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Abstract. We prove the following instance of a conjecture stated in
[10]. Let G be an abelian semialgebraic group over a real closed field R
and let X be a semialgebraic subset of G. Then the group generated by
X contains a generic set and, if connected, it is divisible.

More generally, the same result holds when X is definable in any
o-minimal expansion of R which is elementarily equivalent to Ran,exp.

We observe that the above statement is equivalent to saying: there
exists an m such that Σm

i=1(X −X) is an approximate subgroup of G.

1. Introduction

Locally definable groups arise naturally in the study of definable groups
in o-minimal structures. In this paper we are mostly interested in definably
generated groups, namely locally definable groups which are generated by
definable sets (see Section 2 for basic definitions). An important example of
such groups is the universal cover of a definable group. Indeed, a definable
group in an o-minimal structure can be endowed with a definable manifold
structure making the group into a topological group and then, similarly to
the Lie context, one can construct its universal covering group, in the cate-
gory of locally definable groups, see [9]. This universal covering is generated
by a definable set.

The universal covering is an example of a locally definable group U with
a definable (left) generic set X; that is, a definable set such that AX = U
for some countable subset A ⊆ U (see [11, Lemma 1.7]). In [10], it was
conjectured that every definably generated abelian group is of this form:

Conjecture 1.1. Let U be an abelian, connected, definably generated group.
Then U contains a definable generic set.

Note that by [10, Claim 3.11], we may assume in the above conjecture
that U is generated by a definably compact set.
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It has been shown in recent papers that the above conjecture can be re-
stated in several ways (see for example [4]). We will be using the equivalences
below, for which we first need a definition.

Definition 1.2. Given an abelian, connected, definably generated group
U , we say that a locally definable normal subgroup Γ < U is a lattice if
dim(Γ) = 0, and U/Γ is definable; that is, there exist a definable group
G and a locally definable surjective homomorphism from U onto G, whose
kernel is Γ.

Fact 1.3 ([10, Proposition 3.5] and [11, Theorem 2.1]). Let U be an abelian,
connected, definably generated group. Then the following are equivalent:

(1) U contains a definable generic set.
(2) U admits a lattice.
(3) U admits a lattice isomorphic to Zk, for some k.

Moreover, each of the above clauses implies that U is divisible.

In this note, we study Conjecture 1.1 for definably generated subgroups
of definable groups. To that aim, we introduce the following notion.

Definition 1.4. LetM be an o-minimal structure. We say that an abelian
locally definable group G has the generic property with respect toM if every
definably generated subgroup of G contains a definable generic set. We omit
the reference to M if it is clear from the context (see Remark 2.3).

The main result of [11] can be stated as follows.

Fact 1.5. Let R be an ℵ1-saturated o-minimal expansion of a real closed
field R. Then 〈Rn,+〉 has the generic property with respect to R.

Our first result, in Section 3, is that the generic property can be lifted
under the presence of an exact sequence (Theorem 3.4).

Theorem. Let M be an o-minimal structure. Assume that we are given an
exact sequence of abelian locally definable groups and maps:

0 H G V 0- -i -π -

If V and H have the generic property, then so does G.

This is a useful criterion that can be applied inductively in certain situa-
tions. As a corollary, we prove (Subsection 3.1) the following theorem.

Theorem. Let M be an ℵ1-saturated o-minimal structure.

(1) If G is a definable abelian torsion-free group, then G has the generic
property.

(2) If M expands a real closed field R and G ⊆ Gl(n,R) is a definable
abelian linear group, then G has the generic property.

In Section 4, we apply the above lifting result to study definably generated
subgroups of semialgebraic groups. In order to formulate the next result,
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recall that Ran,exp is the expansion of the real field by the real exponential
map and all restrictions of real analytic functions to the closed unit box in
Rn, for all n ∈ N. By [7], it is o-minimal. The following theorem is the main
result of the paper (Theorem 4.5), which generalizes Fact 1.5 above.

Theorem. Let R be an ℵ1-saturated o-minimal expansion of a real closed
field R such that the theory Th(R) ∪ Th(Ran,exp) is consistent and has an
o-minimal completion. Then any abelian R-semialgebraic group G has the
generic property with respect to R. In particular, any semialgebraically gen-
erated subgroup of G contains a semialgebraic generic set.

A special case of the above result is when R is elementarily equivalent to
Ran,exp.

A crucial key case of the above theorem is when G is an abelian variety.
In [19] the authors prove the definability in Ran,exp, on appropriate domains,
of embeddings of families of abelian varieties into projective spaces. From
those results it is possible to extract the following non-standard property of
abelian varieties.

