (iii)).

Because X ∩ (I ′ ×M) is bounded and relatively closed, by shrinking I ′ even
further we may assume that

(3.2) X ∩ (I ′ ×M) is contained in ∪ni=1 (I ′ × Ji).
But now, for every x ∈ I ′, Xx = {f1(x), . . . , fn(x)}, thus showing that I ′ ⊆ X(n)

and therefore X(n) is open.
We showed that I is a union of pairwise disjoint definable open sets {X(n) :

n ∈ N}. Because I is definably connected, it follows (see Problem 2.3(10)) that
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I = X(n) for one of these n’s, thus ending the proof of Lemma 3.16, and of Theorem
3.8. �

Problems 3.17. Prove that we may indeed assume (3.2) above.

The proof of Theorem 3.8 gives more than just a uniform bound on the size of
the fibers in sparse sets. It shows the following:

Theorem 3.18. For every definable sparse set X ⊆ M2, there are a1 < · · · < an
such that for each i, the set X∩ ]ai, ai+1[ is a union of ki-many pair-wise disjoint
graphs of continuous definable functions from ]ai, ai+1[ into M (where ki could be
equal to zero).

Notice that by the o-minimal version of the Intermediate Value Theorem (see
Problem 2.5 (10)), there is an ordering on the continuous functions on each of the
intervals.

Consider now an arbitrary definable set X in M2, and let X? be the set of all
(a, b) such that b is on the boundary of Xa. Because of o-minimality, X? is a
sparse set. Because of Theorem 3.18, we may assume, after partitioning π1(X?)
into finitely many open intervals, that π1(X?) is an open interval I, and that X?

is the union of k-many graphs of continuous functions fi : I →M , i = 1, . . . , k.

Problems 3.19. Assuming that X? satisfies the above, prove that X ∩ (I ×M) is
a finite union of sets of the form:
(i) Graph of fi for some i ∈ {1, . . . , k}, or
(ii) {(x, y) : x ∈ I&fi < y < fi+1}, for some i ∈ {1, . . . , k}.

This is the first step towards proving the fundamental Cell Decomposition The-
orem.

3.3. Cell Decomposition.

Definition 3.20. For every n ∈ N, we define k-cells in Mn as follows:
In M : Every point is a 0-cell. Every open interval is a 1-cell.
And by induction: A k-cell in Mn+1 is a set X ⊆ Mn+1 whose projection on

Mn is a cell C and such that:
(i) Either C is a k-cell and X is the graph of a definable continuous function

f : C →M ;
(ii) Or C is a k−1 cell and there are definable continuous functions f, g : C →M

with f(x) < g(x) for all x ∈ C (and f, g possibly taking the value −∞,+∞,
respectively, on the whole of C) such that X is the region “trapped” between the
graphs of f and g. Namely:

X = {(x, y) : x ∈ C&f(x) < y < g(x)}.

A cell decomposition of a definable set X ⊆Mn is a partition of X into finitely
many pairwise disjoint cells such that for any two cells C1, C2, either π(C1) = π(C2)
or π(C1) ∩ π(C2) = ∅ (where π is the projection on the first n− 1 coordinates). A
cell decomposition of X is said to be compatible with Y ⊆ X if every cell is either
contained in Y or disjoint from it.

Remark The notion of a cell is defined with respect to a particular ordering of the
coordinate axes. It is not invariant under a permutation of the coordinates.
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Problems 3.21. (1) Show that every definable cell is definably connected (use
induction on the construction of the cell).

We say that two cells C1, C2 are adjacent if either C1 ∩ Cl(C2) 6= ∅ or C2 ∩
Cl(C1) 6= ∅.
(2) Let X be a finite union of the cells C1, . . . , Ck. Consider the graph whose
vertices are the cells and two adjacent cells are connected by an edge. Prove that
X is definably connected if and only if the graph is connected:
(3) Show: If C ⊆ Mn is a k-cell then it is definably homeomorphic to an open
subset of Mk. Moreover, this homeomorphism is given by a projection of C onto k
of the coordinates (hint: Use induction on n).
(4) If X ⊆Mn is a union of finitely many n− 1 cells then Mn \X is dense in Mn

and has a nonempty interior.
(5) Give an example of a cell C ⊆ R2 (in the language of real closed fields) which is
not a cell after a permutation of the coordinates. Can every cell in R2 be decomposed
into finitely many sets which are cells with respect to both orderings of the coordinate
axes?

The following theorem can probably be called “The Fundamental Theorem of
O-minimality”.

Theorem 3.22. If X ⊆Mn is definable then there is a cell decomposition of Mn

into cells which is compatible with X.

Proof. Note that Theorem 3.18 and Problem 3.19 establish the theorem for the case
n = 2. The proof of the general result is too long for these notes. However, the
ambitious reader can try to push forward the arguments in Section 3.2 to sparse
subsets of M3 (and then similarly by induction). The missing ingredient which
needs to be established is: Every definable function f : M2 → M is continuous
outside a sparse subset of M2. �

Given a definable set X, a definably connected component of X is a maximal de-
finably connected subset of X (A-priori, such components might not be definable).

