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Tame complex analysis and o-minimality

Ya’acov Peterzil and Sergei Starchenko *

Abstract. We describe here a theory of holomorphic functions and analytic manifolds,
restricted to the category of definable objects in an o-minimal structure which expands
a real closed field R. In this setting, the algebraic closure K of the field R, identified
with R?, plays the role of the complex field. Although the ordered field R may be non-
Archimedean, o-minimality allows to develop many of the basic results of complex analysis
for definable K-holomorphic functions even in this non-standard setting. In addition, o-
minimality implies strong theorems on removal of singularities for definable manifolds
and definable analytic sets, even when the field R is R. We survey some of these results
and several examples.

We also discuss the definability in o-minimal structures of several classical holomor-
phic maps, and some corollaries concerning definable families of abelian varieties.
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1. Introduction

Consider a real closed field R and its algebraic closure K = R(y/—1). After
fixing v/—1, we can identify K with R?, and then view subsets of K™ as subsets
of R?™. Under this identification polynomial functions from K™ into K become
R-polynomial maps from R?" into R?.

When the fields are R and C, the order topology of the reals endows the complex
numbers, through the product topology, with the structure of a topological locally
compact field. This is of course the setting of classical complex analysis, and local
analytic theory is usually developed using convergent power series and integration
(here and below, when we say “classical” we refer to the case R =R and K = C).
When R is an arbitrary real closed field then its order topology still endows K with
the structure of a topological field but, since R could be non-Archimedean, this
topology may be far from locally compact. In this case, the tools of integration
and power series are often not available for the development of complex analysis
over K.

*The second author was partially supported by NSF
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While analysis in a non-Archimedean setting is also tackled in rigid analytic
geometry we present here a different approach. The main idea is to consider only
a limited collection of sets and maps, namely those which are definable in an o-
minimal expansion R = (R, <,+,-,---) of the field R. Recall that R is called
o-minimal if every definable (with parameters) subset of R is a finite union of R-
intervals whose endpoints are in R U {£oo}. Real closed fields are the standard
example but we are going to consider below much richer o-minimal structures (see
[6], [38], [8], [19] and [20]).

It turns out (see [7] and [10]) that almost all basic theorems of real differential
calculus hold for functions definable in R, even though the field R may be non-
Archimedean and as a topological space could be totally disconnected. As we will
show, the same is true for many of the basic theorems of complex analysis.

When the field R equals R, the category of definable sets in an o-minimal
structure can be viewed as a natural candidate for Grothendieck’s vision of “tame
topology” (see discussion in [36]). The exclusion of wild topological phenomena
from the tame setting of o-minimality implies that definable holomorphic functions
cannot have essential singularities. This is easy to see, for if f is a holomorphic
function on the punctured unit disc and 0 is an essential singularity then there
exist ¢ € C with f~1(c) an infinite discrete subset of C. But then, either {Im(z) :
f(z) = ¢} or {Re(z) : f(z) = ¢} is an infinite discrete subset of R, so f cannot
be definable in an o-minimal structure. At first sight, this seems to exclude too
much of classical analytic theory, but as we will see, it is still possible to define
in o-minimal structures many classical holomorphic functions on properly chosen
domains in a way which permits rich mathematical constructions.

Thus, the theory of holomorphic functions in o-minimal structures allows on
one hand to develop analytic-like theory for an arbitrary algebraically closed field
of characteristic zero K with respect to a maximal real closed field R C K and an
o-minimal expansion of R. On the other hand, when we specialize the investigation
to the classical setting of the complex and real fields, we obtain, in addition, new
results on holomorphic functions, complex manifolds and analytic sets, when these
are definable in some o-minimal expansion of the real field. The treatment of both
of these settings is uniform and independent of the particular fields in questions.

Our goal here is to present the main definitions and a survey of results, ac-
companied with examples from both the standard and the nonstandard settings.
The paper is structured as follows: In Section 2 we give the basic definition of a
K-holomorphic function and discuss a variety of examples. In Section 3 we show
how analogues of basic results from complex analysis can be obtained for defin-
able K-holomorphic functions in arbitrary o-minimal structures. In Section 4 we
discuss analogues of complex manifolds and analytic sets in o-minimal structures
and in particular, in 4.2 and in the Appendix expand on how compact complex
manifolds can be viewed within the o-minimal structure R,,,. In 4.3 we present
a more general, o-minimal, version of Chow’s theorem on analytic subvarieties of
projective space (which in particular implies the classical version). We also con-
sider definable families of manifolds, the particular case of complex tori and point
out the connection between such families and non-standard tori. In this section
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we discuss how Riemann’s Existence Theorem can fail (or hold) in the category
of definable manifolds in an o-minimal structure. In Section 5 we present several
results on what is probably the main feature of tame complex analysis: the theory
on removal of singularities. Finally, in Section 6 we discuss theorems on the defin-
ability in o-minimal structures of certain classical holomorphic functions such as
Schwarz-Christoffel maps, the Weierstrass p-functions and Riemann’s theta func-
tions. We also mention connections to arithmetical questions in algebraic geometry.