Fact 1.6. [19] Let R = 〈R, . . .〉 be a model of Th(Ran,exp) and let A ⊆
PN (K), K = R(i), be an embedded abelian variety of dimension g. Then
there exist a locally definable subgroup G of 〈Rg,+〉 and a locally definable
covering homomorphism p : G → A.

For the sake of completeness, we provide a proof of the above fact in
Appendix 5. Another important ingredient is the work of E. Barriga on
semialgebraic groups, [3], which we recall in Fact 4.4.

1.1. The connection to approximate subgroups. Approximate sub-
groups have been studied extensively in various fields including model the-
ory, see for example [6] and [12].

Definition 1.7. Given a group G, and k ∈ N, a set X ⊆ G is called a k-
approximate group if X = X−1 and there is a finite set A ⊆ G of cardinality
k such that X ·X ⊆ A ·X. We say that X is an approximate group if it is
k-approximate for some k ∈ N.

As we observe in Remark 2.3 below, the existence of a generic set inside a
definably generated group 〈X〉 ⊆ G is equivalent to saying that there exists
an m such that the set X(m) (the addition of X − X to itself m times)
is an approximate group. Thus our various results and conjectures can
be re-formulated in the language of approximate subgroups. For example,
Conjecture 1.1 can be re-formulated as follows.

Conjecture 1.8. Let U be a locally definable abelian group in an o-minimal
structure and X ⊆ U a definable set. Then there exists m ∈ N such that
X(m) is an approximate group.

Our main result above (Theorem 4.5) easily implies the following unifor-
mity statement:
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Theorem 1.9. Let R = 〈R, <,+, ·, . . . 〉 be an o-minimal expansion of
Ran,exp. Let {Gt : t ∈ T} an Ran,exp-definable family of semialgebraic abelian
groups, and {Xt : t ∈ T} an R-definable family, with each Xt ⊆ Gt. Then
there is k ∈ N, such that for every t ∈ T , the set Xt(k) is a k-approximate
subgroup of G.

In Conjecture 1.8 we restricted our discussion to definable sets in o-
minimal structures, but the same problem could be formulated for arbitrary
smooth curves in Rn.

Question 1.10. Let X ⊆ Rn be a connected smooth curve. Is there m ∈ N
such that X(m) is an approximate subgroup of 〈Rn,+〉?

Let us see that when X is compact the answer to the above question
is positive: Indeed, without loss of generality, 0 ∈ X and X is given by
γ : R → Rn. Moreover, we can assume that Rn is the minimal linear space

containing X. Thus, there are t1, . . . , tn such that ˙γ(t1), . . . , ˙γ(tn) form a
basis for Rn (otherwise, Rn would not be minimal). It follows that the map

(x1, . . . , xn) 7→ γ(x1) + · · ·+ γ(xn) : Rn → Rn

is a submersion at the point (γ(t1), . . . , γ(tn)) and hence the point
γ(t1)+ · · ·+γ(tn) is an internal point of X(n) inside Rn. Since X(n)+X(n)
is compact it can be covered by finitely many translates of X(n), so that
X(n) is an approximate subgroup.

Note that even if the answer to Question 1.10 is positive, one does not
expect any uniformity statement such as that of Theorem 1.9 to hold at this
level of generality.

We finish this part of the introduction by pointing out that one cannot
expect a positive answer to the above question without the model theoretic
(o-minimality) or the topological (smoothness) assumptions. The example
was suggested to us by P. Simon. A similar example was also proposed by
E. Breuillard.

Example 1.11. Let G = RN with coordinate-wise addition and let X ⊆ RN

be the set of all elements with at most one nonzero coordinate. We claim
that for no n is the set X(n) an approximate subgroup. Indeed, assume that
the set X(n+1) is covered by finitely many translates of X(n). Let p : RN →
R2(n+1) be the projection onto the first 2(n+1) coordinates. The set p(X(n))
consists of the tuples with at most 2n coordinates different than 0, so for
any finite subset A of RN we have that p(A+X(n)) = p(A) + p(X(n)) has

dimension 2n. On the other hand, p(X(n+ 1)) = R2(n+1), a contradiction.

Because 〈RN,+〉 is isomorphic as a group to 〈R,+〉, we can also find a set
X ⊆ R such that for no n is the set X(n) an approximate subgroup.

1.2. The non-abelian case. It has been shown in [4] that Fact 1.3 fails
for non-abelian groups. More precisely, it was shown that every definable
centerless group, in a sufficiently saturated o-minimal structure, contains
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a definably generated subgroup with a definable generic set, which is not
the cover of any definable group. However, as far as we know the following
question is still open.

Question 1.12. Let U be a definably generated group in an o-minimal
structure. Does U contain a definable generic set?