Corollary 3.23. Every definable X ⊆ Mn has finitely many definably connected
components, each definable itself.

Proof. We write X =
⋃

i Ci using the cell decomposition. Since Ci is definably
connected, each definably connected component of X either contains the cell or
disjoint from it. Hence, each component is a union of some of the cells in the
decomposition. �

Corollary 3.24. Let {Xa : a ∈ Mk} be a uniformly definable family of subsets of
Mn. Then the set {a ∈Mk : Xa is definably connected } is definable.

Moreover, there is a bound on the number of definably connected components of
each Xa, as a varies in Mk.

Proof. Consider the set X ⊆ Mk+n which defines the family, and take a partition
of X into cells C1, . . . , Cr. Notice that for every a ∈Mk, the fiber (Ci)a is a cell in
Mn. Now use Problem 3.21(2) above. �

Corollary 3.25. Let f : U → M be a definable function on a definable open set
U ⊆ Mn. Then there are finitely many k-cells C1, . . . , Cr ⊆ U , with k ≤ n − 1,
such that f is continuous on U \

⋃r
i=1 Ci.

Proof. We apply Cell Decomposition to the graph of f . �
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Problems 3.26. (1) Given a definable X ⊆ Mn+1 there exists K ∈ N such that
for every a ∈ Mn, if Xa is finite then |Xa| ≤ k. Moreover, the number K is not
larger than d where d is the number of cells in a cell decomposition of X.
(2) Prove the “moreover” clause in Corollary 3.24.
(3) Prove that the notion of “definable connectedness” does not depend on how rich
the langauge is: Assume that N is an o-minimal expansion of M; show that a M-
definable subset of Mn is definably connected in the sense of M iff it is definably
connected in the sense of N (hint: prove it first for cells).
(4) If M expands the ordered real numbers then a definable X ⊆ Rk is connected
iff it is definably connected (prove it first for cells).

Finally, using our earlier observations we can conclude:

Theorem 3.27. If M is o-minimal and N ≡M then N is also o-minimal.

4. Additional features of o-minimality

4.1. Dimension. Recall that for A ⊆ M and b ∈ M , we say that b is in the
algebraic closure of A (b ∈ acl(A)) if b belongs to an A-definable finite set. We say
that b is in the definable closure of A if the singleton {b} is A-definable.

Notice that in any linearly ordered structure, b ∈ acl(A) iff b ∈ dcl(A) (why?).
In order to develop dimension theory using acl() one needs to prove the Exchange

Principle:

Theorem 4.1. If M is o-minimal, A ⊆M , b, c ∈M and c ∈ acl(Ab)\acl(A) then
b ∈ acl(Ac).

Proof. Since c ∈ dcl(Ab) there exists a formula φ(x, y), with implicit parameters
from A, such that c is the unique solution of φ(b, y). The point b must be an interior
point of the set {x ∈ M : ∃!yφ(x, y)}, for otherwise b is in acl(A), in which case
c ∈ acl(A), contradiction. It follows that there exists an A-definable open interval
I containing b and an A-definable function f : I →M such that f(b) = c.

We claim that f must be strictly monotone locally near b. Indeed, if not, then
either b belongs to an A-definable finite set (the endpoints of the intervals given by
MCT), or f is locally constant near b. In in the first case, we have b ∈ acl(A) which
we already saw to be impossible. In the second case, there is an A-definable interval
containing b on which f takes the value c. In particular, c ∈ dclA(), contradiction.

Therefore, again by MCT, there exists an A-definable interval I 3 b on which f
is strictly monotone. The function g = (f |I)−1 is then A-definable and sends c to
b, thus c ∈ dcl(Ab). �

The Exchange Principle allows us to define a model theoretic notion of dimension
for every set B ⊆M :

Given A,B ⊆ M (not assumed to be definable), the dimension of B over A,
dim(A/B) is the cardinality of a maximal acl-independent over A subset of B.
The Exchange principle guarantees, just like for a basis for vector spaces, and
transcendence basis for fields, that this cardinality is independent of the maximal
set we choose.

4.2. Geometric structures. A κ-saturated structure N is called a geometric
structure if the algebraic closure satisfies the Exchange Principle and for every
uniformly definable family {Xa : a ∈ Nk} of subsets of Nn there is a number
K ∈ N such that every finite Xa in the family has at most K elements.
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Examples for such structures are strongly minimal, o-minimal structures and the
p-adic numbers.

We assume now that N is a κ-saturated geometric structure and define the
notion of dim(B/A) for any small (i.e. of cardinality less than κ) sets A,B ⊆ N ,
as above. The following properties can be established (all subsets A,B,C ⊆ N are
assumed to be small):
(1) Assume that B ⊆ acl(A,C). Then dim(B/A) ≤ dim(C/A). In particular, if B
and C are inter-algebraic over A then dim(B/A) = dim(C/A).
(2) Let a1, . . . , an ∈ N , A ⊆ N . Then: dim(a1, . . . , an/A) ≤ k if and only if there
exists an A-definable set X ⊆ Nn containing ā = (a1, . . . , an) and a projection π
on some k of the coordinates such π|X is finite-to-one.