We assume here basic knowledge of definability, and o-minimality (see [7] and
[10] for a presentation aimed at non-logicians).

Remark. Some work on complex analytic geometry restricted to semiagebraic and
subanalytic sets can be found in [11] and [12]. In the non-standard setting of an
arbitrary real closed field, such work was carried out, from a different point of view
than ours, in [15].

2. K-holomorphic functions

We start with the basic definitions. Let R = (R,<,+,-,...) be an o-minimal
expansion of a real closed field, and K = R(y/—1) the algebraic closure of R. After
fixing i = /=1, we can identify K with R2, as in the classical case, and view
subsets of K™ and maps from K™ into K as subsets of R?>" and maps from R?"
into R2, respectively. The field operations of K become definable in the ordered
field R. We have the order topology on R, the product topology on R*, and with
respect to this topology the field K, identified with R?, is a topological field. We
therefore have a natural notion of lim,_,, f(z) for functions f : K™ — K, where
the limit is taken with respect to the topologies of K™ and of K.

Definition 2.1. Let U C K be an open set. A function f: U — K is K-
differentiable at zg € U if

i £2) = f0)

zZ— 20 zZ— 2

exists in K.

The limit, if exists, is called the K-derivative of f at zy and is denoted by f’(zp).
If f is K-differentiable at every z € U then it is called K-holomorphic on U.

For U C K™ an open set and f : U — K a continuous function, f is called
K-holomorphic on U if it is K-differentiable in each of the variables separately.

The above definitions coincide with the classical definitions of holomorphic
functions in one and several variables when R = R and K = C. As pointed out
above, in the general case the topology on R is not well-behaved and very far
from locally compact or separable. Hence, although the definitions make sense
for arbitrary functions, we are going to restrict our attention to K-holomorphic
functions which are in addition definable in the o-minimal structure R.
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Note: Although every algebraically closed field of characteristic zero K contains
a maximal real closed field R, the choice of R is far from being unique and even
the field C contains maximal real closed subfields which are not isomorphic to R
and are non-Archimedean.

Here are some examples of K-holomorphic functions which are definable in o-
minimal structures.

Classical examples -
o Let R = (R,<,+,:) (so K = C). By Tarski’s work, R is o-minimal. Every
complex polynomial is C-holomorphic and definable in R.

e Consider the o-minimal structure
Ran = (R, <, 4+, {f][-1,1]" : f real analytic on open U 2 [—1,1]"})

(see [6]). Using the real and imaginary parts, every power series convergent in a
neighborhood of 0 € C™ can be represented by a definable C-holomorphic function
in Ry,

If V. C C"™ is an open bounded set, and f : V — C is a holomorphic function,
which can be holomorphically extended to an open set U D CI(V) (where CI(V)
is the topological closure of V'), then f|V is definable in R,,. Indeed, CI(V) can
be covered by finitely many open sets on each of which f is definable, hence f|V
is definable.

o Let Ry exp be the o-minimal expansion of R,, by the real exponential function
(see [38], [10], [8]). The restriction of the complex exponential function e* to any
horizontal strip {a < Im(z) < b}, a < b € R, is definable in Ry, ¢4, using the real
exponential function and restricted sin, cos. It follows that every branch of In z is
definable in Rgp ezp. However, e® is not definable on the whole of C because of its
infinite discrete kernel, and in fact (see [23], Claim 2.1), if e* is definable in some
o-minimal structure on a set U C C then necessarily I'm(z) is bounded on U.

o Let Repp = (R, <, +,-,¢%). It follows from [3], that every germ of an n-variable
holomorphic function which is definable in R, is already definable in R, namely
semi-algebraic.

Non-standard examples
e Let R = (R, <,+,), where R is a real closed field: Every polynomial over
K = R(v/—1) is K-holomorphic and definable in R. In fact, in [25], Theorem 2.17,

we prove a converse statement:

Theorem 2.2. If f : K™ — K is definable and K-holomorphic then it is a poly-
nomial over K.

e Let R be a proper extension of Rgp erp: If o € R>Y is infinitesimally close to 0
(by that we mean that 0 < a < 1/n for every n € N) then e is K-holomorphic
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and definable on “infinitely wide” strip —1/a < Im(z) < 1/a.

These two non-standard examples of o-minimal structures are elementary ex-
tensions of structures over the field of reals. The example below does not arise
from any structure over the reals (this is made precise in [14]):

e Divergent power series as K-holomorphic functions. Consider the real
closed field of formal Puiseux series over R, denoted by R = R((t*)), and its
algebraic closure, K = C((t*)). The field R admits a natural valuation (with
v(t) = 1) and the infinitesimal elements of R, denoted by pu, are all those of
positive valuation. The valuation topology coincides in this case with the order
topology of R.