In [14, Section 7] there is a discussion of locally definable (called Ind-
definable) groups and it is shown (see Proposition 7.8 there) that every lo-
cally definable group contains a definably generated subgroup U of the same
dimension which contains a definable generic set (using also [11, Theorem
2.1]).

Acknowledgements. We thank Eliana Barriga for reading and commenting
on an early version of this paper.

2. Preliminaries

Let M be an arbitrary κ-saturated o-minimal structure for κ sufficiently
large. By bounded cardinality, we mean cardinality smaller than κ. We refer
the reader to [1] and [8] for the basics concerning locally definable groups.
A locally definable group is a group 〈U , ·〉 whose universe is a directed union
U =

⋃
k∈NXk of definable subsets of Mn for some fixed n, and for every

i, j ∈ N, the restriction of group multiplication to Xi × Xj is a definable
function (by saturation, its image is contained in some Xk). The dimension
of U is by definition dim(U) = max{dim(Xk) : k ∈ N}.

A map φ : U → H between locally definable groups is called locally
definable if for every definable X ⊆ U and Y ⊆ H, the set graph(φ)∩(X×Y )
is definable. Equivalently, the restriction of φ to any definable set is a
definable map. If φ is surjective, then there exists a locally definable section
s : H → U of φ.

For a locally definable group U , we say that V ⊆ U is a compatible subset
of U if for every definable X ⊆ U , the intersection X ∩ V is a definable set
(note that in this case V itself is a countable union of definable sets). We say
that U is connected if there is no proper compatible subgroup of bounded
index. By [8], every locally definable group U has a connected component
U0, that is, a connected compatible subgroup of U of the same dimension.
Moreover, U admits a locally definable topological structure that makes the
group operations continuous. Note that we still use the term “definably
connected” when referring to definable sets. Note also that if φ : U → V
is a locally definable homomorphism between locally definable groups, then
ker(φ) is a compatible locally definable normal subgroup of U . In fact, the
following holds.

Fact 2.1. [8, Theorem 4.2] If U is a locally definable group and H ⊆ U
is a locally definable normal subgroup then H is a compatible subgroup of
U if and only if there exists a locally definable surjective homomorphism of
locally definable groups φ : U → V whose kernel is H.
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In Definition 1.4 we introduced the notion of an abelian locally definable
group having the generic property. Now, we stress some easy properties
regarding that notion. For that, we need the following notation that will be
used throughout the paper.

Notation 2.2. Let G be an abelian group and X a subset. The set X(m)
denotes the addition of X−X to itself m times. We say that X is symmetric
if X = −X.

Remark 2.3. (1) An abelian locally definable group G has the generic prop-
erty if and only if for every definable subset Y ⊆ G, there are m, k ∈ N
and 0 ∈ A ⊆ Y (3m), |A| ≤ k, such that Y (m) + Y (m) ⊆ A + Y (m). In
particular, Y (m) is a k-approximate group.

(2) If G has the generic property and H is a locally definable subgroup of G,
then H has also the generic property.

(3) Let G and V be abelian locally definable groups, and π : G → V a
surjective locally definable homomorphism. If G has the generic property,
then so does V. Indeed, for X ⊆ V definable, let Y ⊆ G be any definable
set with π(Y ) = X (such Y exists by saturation). Since G has the generic
property, there are m, k ∈ N and a set 0 ∈ A ⊆ Y (3m), |A| ≤ k such that
Y (m) + Y (m) ⊆ A + Y (m). In particular, we get that 0 ∈ π(A) ⊂ X(3m)
and

X(m) +X(m) = π(Y (m) + Y (m)) ⊆ π(A+ Y (m)) = π(A) +X(m),

as required.

(4) The generic property is preserved under taking reducts. Namely, letM′
be an o-minimal expansion of M. By (1) above, if G is a locally definable
group in M with the generic property with respect to M′, then G has the
generic property with respect to M. It is also clear, again using (1), that
the generic property is preserved under taking elementary substructures.
That is, let N be an elementary extension of M. Let G =

⋃
`∈NX` be a

locally definable group inM, and denote by G(N) its realization in N . Then
G has the generic property with respect to M if and only if G(N) has the
generic property with respect to N . For, let Y ⊂ X`(N) be a subset of G(N)
definable over a finite tuple d ∈ N . Replace the parameters d by variables
t, and take the definable set T = {t : Yt ⊂ X`(N)}. Since T is definable
over M, we can consider the definably family in M of definable subsets
{Yt : t ∈ T (M)} of G. By (1) and saturation of M there are m, k ∈ N
such that for all t ∈ T (M) there is 0 ∈ At ⊆ Yt(3m), |At| ≤ k, such that
Yt(m) + Yt(m) ⊆ At + Yt(m), as required.

