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ON DEFINABLE GROUPS AND D-GROUPS IN

CERTAIN FIELDS WITH A GENERIC DERIVATION

YA’ACOV PETERZIL, ANAND PILLAY, AND FRANÇOISE POINT

Abstract. We continue our study from [13] of finite dimensional
definable groups in models of the theory T∂ , the model companion
of an o-minimal L-theory T expanded by a generic derivation ∂ as
in [6].

We generalize Buium’s notion of an algebraic D-group to L-
definable D-groups, namely (G, s), where G is a L-definable group
in a model of T , and s : G → τ(G) is an L-definable group sec-
tion. Our main theorem says that every definable group of finite
dimension in a model of T∂ is definably isomorphic to a group of
the form

(G, s)∂ = {g ∈ G : s(g) = ∇g},

for some L-definable D-group (G, s) (where ∇(g) = (g, ∂g)).
We obtain analogous results when T is either the theory of p-

adically closed fields or the theory of pseudo-finite fields of charac-
teristic 0.

1. Introduction

In [13] we initiated a study of definable groups in CODF (closed
ordered differential fields, see [19]), and more generally in differential
expansions of o-minimal structures, p-adically closed fields, pseudo-
finite fields of characteristic 0, or topological fields which are models of
an open theory (as in [11]).
In all of the above settings we start with a suitable theory T in a

language L, where T expands the theory of fields. We add a symbol
∂ to the language to get L∂ = L ∪ {∂}. The L∂-theory T∪ “∂ is a
(compatible) derivation” will have a model companion which we call
T∂.
The main theorems in [13] said that in all of these cases, if Γ is a

finite dimensional group in a model of T∂ then there is an L-definable
group G and an L∂-definable group embedding of Γ into G.
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Here, we mostly follow the setting suggested by Fornasiero and Ka-
plan, [6], where we start with an L-theory T of an o-minimal expansion
of a real closed field K, expand it in the language L∂ to the theory T ∗

of a T -compatible derivation ∂, and let T∂ be the model companion of
T ∗.
In [3], Buium introduced the notion of an algebraic D-group, namely

a pair (G, s), where G is an algebraic group and s : G → τ(G) a
rational group section into the prolongation of G. In the setting of
DCF0 (differentially closed fields of characteristic zero), it was shown,
see [16, Corollary 4.2] and [3], that every finite-dimensional definable
group is definably isomorphic to

(G, s)∂ = {g ∈ G : s(g) = ∇(g)},

(∇(g) = (g, ∂g)).
Our goal here is to obtain analogous tools and theorems in the setting

of T∂ . We first associate to every L-definable C1-manifold V , with
respect toK, its prolongation, the bundle τ(V ). We then note, as in the
algebraic case, that when G is an L-definable group over a differentially
closed subfield of K then so is τ(G), and the projection π : τ(G) → G
a group homomorphism. An L-definable D-group is then a pair (G, s)
with G an L-definable group and s : G → τ(G) an L-definable group
section. Our main theorem, see Theorem 4.4, is:

Theorem. Let Γ be a finite dimensional L∂-definable group in a model
of T∂. Then there exists an L-definable D-group (G, s) such that Γ is
definably isomorphic to

(G, s)∂ = {g ∈ G : s(g) = ∇(g)}.

When T is a model complete theory of large fields in the language
of fields (plus maybe constants), Tressl, [20], shows that the theory of
models of T equipped with a derivation has a model companion. He
also gave a uniform (in T) axiomatization of the model companion.
Here we treat two special cases: the case of p-adically closed fields and
of pseudo-finite fields. We develop the notions of τ(G) and (G, s), for a
L-definable groupG and prove the exact analogue of the above theorem
for T∂-definable groups (see Theorem 4.10). Along the way we prove
a p-adic analogue of an o-minimal theorem of Fornasiero and Kaplan
(see Appendix, Proposition 5.1).
When K is a pseudo-finite field we prove that every L∂-definable

group Γ is isogenous to H0 ∩ (H, s)∂, where (H, s) is an algebraic D-
group over K and H0 a finite index subgroup of H (see Theorem 4.11).
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Remark 1.1. The case of an arbitrary (not necessarily finite dimen-
sional) L∂-definable group will be treated in a subsequent paper jointly
with Silvain Rideau-Kikuchi.

1.1. Preliminaries. We refer to Section 2 of [13] for all conventions
and basic notions. Briefly, we always work in a sufficiently saturated
structure and use the fact that o-minimal structures (and later, p-
adically closed fields) are geometric structures, to define dimL(a/k)
as the aclL-dimension of a over k. The dimension of an L-definable
set X ⊆ Kn is defined as the maximal dimL(a/k), for a ∈ X (or
equivalently via cell decomposition). If we have dim(a/B) = dimX ,
for a ∈ X an L-definable set over B (written also as L(B)-definable),
then we say that a is generic in X over B.
For a tuple a = (a1, . . . , an), we let ∂a = (∂a1, . . . , ∂an). To define

the L∂-dimension, for a ∈ Kn and k ⊆ K a differential subfield, we
let dim∂(a/k) = dimL(a, ∂a, . . . , ∂

na, . . . /k) (possibly infinite). The
L∂-dimension of a L∂-definable set X ⊆ Kn over k is the maximum
dim∂(a/k), as a varies in X .

2. Manifolds, tangent spaces and tangent bundles

We fix an o-minimal expansion of a real closed field K in a language
L. All definability in this section is in the o-minimal structure.
We first recall the basic definition of a differentiable manifold and

its tangent bundle in the o-minimal setting (for differentiability in this
context, see [4, Section 7]).

Notation Let U ⊆ Kr × Kn be an open definable set, and f : U →
Km a definable C1-map, written as f(x, y), f = (f1, . . . , fm). Given
(a, b) ∈ U , we let (Dxf)(a,b) : K

r → Km, and (Dyf)(a,b) : K
n → Km

denote the corresponding K-linear maps defined as follows: (Dxf)(a,b)
is the m× r matrix of partial derivatives

(

∂fi
∂xj

(a, b)

)

1≤i≤m,1≤j≤r

,

and (Dyf)(a,b) is the m× n matrix
(

∂fi
∂yt

(a, b)

)

1≤i≤m,1≤t≤n

.

Then, (Df)(a,b) is the m× (r + n)-matrix
(

(Dxf)(a,b), (Dyf)(a,b)
)

.
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For a C1 map f : V → W between open subsets of Kn and Km,
respectively, we write Df : V ×Kn →W ×Km, for the map

(a, u) 7→ (f(a), (Df)a · u),

where (Df)a · u = (
∑n

i=1
∂fj
∂xi

(a)ui)
m
j=1.

2.1. Definable manifolds and their tangent bundles.

Definition 2.1. An L-definable C1 manifold of dimension r, with re-
spect to K, is a topological Hausdorff space M , together with a finite
open cover M =

⋃n
i=1Wi, and homeomorphisms φi : Vi → Wi, where

Vi ⊆ Kr is a definable open set, such that Vi,j = φ−1
i (Wi ∩ Wj) is a

definable open subset of Vi, and each map φi.j = φ−1
j ◦ φi : Vi,j → Vj,i

is a definable C1-map (between definable open subsets of Kr).
The collection {(Vi,Wi, φi)i∈I} is an atlas for M .

