AROUND PILA-ZANNIER: THE SEMI-ABELIAN CASE

YA’ACOV PETERZIL AND SERGEI STARCHENKO

This note came out as a result of reading of the paper of Pila and Zannier, [3]. Below we suggest a small short-cut for the proof of Manin-Mumford in the case of abelian varieties, and extend their methods in order to prove the semi-abelian case.

1. Definable curves in periodic sets

1.1. The compact case. We fix an N-dimensional lattice Λ in \mathbb{R}^N. For $0 \neq \vec{v} \in \mathbb{R}^N$, denote by $H(\vec{v})$ the smallest \mathbb{R}-linear subspace of \mathbb{R}^N containing \vec{v}, such that $H(\vec{v})$ has a basis in Λ.

Lemma 1.1. Let \mathcal{M} be an o-minimal structure expanding the real field. Assume that $X \subseteq \mathbb{R}^N$ is an arbitrary closed set which is Λ-invariant (namely, $\Lambda + X = X$).

Let $\gamma : (0, \infty) \to X$ be an \mathcal{M}-definable curve whose image C is unbounded and let $\vec{v}_0 = \lim_{t \to \infty} \frac{\gamma(t)}{\|\gamma(t)\|}$ be the limit of the unit tangent vector to γ. Then, there is a translate H of $H(\vec{v}_0)$ such that $H \subseteq X$.

Proof. Let $\ell \subseteq \mathbb{R}^N$ be the 1-dimensional linear subspace generated by \vec{v}_0. Because X is Λ-invariant and closed, it is sufficient to show that a translate of ℓ is contained in X.

Let $F \subseteq \mathbb{R}^N$ be a fundamental N-dimensional parallelepiped for Λ (hence $\text{cl}(F)$ is a compact), and let $p_n = \gamma(t_n)$ be a sequence of points on C, with $t_n \to \infty$. For each n, there is $\lambda_n \in \Lambda$ with $\lambda_n + p_n \in F$, and because $\text{cl}(F)$ is compact, we may assume that the sequence $\lambda_n + p_n$ converges to some $a_0 \in \text{cl}(F)$. We will show that $a_0 + \ell \subseteq X$.

Fix $r \in \mathbb{R}^+$. For each n, let $s_n > t_n$ be minimal such that $|\gamma(s_n) - p_n| = r$ (because the r-sphere around p_n is closed and C is unbounded there is such a point) and let $q_n = \gamma(s_n) \in X$. The vector $q_n - p_n$ tends to $r\vec{v}_0$ as n tends to ∞.

It follows that $\lambda_n + q_n$ tends to $a_0 + r\vec{v}_0$ and because X is Λ-invariant and closed, we have $a_0 + r\vec{v}_0 \in X$.

By choosing $s_n < t_n$ to be maximal with $|\gamma(s_n) - p_n| = r$, we will get $q_n - p_n$ tending to $-r\vec{v}_0$ and hence $a_0 - r\vec{v}_0$ is also in X. It follows that $a_0 + \ell \subseteq X$. \qed

Note that it was sufficient to assume in the last Lemma, instead of the definability of C, that C is an unbounded smooth curve whose unit tangent vector tends has a limit at infinity.

Date: February 2009.
1.2. The noncompact case. We assume here that \mathcal{M} is an o-minimal expansion of the real field.

Let G be a definable, connected N-dimensional abelian group, and let $(\mathbb{R}^N,+)$ be its universal cover with $\pi: \mathbb{R}^N \to G$ the associated projection. Let $\Lambda_k = ker(\pi)$, with Λ_k the lattice generated by \mathbb{R}-independent $\omega_1, \ldots, \omega_k \subseteq \mathbb{R}^N$. If G_1 is the maximal definable torsion-free subgroup of G then $\dim(G_1) = N - k$. We let $H_1 \subseteq \mathbb{R}^N$ be an $(N-k)$-dimensional linear subspace with $\pi(H_1) = G_1$, and let H_2 be the k-dimensional subspace generated by Λ_k. Then $\mathbb{R}^N = H_1 \oplus H_2$. For $\vec{v} \in \mathbb{R}^N$, we let $\pi_1(\vec{v}) = \vec{v}_1, \pi_2(\vec{v}) = \vec{v}_2$ be the projections of \vec{v} on H_1, H_2, respectively. Given $\gamma: \mathbb{R} \to \mathbb{R}^N$, we let $\gamma_2: \mathbb{R} \to H_2$ be the map $\pi_2 \circ \gamma$.