Every formal power series a(Z) € R][z1,...,2,]] can be computed on p™ and
hence defines a function a : ™ — R. Clearly, if we expand the field R by such a
function, the expanded structure will not be o-minimal because p” is not definable
in any o-minimal structure. However, consider the interval I = [—t,t] in R and
the structure

R = (R, <, 4, alI")a@)eriz)-

It is proved in [20] that R is o-minimal.

Now, every formal power series a(z) € C|[z1, ..., 2z,]] (even if the series diverges
in the complex field) determines a K-holomorphic function on the poly-disc of
radius ¢ in K™, a map which is definable in R.

3. Analogues of classical results in non-Archimedean
fields

We assume here that R is an arbitrary o-minimal expansion of a real closed field
R and K = R(v/—1). All definability is assumed to take place in R.

Although the classical tools of power series and integration are not available in
this general setting, it is still possible to develop analogues of the classical theory for
K-holomorphic functions which are definable in R, by using methods of topological
analysis, together with o-minimality. In the 1-variable case we followed the work of
Whyburn from [37], and then extended it to functions of several variables. Almost
all classical results go through in this case. When we specialize to the classical
case, i.e. when R equals the field R and K equals C, results of this type contribute
no new information. However, even in this case model theory allows us to obtain
new uniformity results for definable families of holomorphic functions.

3.1. The one-variable case. All references are to [24].

Fact 3.1 (The Cauchy-Riemann equations). If U C K is an open definable
set and f : U — K is a definable function then f is K-holomorphic if and only
if, as a map (z,y) — (v(z,y), w(z,y)) from U C R? into R?, it is R-differentiable
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and its R-derivatives satisfy

ov ow ov ow

(see Fact 2.27)

We let D C K denote the closed unit disc and C its boundary. For z =
a+by/—1¢€ K, we use |z| = a® +b* € R.

Theorem 3.2. 1. (Maximum Principle) If f : D — K is a definable contin-
wous function which is K-holomorphic on Int(D) then |f| attains its maxi-
mum on C' (Theorem 2.51).

2. (Open mapping theorem) If U C K is open, definable and f : U — K
is a definable K-holomorphic, non-constant function then f is an open map
(Corollary 2.34).

3. (Infinite differentiability) If U C K is open, definable and f : U — K
is a definable K-holomorphic map then f'(z) is also K-holomorphic on U
(Theorem 2.40).

4. (Identity Theorem) If f : U — K is definable and K-holomorphic in a
neighborhood of 0 € K, and if f*)(0) = 0 for all k € N then f vanishes in a
neighborhood of 0.

We re-emphasize that (4) is true although there is no available theory of con-
verging power series (indeed, if the underlying o-minimal structure is sufficiently
saturated then there are no converging sequences in R other than the eventually
constant ones). One corollary of (4) is that “raising to an infinite power” is not
possible for elements in K. The situation is different in the case of R-variables:
Consider R a nonstandard elementary extension of R.,, and let o > 0 be an
element greater than all n € N. The function

z¢ >0
ha(:z:):{_ @ :v20

is definable in R by 2@ = e*!»* for all z € R. It is infinitely R-differentiable at 0
and all of its R-derivatives are O there.

Given a definable K-holomorphic function f : U — K in a neighborhood
U C K of 0, we let ordo(f) be the minimal & > 0 such that f*)(0) # 0, or oo if
there is no such k. The Identity Theorem implies that if f does not vanish in a
neighborhood of 0 then ordy(f) < co. Moreover, since the above result holds in
arbitrary o-minimal structures, we get a uniform version which is interesting over
R as well:

Given a definable open 0 € U C K, we say that a family F of functions from
U to K is definable in R if there are definable sets T'C R™ and F C U x K x T,
such that for every ¢t € T, the set {(z,y) € U x K : (z,y,t) € F} is the graph
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of a function, call it f;, and F = {f; : t € T}. Assume now that every f; € F
is K-holomorphic on U and does not vanish in a neighborhood of 0. Then, we
claim that there is a bound k on ordy(f;) as t varies in T. Indeed, if not then
by logical compactness we would be able to realize (possibly in an elementary
extension) a K-holomorphic non-vanishing f;, such that ft(f) (0) # 0 for all k € N.
A contradiction. We therefore proved:

Theorem 3.3. For U C K a definable neighborhood of 0, let F = {f; : t € T}
be a definable family of K-holomorphic maps f; : U — K. Then there is k € N
such that for every t € T, if f(0) =0 for all i = 0,...,k then f; vanishes in a
neighborhood of 0.

3.2. Functions of several variables. Definable K-holomorphic func-
tions of several variables also share many common properties with classical holo-
morphic functions (see [25]). We limit ourselves here to several results about the
ring of germs at 0 of definable K-holomorphic functions.

Definition 3.4. For definable functions f, g in a neighborhood of 0 € K™, we say
that f and g have the same germ at 0 if there is an open neighborhood U > 0 such
that f(z) = g(z) for all z € U. Let O,(R) be the ring of germs at 0 € K™ of all
K-holomorphic functions near 0 € K™ which are definable in R.