Thus, we may identify M with the quotient of the disjoint union
⊔

i Vi by the equivalence relation a ∼M b⇔ b = φi,j(a).

Definition 2.2. For M an L-definable C1-manifold of dimension r
given as above, we let T (M) be the quotient of

⊔n
i=1 Vi × Kr by the

equivalence relation, denoted by ∼T (M), given via the maps:

Dφi,j : Vi,j ×Kr → Vj,i ×Kr ; Dφi,j(c, u) = (φi,j(c), D(φi,j)c · u).

We then write

T (M) =
⊔

i

Vi ×Kn� ∼T (M),

and denote (equivalence classes of) elements in T (M) by [a, u], a ∈
⊔

i Vi, u ∈ Kr.
Note that if M = U ⊆ Kr is a definable open set with the identity

atlas then T (M) = U ×Kr.
The following are easy to verify.

Lemma 2.3. Assume that M and N are L-definable, C1-manifolds,
given by atlases (Wi, Vi, φi)i∈I and (Uj , Zj, ψj)j∈J . If f : M → N is a
C1-map (read through the charts) then there is a well defined continuous
map Df : T (M) → T (N) satisfying, whenever the elements are in the
appropriate Vi and Uj,

Dh([a, u]) = [(f(a), D(ψ−1
j ◦ f ◦ φi)a · u)].

Proof. In fact, the map (a, u) 7→ (f(a), D(ψ−1
j ◦ f ◦ φi)a · u) induces a

well defined map from T (M) into
⊔

j∈J Uj ×KdimN . The quotient by
∼T (N) gives the desired map. �
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Lemma 2.4. (1) For M,N L-definable, C1-manifolds, T (M × N) =
T (M)× T (N).

(2) (Chain rule) For f : M → N and h : N → S two L-definable C1-
maps between L-definable C1 manifolds, D(h ◦ f) = D(h) ◦D(f).

Summarizing, we have:

Lemma 2.5. (T,D) is a functor from the category of definable C1-
manifolds to the category of definable C0-manifolds. It moreover pre-
serves products.

3. Adding a derivation

Let T be a complete, model complete theory of an o-minimal expan-
sion of a real closed field K, in a language L. The following definition
is due to Fornasiero and Kaplan, [6].

Definition 3.1. A derivation ∂ : K → K is called T -compatible if for
every ∅-definable C1 map f : U → Kn, for U ⊆ Km open, for all a ∈ U ,
we have

∂f(a) = Dfa · ∂a.

(Here ∂(a1, . . . , am) = (∂a1, . . . , ∂am)
t).

Fornasiero-Kaplan, [6], note that the L∂ theory T∪ “∂ is a compat-
ible derivation” has a model companion, which we call T∂. We assume
from now on that ∂ is a T -compatible derivation on K, and work in
models of T∂ . See [6, Proposition 2.8, Lemma 2.9] for instances where
the compatibility condition holds.
We observe:

Claim 3.2. Assume that M =
⊔

i Vi/ ∼M is a ∅-definable manifold.
Then, for a ∈ M , ∂a is a well defined element of T (M)a. Namely if
ai ∼M aj then (ai, ∂ai) ∼T (M) (aj , ∂aj).

Proof. This is easy to verify, using the compatibility of ∂. �

3.1. The definition of f∂ on an open set. The following theorem of
Fornasiero and Kaplan, which follows easily from their [6, Lemma A.3]
plays an important role here: In the Appendix we prove the analogous
result, Proposition 5.1, for p-adically closed fields, and the proof could
be modified to give an alternative proof in the o-minimal setting as
well.

Fact 3.3. Assume that g : W → Kr is an L(∅)-definable partial func-
tion on some open W ⊆ Kn × Km, and b ∈ π2(W ) ⊆ Km is dclL-
independent. If g(x, b) is a C1-map on W b = {a ∈ Kn : (a, b) ∈ W}
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then for every a ∈ W b, the function g is a C1-function (of all variables)
at (a, b).

As a corollary, one obtains:

Fact 3.4. If f(x) is an L(A)-definable function on an open subset
of Kn then there is an dclL(∅)-independent tuple b ⊆ A, and a L(∅)-
definable C1-function g(x, y) on an open subset of Kn ×K |b| such that
f(x) = g(x, b).

Definition 3.5. For U ⊆ Kn open and f : U → Kr an L-definable
C1-map (possibly over additional parameters), let

f∂(a) = ∂f(a)− (Df)a∂a.

Notice that if f is ∅-definable then f∂(a) = 0. For the following see
also [6, Lemma 2.12].

Lemma 3.6. If f : U → Kr is an L-definable C1 map, over a differ-
ential field k, then f∂ is L-definable over k, and continuous on U .

Proof. By Fact 3.4, we may write f(x) = g(x, b), for b ∈ Km which is
L(∅)-independent, and g which is a C1 map, L(∅)-definable. By the
compatibility of ∂,

∂f(a) = ∂g(a, b) = (Dg)(a,b)(∂a, ∂b) =

= (Dxg)(a,b)∂a + (Dyg)(a,b)∂b = (Df)a∂a + (Dyg)(a,b)∂b.

It follows that f∂(a) = ∂f(a)−(Df)a∂a = (Dyg)(a,b)∂b, and since b ∈
k then so is ∂b. Also, because g is a C1-function, f∂ is continuous. �

Remark 3.7. When p =
∑

m amx
m is a polynomial over k, then p∂(x)

is a polynomial over k of the same degree:

p∂(x) =
∑

m

∂amx
m.

For a ∈ Kn, we let ∇(a) = (a, ∂a), and for r ∈ N, ∇r(a) =
(a, ∂a, . . . , ∂ra). We also need the following:

Lemma 3.8. Assume that k ⊆ K is a differential field, a ∈ Km, c ∈
Kn and c ∈ dclL(k, a). Then ∇(c) ∈ dclL(k,∇(a)). If in addition c and
a are L-interdefinable over k then ∇(a) and ∇(c) are L-interdefinable
over k.

Proof. Assume first that a is L-generic in Km over k. Then, c =
f(a) for f an L-definable over k and C1 at a. We have ∂f(a) =
(Df)a∂a + f∂(a), where, by Lemma 3.6, f∂(x) is L-definable over k.
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So, if we let h(x, u) = (f(x), (Df)xu + f∂(x)), then h(∇(a)) = ∇(c),
so ∇(c) ∈ dclL(k, a).
Given a general a ∈ Km, we can write it, up to permutation of coordi-

nates, as (a1, a2) where a1 ∈ Km1 is L-generic over k and a2 ∈ dclL(a1).
Then c ∈ dclL(k, a1), so by what we saw ∇(c) ∈ dclL(k,∇(a1)) ⊆
dclL(k,∇(a)).
Finally, it clearly follows that if a and c are L-interdefinable over k

then so are ∇(a) and ∇(c). �

3.2. Prolongation of functions on open sets. Here and below, we
make use of Marker’s account, [12], of prolongations in the algebraic
setting.