We let $F \subseteq H_2$ be a compact fundamental domain for H_2/Λ_k and hence $D = H_1 + F$ is a fundamental (not compact!) domain for \mathbb{R}^N/Λ_k. Namely, every element in $Int(D)$ is in a single Λ_k-coset and every coset is represented in D.

Theorem 1.2. Let $X \subseteq \mathbb{R}^N$ be a closed Λ_k-invariant set such that $X \cap D$ is definable in \mathcal{M}. Let $\gamma: (0,\infty) \to \mathbb{R}^N$ be an \mathcal{M}-definable curve whose image \mathcal{C} is contained in X and such that γ_2 is unbounded in H_2.

Let $\vec{v}_2 \in H_2$ be the limit of $\gamma_2(t)\|\gamma_2(t)\|$ as t tends to ∞. If $\lambda \in \Lambda_k$ is sufficiently close to the space $\mathbb{R} \vec{v}_2$ and ℓ is the linear \mathbb{R}-subspace generated by λ then a translate of some infinite segment of ℓ is contained in X.

Proof. We first make several observations:

1. If $B \subseteq H_2$ is a bounded definable set then $X \cap (H_1 + B)$ is definable (but not uniformly in B).

 Indeed, his is immediate from the fact that finitely many Λ_k-translates of D cover $H_1 + B$, together with the fact that X is Λ-invariant.

2. Let $U \subseteq \mathbb{R}^N$ be a definable set such that $\pi_2(U)$ is bounded, and let $\{A_s : s \in S\}$ be a definable family of subsets of \mathbb{R}^N. Then there is a number K such that for all $\tau \in \mathbb{R}^N$ and $s \in S$, the set $A_s \cap (U + \tau) \cap X$ has at most K connected components.

Proof. Note first that the family $A_s \cap (U + \tau) \cap X$ is not uniformly definable in s, τ, so the straightforward o-minimal argument cannot work here. Let $V = U + D$. By (1), $V \cap X$ is definable. Let $\tau \in \mathbb{R}^N$. By the choice of F we can find $\lambda \in \Lambda$ such that $\tau - \lambda \in D$. Since X is Λ-invariant, we have that for any $s \in S$ the set $A_s \cap (U + \tau) \cap X$ is homeomorphic to $(A_s - \lambda) \cap (U + \tau - \lambda) \cap X$. Thus each set $A_s \cap (U + \tau) \cap X$ is homeomorphic to a set in the definable family

$$\{ (A_S + a) \cap (U + b) \cap (V \cap X) : s \in S, a, b \in \mathbb{R}^N \}.$$

By o-minimality, there is a uniform bound on the number of connected components of this family. **End of (2)**

We now return to the setting of the theorem, with $\vec{v}_2 \in H_2$ the limit of $\gamma_2(t)\|\gamma_2(t)\|$. We can re-coordinate \mathbb{R}^N such that $H_2 = \{0_{N-k}\} \times \mathbb{R}^k$, and because $\gamma_2(t)$ is unbounded we may assume that the last coordinate of v_2, call it α, is non zero (and in particular that the last coordinate of $\gamma_2(t)$, call $h_N(t)$, is unbounded). Using the last coordinate, we can re-parameterize γ so that
lim_{t \to \infty} \gamma_2(t) = \hat{v}_2 \text{ (we do that by replacing } \gamma(t) \text{ by } \gamma(h_N^{-1}(\omega t))) \text{ Note that in this case, for every } r > 0, \text{ we have } lim_{t \to \infty} (\gamma_2(t + r) - \gamma_2(t)) = r \hat{v}_2.