Here are some results about O, (R) (see [25] for all references).

Theorem 3.5. 1. The map from O,, into K|[|Z]], which sends a germ f € O,
to its formal Taylor expansion at 0, is injective. Said differently, if all deriva-
tives of a definable K -holomorphic f vanish at 0 € K™ then f itself vanishes
in a neighborhood of 0 (Theorem 2.30 (2)).

2. Oy is a local ring.

3. The ring Oy, satisfies the Weierstrass preparation and division theorems (see
Theorem. 2.20 and Theorem 2.23).

4. The ring Oy, is Noetherian, (Theorem 2.50).

4. Definable K-manifolds and K-analytic sets

4.1. Basic definitions. Once we have the notion of a K-holomorphic func-
tion in several variables we may define the notions of a manifold and an analytic
set, with respect to the field K. We restrict our attention only to definable func-
tions and definable sets in a fixed o-minimal expansion R of a real closed field R,

with K = R(v/—1).

Definition 4.1. A definable n-dimensional K-manifold is a definable set M (living
in some R*), equipped with a finite cover of definable sets M = |J; U, each of which
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is in definable bijection ¢; : U; — V; with a definable open set V; C K™, such that
the transition maps

di0; "+ (U NU;) — ¢;(U;)

are K-holomorphic (as maps between open subsets of K™). The collection {(U;, ¢;) :
i € I'} is called a definable atlas for M.

Let M be a definable n-dimensional K-manifold. A definable N C M is
called a d-dimensional K -submanifold of M if every a € N has a definable open
neighborhood U € M and a definable K-holomorphic f : U — K™ ¢ such that
NNU = f71(0) and such that the K-differential of f at a (which is defined exactly
as in the classical case) has K-rank n — d.

In [28], Lemma 3.3, we show that every definable K-submanifold of a definable
manifold is itself a definable K-manifold, namely has a definable finite atlas.

If M and N are definable K-manifolds then a definable map f : M — N is
called K-holomorphic if, when read through the charts of M and NN, becomes a
(definable) K-holomorphic map.

Definition 4.2. A definable A C M is called a K-analytic subset of M if at every
z € M, the set A is given, locally near z, as the zero set of finitely many definable
K-holomorphic functions. The set A C M is called a locally K-analytic subset of
M if the same is true for every z € A.

The K-dimension of a K-analytic set A is defined to be the maximal d such
that A contains a d-dimensional K-submanifold of M.

We use dimg A to denote the dimension of A as a K-analytic set and dimp A
to denote its o-minimal dimension. As we show in [28], dimp A = 2dimg A.

When the underlying real closed field is the field of real numbers then de-
finable C-manifolds and definable C-analytic subsets are just complex manifolds
and complex analytic subsets, respectively, which are in addition definable in the
underlying o-minimal structure R.

We now review several examples of definable K-manifolds and K-analytic sets
in o-minimal structures.

4.2. Compact complex manifolds. Animportant collection of definable
manifolds in o-minimal structures is that of compact complex manifolds.

Every compact complex analytic manifold is isomorphic, as a complex mani-
fold, to a definable C-manifold in the structure R,,. More explicitly, assume that
{{Ui, ¢;) : i € I'} is a finite atlas for an n-dimensional real analytic compact man-
ifold M. Then, as we show in the Appendix, the atlas can be replaced by a new
finite atlas {(By, ¢;)|Bz) : * € X}, with each B, an open subset of U, for
some i(z) € I, and such that: (i) each ¢, (B,) is a definable subset of R™ in R,
and (ii) for all z,y € X, the transition maps ¢, , = ¢i(y)¢&i) are definable on
Gi(a)(Be N By) in Ryy. It is not hard now to realize M as a definable quotient
and, using definable choice in o-minimal expansions of fields (see 6.1.2 in [7]), as a
definable set, with a definable atlas.



O-minimal complex analysis 9

If M is a compact complex manifold then we use the same process as above.
Since the transition maps we obtain are just restrictions of the original maps, we
get in this manner a complex manifold which is definable in R,,.

If M is a compact complex manifold which is already definable in R,,, then
every complex analytic subset of M is definable in R,,,.

Compact complex manifolds were studied elsewhere in model theory after Zil’ber
([39]) proved that, when endowed with all analytic subsets, they admit quantifier
elimination and produce a stable structure of finite Morley rank. One may then
study the many-sorted structure, denoted sometimes by CCM, given by the cat-
egory of all compact complex manifolds (up to an isomorphism), with all their
analytic subsets and with the analytic maps between them. For a survey of this
work see [21] (see also in [13] and in [34]).

Our above discussion implies that the category CCM is interpretable in the
o-minimal R,,,. However, this hides a subtlety that we wish to address here. Note
that a compact complex manifold can be realized in many different ways, depending
on the underlying set and the choice of atlas. Since we sometimes wish to examine
the definability of a particular presentation of a manifold, or the definability of
a particular holomorphic function on this manifold, it is often not sufficient to
study the manifold “up to an isomorphism”. As the following claim shows, it
is possible that the underlying topological space of compact complex manifold is
semialgebraic, and yet a complex atlas for the manifold is only definable in Re).