Given X ⊆Mn A-definable, we define

dim(X) = max{dim(ā/A) : ā ∈ X}.
(3) The definition of dim(X) does not depend on A. Namely, if X is definable over
A and over B then

max{dim(ā/B) : ā ∈ X} = max{dim(ā/A) : ā ∈ X}.
(hint: One first needs to establish that for every A ⊆ N , max{dim(ā/A) : ā ∈
Nk} = k.)
(4) If f : X → Y is an definable surjection then dim(Y ) ≤ dim(X). In particular,
the notion of dimension is preserved under definable bijections. (Here we use (1)
above).
(5) If {Xa : a ∈ Nk} is a definable family of subsets of Nn then for every d, the set
{a ∈ Nk : dim(Xa) = d} is definable. More precisely, a definable set X ⊆ Nn has
dimension ≥ d if and only if for some projection π of Nn onto d of the coordinates
{i1, . . . , id}, we have

∃∞xi1∃∞xi2 · · · ∃∞xid(xi1 , . . . , xid) ∈ π(X).

(The fact that this condition is definable follows the second property of geometric
structures).
Remark Even though the definition of dimension requires a saturated structure,
using Property (5), one can define dimension of sets in any elementarily equivalent
structure.

(6) Assume that X ⊆ Nn is definable. Then dim(X) ≥ k if and only if there exists
a projection π on k of the coordinates such that dim(pi(X)) = k.
(7) The dimension formula: For every ā, b̄ tuples of elements from M and A ⊆M ,
we have:

dim(āb̄/A) = dim(ā/Ab̄) + dim(b̄/A).

The following notion is essential to the study of geometric structures, whether
stable or not:

Generic points We still assume that N is an ω-saturated geometric structure.

Definition 4.2. Assume that X ⊆ Nk is A-definable, for a finite A. A point a ∈ X
is called generic in X over A if dim(a/A) = dim(X).

Notice that by definition of a geometric structure, every definable set contains a
generic point.



12 Y. PETERZIL, U. OF HAIFA

(8) If X is A-definable, and a is generic in X over A then for every A-definable Y
containing a we have dim(X ∩ Y ) = dimX.

Problems 4.3. Prove Properties (1)-(9) of geometric structures (if one prefers,
this can be first proved for o-minimal structures using what has been established
thus far).

4.3. O-minimality and dimension. In the o-minimal context, the notion of di-
mension defined above has a natural topological characterization.

Here are some basic observations, mostly based on the definition of dimension
and on the its characterization given in Section 4.2 (5).
(1) Every k-cell in Mn has dimension k.

(2) If X ⊆Mn is a definable set and X =
⋃

i Ci is a cell-decomposition of X then
dim(X) = max{k : Ciis a k-cell}.

(3) If X ⊆ Mn is a definable set then dim(X) ≥ k if and only if there is some
projection π of X onto k of the coordinates such that π(X) contains an open
subset of Mk.

The following result follows from the cell decomposition theorem and is funda-
mental to the development of dimension theory in the o-minimal context.

Theorem 4.4. For every definable X ⊆Mn, we have dim(Cl(X) \X) < dimX.

The following corollary of the above replaces the uniqueness of generic types in
ω-stable theories (for sets of Morley degree 1).
(4) Let X ⊆ Mn be A-definable and a generic in X over A. If a ∈ Y ⊆ Mn

another A-definable set then there exists an open definable U ⊆ Mn such that
U ∩X = U ∩ Y . In particular, if a is generic in Mn over A then it belongs to the
interior of every A-definable set containing a.
(5) If a is generic over A in an A-definable setX then for every open set U containing
a, we have dim(U ∩X) = dim(X) (this can be first proved for A-definable U , and
then one can show that the assumption that U is A-definable can be omitted).

Problems 4.5. Prove properties (1)-(5).

4.4. Definable choice, EI and Curve Selection. It is common in the study of
o-minimal structures to add this (seemingly artificial) assumption:

Assume that 〈M,<,+, . . .〉 is an o-minimal expansion of an ordered divisible
abelian group (actually, it is sufficient to assume the existence of group structure
on M ; the rest follows). The first reason for this addition is the following elemen-
tary observation:

If M expands an ordered group as above then every a ∈ Mn has a 1-parameter
definable family of neighborhoods {Nt : t > 0}, where

Nt = {(x1, . . . , xn) : ∀1 ≤ i ≤ n |xi − ai| < t}.

(where |x− y| is defined in an obvious way).

The second observation is that every definable family of nonempty sets has a
choice function which is definable as well:
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Theorem 4.6. Definable Choice Let {Xa : a ∈ Mk} be a definable family of
nonempty subsets of Mn. Then there is a definable function f : Mk → Mn such
that f(a) ∈ Xa for every a ∈Mk. Furthermore, if Xa = Xb then f(a) = f(b).

Proof. Fix an element 1 > 0 in M and use induction on n:
n = 1: If Xa ⊆ M then let I be the leftmost interval of Xa. If |I| = 1, we let

f(a) be this point. If I = M let f(a) = 0; if Int(I) =]c,∞[ let f(a) = c + 1. If
Int(I) =]−∞, d[ let f(a) = d− 1; if Int(I) =]c, d[ let f(a) = c+d

2 . It is easy to see
that this definition is uniform.