Definition 3.9. For U ⊆ Kr open and f : U → Kn an L-definable
C1-map, we let τ(f) : U ×Kr → Kn ×Kn be defined as

τ(f)(a, u) = (f(a), (Df)a ·u+f
∂(a)) = (f(a), (Df)a ·(u−∂a)+∂f(a)).

Using Lemma 3.6 (the L-definability of f∂) and the L-definability of
Df ,

Lemma 3.10. If f is a C1-map, L-definable over a differential field k
then τ(f) is continuous and L-definable over the same k.

Using the second equality in the definition of τ(f) and the chain rule
for D, we immediately obtain:

Lemma 3.11. If f : U → V and h : V → W are definable C1-functions
on open sets then

τ(h ◦ f) = τ(h) ◦ τ(f).

3.3. The definition of τ(M) and τ(f) for definable manifolds.

Definition 3.12. Assume that M =
⊔

i Vi/ ∼M is an L-definable C1-
manifold of dimension n. Then the prolongation of M is defined as:

τ(M) :=
⊔

i

Vi ×Kn/ ∼τ(M),

where (ai, u) ∼τ(M) (aj, v) if τ(φi,j)(ai, u) = (aj, v).

By Lemma 3.10, τ(M) is an L-definable C0-manifold.
The following is easy to verify.

Lemma 3.13. Assume that M =
⊔

i Vi/ ∼M is an L-definable C1-
manifold. Then

(ai, u) ∼T (M) (aj , v) ⇔ (ai, u+ ∂ai) ∼τ(M) (aj , v + ∂aj).
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In particular, the map

σM : (a, u) 7→ (a, u+ ∂a)

induces a well defined L∂-definable bijection over M , between T (M)
and τ(M).

Using the above lemma, we see that for a ∈M , the element (a, ∂a) ∈
τ(M) is well defined (e.g., as σM (a, 0)). We thus have a well defined
map ∇ :M → τ(M), given in coordinates by ∇M(a) = (a, ∂a).

Definition 3.14. Assume thatM andN are L-definable C1-manifolds,
f : M → N an L-definable C1 map. Then the prolongation of f ,
τ(f) : τ(M) → τ(N), is defined by

τ(f) := σN ◦Df ◦ σ−1
M .

The following is easy to verify:

Lemma 3.15. Assume thatM and N as above are given via the atlases
{(Vi,Wi, φi)i∈I} and {(Uj , Zj, ψj)}, respectively, with dimM = r and
dimN = n. If f :M → N is an L-definable C1-map then, for (a, u) ∈
Vi ×Kr, we have

τ(f)([a, u]) = [τ(ψ−1
j ◦ f ◦ φi)(a, u)].

Lemma 3.16. Let M,N be L-definable C1-manifolds.

(1) If f : M → N is L-definable over a differential field k then so is
τ(f) : τ(M) → τ(N), and τ(f) is continuous.

(2) If f : M → N and h : N → S are L-definable C1 maps between
L-definable C1-manifolds then τ(h ◦ f) = τ(h) ◦ τ(f).

(3) We have τ(M×N) = τ(M)×τ(N). Moreover, if π1 :M×N → N
and π1 : τ(M)×τ(N) → τ(M) are the projection maps on the first
coordinates then τ(π1) = π1 ◦ τ.

(4) We have ∇N ◦ f = τ(f) ◦ ∇M .

Proof. (1) By Lemma 3.15, the result reduces to the L-definability of
each τ(ψ−1

j ◦ f ◦φi), and therefore follows from Lemma 3.6. (2) follows
from Lemma 3.11. (3) and (4) are easy to verify. �

As a corollary we have:

Lemma 3.17. τ is a functor from the category of definable C1-manifolds
to definable C0 manifolds, which moreover preserves products.

4. L∂-definable groups

4.1. Prolongation of L-definable groups, D-groups and Nash

D-groups. Let G be an L-definable group, so by [14], it admits the
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structure of an L-definable C1-manifold. To be precise, this is com-
mented in [14, Remark 2.6], for a structure over the reals whose func-
tions are piecewise analytic, but the same remark holds in the C1 cat-
egory since definable functions in o-minimal structure over real closed
fields are piecewise C1, [4, Theorem 6.3.2].
By purely categorical reasons, using Lemma 2.5 and Lemma 3.17 we

have (see [12, section 2] for the same construction algebraic groups):

Lemma 4.1. If G is a definable group and m : G × G → G is the
group product then

〈T (G);Dm〉 and 〈τ(G); τ(m)〉

are L-definable C0-groups, and the function [a, u] 7→ a is in both cases
an L-definable group homomorphism from T (G) and τ(G) onto G.
The map a 7→ [a, 0] : G→ T (G) is an L-definable group section and

∇G : G→ τ(G) is an L∂-definable group section.

Definition 4.2. Assume that G is an L-definable group, and there
exists an L-definable group section s : G→ τ(G). Then the pair (G, s)
is called an L-definable D-group.

Remark 4.3. When T = RCF is the theory of real closed fields, every
definable group admits the structure of a Nash group with respect to
K. Namely, the underlying manifold and group operations are semial-
gebraic over K and either real analytic, when K = R, or C∞ in general
(see discussion in [9], based on [2]). In this case every definable homo-
morphism between such groups is a Nash map, thus π : T (G) → G and
π : τ(G) → G are Nash maps, and an L-definable section s : G→ τ(G)
is a Nash map. We call a D-group (G, s) in this case a Nash D-group.

Our goal is to prove:

Theorem 4.4. Let T∂ be the model companion of a complete, model
complete, o-minimal theory T , with a T -compatible derivation ∂. As-
sume that Γ is an L∂-definable group of finite L∂-dimension. Then
there exists an L-definable D-group (G, s) and an L∂-definable group
embedding Γ → G whose image is

(G, s)∂ = {g ∈ G : s(g) = ∇G(g)}.

We first recall our result from [13]. We shall be using the following
version:.

Theorem 4.5. If Γ is a finite dimensional L∂-defined group in a model
of T∂ then it can be L∂-definably embedded in an L-definable group
G ⊆ Kn such that:
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(i) Every L-generic type p ⊢ G is realized by some γ ∈ Γ.
(ii) There are L-definable sets X1, . . . , Xr ⊆ G and L-definable func-

tions si : Xi → Kn such that for each L-generic a ∈ Xi, a ∈ Γ iff
∂a = si(a). (recall that for a = (a1, . . . , an), ∂a = (∂a1, . . . , ∂an).

In fact, we shall prove a more precise version of Theorem 4.4:

Theorem Assume that Γ and G satisfy (i) and (ii) of Theorem 4.5.
If we endow G with its C1-structure, then there exists an L-definable
s : G → τ(G), such that Γ = (G, s)∂, where (G, s)∂ = {g ∈ G : s(g) =
∇(g)}.