Claim 4.3. There is an R.yy,-definable complex manifold structure S on the unit
sphere Sy in R? such that S does not have an atlas definable in Rg,.

Proof. Let Sy = {(x1,22,73) € R®: 23 + 23 4+ 22 = 1} be the unit sphere in R3,
pn = (0,0,1),ps = (0,0,—1), and S5 = S2 \ {pn,ps}. It is easy to see that Sj
is semalgebraically homeomorphic to the cylinder S; x R, where S; = {(z,y) €
R2: 22 + y? = 1}, and we fix such a homeomorphism h: S; — S; x R. Let
p: 81 x R — C* be the map ¢ : ((z,y),7) — (z + iy)e”. It is not difficult to see
that ¢ is a homeomorphism definable in R¢;p,. The map poh: S5 — C* extends to
a homeomorphism ®: S; — P1(C) by mapping ps to 0 and py to co. Obviously,
® is definable in Regp.

We use ® to pull-back the complex structure from P;(C) to Sz, and obtain a
complex manifold structure & on S3. With respect to this structure the map ® is
a biholomorphism. Since P!(C) has a semialgebraic atlas, the complex manifold S
has an atlas definable in Regp.

We claim that S does not have a complex manifold atlas definable in R,,,.
Indeed, if S admits a definable complex atlas in R,,, then ® should be definable
in Ry, as well the map ¢: S; x R — C*, contradicting the fact that the real
exponential function is not definable in R,,. O

Remark 4.4. In the above example, since S5 is an open subset of Sa, it has an
induced complex manifold structure, call is §*. It is not hard to see that S* has
an atlas definable in the structure R, (but, as we saw above, this atlas cannot be
extended definably in R,,, to an atlas for S)
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4.3. K-algebraic and K-analytic sets. For every real closed field R
and its algebraic closure K, the sets K™ and P"(K) are naturally K-manifolds
definable in (R, <, +, -). More generally, every non-singular algebraic subvariety of
K™ or P"(K) can be naturally endowed with a semialgebraic K-manifold structure.
Algebraic subvarieties of K™ or P"(K) are K-analytic subsets of K™ or P"(K),
respectively.

In fact, using Theorem 2.2 above, we also have the converse (see [28], Theorem
5.1):

Theorem 4.5. Let R be an o-minimal expansion of a real closed field R, with K
its algebraic closure. If V is a definable K -analytic subset of K™ or of P*(K) then
V is an algebraic variety over K.

When we specialize the above theorem to the o-minimal structure R,,,, we ob-
tain that every definable analytic subset of P"(C) is an algebraic variety. However,
as we pointed out earlier, every analytic subset of a compact complex manifold is
definable in R,,, so we obtain the classical theorem of Chow: Fvery analytic subset
of P™(C) is algebraic.

Similar results for semialgebraic complex analytic sets can be found in [11], and
in the “isoalgebraic” setting in [15].

4.4. Definable families of K-manifolds. If X,Y, F are sets with F C
X x Y then for x € X, we will denote by F the fiber F,, = {y € Y: (x,y) € F}.
We say that a family F = {F,: © € X} of subsets of Y is definable if X,Y and
F C X x Y are definable sets.

If R is an o-minimal expansion of R and R* is an elementary extension of
R then every K-manifold M which is definable in R* is obtained as a fiber in a
definable family F of complex manifolds in the structure R (by that we mean that
the underlying sets of the manifolds as well as their atlases are given by definable
families in R). Thus, first order properties of the manifold M reflect uniform
properties of manifolds in the family F. Let us consider one such property:

As we know by Riemann’s work, every one-dimensional compact complex man-
ifold M is biholomorphic with an algebraic nonsingular projective curve C. If M
is definable in R,,, then the graph of this biholomorphism is an analytic subset of
the definable compact manifold M x C and therefore is itself definable in R,,,.

Assume now that we are given a definable family of compact one-dimensional
complex-manifolds {M; : t € T'} in some o-minimal structure R over R. Is there a
definable family of biholomorphisms of these manifolds with projective varieties?
Or, equivalently, consider an elementary extension R* of R and a member M,
of the family, for a parameter ¢g from R*. Is the K-manifold M;, definably K-
biholomorphic with a projective algebraic variety over K7 Our original motivation
for asking this question was an analogous theorem of Moosa (see [22]) stating that
if the family F is definable in CCM then indeed there is in CCM a definable family
of such biholomorphisms with projective algebraic varieties. It turns out that in
the o-minimal setting the answer is negative, as we now describe.
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4.5. The family of complex tori. For & = (wi,...,ws,) a tuple of 2n
vectors in C™ which are linearly independent over R, let A; C C™ be the lattice
Zwy + -+ + Zway,. Since Ag is a discrete subgroup of (C", +), the quotient group
& = (C™",4)/(As,+) inherits a complex-analytic structure, and with respect to
this structure, £z is a connected compact complex Lie group of dimension n, i.e.
an n-dimensional complex torus.