**Fixing } K:\)

For } T \in \mathbb{R}^+ \text{ and } \bar{u} \in H_2, \text{ let } A_{T,\bar{u}} = \{ \gamma(T + t) - t\bar{u} : t \in \mathbb{R} \}, \text{ and let } U = H_1 + B, \text{ for } B \subseteq \mathbb{R}^k \text{ a ball of radius 1 around 0. Choose } K \text{ as in (2) above with respect to the family } \{ A_{T,\bar{u}} : T \in \mathbb{R}^+, \bar{u} \in H_2 \} \text{ and the set } U.

**Fixing } T_0:\)

Claim 1.3. Assume } \lambda \in \Lambda_k \text{ satisfies } |\lambda - r\hat{v}_2| \leq \frac{1}{2}(K + 1) \text{ for some } r \in \mathbb{R}. \text{ Then there exists } T_0 \in \mathbb{R}^+ \text{ such that for all } T > T_0 \text{ there is an open interval } I(T) \subseteq [0, K + 1] \text{ such that the set } \{ \gamma(T + t) - t\lambda : t \in I(T) \} \text{ is contained in } X.

Proof. Because } \gamma_2(T + r) - \gamma_2(T) \text{ tends to } r\hat{v}_2 \text{ as } T \text{ goes to } \infty, \text{ there exists } T_0 \text{ such that for every } T > T_0,

\begin{equation}
|\gamma_2(T + r) - \gamma_2(T) - \lambda| \leq |\gamma_2(T + r) - \gamma_2(T) - r\hat{v}_2| + |r\hat{v}_2 - \lambda| \leq 1/(K + 1).
\end{equation}

By a simple calculation, it follows that for every } n = 1, \ldots, K + 1, \text{ we have }

\begin{equation}
|\gamma_2(T + nr) - \gamma_2(T) - n\lambda| \leq 1. \text{ Said differently, } \gamma(T + nr) - n\lambda \text{ is in } U + \gamma(T), \text{ for all } n = 1, \ldots, K + 1 \text{ and } T > T_0.
\end{equation}

Because } C \subseteq X \text{ and } X \text{ is } \Lambda_k\text{-invariant, each } \gamma(T + nr) - n\lambda \text{ belongs to } A_{T,\lambda} \cap (U + \gamma(T)) \cap X, \text{ for } n = 1, \ldots, K+1. \text{ However, } A_{T,\lambda} \cap (U + \gamma(T)) \cap X \text{ has at most } K \text{ components, and therefore, for some interval } I(T) \subseteq [0, K + 1], \text{ the whole set } \{ \gamma(T + t) - t\lambda : t \in I(T) \} \text{ is contained in } A_{T,\lambda} \cap X \cap (U + \gamma(T)).

End of Claim.

We now choose a bounded interval } J \text{ all of whose elements are greater than } T_0, \text{ and observe that the set

\begin{equation}
V = \bigcup_{T \in J} (U + \gamma(T))
\end{equation}

projects onto a bounded subset of } H_2 \text{ and hence } X \cap V \text{ is definable. Consider the definable set

\begin{equation}
Y = \{ (T, t) : T \in J \& t \in [0, K + 1] \& \gamma(T + t) - t\lambda \in X \cap V \}.
\end{equation}

As we showed above, for every } T \in J \text{ there exists an infinite subset of } t \in [0, K + 1] \text{ such that } (T, t) \in Y, \text{ and therefore } dim(Y) = 2. \text{ It follows that for some fixed } T' \in \mathbb{R} \text{ there are infinitely many } (T, t) \in Y \text{ such that } T + t = T'. \text{ In particular, for a whole interval of } t's \text{ we have } \gamma(T') - t\lambda \in X. \text{ We thus found an interval in } \ell = \mathbb{R}\lambda \text{ whose translate (by } \gamma(T')) \text{ is contained in } X.