We can now formulate:

Proposition 2.4. Let G be an abelian locally definable group in M (which
is still sufficiently saturated). Then the following are equivalent:

(1) G has the generic property.
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(2) For every definable family {Xt : t ∈ T} of subsets of G there exist
m, k ∈ N such that for every t ∈ T , there exists a subset 0 ∈ A ⊆
Xt(3m), of size at most k such that

Xt(m) +Xt(m) ⊆ A+Xt(m).

In particular, G has the generic property in M if and only if it has the
generic property in any/some elementary extension of M.

Proof. This follows immediately from Remark 2.3 (1) and saturation. �

Remark 2.5. While we focus here on o-minimal structures, the notions we
defined make sense in any sufficiently saturated structure, in which case
Remark 2.3 and Proposition 2.4 are also true.

3. Group extensions

In this section we study the existence of definable generic sets when deal-
ing with abelian group extensions, in an arbitrary o-minimal structure M.
As a corollary, we prove that definably generated subgroups of abelian
torsion-free definable groups contain definable generic sets. When M ex-
pands a real closed field R, we deduce a similar result for definable linear
groups over R.

Proposition 3.1. Assume that we are given an exact sequence of locally
definable abelian groups and maps,

0 H G V 0- -i -π - ,

where V is connected and admits a lattice. Let Y ⊆ V be a definable generic
set and s : Y → G a definable section. Then the intersection 〈s(Y )〉 ∩ i(H)
is definably generated.

Proof. By [11, Lemma 1.7], V = 〈Y 〉. In particular, π sends the group
〈s(Y )〉 onto V. Without loss of generality, we may assume that i is the
identity map.

Henceforth we will use that given a definable set Z ⊆ V, we can assume
that Z ⊆ Y . Indeed, by saturation there is n such that Z ⊆ Y (n) and by
definable choice there is a section r : Z → s(Y )(n) ⊆ 〈s(Y )〉. Thus we can
extend the section s : Y → G to a section s̃ : Y ∪ (Z \Y )→ G via r in such a
way that 〈s(Y )〉 = 〈s̃(Y ∪ Z)〉. Therefore we can work with the generic set
Y ∪ Z instead of Y , as required. For example, we can assume that Y 3 0
is symmetric (extend the section s to the set −Y ∪ {0}). Moreover, we can
set s(0) = 0. For, let y0 := s(0) ∈ H and consider the definable section

s̃ : Y → G such that s̃ = s in Y \ {0} and s̃(0) = 0. If D̃ is a definable set

which generates 〈s̃(Y )〉 ∩ H, then D := D̃ ∪ {y0} generates 〈s(Y )〉 ∩ H, as
required.

By Fact 1.3 and since Y is generic, the locally definable group V admits
a lattice Γ ' Zk. Since V/Γ is definable and Y generic in V, there is a finite
set A ⊆ V such that Y +A+ Γ = V. Indeed, to see that note that the image
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of Y in V/Γ is a generic so finitely many translates of it cover the group.
Now, without loss of generality, we can assume that A contains a fixed set
of generators γ1, . . . , γk of Γ. Therefore we can assume that Y + Γ = V and
γ1, . . . , γk ∈ Y (extending the section s to Y +A).

Let ∆ = 〈s(γ1), . . . , s(γk)〉 and note that π|∆ : ∆→ Γ is an isomorphism.
Consider the symmetric finite set (notice that Y (2) ∩ Γ is finite)

∆0 := {δ ∈ ∆ : π(δ) ∈ Y (2)}
and the definable set

D := (∆0 + s(Y )(2)) ∩H ⊆ 〈∆ + s(Y )〉 ∩ H = 〈s(Y )〉 ∩ H.
Note that 0 ∈ D, and we now claim that D generates 〈s(Y )〉 ∩H. To prove
that, it is sufficient to show the following:

Claim. For all n and for every δ1, . . . , δ2n ∈ ∆ and y1, . . . , y2n ∈ Y , if
Σ2n
i=1δi + s(yi) ∈ H then Σ2n

i=1δi + s(yi) ∈ 〈D〉.
Indeed, granted the claim, pick Σm

i=1s(yi) ∈ 〈s(Y )〉∩H. Define δ1 = · · · =
δ2m = 0 and ym+1 = · · · = y2m = 0. Since Σ2n

i=1δi + s(yi) = Σm
i=1s(yi) ∈ H

we deduce Σm
i=1s(yi) ∈ 〈D〉, as required.

Proof of the claim. By induction on n. The case n = 0 gives π(δ1) + y1 = 0,
hence π(δ1) ∈ Y ⊆ Y (2), so δ1 ∈ ∆0. Therefore δ1 + s(y1) ∈ D.