Although the lattice Ag is an infinite discrete set and thus is not definable in
any o-minimal structure, we are going to view these tori definably as follows: The
underlying set of £z is identified with the definable parallelogram

2n

Ez = {tiw1 + -+ + topway, : /\OStz‘<1}, (1)
i=1

and then it is not hard to produce a semialgebraic atlas on Ez; with semialgebraic
transition maps, corresponding to the complex analytic structure of &;. Therefore
each &, can be viewed as a C-manifold definable in the field R, and moreover
these definable charts and transition maps can be constructed uniformly in &, thus
obtaining a semi-algebraic family of all n-dimensional complex tori. It follows
that in every real closed field R, if we take a tuple @ of 2n vectors in K" (K =
R(y/—1)) which are linearly independent over R, we have a corresponding definable
K-manifold &z, which we call a K-torus.

In [26] we considered the family, call it F, of all one-dimensional complex tori
in various o-minimal expansions of R. Each member of F is an elliptic curve,
i.e. biholomorphic with a smooth projective cubic curve. The biholomorphism
between these two compact complex manifolds is definable in R,,,. However, as we
show in [26], Corollary 5.6, a full family of such biholomorphisms is not definable
in an o-minimal structure. Formulated in the language of non-standard o-minimal
structures we have:

Theorem 4.6. Let R be an arbitrary o-minimal expansion of Ryp.cop and let
R* =(R,<,+,-,---) be a non-Archimedean elementary extension of R, with K =
R(v-1). If 7 € K s such that Im(7) > 0 and Re(t) greater than all standard
n € N, then the K-torus & . is not definably K-biholomorphic, in the structure
R*, with any algebraic curve.

We thus showed the failure of the definable analogue to Riemann’s Existence
Theorem, for definably compact one-dimensional K-manifolds in o-minimal struc-
ture (a “definably compact manifold” here can be taken to mean a R*-fiber in an
R-definable family of compact real manifolds).

In Section 4.6 below and Section 6.2 we discuss some positive cases of Riemann’s
theorem.

4.6. Mild manifolds. We let R be an o-minimal expansion of a real closed
field R and K = R(y/—1)

Let M be a definable K-manifold, and let A(M) be the structure whose uni-
verse is M and its atomic relation are all the definable K-analytic subsets of M™,



12 Y. Peterzil and S. Starchenko

n € N. In [27] we called M a mild manifold if A(M) admits quantifier elimina-
tion. Examples are compact complex manifolds (by Zil’ber’s work [39]), definably
compact K-manifolds (see Theorem 8.3 in [28]), the set of K-regular points of
an algebraic variety over K (projective or affine). On the other hand, the open
unit disc in C is a definable complex-manifold which is not mild in any o-minimal
structure.

In an attempt to understand better the previous example of a non-algebraic
one-dimensional K-torus we proved the following result (see Theorem 6.0.1, and
Theorem 4.4.3 [27]), which can be seen as a conditional Riemann Existence Theo-
rem.

Theorem 4.7. Let M be a definable K-manifold which is mild and also strongly
minimal (namely, in the structure A(M) every definable subset of M is finite or
co-finite). Then the following are equivalent:

1. A(M) is non locally modular.

2. There is a finite F C M and a definable non-constant K-holomorphic func-
tion ¢ : M N F — K (we call ¢ a K-mermomorphic function on M ).

3. There is a definable K-biholomorphism between M and a non-singular alge-
braic curve over K.

In particular, the non algebraic one-dimensional K-torus &; , of Theorem 4.6
admits no definable nonconstant K-meromorphic map into K and A(€) is locally
modular. If we translate the above theorem to definable families of compact com-
plex one-dimensional manifolds (which are all mild and strongly minimal) then we
get some uniform version of Riemann’s theorem:

Corollary 4.8. Let R be an o-minimal structure over R and let F = {M; : t €
T} be a a definable family of one-dimensional compact complex manifolds, given
together with a definable family ¢¢ : My — C of nonconstant meromorphic maps.

Then, there is in R a definable family of complex algebraic curves {C;:t € T}
and a definable family of complex biholomorphisms oy : My — C.

5. Theorems on removal of singularities

One of the most useful features of working with analytic objects which are definable
in o-minimal structures is the theory of removal of singularities: Start with a
complex manifold M, an open set U C M and consider an analytic subset A of U.
In general, the topological closure of A in M is not analytic in M. A great deal
of attention has been given classically to conditions under which CI(A) is analytic
in M. Assuming that M,U and A are definable in an o-minimal structure one
obtains strong results in both the standard and non-standard settings.
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5.1. Characterizing K-analytic sets.

Definition 5.1. Given a definable K-manifold M, and a definable A C M, we
define the set of K -regular points of A, denoted by Regk (A), as the set of all points
a € A such that in some neighborhood of a, the set A is a K-submanifold of M.
We let Singr (A) = A\ Regi(A).