\[\square \]

2. A LOWER BOUND FOR THE NUMBER OF TORSION POINTS

For a definable abelian } G, \text{ let } Tor_m(G) \text{ be the subgroup of all elements } x \in G \text{ such that } mx = 0. \text{ For a definable subset } D \text{ of } G \text{ and } m \in \mathbb{N} \text{ let } Tor_m(D) \text{ denote the intersection of } D \text{ with } Tor_m(G). \text{ Let } Tor(D) \text{ denote all torsion elements in } D.
Roots of unity Let us consider the torsion points of \mathbb{C}^*. It is known that (i) all primitive roots of unity of a fixed order m are roots of the same irreducible polynomial, hence conjugates to each other. (ii) there are $\varphi(m)$ many such elements, with $\varphi(m)$ the Euler totient function. Furthermore, it is known that for every $0 < \epsilon < 1$, for all sufficiently large m, $\varphi(m) > m^\epsilon$, and hence $\varphi(m)/m^\epsilon \to \infty$ as m tends to ∞.

Theorem 2.1. Let S be a semiabelian variety, defined over a number field F, given by an exact sequence

$$
0 \longrightarrow (\mathbb{C}^*)^n \overset{\theta}{\longrightarrow} S \overset{\sigma}{\longrightarrow} A \longrightarrow 0,
$$

with A an abelian variety. Let $X \subseteq S$ be an algebraic variety defined over F' and assume that $\text{Tor}(X)$ is infinite. Then there exists an $\epsilon > 0$ such that

$$
\limsup_{m \in \mathbb{N}} \frac{\text{Tor}_m(X)}{m^\epsilon} = \infty.
$$

Proof. Given $Q \in \text{Tor}(S)$ of order m, let $a(Q)$ be the order of $\sigma(Q)$ in A. Then $m = a(Q)c(Q)$, where $c(Q)$ is the order of the element $a(Q) \cdot Q$ in $\theta((\mathbb{C}^*)^n)$. It follows that either $a(Q) \geq \sqrt{m}$ or $c(Q) \geq \sqrt{m}$.

Case 1 Assume that there are infinitely many $Q \in \text{Tor}(X)$ such that $a(Q) \geq \sqrt{m}$.

By the result of Masser, [1], there exists an $\rho > 0$ and a constant $c_2(A)$, such that for every $P \in A$, if $\text{ord}(P) = a$ then $[F(P) : \mathbb{Q}] \geq c_2(A)a^\rho$. Because $\sigma(X)$ is defined over F, it is invariant under F-automorphisms and therefore if $\text{ord}(P) = a$ then every F-conjugate of P is also in $\sigma(X)$ (and has the same order a). It is now claimed that P has at least $c_3(A)a^\rho$ such conjugates, for some constant c_3. (Indeed, this is stated in Pila-Zannier, but needs some argument because P is represented in projective coordinates as a tuple of complex algebraic numbers (p_1, \ldots, p_k) with

$$
[F(p_1, \ldots, p_k) : \mathbb{Q}] \geq c_2(A)a^\rho.
$$

However, every such algebraic extension has at least as many automorphisms as its degree, as can be seen by taking a primitive element and considering its conjugates. Finally, any two distinct automorphisms must send P to a different tuples).

If $Q \in \text{Tor}(X)$ of order m such that $a = a(Q) \geq \sqrt{m}$ and $P = \sigma(Q)$ then every F-conjugate of P is the image of some F-conjugate of Q. Hence, Q has also at least $c_3(A)a^\rho \geq c_3(A)m^{1/\rho}$-many conjugates, all of order m. If we take $0 < \epsilon < 1/2\rho$ then, since there are elements Q of unbounded order with this property, we have