Assume now that Σ2n
i=1δi+s(yi) ∈ H. We want to show that Σ2n

i=1δi+s(yi)
is in 〈D〉. We write the sum in pairs:

Σ2n

i=1(δi + s(yi)) = Σ2n−1

k=1 (s(y2k−1) + s(y2k) + δ2k−1 + δ2k).

Now, because Y +Γ = V, for each k = 1, . . . , 2n−1 there is wk ∈ Y and βk ∈ Γ
such that y2k−1 +y2k = βk +wk. Let αk ∈ ∆ be such that π(αk) = βk. Note
that βk ∈ Y (2), so that αk ∈ ∆0. Hence,

(s(y2k−1) + s(y2k)− αk − s(wk)) ∈ D.
Also because the image under π of s(y2k−1) + s(y2k) − αk − s(wk) is 0, it
belongs to H.

Thus the above sum also equals

Σ2n

i=1(δi + s(yi)) =Σ2n−1

k=1

(
s(y2k−1) + s(y2k)− αk − s(wk)

)
+

Σ2n−1

k=1

(
δ2k−1 + δ2k + αk + s(wk)

)
.

We already showed that Σ2n−1

k=1

(
s(y2k−1) + s(y2k)− αk − s(wk)

)
∈ 〈D ∩ H〉,

so if we denote δ̃k := δ2k−1 + δ2k + αk ∈ ∆ then

Σ2n−1

k=1

(
δ̃k + s(wk)

)
∈ H,

and it remains to see that it belongs to 〈D〉. This follows by induction, so
the claim is proved and with it Proposition 3.1. �

Proposition 3.2. With H, G and V as in Proposition 3.1, assume that
X ⊆ G is a definable set with 〈π(X)〉 = V. Then 〈X〉 ∩ i(H) is definably
generated.
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Proof. Again, we may assume that i is the identity map. Since V admits
a lattice it contains a definable generic set Y . Without loss of generality,
we may assume that π(X)(1) ⊆ Y . By saturation Y ⊆ π(X)(`) for some
` ∈ N and therefore by definable choice we can pick a section s : Y → 〈X〉.
Moreover, we can assume that s(π(X)) ⊆ X. Let E := X(1) ∩ H. By
Proposition 3.1 we have that H0 := 〈s(Y )〉 ∩ H is definably generated.
Thus, to prove that 〈X〉 ∩ H is definably generated it suffices to show that
〈X〉 ∩ H = 〈E〉+H0.

To that aim, pick x1 . . . , xn ∈ X such that Σn
i=1xi ∈ H. We can write

Σn
i=1xi = Σn

i=1(xi − s(π(xi)) + Σn
i=1s(π(xi)).

Note that xi − s(π(xi)) ∈ E for each i = 1, . . . , n and therefore Σn
i=1(xi −

s(π(xi)) ∈ 〈E〉. Moreover, Σn
i=1s(π(xi)) = Σn

i=1xi − Σn
i=1(xi − s(π(xi)) ∈

H. Since also s(π(xi)) ∈ s(π(X)) ⊆ s(Y ) for each i = 1, . . . , n, we get
Σn
i=1s(π(xi)) ∈ H0 and so Σn

i=1xi ∈ 〈E〉+H0, as required. �

Before the main corollary we need also the following lemma.

Lemma 3.3. Let G be an abelian locally definable group which is definably
generated. Then its connected component is definably generated by a defin-
ably connected set (with regard to the group topology). In particular, if every
connected definably generated subgroup of G contains a definable generic set,
then G has the generic property.

Proof. Let G be a locally definable group and X ⊆ G be a definable set
which generates G. Let X1, . . . , Xk be its connected components. Fix an
element ai in each Xi, and let Γ = 〈a1, . . . , ak〉. Consider the connected

set X̃ =
⋃
Xi − ai, and notice that 〈X〉 = 〈X̃〉 + Γ. Since 〈X̃〉 is a locally

definable subgroup of G of bounded index, it is compatible ([10, Fact 2.3(2)]),
and since it is connected, it must be the connected component of G.

For the second part of the statement, let H be a definably generated
subgroup of G. Then, by what we just showed, its connected component H0

is definably generated and therefore by hypothesis it contains a definable
generic set Y , that is, there is a bounded A ⊆ H0 such that A + Y = H0.
Since H0 has bounded index in H, there is a bounded B ⊆ H such that
B +H0 = H. In particular A+B + Y = H, as required. �

Theorem 3.4. Assume that we are given an exact sequence of abelian locally
definable groups and maps

0 H G V 0.- -i -π -

If V and H have the generic property then G has the generic property.