For n+ 1, we first obtain, by induction, a definable g : Mk →Mn such for every
a ∈ Mk, g(a) is in the projection of Xa on Mn. We now consider the family of
subsets of M : {(Xa)g(a) : a ∈ Mk}. Using the case n = 1, we have a definable

function f : Mk → M such that for every a ∈ Mk, the element (g(a), f(a)) ∈ Xa,
as required. �

An immediate corollary of the above is Elimination of imaginaries. I.e, in o-
minimal expansions of groups, there is no need to develop a separate theory for T eq

since every definable equivalence relation has a definable set of representatives for
the quotient structure.

The following corollary (which can also be proved without definable choice) adds
another feature to o-minimality which it shares with strongly minimal structures
but not with other geometric structures such as the p-adic numbers: It is sometimes
called the E-property.

Corollary 4.7. Let E be a definable equivalence relation on a definable set X.
Then there are at most finitely many E-classes whose dimension equals to dim(X).

Proof. We may assume that M is |T |+-saturated (WHY?). Let n = dim(X).
Since the dimension of a definable set is a definable property, the set Y = {x ∈ X :
dim(x/E) = n} is definable.

By Definable Choice, there exists a definable set of representatives Y0 ⊆ Y for
E-classes in Y . Assume that X, Y and Y0 are all A-definable. Let y be a generic
element in Y0 over A and let x be a generic element over Ay in the E-class of y.
By the Dimension Formula,

dim(x, y/A) = dim(x/Ay) + dim(y/A) = dim(y/Ax) + dim(x/A).

By our assumptions on the E-classes in Y , we have n = dim(x/Ay) ≤ dim(x/A) ≤
dim(X) = n, hence also dim(x/A) = n. Because Y0 contains a single element of
every E-class, dim(y/Ax) = 0. It follows from the formula that dim(Y0) = 0, hence
there are finitely many equivalence classes. �

Finally, the last important corollary of Definable Choice is:

Theorem 4.8. Curve Selection Given a definable X ⊆Mn and given a ∈ Cl(X),
there exists a definable function σ :]0, ε[→ X such that limt→0 σ(t) = a.

Proof. Consider a 1-parameter family of neighborhoods {Nt : t > 0} of a. By
definable choice, there exists a definable function σ : M>0 → X such that for every
t > 0, we have σ(t) ∈ X ∩Nt. The restriction of σ to any subinterval ]0, ε[ will give
the desired function. �

Problems 4.9. What are other examples of geometric structures which have de-
finable choice?

What can be said about general (saturated) linearly ordered structure with defin-
able choice and Curve Selection?
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4.5. The Non Independence Property. One of the most important dividing
line between theories, introduced by Shelah, is the Independence Property versus
the Non Independence Property (known as NIP).

Definition 4.10. We fix a sufficiently saturated model of a theory T . A formula
φ(x̄, ȳ) has the Independence property if for every n ∈ N there exist tuples ā1, . . . , ān,
|āi| = |ȳ|, such that every boolean combination of {φ(x̄, āi) : i = 1, . . . , n} is consis-
tent (where we don’t allow a formula φ(x̄, āi) to appear twice in this combination).
T is said to have the Independence Property if some formula has it. T is said to

have NIP if no formula has the independence property.

A fundamental theorem of Shelah says that every unstable theory has either the
strict order property or the Independence Property (or both). Another theorem
of his states: If T has the independence property then some formula φ(x, ȳ) with
|x| = 1 has the independence property.

Theorem 4.11. If T is o-minimal then no formula has the independence property.
Namely, T has NIP.

Proof. By Shelah’s theorem it is sufficient to prove that for every formula φ(x, ȳ)
there exists an n such that for every ā1, . . . , ān some boolean combination of the
φ(x, āi)’s (with non-repeating occurrences) is inconsistent. It is clearly sufficient to
consider conjunctions of φ(x, āi) and their negations.

The proof uses induction on the maximal number of definably connected com-
ponents in φ(M, ā) (which exists by o-minimality), as ā varies:

Basic case: For every ā ∈ Mk, φ(M, ā = {b ∈ M : φ(, ā)} has at most one
interval (of any kind)

We take n = 3 and note that given any 3 intervals, it must be the case that the
intersection of some pair of the intervals is either contained in the third interval
or disjoint from it. In both cases, we obtain an inconsistent boolean combination
((I1 ∩ I2) \ I3 or I1 ∩ I2 ∩ I3).

Problems 4.12. The induction step: Assume that for every φ(x, ȳ) with at
most k-intervals in every φ(M, ā) the number n = n(k) witnesses that φ(x, ȳ) is
not independent. Show that n(k + 1) = 3n(k) works for any φ(x, ȳ) with at most
k + 1-intervals in every φ(M, ā).

�

5. Definable groups

We still assume that M is an o-minimal, densely ordered structure.

Definition 5.1. A definable group is a definable subset G of Mn together with a
definable binary function from G×G into G which makes G into a group.