$$
\limsup_{m \in \mathbb{N}} \frac{\text{Tor}_m(X)}{m^\epsilon} = \infty.
$$

Case 2 Assume that there are infinitely many $Q \in \text{Tor}(X)$ of order m, such that $c(Q) \geq \sqrt{m}$.
In this case, if we let \(c = c(Q) \) and \(a = a(Q) \), then the element \(aQ \in \theta((\mathbb{C}^*)^n) \) has order \(c \). By our above observations, \(aQ \) has \(\varphi(c) \)-many conjugates over \(Q \) and hence \(\varphi(c)/d \)-many conjugates over \(F \) (with \(d = [F : Q] \)). Every such conjugate is of the form \(aQ' \) for some \(F \)-conjugate \(Q' \) of \(Q \). It follows that \(Q \) has at least \(\varphi(c)/d \)-many conjugates over \(F \), all of order \(m \) and all in \(X \). Again, by the above facts about \(\varphi \), if we pick \(\rho < 1 \) then there is some constant \(B \) such that \(Q \) has at least \(Bc(Q)^\rho \) \(F \)-conjugates. If \(c(Q) > \sqrt{m} \) then we have at least \(Bm^{1/2\rho} \)-many \(F \)-conjugates. Since this is true for every \(\rho < 1 \) and there are infinitely many such \(Q \)'s, we have \[
\limsup_m \frac{|\text{Tor}_m(X)|}{m^\epsilon} = \infty,\]
for \(\epsilon < 1/2 \). \(\square \)

3. MANIN-MUMFORD FOR SEMI-ABELIAN VARIETIES

In this section we identify varieties defined over \(\mathbb{C} \) with their \(\mathbb{C} \)-points. We also consider \(\mathbb{R} \) as a subfield of \(\mathbb{C} \), hence for each \(l \in \mathbb{N} \) we have \(\mathbb{R}^l \subset \mathbb{C}^l \).

We prove here Manin-Mumford for semi-abelian varieties:

Theorem 3.1. Let \(S \) be a semi-abelian variety over a number field \(K \) and let \(Y \subseteq S \) be an algebraic variety over \(K \). If \(\text{Tor}(S) \cap Y \) is infinite then \(Y \) contains an algebraic subgroup of \(S \).

Proof. We have an exact sequence

\[
0 \longrightarrow (\mathbb{C}^*)^n \xrightarrow{\theta} S \xrightarrow{\sigma} A \longrightarrow 0
\]

with \(A \) an abelian variety over \(K \), and \(\theta: (\mathbb{C}^*)^n \to G \) a morphism defined over \(F \). We assume that \(S \) has complex dimension \(m \).

Let \(L \) be the tangent space to \(S \) at the identity. It is a \(\mathbb{C} \)-vector space of complex dimension \(m \).

Since \(S \) is a connected abelian complex Lie group, there is a complex analytic surjective group homomorphism \(\text{Exp}_S: L \to S \), such that for any complex Lie subgroup \(S_1 \) of \(S \) the tangent space to \(S_1 \) at the identity is \(\{ \vec{v} \in L : \text{Exp}_S(\vec{v}) \in S_1 \} \). Let \(\Lambda = \ker(\text{Exp}_S) \).

Claim 3.2. There exists a real \(n \)-dimensional space \(H_1 \subseteq L \) such that, as a real space, \(L = H_1 \oplus H_2 \), with \(H_2 \) the real span of \(\Lambda \), and such that:

(i) The restriction of \(\text{Exp}_S \) to \(H_1 \) is definable in \(\mathbb{R}_{\exp} \).

(ii) If \(F \subseteq H_2 \) is a fundamental parallelogram for \(\Lambda \) then the restriction of \(\text{Exp}_S \) to \(F \) is definable in \(\mathbb{R}_{\text{an}} \). In particular, the restriction of \(\text{Exp}_S \) to \(H_1 + F \) is surjective on \(S \) and definable in \(\mathbb{R}_{\text{an,exp}} \).

(iii) If \(X \subseteq L \) is an algebraic variety of positive dimension then its image under the projection to \(H_2 \) is unbounded.