Proof. By Lemma 3.3 it is sufficient to consider subgroups of G which are
generated by definably connected sets. Let X be a definably connected set.
Since π(〈X〉) = 〈π(X)〉 is a definably generated connected group, we have
the exact sequence of locally definable groups

0→ 〈X〉 ∩ i(H)→ 〈X〉 → 〈π(X)〉 → 0.
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By hypothesis the connected group 〈π(X)〉 contains a definable generic set,
that is, there exists a definable set Z1 ⊆ 〈X〉 such that π(Z1) is generic in
〈π(X)〉. In particular the group 〈π(X)〉 admits a lattice (see Fact 1.3) and
therefore by Proposition 3.2 the group 〈X〉 ∩ i(H) is definably generated.
Again by hypothesis, we have that 〈X〉 ∩ i(H) contains a definable generic
set Z2. Finally, it is not hard to see that Z1 + Z2 is generic in 〈X〉. �

3.1. Some applications of Theorem 3.4. First, we study definably gen-
erated subgroups of abelian torsion-free definable groups (see basic facts on
torsion-free groups definable in o-minimal structures in Section 2.1 in [18]).

Corollary 3.5. Any abelian torsion-free definable group G in an o-minimal
structure M has the generic property with respect to M.

Proof. We prove it by induction on dim(G). Assume first that dim(G) = 1
and prove first a more general result.

Lemma 3.6. If U is a 1-dimensional torsion-free locally definable group
then it has the generic property.

Proof. By [8, Corollary 8.3], the group U can be linearly ordered. By Lemma
3.3 it suffices to study a subgroup generated by a set of the form (−b, b) :=
{x ∈ G : −b < x < b}, that is,

〈(−b, b)〉 =
⋃
n∈N

(−nb, nb).

It is easy to verify that the group Γ = Zb is a lattice in 〈(−b, b)〉 because
〈(−b, b)〉/Γ is isomorphic to the definable group

(
[0, b),mod b

)
. �

Now, assume that dim(G) > 1. Then, by [20], there exists a definable
subgroup H of G of dimension 1. In particular, we have the exact sequence

0→ H → G→ G/H → 0.

Since H and G/H are abelian torsion-free definable groups smaller dimen-
sion it follows by induction that they have the generic property. By Theorem
3.4, so does G. �

Next we prove:

Corollary 3.7. Let M be an o-minimal expansion of a real closed field
and G ⊆ Gl(n,R) a definable abelian linear group. Then G has the generic
property with respect to M.

Proof. We may assume that G is definably connected with regard its group
topology. By [16, Proposition 3.10], G is definably isomorphic to a semial-
gebraic linear group, and hence it is the connected component of H(R) for
some abelian linear algebraic subgroup of GL(n,K), defined over R (here K
is the algebraic closure of R). By [16, Fact 3.1], G is semialgebraically iso-
morphic to a group of the form Tm× (R∗>0)k× (R+)n, where T = SO(2, R).

By Corollary 3.5, the group (R∗>0)k × (R+)n has the generic property, so
by Theorem 3.2 it is enough to show that T = SO(2, R) has the generic
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property. The universal covering of T is a torsion-free 1-dimensional locally
definable group, so by Lemma 3.6, it has the generic property. Thus G has
the generic property. �

4. Semialgebraic groups

The main purpose of this section is to show, see Theorem 4.5 below, that
every semialgebraic abelian group over a real closed field R has the generic
property with respect to certain o-minimal expansions of R, which we now
fix.

In the rest of the section, we fix R to be an ℵ1-saturated o-
minimal L-structure expanding a real closed field R such that
the (L ∪ Lan,exp)-theory Th(R) ∪ Tan,exp is consistent and has an
o-minimal completion, call it T0. We denote by K := R(i) its alge-
braic closure.

For example, any real closed field, or more generally an ℵ1-saturated
structure elementarily equivalent to Ran,exp clearly satisfies the above.

We start by analysing the case of abelian varieties.

Proposition 4.1. Every embedded abelian variety A ⊆ PN (K) over K has
the generic property with respect to R.

Proof. First, note that by our assumptions there exists an elementary exten-
sion R ≺ R′ such that R′ can be expanded to a model of T0. Furthermore,
we may assume that this structure is ℵ1-saturated. By Proposition 2.4 and
the fact that the generic property is preserved under taking reducts and
elementary substructures (Remark 2.3(4)), it is sufficient to prove the result
in R′. Thus, all in all, we can assume that R is an ℵ1-saturated model of
T0.

By Fact 1.6, there exist a locally definable subgroup G of some 〈Rg,+〉
and a locally definable covering homomorphism p : G → A. Thus, by Fact
1.5 and Remark 2.3, the group A has the generic property. �

Proposition 4.2. Let H be an irreducible abelian K-algebraic group. Then
H has the generic property with respect to R.