Here are some examples of groups that are definable in o-minimal structures:

• One dimensional groups:
Divisible, torsion-free abelian groups. (These can be equipped with an
ordering < such that 〈G,<,+〉 is o-minimal);
The circle group (definable in the real field);
The group 〈[0, a),+(mod a)〉 (definable in any ordered divisible abelian
group, for a > 0).
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• Gl(n,R) and any semi-algebraic subgroup of Gl(n,R).
• Gl(n,C) and any complex algebraic subgroup of it (these can be viewed as

semialgrbaic subgroups of Gl(2n,R)).
• The R-points of an R-algebraic group, for R an arbitrary real closed field

(these are obviously definable in the field 〈R,<,+, ·〉).
• Certain solvable linear groups in Gl(n,R) which are definable only in 〈R, <
,+, ·, ex〉 (and not group-isomorphic to any semialgebraic group).

As we will below, the group 〈Z,+〉 cannot be definable in any o-minimal struc-
ture.

The fundamental theorem on definable groups in o-minimal structures says that
every such groups admits a topology t whose basis is definable, such that G is a
topological group with respect to this topology:

Theorem 5.2. Let 〈G, ·〉 be a definable group in an o-minimal structure, G ⊆Mk

and dim(G) = n. Then:

(1) Given any generic g in G and a definable basis {Us : s ∈ S} for the neigh-
borhoods of g in Mk, the family {hUs : h ∈ G} forms a basis for a topology
t on G such that 〈G, ·, t〉 is a topological group (i.e. the group operation and
the inverse function are continuous).

(2) Moreover, there exist a finite cover of definable and large? t-open sets G =⋃r
i=1 Ui, and for each i = 1, . . . , r a definable homeomorphism φi from Ui

(with its t-topology) to an open Vi ⊆ Mn. The triple {〈Ui, Vi, φi〉 : i =
1, . . . , r} is called an atlas for G.

? By a large subset of G we mean a definable X ⊆ G such that dim(G \X) <
dim(G).
Remarks (1) Notice that the t-topology defined on G may not agree everywhere
with the topology induced onG byMk. For example, in the group 〈[0, 1), (+mod1)〉 ⊆
R, a neighborhood of 0 in the t-topology will be of the form [0, ε) ∪ (1− δ, 1).

(2) The atlas on G can be considered as a manifold structure on G with respect to
the “Euclidean” topology on Mn. Indeed, the above theorem is usually formulated
without Clause (1), and with an additional requirement, that the transition maps
φiφ
−1
j are continuous in the Mn-topology. One can then read the t-topology from

the manifold structure: X ⊆ G is t-open if and only if φi(X) is open in Mn for
every i.

Problems 5.3. 1. Why is 〈[0, 1),+(mod1)〉 not a topological group with respect to
the R-topology? Find an atlas on this group as in (2) above.

2. Find a definable basis for a topology on 〈R,+〉, such that + is continuous but
the group-inverse is not continuous.

Theorem 5.2 allows us to translate the following properties, via the atlas, from
the Mn-topology to the t-topology.

Corollary 5.4. Let G be a definable group, and let t be the topology above. If
X ⊆ G is a definable set then:

(i) X has finite number of definably t-connected components.
(ii) dim(Clt(X) \ X) < dim(X) (where Clt(X) is the closure of X in the t-

topology).

Problems 5.5. Prove the last corollary.
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Combining the topological facts above with the group structure we obtain the
following group theoretic properties:

Theorem 5.6. Let G be a definable, n-dimensional group. Then:

(1) Every definable subgroup H < G is t-closed.
(2) The definably t-connected component of G which contains the identity is

a normal subgroup of G of finite index; we denote it by G0. The cosets
of G0 are the definably t-connected components of G. In particular, all
t-components of G have the same dimension as G.

(3) The following are equivalent for any definable subgroup H ⊆ G: (i) H has
finite index in G. (ii) G0 ⊆ H. (iii) dimH = dimG.

(4) (DCC- The descending Chain Condition for definable subgroups) There is
no infinite descending chain of definable subgroups of G.

Proof. (1) If H is not t-closed then the t-frontier of H, Fr(H) = Cl(H) \ H, is
invariant under multiplication by h ∈ H (because such a multiplication is a t-
homeomorphism of G that fixes H set-wise). It follows that given g ∈ Fr(H),
we have Hg ⊆ Fr(H). But then dim(Fr(H)) ≥ dim(Hg) = dim(H) (because
the dimension is preserved under definable bijections), contradicting the fact that
dimFr(H) < dimH.

(2) By continuity, the map (g, h) 7→ g · h−1 sends G0 × G0 to a definably t-
connected set which contains G0, hence equals to G0. For the same reason, each
definably t-connected component of G is a coset of G0. Why is G0 normal in G?

(3) Assume that a definable H ⊆ G has finite index in G. By (1), the group
H (and therefore each coset of H) is t-closed. But then the complement of H is
a finite union of closed sets hence H is also open in G. Since e ∈ H and G0 is
definably connected, we must have G0 ⊆ H.