We first prove a general fact about groups in geometric structures:

Proposition 4.6. Let G be a definable group in a geometric structure
and let S ⊆ G be a definable subset. Assume that for every generic
pair (a, b) ∈ S × S, we have a · b ∈ S and for every generic a ∈ S we
have a−1 ∈ S.
Then there is a definable S0 ⊆ S such that S0 · S0 is a subgroup of

G. Moreover, S0 is a large subset of both S and S0 · S0.

Proof. We let

S1 = {s ∈ S : the set {t ∈ S : s · t ∈ S & t · s ∈ S} is large in S}.

By definability of dimension in geometric structures, S1 is definable.
By our assumptions, S1 contains all generic elements of S, thus, by our
assumptions, S0 := S1 ∩S

−1
1 is also large in S. We claim that S0 ·S0 is

a subgroup of G.
We need to prove that for every a, b, c, d ∈ S0, we have abc−1d−1 ∈

S0 · S0. We fix g ∈ S generic over a, b, c, d, and consider

abc−1d−1 = (abg)(g−1c−1d−1).

By assumption on g, bg ∈ S and by our choice it is in fact generic in S
over a, c, d, so in particular belongs to S0. Thus, a(bg) ∈ S, and again
generic there over c, d, so belongs to S0. Similarly, g−1c−1d−1 ∈ S0, so
abc−1d−1 ∈ S0 · S0. Let H := S0 · S0.
To see that S0 is a large subset of H , we fix g ∈ S0 and h ∈ S generic

over g (so h ∈ S0). Then gh, gh−1 ∈ S and generic there so in S0. It
follows that g ∈ S0 · S0 and h ∈ S−1

0 · S0 = S0 · S0.
Hence, S0 ⊆ H and every generic h ∈ S over g is in H , so S0 is large

in H . �

We are now ready to prove Theorem 4.4.
We first apply Theorem 4.5, and deduce the existence of pairwise

disjoint L-definable X1, . . . , Xr ⊆ G ⊆ Kn, each of dimension equal to
m = dimG, such that X =

⊔

iXi is a large subset of G and on each i,
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we have an L-definable si : Xi → Kn, such that for g generic in Xi, we
have g ∈ Γ ⇔ ∂g = si(g). We let s : X → Kn be the union of the si’s.
Exactly as in [14, Proposition 2.5], there exists a large L-definable

set W ⊆ G, and an L-definable homeomorphism σ : V → W , for
V ⊆ Km definable open, and g1, . . . , gk ∈ G, such that
(i) G =

⋃

j gjW .

(ii) The maps φi : V → giW : x 7→ giσ(x) endow G with a definable
C1-manifold structure, and make G into a C1-group.
(The original theorem is for continuous functions and a topologi-

cal group, but as was remarked earlier the same proof works for C1-
functions and a C1-group).
By intersecting W with the relative interior of X in G, we may

assume that X =W .

Claim 4.7. There exists an L-definable ŝ : V → Km, such that for
every L-generic a ∈ V , ŝ(a) = ∂a ⇔ s(σ(a)) = ∂σ(a).

Proof. Every a ∈ V is L-interdefinable with σ(a), so by Lemma 3.8,
∇(a) and ∇(σ(a)) are L-interdefinable over k. By compactness, there
exists an L-definable (partial) bijection h : W ×Kn → V ×Km, such
that for each generic a ∈ V , h(∇(σa)) = ∇(a). Let

ŝ(a) = π2(h(σ(a)), s(σ(a))),

where π2 : V ×Kn → Kn is the projection onto the second coordinate.
Now, if s(σ(a)) = ∂(a), then (σ(a), s(σ(a))) = ∇(σ(a)), so

ŝ(a) = π2(h(∇σ(a))) = π2(∇(a)) = ∂a.

The converse follows from the invertibility of h. �

Going back toG, we now endowG with a finite C1-atlas (Vi, giW,φi)i∈I ,
where Vi = V for all i, and identify G with

⊔

Vi/ ∼M . We also identify
Γ with the group

⊔

φ−1
i (Γ ∩ giW )/ ∼M . Notice that each giW/ ∼M

is large in G, and by Claim 4.7, there is an L-definable ŝ : V → Km

such that, for generic a ∈ V , ŝ(a) = ∂a if and only if s(σ(a)) = ∂σ(a).
Thus, by our assumption, for every generic g ∈ G, g ∈ Γ ⇔ ŝ(g) = ∂g.
For simplicity, from now on we use s instead of ŝ and let X = dom(s),
an L-definable large subset of G.
Consider the L-definable C1-group τ(G) as before, and the asso-

ciated L-definable homomorphism π : τ(G) → G, together with an
L∂-definable group section ∇G : G → τ(G). The map s can be re-
placed by x 7→ (x, s(x)), so we may think of it as a function from X
into τ(X) = X ×Km with π ◦ s(x) = x.
In addition, we still have for every generic g ∈ X , g ∈ Γ ⇔ s(g) =

∇G(g). By our assumptions, every generic L-type of X contains an
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element of Γ, hence the L-definable set X0 = {x ∈ X : s(x) ∈ τ(X)} is
large in X , so without loss of generality, X = X0. Let S be the graph
of s|X0.
We claim that S satisfies the assumptions of Proposition 4.6: Indeed,

assume that (a, b) is generic in S2. Namely, a = (g, s(g)) and b =
(h, s(h)), for (g, h) generic in X ×X . We need to prove that ab ∈ S.
By [13, Lemma 6.7], applied to the function (s, s) : X×X → τ(X ×

X), there exists (x, y) ∈ X × X , realizing the same L-type as (g, h)
such that ∇G×G(x, y) = (s(x), s(y)). But then, by our assumptions,
(x, y) ∈ Γ× Γ, so xy ∈ Γ. Because xy is still L-generic in G, we have
xy ∈ X . Thus we have

s(xy) = ∇G(xy) = ∇G(x)∇G(y) = s(x)s(y)

(where the middle equality follows from the fact that ∇G is a group
homomorphism). Since tpL(x, y) = tpL(g, h), we also have s(gh) =
s(g)s(h), hence ab = (gh, s(gh)), is in S.
We similarly prove that for a generic in S, we have a−1 ∈ S, thus S

satisfies indeed the assumption of Proposition 4.6.
Hence, there exists an L-definable S0 ⊆ S, such that S0 is a large

subset of the group H = S0 ·S0. Since S0 is large in H , for every generic
(g, s(g)) ∈ H , we have π−1(g) ∩ H is a singleton, which implies that
ker(π|H) = {1}, hence H is the graph of a function. Also, since the
group π(H) is large in G, it necessarily equals to G.
We therefore found an L-definable group-section ŝ : G → τ(G),

making (G, ŝ) into a D-group. In addition, x ∈ Γ ⇔ ŝ(x) = ∇G(x), for
all x generic in G.
It is left to see that

Γ = (G, ŝ)∂ = {x ∈ G : ŝ(x) = ∇G(x)}.

