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The setting:Discrete subgroups of R-vector space

Basics
Let V be an R-vector space of finite dim, Γ ⊆ V a discrete (hence
closed) subgroup.
I Γ is finitely generated, by R-independent elements.
I The generators form a base for V iff V/Γ is compact in the

quotient topology.

A lattice and a torus
I A lattice Γ in Rn is a discrete subgroup generated by a basis.
I The torus TΓ := Rn/Γ is a compact Lie group. The quotient map is
πΓ : Rn → TΓ.

The topology on TΓ

I A subset Y ⊆ TΓ is closed iff π−1
Γ (Y ) is closed in Rn.

I Thus, for X ⊆ Rn, πΓ(X ) is closed in TΓ iff X + Γ is closed in Rn.
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The closure problem

We have πΓ : Rn → TΓ

Problem I
Assume that X ⊆ Rn is definable in an o-minimal structure, describe
cl(πΓ(X )) in TΓ.

An important special case: a linear space
Assume L ⊆ Rn is a linear subspace, then
I πΓ(L) is closed in TΓ iff L has a basis in L ∩ Γ (iff L + Γ is closed in

Rn)
I So, the closure of πΓ(L) is obtained as follows: Let LΓ be the

smallest linear space ⊇ L with a basis in Γ, then
cl(πΓ(L)) = πΓ(LΓ).

I E.g. Γ = Z3 ⊆ R3. if L = spR(1,
√

2,−1) then
LΓ = spR{(1,0,−1), (0,1,0)} and cl(π(L)) = π(LΓ).
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An answer to the closure problem

Previous work with S. Starchenko
Given X ⊆ Rn definable in an o-minimal structure, we associate to
every complete type over R, p ` X , an R-affine “nearest coset”
Lp + ap ⊆ Rn, such that for every lattice Γ ⊆ Rn,

cl(πΓ(X )) =
⋃
p`X

πΓ(LΓ
p + ap) = πΓ(Y )

In fact there is a definable set Y ⊆ Rn such that
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Some model theory

Let Γ ⊆ Rn a lattice, X ⊆ Rn arbitrary and let

〈R;<,+, ·,X , Γ〉 ≺ 〈R∗;<,+, ·,X ∗, Γ∗〉.

Then
I Then cl(X ) = st(X ∗ ∩On), where

O = {x ∈ R∗ : ∃r ∈ R |x | 6 r}.

I Thus

cl(X + Γ) = st((X ∗ + Γ∗) ∩On) =
⋃
p`X

st((p(R∗) + Γ∗) ∩On).

In the o-minimal setting, using v.d.Dries-Lewenberg, we find a
definable Y ⊆ Rn such that cl(X + Γ) = πΓ(Y )
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Hausdorff limits

Definition
Assume that (Xk )k∈N is a sequence of subsets of Rn. A set Y ⊆ Rn is
a Hausdorff limit of (Xk ) if for every R > 0 and ε > 0, there exists N
such that for all k > N, inside the ball ||x || < R we have

Y ⊆ B(Xk ; ε) and Xk ⊆ B(Y ; ε).

If Y1,Y2 are closed Hausdorff limits of (Xk ) then Y1 = Y2.

From now on, all Hausdorff limits are assumed to be closed.
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Hausdorff limits and model theory

Recommended
“Limit sets in o-minimal structures”, v.d. Dries, Proceedings of the
RAAG Summer school i Lisbon, 2003

Non-standard view of Hausdorff limits
Assume that {Xt : t ∈ T} is a definable family of subsets of Rn in some
structureM on R. LetM≺M∗ be an |R|+-saturated extension. Then,
a closed set Y ⊆ Rn is a Hausdorff limit of some sequence Xtn , tn ∈ T ,
iff there exists α ∈ T ∗ such that Y = st(Xα ∩On).

Related theorem by v.d. Dries, using definability of types
If F = {Xt : t ∈ T} be a family of subsets of Rn definable in an
o-minimal structureM. Then the family of all Hausdorff limits of
sequences from F is itself definable inM.