If G0 ⊆ H then clearly, by (2), dimH = dimG. Assume that H ⊆ G is a
definable subgroup and dim(H) = dim(G). Then every coset of H has the same
dimension. By the so-called E-property, proved above, there can be only a finitely
many such cosets therefore H has finite index.

(4) Assume that G ⊃ H1 ⊃ H2 ⊃ · · ·Hn ⊃ · · · is a descending chain of definable
subgroups. Because dimHi is finite, the dimension of the groups must eventually
stabilize at some Hk. By (3), for every m ≥ k the group Hm has finite index in Hk

hence, again by (3), Hm is a union of some of the cosets of H0
k . If [Hk : H0

k ] = d
then there can be at most d-many subgroups of Hk of the same dimension so the
chain of groups must eventually stabilize. �

As always in the model theory of groups, the DCC property is very powerful.
It implies in particular that the centralizer of ANY subset of G is definable (see
problem below).

Problems 5.7. (1) Show that the group 〈Z,+〉 is not definably isomorphic to any
group definable in an o-minimal structure.

(2) Show that the group 
 1 z 0

0 1 0
0 0 ez

 : z ∈ C

 .

(identified with a subset of Gl(4,R) in the obvious way) is not definable in any
o-minimal expansion of the real field, but is group-isomorphic to a definable group
in an o-minimal structure.
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(3) Let f : G → H be a definable group homomorphism. Show that f is neces-
sarily continuous with respect to the t-topology on G and H.

(4) Let G be a definable group in an o-minimal structure, A an arbitrary subset
of G. Show that CG(A) = {g ∈ G : ∀h ∈ Agh = hg} is definable.

(5) Show that if G contains an infinite abelian subgroup A (not necessarily de-
finable) then it contains a definable infinite subgroup. Conclude that if G contains
an element of infinite order then G contains a definable infinite abelian subgroup.

(6) One-dimensional groups: Let G be a 1-dimensional definably connected
definable group in an o-minimal structure. Show that G is abelian and has no
infinite definable subgroups. (Hint: note first that G has no infinite definable sub-
group).

5.1. Torsion elements in definable groups. Using the notion of an Euler char-
acteristic of a definable set (upon which we did not touch here), one can prove a
variety of results on torsion points in definable groups. Here are two of the most
important ones.

(1) If G is infinite then there exists an element g ∈ G of infinite order.
(2) If G is abelian and E(G) = 0 then for every p ≥ 0 there exists an element

in G of order p.

5.2. Definable compactness and groups. As was pointed out in the earlier
problems, the topology of an o-minimal is in general not locally connected or locally
compact. As we saw, by replacing “connected” with “definably connected” and
by restricting ourselves to definable sets, the topology becomes well-behaved (or
“tame”) from this point of view.

It turns out that by replacing limits of converging sequence with limits of defin-
able curves one obtain a definable replacement to compactness as well.

Definition 5.8. A definable group G (or a subset X of Mk) is called definably
compact if for every definable map continuous function f(x) from an interval ]a, b[⊆
M into G (or into X), the t-limits (or the Mk-limits) of f(x), as x tends to a and
to b, exist in G (or in X).

The following is easy to verify using definable choice, but it turns out to be true
even without assuming it (see also Problem 3.6(2)):

Lemma 5.9. A definable X ⊆Mk is definably compact iff it is closed and bounded.

In particular, if M expands the ordered real numbers then the notions of com-
pactness and definable compactness coincide for definable sets.

Problems 5.10. (1) Show that the following definable variant of compactness fails
in a sufficiently saturated o-minimal structure: Every uniformly definable open
cover of [0, 1] has a finite subcover.

(2) Let f : X → Y be a definable continuous surjection. Show that if X is
definably compact then so is Y (assume that M has definable choice).

Just like in the theory of Lie groups, the dichotomy between definably com-
pact groups and those which are not definably compact is crucial. There are still
very interesting open problems on both sides of this dividing line, but most of the
difficulties seem to involve definably compact groups.

Here is one reason why this is so.
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Theorem 5.11. If G is a definable group that is not definably compact then it has
a definable 1-dimensional, torsion-free group.

Proof. The idea: For simplification we assume definable choice. Since G is not
definably compact, there is a definable continuous γ : (a, b) → G with no limit at
b. To improve intuition we will use 0∞ instead of b.

The idea is to define H as the set of all limit points of γ(t)γ(t)−1, as t tends to
∞. More precisely,

H = {g ∈ G : ∀ open V 3 g ∀d > a ∃t1, t2 > d (γ(t1)γ(t2)−1 ∈ V )}.
Why is H a subgroup of G?
By definable choice, h is in H iff there exists a definable function σh : (a,∞)→

(a,∞) tending to ∞ such that γ(x)γ(σh(x))−1 tends to h as x tends to infinity.
Now, given g, h ∈ H, the function σh ◦σg witnesses the fact that gh is in H, and

the compositional inverse of σg witnesses the fact that g−1 ∈ G.
The fact that dim(H) ≤ 1 is obtained by viewing H as a subset of the “frontier”

of the two-dimensional set {γ(x)γ(y)−1 : x, y > a} (one can make this precise by
identifying ∞ with 0).