Let X0 = π(S0) and Γ0 = X0 ∩ Γ. By the definition of S, Γ = {x ∈
π(S) : S(x) = ∇G(x)}. so Γ0 = {x ∈ X0 : ŝ(x) = ∇G(x)}. We claim
that Γ0 · Γ0 = Γ.
Indeed, let γ ∈ Γ, and pick g generic in X0 over γ. By the geometric

axioms, there exists γ1 ≡L(γ) g such that ŝ(γ1) = ∇G(γ1), namely
γ1 ∈ Γ0. It follows that γ · γ−1

1 is L-generic in G over γ and hence in
X0, namely in Γ0. Hence, γ ∈ Γ0 · Γ0.
It follows that for all γ ∈ Γ, we have ŝ(γ) = ∇G(γ). To see the

converse, assume that ŝ(x) = ∇G(x), and choose γ ∈ Γ0 generic over
x. We then have ŝ(γ) = ∇G(γ), and x · γ generic in X0. Because ŝ is
a homomorphism,

ŝ(xγ) = ŝ(x)ŝ(γ) = ∇G(x)∇G(γ) = ∇G(xγ).
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It follows that xγ ∈ Γ and hence so is x. This ends the proof of
Theorem 4.4. �

4.2. The case of p-adically closed fields. Let K be a p-adically
closed field, namely a field which is elementarily equivalent to a finite
extension of Qp. The field admits a definable valuation, which we may
add to the field language and call this language L.
We shall use multiplicative notation for the valuation map | | : K →

{0} ∪ Γ. Namely,

|0| = 0 < Γ , | | : K∗ → (Γ, ·) a group homomorphism

and

∀x, y ∈ K |x+ y| ≤ max{|x|, |y|}.

For a = (a1, . . . , an) ∈ Kn, we write ‖h‖ = max{|ai| : i = 1, . . . , n}.
Since K is a geometric structure we use the acl-dimension below.

Definition 4.8. For U ⊆ Km open, a map f : U → Kn is called
differentiable at a ∈ U if there exists a K-linear map T : Km → Kn

such that for all ǫ ∈ Γ there is δ ∈ Γ, such that for all h ∈ Km, if
‖h‖ < δ then

‖f(a+ h)− f(a) + T (h)‖ < ǫ‖h‖.

The linear map T can be identified with Dfa the n × m matrix of
partial derivatives of f . We identifyMn×m(K) withKn·m. The function
f is called continuously differentiable on U , or C1, if it is differentiable
on U and the map x 7→ Dfa is continuous.

Differentiable maps satisfy the chain rule, by the usual proof (see for
example [18, Remark 4.1] for a proof in Qp).
Towards our main result, we first note that every L-definable group

in K can be endowed with the structure of a C1-Lie group with respect
to the valued field K, with finitely many charts:
Indeed, in [15, Lemma 3.8] a similar statement was proved for defin-

able groups in Qp, based on the work [14] from the o-minimal setting.
The following observations are needed in order to make adjustments to
the p-adically closed setting (see [15, Fact 3.7]):
(i) Every definableX ⊆ Kn can be partitioned into a finite number of

definable sets Xi, each of which is homeomorphic by projection along
certain coordinate axes to an open subset of Km for some m. (see
[5, Theorem 1.1 and Section 5] for finite extensions of Qp).

(ii) If X ⊆ Kn is a definable open set and f : X → K a definable
function then the set Y of x ∈ Kn such that f is C1 at x is large in X ,
namely dim(X \ Y ) < dim(X). (see [5, Theorem 1.1’]).
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Because p-adically closed fields are geometric structures, dimension
is definable in parameters. In addition, so is differentiability. Thus
(i) and (ii) follow from the fact that the statements are true in finite
extensions of Qp.

Using (1) and (2) above, it indeed follows that every L-definable
group in K can be endowed with the structure of a C1-group with
respect to K. (The same proof shows that every definable group in Qp

admits a definable p-adic Nash group structure over K).

We now endow K with a derivation, denoted by ∂. By Tressl’s
work, see [20, Theorem 7.2], the theory of p-adically closed fields with
a derivation has a model companion T∂ . In our one derivation case
(Tressl deals with several commuting derivations), one can axiomatize
T∂ with the following geometric axioms (see for instance [13, Fact 5.7
(ii)]): whenever (V, s) is an irreducible D-variety over K with a smooth
K-point and U is a Zariski open subset of V defined over K, then there
is a ∈ U(K) such that (a, s(a)) = ∇(a). (Recall that a D-variety (V, s)
defined over K is a K-variety V equipped with a rational section s
defined over K from V to T (V ) [13, Definition 2.4]).
Now, exactly as in the work of Fornasiero and Kaplan for real closed

fields, [6, Lemma 2.4, Lemma 2.7, Proposition 2.8], the associated
derivation is compatible with the theory of p-adically closed fields,
namely compatible with every L(∅)-definable C1 map, as in Defini-
tion 3.1. In order to develop the rest of the theory as in the o-minimal
case, we prove in the Appendix (see Proposition 5.1) that definable
functions in p-adically closed fields satisfy the analogue of Fact 3.4:

Proposition 4.9. Given an L(∅)-definable W ⊆ Kn × Km and an
L(∅)-definable g : W → K, if (a, b) ∈ W , dim(b/∅) = m, a ∈ Int(W b)
and g(x, b) is a C1-function on W b then (a, b) ∈ Int(W ) and g is a
C1-function at (a, b).

Now, the category of K-differentiable manifolds M and their associ-
ated functors T and τ can be developed identically to Sections 1 and
2. This allows us to associate to every definable group G the definable
groups T (G) and τ(G), such that the natural projections onto G are
group homomorphisms. If G is a C1-group then T (G) and τ(G) are
C0-groups.
By a p-adicD-group, we mean a pair (G, s) where G is an L-definable

C1-group and s : G→ τ(G) an L-definable homomorphic section (i.e.,
π ◦ s = id).
As before, we define in models of T∂, given a D-group (G, s),

(G, s)∂ = {g ∈ G : s(g) = ∇G(g)}.
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Using the analogue of Theorem 4.5, proven in [13], we may repeat
the exact same proof as in the o-minimal case to conclude:

Theorem 4.10. Let T be the theory of p-adically closed fields and let
Γ be a finite dimensional L∂-definable group in K |= T∂. Then there
exists an L-definable D-group (G, s) such that Γ is definably isomorphic
to (G, s)∂.

4.3. The case of pseudofinite fields. Let L be the language of rings
and let C = (ci,n)n∈N,i<n be an infinite countable set of new constants.
Let T be the L(C)-theory of pseudo-finite fields of characteristic 0,
namely the theory of pseudo-algebraically closed fields plus the scheme
of axioms saying, for every n ∈ N, that there is a unique extension of
degree n, and that the polynomial

Xn + cn−1,nX
n−1 + · · · c0,n

is irreducible.
Since T is a model-complete theory of large fields, one can apply

the Tressl machinery and so the theory of differential expansions of
models of T has a model-companion [20, Corollary 8.4], which has
been axiomatized [20, Theorem 7.2] (in case of expansions by a single
derivation, one obtains a geometric axiomatisation [1, Lemma 1.6]).
Recall that since T has almost q.e. (see [1, Remark 1.4 (2)]), the theory
T∂ does too [1, Definition 1.5, Lemma 2.3], [20, Theorem 7.2(iii)].