Proof. As in the proof of Proposition 4.1, we can assume that R is an ℵ1-
saturated model of T0 := Th(R) ∪ Tan,exp.

By Corollary 3.7, the result is true when H is linear (notice that every
linear subgroup of GL(n,K) can be viewed as a linear subgroup of GL(m,R)
for some R).

For the general case, by Chevalley’s theorem, there are a linear group L
and an abelian variety A such that the following is an exact sequence:

0→ L→ H → A→ 0.

Thus, by Theorem 3.4 and Proposition 4.1, the group H also has the generic
property. �
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Remark 4.3. If H is an abelian K-algebraic group defined over R, then by
Remark 2.3 and Proposition 4.2, the group of R-rational points H(R)o has
the generic property.

Before reaching our main theorem we recall the following result of Barriga,
[3, Theorem 10.2], which describes every semialgebraic group in terms of the
R-points of an associated algebraic group over R.

Fact 4.4. Let G be a definably compact and connected semialgebraic abelian
group over R. Then there exists a K-algebraic group H defined over R,
an open connected locally semialgebraic subgroup W of the o-minimal uni-

versal covering group H̃(R)o of the connected component of H(R), and a
locally semialgebraic surjective covering homomorphism θ : W → G, with
0-dimensional kernel.

Theorem 4.5. For R an o-minimal structure expanding a real closed field
R, as before, let G be an abelian semialgebraic group over R. Then G has
the generic property with respect to R. In particular, any semialgebraically
generated subgroup of G contains a generic semialgebraic subset.

Proof. By Lemma 3.3 it is enough to show that every locally definable sub-
group of G generated by a definably connected set contains a definable
generic subset. Thus, we can assume that G is connected.

By [20, Theorem 1.2], applied finitely many times, G contains a torsion-
free subgroup H such that the quotient G/H is definably compact. Thus, by
Theorem 3.4 and Corollary 3.5, we may assume that G is definably compact.

Using the notation of Fact 4.4, we have a covering homomorphism θ :
W → G, with W a definably generated subgroup of the locally definable

group H̃(R)o.

Denote by p : H̃(R)o → H(R)o the universal covering map. We have the
exact sequence

0→ ker(p)→ H̃(R)o → H(R)o → 0.

Note that ker(p) is discrete and therefore its only semialgebraically generated
connected subgroup is the trivial one, so by Lemma 3.3 the group ker(p) has
the generic property. Thus, by Theorem 3.4 and Remark 4.3, we deduce

that H̃(R)o has the generic property. In particular, by Remark 2.3(2), the
same is true for W, and by (3), also for G, as required. �

We already pointed out in the Introduction that Theorem 1.9 follows
from Theorem 4.5. The following is also a direct consequence of the above
together with a theorem of Hrushovski and Pillay [13]. In that paper the
authors prove (among other things) that any semialgebraic group over a
real closed field R is locally semialgebraic isomorphic to the R-points of an
algebraic group defined over R (i.e., there are semialgebraically isomorphic
open neighborhoods of the identity of each group). We point out that almost
with the same proof, the latter result is also valid for a locally semialgebraic
group.
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Corollary 4.6. If R is an ℵ1-saturated real closed field extension of R and
G is an abelian locally semialgebraic group definable over R and semialge-
braically generated, then G has the generic property.

Proof. We can assume that G is connected by Lemma 3.3. Moreover, con-
sidering the universal covering [9] we can assume that G is simply-connected
(in the locally semialgebraic category).

We prove it by induction on the dimension of G, the initial case dim(G) = 0
being trivial. We can assume also that the semialgebraic set Y that generates
G is definable over R and it is closed with respect to the group topology of
G.
Case 1. If Y is not definably compact, then by [8, Thm.5.2] there is a com-
patible definable 1-dimensional, definably connected torsion-free subgroup
H of G. Since H has the generic property by Corollary 3.5, and G/H has
the generic property by induction, we are done by Theorem 3.4.

Case 2. If Y definably compact, then consider the realization of G(R) of
G over R, which is a Lie group. By [13, Prop.3.1 & Cor.4.9] there is a
semialgebraic open neighborhood U of the identity of G(R) and an open
semialgebraic neighborhood V of the identity of the connected component
H0(R) of an algebraic group H defined over R, for which there exist a local
isomorphism

f : U → V

defined over R. Now, since G is simply-connected by [1, Cor.6.8] G(R) is

simply-connected. On the other hand, denote by H̃0(R) the universal cov-
ering of H0(R), which is a locally semialgebraic group defined over R [9].