To see that H is infinite, one shows that it intersects the boundary of every
sufficiently small ball around e ∈ G (or a rectangular box): Given such a ball B,
notice that for every x > a, γ(x)γ(x)−1 = e while for there exists y > x such that
γ(x)γ(y)−1 is outside the ball (here we use the fact that γ has no limit in G). It
follows that for some y(x) > x, the group element γ(x)γ(y(x))−1 is on the boundary
of B. Taking the limit of these, as x tends to infinity we obtain an element of H
on the boundary of B.

Eventually, one can show that H is torsion-free. �

5.3. Rings and fields in o-minimal structures.

Theorem 5.12. If K is a definable field then there is a definable real closed field
R (of o-minimal dimension 1) such that K is definably isomorphic to R or to the
algebraic closure of R (and then dim(K) = 2).

Proof. It follows from the fundamental theorem on groups that there is a definable
topology making all field operations continuous.

First note that 〈K,+〉 is not definably compact: Indeed, Take γ(x) a curve
tending to 0. Then 1/γ(x) cannot have a limit in K as γ(x) tends to 0 (WHY?).

By Theorem 5.11, K has a definable, 1-dimensional, definably connected, torsion-
free subgroup H. Multiplying H by 1/h, for some h ∈ H, we may assume that
1 ∈ H. Given a ∈ H, the set of all b such that ba ∈ H is a subgroup of H containing
all integers hence it is infinite, and therefore equals to H (H is 1-dimensional and
definably connected hence has no definable subgroups). Similarly, the set aH must
equal H for every 0 6= a ∈ H, so all nonzero elements are invertible in H. Hence,
H is a 1-dimensional subfield of K, call it R.

R is a real closed field
We will use: R is a real closed field iff it is orderable, every positive element has

a square root and every polynomial of odd degree has a root.
Let X and Y be the components of R \ {0}, and assume that 1 ∈ X. We show

that X is closed under addition, multiplication and the field-inverse, and moreover
−X = Y .
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The map x 7→ 1/x sends X into X (the image is a definably connected set
containing 1) but because it is an involution its image is the whole of X. Because
X ·X is definably connected and contains 1 it must be contained in X. Similarly,
X+X contains elements near 1 (because 1+α is close to 1 for α ∈ X near 0) hence
X +X ⊆ X. Finally, because X is closed under +, we must have −X = Y .

It follows that X is a positive cone in R. I.e. the set of positive elements in an
ordered field (where x < y iff y − x ∈ X).

Because 〈X, ·〉 is a 1-dimensional definably connected group, it is divisible so
every positive element of R has a square root. The fact that every polynomial of
odd degree has a root follows from the intermediate value theorem which holds in
R because of the definable connectedness. We thus showed that R is real closed.

K is an algebraic extension of R
Indeed, if α ∈ K is transcendental over R then for every
n, we have R+ αR+ · · ·+ αnR 6= K. However, the dimension of the set on the

left is n so the dimension of K will not be finite, which is impossible.
Because real closed fields have only one algebraic extension, K must equal

R(
√
−1) and its dimension is 2. �

Problems 5.13. Show that the last theorem still holds if we only assume that K
is an integral domain.

6. On R-differentiability

In most interesting cases one assumes that our o-minimal M is already an ex-
pansion of a real closed field whose underling ordering is that of M . This will be
our assumption from now on.

We now can define a notion of derivative with respect to to R:

Definition 6.1. A definable function f :]a, b[→ R is R-differentiable at x0 ∈]a, b[,
with derivative d ∈ R, if

lim
h→0

f(x0 + h)− f(x0)

h
= d

(where the limit is taken in R).
f is said to be a Cn-function on ]a, b[ if its n-th derivative exists and continuous

there.

Notice that if f is R-differentiable on ]a, b[ then its derivative is definable as
well. (But it is not true in general that the primitive of a definable function is also
definable!)

The analogous result to MCT is:

Theorem 6.2. Let f :]a, b[→ R be a definable function. Then for every n ∈ N
there exist a = a0 < a1 < · · · < ar = b such that f is Cn on each ]ai, ai+1[.

Proof. For x ∈]a, b[ we let

f ′(x+) = lim
h↓0

f(x0 + h)− f(x0)

h
; f ′(x−) = lim

h↑0

f(x0 + h)− f(x0)

h
= d.

As we already saw in Problem 3.6 (2), these limits must exist in R ∪ {±∞}.
Moreover, f ′(x) exist if and only if f ′(x+) = f ′(x−) ∈ R.
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Using MCT for these two definable functions we may assume that both are
continuous (possibly taking values in ±∞).
Claim (1) If f ′(x+) > c ∈ R for all x in some subinterval I then there exists a
sub-interval J such that for every y > x in J , f(y)− f(x) > c(y − x).
(2) If f ′(x−) < c ∈ R for all x in some subinterval I then there exists a sub-interval
J such that for every y < x in J , f(y)− f(x) > c(y − x).