Let U be our sufficiently saturated model of T∂ , a differential exten-
sion of a pseudo-finite field and let Ū ⊇ U be a saturated model of
DCF0 extending it. We work over a small submodel (K, ∂) |= T∂.
We briefly review the construction of the algebraic prolongation

τ(V ) ⊆ Ūn × Ūn of an irreducible algebraic variety (see [12] for de-
tails):
Assume that the ideal I(V ) is generated by polynomials p1, . . . , pm,

over K, and let P : Ūn → Ūm be the corresponding polynomial map
P (x) = (p1(x), . . . , pm(x)). The definition of DP and τ(P ) is defined
as before using the formal derivative of polynomials (see also Remark
3.7). Then

T (V ) = {(x, u) ∈ Ū2n : P (x) = 0& (DP )x · u = 0},

and
τ(V ) = {(a, u) ∈ Ū2n : a ∈ V & τ(P )(a, u) = 0}.

Both are algebraic varieties over K. For a ∈ V (Ū), a 7→ ∂a is a
section of π : τ(V ) → V , and we have

τ(V ) = {(a, u) ∈ Ū2n : a ∈ V & u− ∂a ∈ T (V )a}.
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So, τ(V )a is an affine translate of the vector space T (V )a ⊆ Ūn. In
particular, dim(τ(V )a) = dimV .
As described in [12], the above constructions of T (V ) and τ(V )

can be extended to abstract, not necessarily affine, algebraic varieties
(which are covered by finitely many affine algebraic varieties). Further-
more, if H is an algebraic group, then T (H) and τ(H) are algebraic
groups with the property that the map ∇H is now a group morphism
[12, section 2].
Our goal is to prove:

Theorem 4.11. Let T be the theory of pseudo-finite fields and let Γ
be a finite dimensional definable group in K |= T∂. Then there exists a
K-algebraic D-group (H, s) such that Γ is virtually definably isogenous
over K to the K-points of (H, s)∂.

By “Γ and (H, s)∂(K) are virtually isogenous” we mean the following:
There exists an L∂-definable subgroup Γ0 ⊆ Γ of finite index and a L∂-
definable homomorphism σ : Γ0 → H with finite kernel, whose image
has finite index in the K-points of (H, s)∂.
We first need the following lemma:

Lemma 4.12. Let W1,W2 be irreducible algebraic varieties over a dif-
ferential field K, and a, b generic tuples in W1 and W2, respectively,
over K. Suppose that a and b are field-theoreticallly interalgebraic over
K (in particular, dimW1 = dimW2), and let W ⊆ W1 ×W2 be the
(irreducible) variety over K with generic point (a, b). Then τ(W )(a,b)
is the graph of a bijection over K(a, b), α : τ(W1)a → τ(W2)b.

Proof. By dimension considerations, the affine space τ(W )(a,b) projects
onto both τ(W1)a and τ(W2)b.
Fix some coordinate a1 of the tuple a. By our interalgebraicity as-

sumption, a1 is in the field-theoretic algebraic closure of K(b). Let
q(x) be the minimal monic polynomial of a1 over K(b). q(x) = xn +
fn−1(b)x

n−1+ ...f1(b)x+f0(b), where the fi(b) are K-rational functions
of the tuple b. After getting rid of denominators we can rewrite q(x) as
qn(b)x

n+ qn−1(b)x
n−1+ ...+ q1(b)x+ q0(b) where the qi are polynomials

over K.
Hence r(x, y): qn(y)x

n + qn−1(y)x
n−1 + ... + q0(y) is a polynomial

(over K) in IK(W ).
Hence (∂r/∂x)(a1, b)(u1) +

∑

j(∂r/∂yj)(a1, b)(vj) + r∂(a1, b) = 0 for

(u1, ..., v1, .., vj...) ∈ τ(W )a,b.
By the minimality of r(x, b), we have ∂r/∂x(a1, b) 6= 0, hence

u1 = (
∑

j

(∂r/∂yj)(a1, b)(vj) + r∂(a1, b))/(∂r/∂x)(a1, b)).
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Thus, u1 ∈ dcl(K, a, b, v). We similarly prove that u and v are inter-
definable over K(a, b). Since τ(W )(a,b) is a translate of a linear space,
containing (u, v) whose dimension equals dimW1 = dimW2, it must be
the graph of a bijection. �

We now return to the proof of Theorem 4.11:
By [13, Theorem 5.11] and the associated Remark 4.8 there, (for-

mulated for general large geometric fields), we may assume that Γ ⊆
G ⊆ Un for some L-definable group G such that every generic L-type
of G is realized by an element in Γ. Furthermore, there is a covering
of G by finitely many L(K)-definable sets Xi, i = 1, . . . , m, and for
each Xi there is a K-rational function si : Xi → Un such that for every
a ∈ Xi(U) which is L-generic in Xi over K, we have

a ∈ Γ ⇔ ∂(a) = si(a).

We may take each Xi to be Zariski dense in a K-variety Vi. We are only
interested in those Vi whose Zariski dimension is maximal, call it d, so in
particular, every algebraic type in Vi over K, of dimension d, is realized
in Xi in U , so by the axioms also realized by some a ∈ Xi(U) with
∂a = si(a), and hence, by the above, also realized in Γ. Finally, each
Xi can be taken to be the U-points of Wi = Reg(Vi) := Vi \ Sing(Vi),
namely the U-points of a smooth quasi affine K-variety.
We now apply [8, Theorem C] in the structure U : There exist a

connected algebraic group H over K, L-definable subgroups of finite
index, G0 ⊆ G and H0 ⊆ H(U), and an L-definable surjective homo-
morphism f : G0 → H0 whose kernel is finite, all defined over K. The
group H , as an algebraic group over K, has an associated K-algebraic
group τ(H). Notice aclL equals the field acl and we have dimH = d.
Let Γ0 = Γ ∩ G0, a subgroup of Γ of finite index. Since f(G0) is

Zariski dense in H so is f(Γ0). As we shall now see, we can endow H
with the structure of a D-group, (H, s) such that

f(Γ0) = {h ∈ H(U) : s(h) = ∇H(h)}.

Claim 4.13. For every g ∈ Γ0, tr.deg(∇Hf(g)/K) ≤ dim(H).