Proof. We can write \((\mathbb{C}^*)^n \) as \(\mathbb{C}^* \oplus \ldots \oplus \mathbb{C}^* \) and \(\theta \) as \((\theta_1, \ldots, \theta_n) \), where each \(\theta_j: \mathbb{C}^* \to S \) is an embedding. Let \(T_j = \theta_j(\mathbb{C}^*) \).

We choose a \(\mathbb{C} \)-basis \(\vec{v}_1, \ldots, \vec{v}_m \) for \(L \) so that for \(j = 1, \ldots, n \), the vector \(\vec{v}_j \) is in the tangent space to \(T_j \) at the identity. It follows then that \(\text{Exp}_S(z\vec{v}_j) \in T_j \) for any \(z \in \mathbb{C} \).
For $j = 1, \ldots, n$ let $\alpha_j : \mathbb{C} \to \mathbb{C}^*$ be the map
$$\alpha_j : z \mapsto \theta_j^{-1}(ExpS(z\vec{v}_j)).$$
Each α_j is a surjective group homomorphism that is complex analytic. Replacing \vec{v}_j by $1/a_j\vec{v}_j$, where a_j is the complex derivative of α_j at zero, we may assume that the differential of α_j at zero equals 1. It implies that each α_j is the complex exponentiation $z \mapsto e^z$. In particular, $\alpha(1) = e \in \mathbb{R}$ and hence for every $r \in \mathbb{R}$, $ExpS(r\vec{v}_j) \in \theta_j(\mathbb{R}^*)$.

We now consider L as a real vector space of real dimension $2m$.

Let H_1 be the \mathbb{R}-span of $\vec{v}_1, \ldots, \vec{v}_n$. Using $\vec{v}_1, \ldots, \vec{v}_n$ we can identify H_1 with \mathbb{R}^n. Under this identification, for $(r_1, \ldots, r_n) \in \mathbb{R}^n$, we have $\theta^{-1}(ExpS(r_1, \ldots, r_n)) = (e^{r_1}, \ldots, e^{r_n})$. In particular, the restriction of $ExpS$ to H_1 is definable in \mathbb{R}_{exp}, since θ is a semi-algebraic map, and $ExpS(H_1)$ is a definable (maximal) torsion free subgroup of S.

The lattice Λ is a discrete subgroup of L of rank $2m - n$. We can extend $\vec{v}_1, \ldots, \vec{v}_n$ to an \mathbb{R}-basis $\{\vec{w}_1, \ldots, \vec{w}_{2m}\}$ of L so that $\vec{w}_j = \vec{v}_j$ for $j = 1, \ldots, n$, $\{\vec{w}_{n+1}, \ldots, \vec{w}_{2m}\}$ form a \mathbb{Z}-basis for Λ and furthermore $\vec{w}_{n+1}, \ldots, \vec{w}_{2m}$ belong to the tangent spaces of T_1, \ldots, T_n, respectively. If H_2 is the \mathbb{R}-span of Λ then $L = H_1 \oplus H_2$. If we choose $F \subseteq H_2$ to be a fundamental parallelogram for $\theta|H_2$, then, since θ is analytic, its restriction to the compact $cl(F)$ is definable in \mathbb{R}_{an}.

For (iii), see the appendix. \qed

We now proceed exactly as in Pila-Zannier. For simplicity, we let $\pi : L \to S$ be the holomorphic map $ExpS$. As a real space, we can write $L = H_1 \oplus H_2$, as above. Let $\lambda_1, \ldots, \lambda_{2m-n}$ generate Λ and fix a fundamental parallelogram
$$F = \{\Sigma_{i=1}^{2m-n} t_i \lambda_i : t_i \in [0, 1]\} \subseteq H_2$$
and $D = H_1 + F$, with $\pi|D$ definable in $\mathbb{R}_{an,exp}$.