Moreover, the realization of H̃0(R) in the real field is naturally the universal

covering H̃0(R) of H0(R). By the monodromy principle of simply-connected
Lie groups, there exists a Lie isomorphism

F : G(R)→ H̃0(R)

that extends f . Now, for any n ∈ N the set Y (R)(n) is a compact subset of
G(R) and therefore finitely many translates of U cover it. We deduce that
F |Y (R)(n) is a semialgebraic map defined over R. Thus, it makes sense to
consider the realization of each F |Y (R)(n) over R, so that we obtain a locally
semialgebraic monomorphism (not necessarily surjective)

G ↪→ H̃0(R).

Note that by Lemma 4.2 the group H0(R) has the generic property, so that

by Theorem 3.4 H̃0(R) has the generic property. Thus, G has the generic
property, as required. �

5. Appendix: Abelian Varieties

Fact 1.6 is a consequence of the results in [20]. Maybe not in this form, we
believe it is well-known by the experts (e.g., a similar statement is used in
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[21, §5.2.2 and §5.3]). For the sake of completeness, we sketch a proof in this
appendix. As in [20], we quote several facts concerning abelian varieties, see
[5] for details.

For a positive g ∈ N, by a complex g-torus we mean the quotient group
Cg/Λ where Λ is a lattice, i.e., a subgroup of (Cg,+) generated by 2g vec-
tors which are R-linearly independent. It is a compact complex Lie group
of dimension g. A torus Cg/Λ is called an abelian variety if it is biholomor-
phic to a complex embedded abelian variety, namely a projective connected
complex algebraic group.

By a theorem of Baily [2], for any g ∈ N there is a countable collection of
constructible families of embedded abelian varieties {AD}D∈D, parameter-
ized by certain polarizations D ∈ D, each of the form

AD = {ADt ⊂ PND(C) : t ∈ SD},
such that every g-dimensional embedded abelian variety is isomorphic to a
member of one of the AD’s (see also [19, Thm. 8.11]).

We now denote by T the semialgebraic compact group ([0, 1),+ mod1),
which is isomorphic to R/Z. A consequence of [19, Theorem 8.10] is the
following:

Fact 5.1. For any g ∈ N and for each D ∈ D there exists in Ran,exp a
definable family of group isomorphisms between the members of AD and
T2g.

Indeed, the family of maps which is given by ΦD in [19, Theorem 8.10]
yields group biholomorphisms between complex tori of the form Et = Cg/Λt
and the members of At ∈ AD. Each Et, via its fundamental domain, is
definably group-isomorphic to T2g.

Proposition 5.2. Let A = {At : t ∈ T} be a constructible family without
parameters of embedded g-dimensional abelian varieties of PN (C).

Then there are constructible T1, . . . , Tk ⊆ T covering T , and there are
finitely many D1, . . . , Dk ∈ D and d ∈ N such that for any j = 1, . . . , k,
and t ∈ Tj there exists an algebraic isomorphism between At and an abelian
variety in ADj . Moreover, for each j, there is a constructible family of
isomorphisms HDj , between the members of {At : t ∈ Tj} and of ADj .

Proof. By Fact 5.1, each At ∈ A is bi-regularly isomorphic to some A ∈
AD, for D ∈ D. Because the complex field is ℵ1-saturated and there are
countably many D ∈ D it follows that there exist D1, . . . , Dk ∈ D such
that for any t ∈ T we have that At is bi-regularly isomorphic to an abelian
variety in ADj for some j ∈ {1, . . . , k}. Again by saturation, the degree of
the isomorphism, as t varies in Tj , is uniformly bounded by some d.

Now, for each j ∈ {1, . . . , k} the set Tj of t ∈ T such that there exists
a bi-regular isomorphism of degree at most d between At and an abelian
variety in ADj is constructible without parameters. Because of the above
bound on the degree, there exists a constructible family of isomorphisms
HDj as required. �
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Proof of Fact 1.6. We now return to the setting of 1.6 with R a real closed
field and K = R(i) its algebraic closure. Let A ⊆ PN (K) be an embedded
abelian variety. Let c ∈ K` be a tuple of coefficients defining algebraically
the variety A.

We can replace the parameter c by a tuple t of free variables and therefore
we obtain (without parameters) a constructible family A = {At : t ∈ T} of
abelian subvarieties of PN (K) of dimension g := dim(A).

Consider the realization A(C) of A in C. By Proposition 5.2 we can
assume that A is a sub-family of AD for some D ∈ D.

By Fact 5.1 there is a definable family in Ran,exp of group isomorphisms
between the members of AD and T2g. Going back to R and K, we can find
a definable isomorphism between A and T2g with its natural realization in
R. Finally, there is a locally definable covering map from a locally definable
subgroup of R2g onto T2g, so also onto A. �
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