Proof. We first prove the result for g ∈ Γ0 such that tr.deg(g/K) = d.
Since tr.deg(g/K) = d, there exists aK-algebraic quasi-affine variety

Wi as above such that g is generic in Wi over K. The L-definable
function f takes values in H , and because aclL is the same as the field
acl, there exists an algebraic correspondence Ci ⊆Wi×H over K, such
that (g, f(g)) is field-generic in Ci. It follows that (∇Wi

(g),∇Hf(g)) ∈
τ(Ci) ⊆ τ(Wi)× τ(H).
By Lemma 4.12, τ(Ci)(g,f(g)) induces an (algebraic) bijection over K

between τ(Wi)g and τ(H)f(g). In particular, ∇Wi
(g) and ∇Hf(g) are
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interalgebraic over K. By our construction, ∇Wi
(g) = si(g), hence g

and ∇Hf(g) are interalgebraic over K (notice that g is algebraic over
∇Wi

(g)). Hence, tr.deg(∇Hf(g)/K) = tr.deg(g/K) = d.
Assume now that g is an arbitrary element of Γ0, and let h ∈ Γ0 be

such that tr.deg(g/K,∇Hf(g)) = d.
Since tr.deg(hg/K) = d and hg ∈ Γ0, it follows from the above that

d = tr.deg(∇Hf(hg)/K)) = tr.deg(∇Hf(h) · ∇Hf(g)/K),

and therefore

tr.deg(∇Hf(h) · ∇Hf(g)/∇Hf(h), K) ≤ d.

The elements ∇Hf(h) · ∇Hf(g) and ∇Hf(g) are interalgebraic over K
and ∇Hf(h), thus tr.deg(∇Hf(g)/∇Hf(h), K) ≤ d.
We know that h and ∇Xi

(h) (and hence also ∇Hf(h)) are interaleg-
braic over K (as witnessed by si), and as h and ∇H(f(g)) are indepen-
dent over K, it follows that ∇Hf(h) and ∇Hf(g) are independent over
K. Therefore,

tr.deg(∇Hf(g)/K) = tr.deg(∇Hf(g)/∇Hf(h), K) ≤ d.

�

We now consider the subgroup∇Hf(Γ0) of τ(H) and let S ⊆ τ(H) be
its Zariski closure, an algebraic subgroup of τ(H). By the claim above,
dim(S) ≤ dimH , but since S contains ∇Hf(h) for L-generic h ∈ Γ0,
we have dim(S) = dim(H). Consider the projection π : τ(H) → H , a
group homomorphism, and its restriction to S. Since H is connected,
we have π(S) = H , and hence ker(π)∩S is a finite subgroup of τ(H)e.
However, τ(H)e = T (H)e is a vector space over K, a field of character-
istic 0, thus torsion-free. Hence, ker(π)∩S is trivial so π : S → H is a
group isomorphism. It follows that S can be viewed as a group section
s : H → τ(H). Since S is the Zariski closure of ∇H(f(Γ0)), we have
for every g ∈ Γ0, ∇H(f(g)) = s(f(g)).
Recall that H0 = f(G0) is an L-definable subgroup of of finite index

of H(U).

Claim 4.14. f(Γ0) = (H0, s)
∂ = {h ∈ H0 : ∇H(h) = s(h)}.

Proof. We only need to prove the ⊇ inclusion.
We first prove that for every h ∈ (H0, s)

∂, if tr.deg(h/K) = d then
h ∈ f(Γ0). Indeed, since h ∈ H0 is L-generic in H over K, there exists
g ∈ G0, necessarily L-generic in G over K, such that h = f(g). By
our assumptions, there exists g′ ∈ Γ, such that g′ and g realize the
same L-type over K. Thus, g′ is in G0 so also in Γ0. In addition, f(g′)
and f(g) = h must realize the same L-type over K. Because S is the
Zariski closure of ∇Hf(Γ0), it follows that f(g

′) ∈ (H0, s)
∂.
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Since ∇H(h) = s(h) and ∇H(f(g
′)) = s(f(g′)), it follows that for

every n ∈ N, there is an L(K)-definable function sn such that

∇n
H(h) = sn(h) , ∇

n
H(f(g

′)) = sn(f(g
′))

(recall that ∇n
H(g) = (g, ∂g, . . . , ∂ng)). Because h and f(g′) realize the

same L-type over K, we may conclude that for every n, ∇n
H(h) and

∇n
H(f(g

′))) realize the same L-type over K, and therefore

tpL(K)(∇
∞
H (h)) = tpL(K)(∇

∞
H (f(g′))).

(∇∞
H (g) = (g, ∂g, . . . , ∂ng, . . .).)
By [20, 7.2(iii)], every L∂(K)-formula is equivalent in T∂ to a boolean

combination of formulas of the form (x, ∂x, . . . , ∂nx) ∈ Y , where Y is
an L(K) definable set. Thus, it follows from the above that h and f(g′)
realize the same L∂-type over K, and therefore h ∈ f(Γ0), as needed.
This proves that every h ∈ (H0, s)

∂ with tr.deg(h/K) = d belongs
to f(Γ0). However, every h ∈ (H0, s)

∂ can be written as h = h1h2,
with h1, h2 ∈ (H0, s)

∂ and tr.deg(h1/K) = tr.deg(h2/K) = d. Indeed,
pick h1 ∈ (H0, s)

∂ with tr.deg(h1/hK) = d and h2 = h−1
1 h). Thus,

every h ∈ (H0, s)
∂ belongs to f(Γ0). This ends the proof of Theorem

4.11. �

5. Appendix

We fix K a p-adically closed field. All definability below is in the
language L ofK. Our goal is to prove the p-adic analogue of Fornasiero-
Kaplan’s theorem (see [6, A.3]). Before stating it we make some pre-
liminary observations.
We can now state the result that we plan to prove here:

Proposition 5.1. Let K be a p-adically closed field. Assume that
g : W → Kr is an L(A)-definable partial function on some definable
W ⊆ Kn ×Km, and b ∈ π2(W ) ⊆ Km is aclL-independent over A. If
g(x, b) is a C1-map on the open set W b = {a ∈ Kn : (a, b) ∈ W} then
for every a ∈ W b, the function g is a C1-map (of all variables) in a
neighborhood of (a, b).

We shall use the following three important properties of p-adically
closed fields (as well as o-minimal structures and some other geometric
structures).

Fact 5.2. Fix A ⊆ Keq.

(1) Given a ∈ Km and b ∈ Kn, if U ∋ a is a (definable) open set in
Km then there exists a definable open V , a ∈ V ⊆ U , such that
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dim(b/A[V ]) = dim(b/A) (we use [V ] for the canonical parameter
of U), see [7, Corollary 3.13], or [10, Lemma 4.30].

(2) Assume that X ⊆ Km+n is definable over A, a ∈ Km, b ∈ Kn and
(a, b) ∈ X. Assume further that Xb = {x ∈ Km : (x, b) ∈ X} is
finite. Then there exists a definable open W ∋ (a, b) (possibly over
additional parameters) such that X ∩W is the graph of a definable
map from Km to Kn (this follows from cell decomposition in p-
adically closed fields).

(3) If U ⊆ Km is open and f : U → Kn is an A-definable map then f
is C1 at every a ∈ U with dim(a/A) = m (see [5]).