Indeed, the assumption in (1) implies that for every x there exists x′ > x such
that for every y ∈]x, x′[ we have f(y)−f(x) > c(y−x). Let σ(x) be the supremum
of all these x′. By Lemma 3.3 there exists d ∈ I and an interval J < d such that
for all x ∈ J we have σ(x) > d. It implies that for every x < y in J we have
f(y)− f(x) > c(y − x).

The proof of (2) is the same (noting that switch of the sign as we multiply by
y − x for y < x). End of Claim.

Clearly, (1) and (2) cannot take place on the same interval therefore, f ′(x+) and
f ′(x−) can differ only on finitely many points in I.

Claim f ′(x+) (and hence also f ′(x−)) can take the value ±∞ at most finitely often.

Indeed, assume toward contradiction that f ′(x+) = +∞ on an open interval
J ⊆ I. Given x1 < x2 ∈ J , let `(x) be the affine function connecting the points
(x1, f(x1)) and (x2, f(x2)). Because f ′(x+1 ) = +∞, we have f(x) > `(x) for x > x1
sufficiently close to x1. Because f ′(x−2 ) = +∞, we have `(x) < f(x) for x < x2 and
sufficiently close to it. By o-minimality, there exists x3 ∈]x1, x2[ such that `(x3) =
f(x3) and f(x) > `(x) for all x < x3 and sufficiently close to it, contradicting the
fact that f ′(x−3 ) = −∞.

By removing finitely many points we have f ′(x+) = f ′(x−) ∈ R hence f is R-
differentiable. We now repeat this process for the definable function f ′(x) and so
on. �

Problems 6.3. (1) (Rolle’s theorem) Assume that a definable f : [a, b] → R is
continuous on [a, b], R-differentiable on ]a, b[ and f(a) = f(b). Show that there
exists c ∈]a, b[ such that f ′(c) = 0.
(2) Prove the Mean Value Theorem for definable R-differentiable functions.

Definition 6.4. A definable map f : U ⊆ Rn → Rm is called a C1-function if all
the partial derivatives ∂fi/∂xj , of the coordinate functions exist and continuous.

For such an f , we denote by dxf ∈Mm×n the matrix of partial derivatives.

As for continuity, one can prove that definable functions are “generically” Cn.:

Theorem 6.5. For every definable f : U → Rm on an open set U ⊆ Rn, there
exist finitely many definable open sets U1, . . . , Uk ⊆ U such that f is a C1-map on
each Ui and dim(U \ ∪ri=1Ui) < n.

All the basic results on real differential maps, such as the implicit and inverse
function theorems, can be proved in this context as well.

7. The analogue of complex differentiability

We still assume that M is an o-minimal expansion of a real closed field. In this
case, the algebraic closure of R, call it K, is an algebraic extension of degree 2. By
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fixing i =
√
−1 we can identify K with R2 via a+bi ∼ (a, b), just like C is identified

with R2. The topology of R2 makes K into a topological field.
Every definable function f : K → K is given, coordinate-wise, by definable

functions from R2 into R.

Fact 7.1. The field operations on K are definable in 〈R,+, ·〉, when we identify the
underlying K with R2 as above. Moreover, they are C∞-maps in the sense of R.

Proof. Addition is just point-wise addition and multiplication is given by (a, b) ·
(c, d) = (ac − bd, bc + ad) (just check the real and imaginary parts of complex
multiplication). Since the coordinate functions are R-polynomial maps they are
C∞. �

We can now imitate the usual definition of complex differentiability:

Definition 7.2. Let U ⊆ K be an open set. A function f : U → K is K-
holomorphic at z0 ∈ K, with derivative d, if

lim
h→0

f(z − 0 + h)− f(z0)

h
= d,

where the field operations and limits are now taken in K.

Problems 7.3. (i) Let A =

(
a b
c d

)
be a 2 × 2 matrix over R. Show that the

map T : K → K induced by A is K-linear if and only if a = d and b = −c.
(i) Show that every polynomial over K is K-holomorphic on the whole of K.
(ii) Show that if f is K-holomorphic on U ⊆ K then its real and imaginary

parts, call them u(x, y), v(x, y), are C1-maps from R2 into R which satisfy the
Cauchy-Riemann equation:

∂u/∂x = ∂v/∂y ; ∂u/∂y = −∂v/∂x.

Hint: As in the complex case, this is done by choosing h, in the definition of
derivative, to be first real and then imaginary.

The converse of the above is also true: If f : U → K is a definable C1-map
whose partial derivatives at every point satisfy the Cauchy-Riemann equation then
f is K-holomorphic on U .

The above basic properties could be expected to hold in o-minimal structures,
since their classical proofs do not use in any deep way the underlying properties of
R and C.

The rest of classical development of the theory of complex functions uses either
convergent power series or integration (or both) none of which is available in the
o-minimal setting. However, it is turns out that one can by-pass these tools and
still develop the basic theory in this context:

Theorem 7.4. Let f : U → K be a definable K-holomorphic function. Then:

(1) f ′(z) is K-holomorphic as well.
(2) f(z) satisfies the maximum principle.
(3) If f is bounded then it is a constant function.

The proofs of these results goes beyond the scope of this tutorial.
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