An example:
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Back to lattices: πΓ : Rn → TΓ = Rn/Γ

Several article in dynamical systems study families given by dilations
e.g. {tX : t ∈ (0,∞)} of a set in X ⊆ Rn and more generally on
nilmanifolds.
(Randol(1984), Bjorklund and Fish (2009), Kra, Shah and Sun (2017))
Their goal: Give conditions under which a sequence of measures µtn
on TΓ, associated to πΓ(tnX ), converges to the Haar measure on TΓ.

Remark: If µtn converges to the Haar measure on TΓ then the
Hausdorff limit of πΓ(Xtn ) equals TΓ.

A question (A. Nevo)
Assume that {Xt : t ∈ (0,∞)} is any definable family of subsets of Rn

in an o-minimal structure.
Describe the family of Hausdorff limits of πΓ(Xtn ) ⊆ TΓ, as tn →∞?

Example:
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Let R be an o-minimal structure over R.

Theorem 1 (P-Starchenko)
Let {Xt : t ∈ (0,∞)} be an R-definable family of subsets of Rn.
Then there are R-linear spaces L1, . . . ,Ls ⊆ Rn, definable compact
sets K1, . . . ,Ks ⊆ Rn and functions a1, . . . ,as : (0,∞)→ Rn, such that
for all sufficiently large t ,

Xt ⊆
s⋃

j=1

Lj + Kj + aj(t),

and in addition, for every lattice Γ ⊆ Rn,
(i) if LΓ

j = Rn for some j = 1, . . . , s then for every sequence tn →∞,

lim
n→∞

πΓ(Xtn ) = TΓ.

(ii) if for all j , LΓ
j 6= Rn, then for all large enough K ∈ N, every Hausdorff

limit of the family {πK Γ(Xt ) : t ∈ (0,∞)} is a proper subsets of TK Γ.
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The collection of all Hausdorff limits

Theorem 2 (P-Starchenko)
Let {Xt : t ∈ (0,∞)} be an R-definable family of subsets of Rn.
Then there are R-linear spaces L1, . . . ,Lk ⊆ Rn, definable sets
Y1, . . . ,Yk ⊆ Rn and functions a1, . . . ,ak : (0,∞)→ Rn, such that for
every lattice Γ ⊆ Rn, and every closed Z ⊆ TΓ the following are
equivalent:

1. Z ⊆ TΓ is a Hausdorff limit of a sequence (πΓ(Xtn ))n, for some
sequence tn →∞.

2.

Z =
k⋃

j=1

πΓ(Yj) + πΓ(LΓ
j ) + lim

n→∞
πΓ(aj(sn)),

for some sequence sn →∞.
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The connection to model theory

Let 〈R, Γ〉 ≺ 〈R∗, Γ∗〉.
I As we noted, every Hausdorff limit of {πΓ(Xt ) : t ∈ (0,∞)} can be

obtained as follows: For α >> 0 in R∗,

Z = st(πΓ∗(Xα) = πΓ(st((Xα + Γ∗) ∩On)).

I We now consider complete types p ` Xα over R〈α〉 and associate
to each such type a coset of the form Lp + bp, where Lp ⊆ Rn is
R-linear and bp ∈ R〈α〉.

I The main observation: Each type p ` Xα, contributes to Z a coset
πΓ(LΓ

p) + πΓ(cp), with cp ∈ st((bp + Γ∗) ∩On).
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Some comments on the theorem

I If Z1,Z2 ⊆ TΓ are two Hausdorff limits as above then, up to a finite
partition, Z1 and Z2 are translates of each other.

I Every Hausdorff limit is of the form π(W ) for an R-definable
W ⊆ Rn. In fact, we can find an R-definable D ⊆ Rk such that for
every Γ ⊆ Rn, the following are equivalent:

1. Z ⊆ TΓ is a (closed) Hausdorff family of the family (πΓ(Xt ))t
2. There is (b1, . . . ,bk ) ∈ D such that

Z =
k⋃

j=1

πΓ(Yj ) + πΓ(LΓ
j ) + bj .

I One may recover the topological content some of the dynamical
systems results on dilations.
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