We call a definable A C M a finitely K-analytic subset of M if M can be
covered by finitely many definable open sets M = | W and for each j there is a
definable K-holomorphic map 1; : W; — K™, such that A NW; =¢~1(0).

Clearly, every finitely K-analytic set in K-analytic. As for the converse, note
that if M is a compact complex manifold, definable in R, then every C-analytic
subset of M is C-finitely analytic. It turns out that o-minimality can replace the
role of compactness and that in the o-minimal setting this converse is always true.
Here is one of the main theorems characterizing definable K-analytic sets (see[28],
Corollary 4.14):

Theorem 5.2. Let M be a definable K-manifold and A C M a definable closed
set. Then the following are equivalent:

1. A is a K-analytic subset of M.
2. A is a finitely K-analytic subset of M.
3. For every open W C K™, dimp(Singx (ANW)) < dimg(ANW) — 2.

Another strong variant of Remmert-Stein’s Theorem is (see [28], Theorem
4.1.3):

Theorem 5.3. Let M be a definable K-manifold and E a definable K-analytic
subset of M. If A is a definable K-analytic subset of M \ E then Cl(A) is K-
analytic in M.

If we specialize to complex manifolds then the above theorem follows from
Remmert-Stein when we assume that A is of pure dimension and dim¢ £ < dimc A.

Remark 5.4. 1. Note that the implication (3) = (1) in Theorem 5.2 fails without
the definability assumption: Take M = C? and let

A={(z,e",1) e C>: 2 #0}U{(0,y,2) € C*}.

The set A is a closed subset of C® and its set of singular points is {(0,y,1) € C3}.
For every open W C C3, either WN{(0,y,1)} = (), in which case Singc(WNA) =0
or Singc(WnA) =W n{(0,y,1) : y € C}, in which case the real dimension of
this set is 2 while the real dimension of W N A is 4. However, A is not an analytic
subset of C3.

2. Clause (8) of Theorem 5.2 can be expressed in a first-order way, after
showing that Regg (A) is definable, uniformly in families, for A C K™. Working
in the charts of M, it then follows from Theorem 5.2 that if {4, : t € T} is a
definable family of subsets of M, then the collection

{t € T : A; is an analytic subset of M}
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is definable.

Putting this last observation together with Theorem 4.5, we obtain the following
interesting result:

Theorem 5.5. Let {X; :t € T} be a definable family of subsets of K™. Then the
set of all t € T' such that X; is an algebraic subset of K™ is definable.

5.2. Definable K-holomorphic maps. Let us now consider the impli-
cations of the above results on definable K-holomorphic maps. The main results
here are (see [29], Corollary 6.3, and [28], Theorem 7.3)

Theorem 5.6. Let f: M — N be a definable K-holomorphic map between defin-
able K-manifolds, and A C M a definable K-analytic subset of M. Then

1. There is a closed definable set E C N, with dimg(FE) < dimpg f(A) — 2,
and with dimg(f 1 (E) N A) < dimg(A) — 2, such that f(A) \ E is a locally
K-analytic subset of N.

2. If f(A) is a closed subset of N then it is a K-analytic subset of N.

Clause (2) is a strong variant of Remmert’s proper mapping theorem. Again,
it fails without the definability assumptions. Indeed, the projection of the analytic
set {(n,1/n) € Cx C:n > 1}U{(0,0)} on its first coordinate is the closed set
{1/n :n > 1} U {0} which is clearly not an analytic subset of C.

5.3. Compactification of analytic spaces. Consider an action of an
infinite discrete group I' on a complex manifold M. Under various assumptions
one can endow the quotient '\ M with the structure of a complex analytic space
or even that of quasi-affine or quasi-projective variety (see the seminal work [2] on
arithmetic quotients). We note here how one may apply the theory on removal of
singularities in order to prove results of similar flavor, assuming the existence of a
partially definable holomorphic I'-periodic map ¢ from M into another manifold
N. Note that even if M and N are definable in some o-minimal structure the map
¢ is generally not definable there, because of the infinite period I'. However, as we
demonstrate in sections 6.2 and 6.3, we can sometimes prove the definability of ¢
on a definable U C M, with ¢(U) = ¢(M) and, as the following result shows, for
certain purposes this is sufficient (for a proof, see Appendix).

Theorem 5.7. Let R be an o-minimal expansion of the real field. Let ¢ : U — N
be a definable finite-to-one holomorphic map from an open U C C™ into a definable
complez manifold N. Assume that there is a set D C U (not necessarily definable)
which is closed in C™, such that ¢(U) = ¢(D). Then the topological closure of ¢(U)
in N, call it A, is a complex analytic subset of N, and dimg(A \ ¢(U)) < 2n — 2.
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6. Classical holomorphic functions in an o-minimal
setting

Although all germs of holomorphic maps are definable in R,,, if one wishes to
apply o-minimal techniques to classical mathematical questions, it is necessary to
consider certain holomorphic functions on their natural domains, or on sufficiently
large sub-domains, and prove their definability in some o-minimal structure. In
this section we consider several such cases.