Assume now that $Y \subseteq S$ is an algebraic variety such that $Y \cap Tor(S)$ is infinite. By Theorem 2.1, there exists an $\epsilon > 0$ such that
$$\limsup_{m \in \mathbb{N}} \frac{|Tor_m(Y)|}{m^\epsilon} = \infty.$$ If $X = \pi^{-1}(Y)$ then it is a complex analytic, Λ-invariant set, such that $X_1 = X \cap D$ is definable (as the pre-image of an algebraic set under a definable map). We now translate the data into L. We let $\mathbb{Q}\Lambda$ be the rational span of Λ and for $h > 0$ we let $(\mathbb{Q}\Lambda)_h$ be all elements $\Sigma_{i=1}^{2m-n} q_i \lambda_i \in \mathbb{Q}\Lambda$ such that each $q_i \in \mathbb{Q}$ can be written as m_i/n_i with $|m_i|, |n_i| \leq h$.

We now have:
$$\limsup_{m \in \mathbb{N}} \frac{|X_1 \cap (\mathbb{Q}\Lambda)_h|}{h^\epsilon} = \infty.$$ We now apply Pila-Wilkie, [2], and conclude that X_1 contains some piece of an irreducible real algebraic curve, call it C. If we let $C \subseteq L$ be the (complex algebraic) Zariski closure of C then C is a complex algebraic one-dimensional variety which is still contained in X. By Claim 3.2, the projection of C on H_2 must be unbounded. It follows that C contains a semi-algebraic curve $\gamma : (0, \infty) \to C$ whose projection onto H_2 is unbounded.

Let $\vec{v}_2 \in H_2$ be the limit of the unit tangent vector to γ (the projection of γ onto H_2). Then (see Pila-Zannier) there are elements of Λ as close as
we wish to $\mathbb{R}v_2$. We can now apply Theorem 1.2 (or, in the abelian case Lemma 1.1) and conclude that X contains an infinite interval I in some translate of a real one-dimensional subspace of L. The Zariski closure H of I, which must still be contained in X, is then a translate of a complex one-dimensional subspace of L. It follows that Y contains $\pi(H)$, a coset of a subgroup of S, and by taking the Zariski closure of $\pi(H)$ we see that Y contains a coset of a complex algebraic group.

\[\square\]

4. APPENDIX: Bounded projections of algebraic sets

Lemma 4.1. Let L be complex linear space. Assume that, as a real space $L = H_1 \oplus H_2$, for H_1, H_2 real subspaces and that $\pi_2 : L \rightarrow H_2$ is the projection with respect to this decomposition. If $X \subseteq L$ is an irreducible complex algebraic variety and $\pi_2(X)$ is bounded then X is contained in a translate of H_1.

Proof. Note that for any real subspace H containing H_1, the projection of X into the real space L/H is bounded (independently of the coordinate system we choose for the quotient).

Special case Assume that $H_2 = iH_1$.

If m is the real dimension of H_1 then L is isomorphic as a complex space to \mathbb{C}^m, with H_1 going to \mathbb{R}^n and H_2 to $i\mathbb{R}^n$. Under this identification all elements of X are of the form $\vec{z} = (z_1, \ldots, z_m)$ with the imaginary part of the z_i's all contained in some bounded set, as \vec{z} varies in X. It easily follows that X is a singleton.

We use induction on the complex dimension of L.

If H_1 contains an complex subspace K of positive dimension then we replace L by $L/K = H_1/K \oplus H_2/K$ (with $H_2/K \simeq H_2$). By induction, the image of X in L/K is contained in a translate of H_1/K, which implies that X is contained in a a translate of H_1. We may therefore assume that H_1 contains no nonzero complex subspace. It follows that $iH_1 \cap H_1 = \{0\}$.

Let \bar{H}_1 be the complex space $H_1 \oplus iH_1$ and write L as $\bar{H}_1 \oplus \bar{H}_2$ for some complex subspace \bar{H}_2. The projection of X into \bar{H}_2 is an irreducible complex constructible set and, as was observed above, is still bounded. This image must then be a singleton and hence X is contained in a translate of \bar{H}.

We may then assume that $L = \bar{H} = H_1 \oplus iH_1$ and that the projection of X into iH_1 is bounded. By the special case, we are done.

\[\square\]

References