An immediate corollary of the first two is:

Fact 5.3. For a ∈ Km and b ∈ Kn and A ⊆ Keq, if a ∈ acl(b, A) then
there exists A1 ⊇ A such that a ∈ dcl(bA1) and dim(b/A1) = dim(b/A).

Proof of Proposition 5.1 : We first prove a continuous version.

Lemma 5.4. Assume that g : W → Kr is an L(A)-definable partial
function on some definable W ⊆ Km × Kn, and b ∈ π2(W ) ⊆ Kn

is aclL-independent over A. If g(x, b) is continuous on the open set
W b = {a ∈ Kn : (a, b) ∈ W} then (a, b) ∈ Int(W ) and for every
a ∈ Xb, the function g is continuous at (a, b).

Proof. We need the following claim:

Claim 5.5. Assume that X ⊆ Km×Kn is an A-definable set, (a, b) ∈
X and b is generic in Kn over A. If a ∈ Int(Xb) then (a, b) ∈ Int(X).

Proof. Applying Fact 5.2 (1), there is a definable open V ∋ a such that
a ∈ V ⊆ Xb and dim(b/A[V ]) = dim(b/A).
Because b is generic in Kn over A[V ], it remains generic in Y =

{b′ ∈ Kn : V ⊆ Xb′}. it follows that dim(Y ) = n and b ∈ Int(Y ), so
(a, b) ∈ V × Int(Y ) ⊆ Int(X). �

To prove the lemma, let V ⊆ Kr be an open neighborhood of g(a, b).
By Fact 5.2 (1), we may replace V by V1, g(a, b) ∋ V1 ⊆ V , with
b generic in Kn over A[V1]. Consider the set X = {(x, y) ∈ W :
f(x, y) ∈ V1}. We need to see that (a, b) ∈ Int(X). Since f(x, b) is
continuous at a, we have a ∈ Int(Xb), and hence by the above claim,
(a, b) ∈ Int(X). �

We now return to the proof of Proposition 5.1. Just like in [6], we
first reduce to the case where a = 0 ∈ Km and g(0, y) ≡ 0.
After permuting a, we may write it as a = (a1, a2) where (a2, b) is

acl-independent over A and a1 ∈ acl(a2bA). The set W (a2,b) is open
and f(x1, a2, b) is still C1 at a1. Thus, by replacing b with (a2, b)
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and a with a1, we may assume that a ∈ acl(bA). By Fact 5.3, we
may add parameters to A while preserving the genericity of b, such
that a ∈ dcl(bA). We still use A for this new parameter set. Thus,
b = α(a) for an A-definable function α. Since b is generic in dom(α),
then α is continuously differentiable at b. Without loss of generality,
dom(α) = π1(W ).
Consider the local C1-diffeomorphism ᾱ : (x, y) 7→ (x − α(y), y). It

sends W to a set W̄ and (a, b) to (0, b), so by Fact 5.5, (0, b) ∈ Int(W̄ ).
The pushforward of g via ᾱ is ḡ(x, y) = g(x+α(y), y). The map ḡ(x, b)
is still C1 on W̄ b, and it is sufficient to prove that ḡ is C1 at (0, b). So,
we may replace g with ḡ, W with W̄ and (a, b) with (0, b). We still use
g and W for the sets. Finally, since b is generic in Kn, it follows from
Fact 5.2 (3) that the function g(0, y) is C1 in a neighborhood of b, so we
may replace g with g(x, y)− g(0, y), thus assume that g(0, y) ≡ 0, and
in particular, Dyg(0,b) = 0, so Dg(0,b) = (Dxg(0,b), 0) ∈Mr×(m+n)(K).
To simplify notation below, we view x ∈ Kn both as a row and a

column vector, depending on context. Thus, for, say, (x, y) ∈ Km×Kn,
we write Dg(a,b) · (x, y), instead of Dg(a,b)(x, y)

t.
Notice that in order to show that g is diffenrentiable at (0, b) we need

to show that for every ǫ ∈ Γ, the point (0, b) belongs to the interior of
the set of (x, y) ∈ Km ×Kn, such that

‖g(x, y)− g(0, b)−Dg(0,b) · (x− 0, y − b)‖ < ǫ‖(x, y − b)‖,

which, since g(0, b) = 0 and Dyg(0,b) = 0, equals

(5.1)
{

(x, y) ∈ Km ×Kn : ‖g(x, y)−Dxg(0,b) · x‖ < ǫ‖(x, y − b)‖
}

.

We fix ǫ ∈ Γ. By our assumption that g(x, b) is differentiable at 0,
it follows that 0 is in the interior of

{

x ∈ Km : ‖g(x, b)−Dxg(0,b) · x‖ < ǫ‖x‖
}

.

By Claim 5.5, (0, b) is in the interior of
{

(x, y) ∈ Km ×Kn : ‖g(x, y)−Dxg(0,y) · x‖ < ǫ‖x‖
}

,

hence there exists δ1 ∈ Γ such that if ‖(x, y − b)‖ < δ1 then

‖g(x, y)−Dxg(0,y) · x‖ < ǫ‖x‖.

In order to prove that (0, b) is in the interior of the set in (5.1), we
write

(5.2) g(x, y)−Dxg(0,b) ·x = g(x, y)−Dxg(0,y) ·x+(Dxg(0,y)−Dxg(0,b))·x.
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Claim 5.6. There is δ2 ∈ Γ, such that for all (x, y) ∈ Km × Kn, if
‖y − b‖ < δ2 then

‖(Dxg(0,y) −Dxg(0,b)) · x‖ < ǫ‖x‖.

Proof. We first observe that for every A = (ai,j) ∈ Mn(K), if for all
i, j, |ai,j| < ǫ then for all x ∈ Kn, we have ‖A · x‖ < ǫ‖x‖.
Consider the map G : Kn → Mr×n(K), G(y) = Dxg(0,y). It is

definable over A and hence continuous at b. Thus, there exists δ2 ∈ Γ
such that whenever ‖y − b‖ < δ2, then ‖Dxg(0,y) − Dxg(0,b)‖ < ǫ. The
result follows from our above observation. �

If we now take δ = min{δ1, δ2}, for δ2 as in the above claim, then for
all (x, y) ∈ Km ×Kn with ‖(x, y − b)‖ < δ, we have, using (5.2),

‖g(x, y)−Dxg(0,b)·x‖ ≤ max{‖g(x, y)−Dxg(0,y)·x‖, ‖(Dxg(0,y)−Dxg(0,b))·x‖}

< ǫ‖x‖ ≤ ǫ‖(x, y − b)‖.

This ends the proof that g(x, y) is differentiable at (a, b). Since a ∈
W b was arbitrary it follows that for all x ∈ W b, g(x, y) is differentiable
at (x, b). Consider now the map G : (x, y) 7→ Dg(x,y). Since g(x, b)
is C1 on W b, the map G(x, b) is continuous on W b, and therefore by
Lemma 5.4, G is continuous at (a, b). Thus, g is C1 at (a, b). This ends
the proof of Proposition 5.1. �
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