6.1. The Riemann mapping. The Riemann mapping theorem says that
if 2 C C is a non-empty simply connected open set which is not equal to C then
there is a biholomorphism f : 3 — D with the open unit disc in C. The map is
unique up to a biholomorphism of D. What can be said about the definability of
f in some o-minimal structure, assuming that € is definable there?

In [17] Kaiser shows that when € is a polygon (in which case f is known as the
Shwarz-Chirstoffel map), the map f is indeed definable in the o-minimal structure
RE | the expansion of R,,, by all power functions z®, a € R. In [18] he also shows:

an’

Theorem 6.1. There is an o-minimal structure R with the following property. Let
Q C C be a bounded simply connected domain that is definable in Ry, and assume
that for every x which is a singular boundary point of ), the angle of the boundary
at x is an irrational multiple of w. Then the biholomorphic map f : Q — D which
is given by Riemann’s theorem is definable in R.

The o-minimal structure in the theorem is constructed in [19].

6.2. The Weierstrass g-function and elliptic curves. We return
to the family of one dimensional tori discussed in Section 4.5. For the classical
facts mentioned here, see [35].
Every one dimensional torus is bi-holomorphic with a torus C/A, with A =
Z + 77 and T in the upper half plain H = {7 € C: Im(7) > 0}. We denote the
corresponding torus by &;, and its underlying set defined in Section 4.5 (1) by F..
The group of SL(2,7) acts on H via

a b\ az+b
(c d) U et d
and two tori &;, &, are biholomorphic if and only if 7 = A7’ for some A € SL(2,7).
Recall that the Weierstrass p-function is a meromorphic map @(r, z) from H x
C into C, so that for each 7 € H the map p,: z — @(z,7) is a A,-periodic
meromorphic map on the whole of C, and the map g.: z — (1: p.(2): p.(2))
induces an embedding of &, into Po(C). We also have p(t,2z) = p(Ar, 2) for any
A€ SLy(2,7), T € H,z € C.
The function (z,7) cannot be definable in an o-minimal structure on all of
C x H because of the periodicity in z and in 7. We consider, instead of the whole
of H, the set

F={reH:—-1/2<Re(r)<1/2 and |7|>1},
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and the family of tori £ = {&, : 7 € F}. The choice of the subfamily £3 is quite
standard, since § contains a representative of every orbit of SL(2,7), and therefore
every one-dimensional torus is biholomorphic with some &, for 7 € §.

We have (see [26], Theorem 4.1):

Theorem 6.2. The restriction of p(t,z) to the set
{(z,7)eCxH:TeF and z € E;}

is definable in the structure Rqp, cqp-

Since H and § are semialgebraic sets, they can be interpreted in any real closed
field R. We denote these by H(R) and F(R). As a corollary to the theorem above
we have (see [26], theorem 5.4):

Theorem 6.3. Let R = (R,<,+,----) be an arbitrary model of Ron exp, K =
(i) If T € F(R) then &, is definably K-biholomorphic to a nonsingular cubic curve
in P?(K).

(i) If C C P*"(K) is a nonsingular algebraic curve of genus one then there is a
T € F(K) and a K-biholomorphism of C and &, which is definable in R.

Thus in all models of Ry exp, every projective curve of genus one over K is
definably K-biholomorphic to a one-dimensional K-torus &, with 7 € F(R). But
as we showed in Section 4.5, it is not true that every one dimensional K-torus is
definably K-biholomorphic to an algebraic curve.

As before, the last theorem can be stated in the language of Ry, exp-definable
families of complex curves and holomorphic maps.

6.2.1. O-minimality and arithmetic. Several articles in recent years make
connections between o-minimality and arithmetical questions in complex algebraic
geometry. The starting point of this analysis is a theorem of Pila and Wilkie con-
cerning the distribution of rational points on subsets of R™ which are definable in
o-minimal structures (see [33]). Given a complex algebraic variety, Pila and Zan-
nier, [32], used transcendental holomorphic functions on bounded sets, definable
in R,,, to translate questions about torsion points in complex abelian varieties
into questions on rational points of R,-definable subsets of C". Having that,
they use the Pila-Wilkie result, together with number theoretic considerations and
o-minimality to give a new proof for the Manin-Mumford conjecture.

More recently, Pila, [30], [31], used Theorem 6.2 above to translate ques-
tions about special points in the moduli space of elliptic curves into questions
on quadratic points in Ry, ¢qp-definable subsets of C™. Using a variant of his theo-
rem with Wilkie, together with number theoretic results and o-minimality, he was
able to prove certain open cases of the André-Oort conjecture.

6.3. The theta functions and abelian varieties. In this section we
describe a recent, still unpublished work.
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As was pointed out in Section 4.5, the family of n-dimensional complex tori £
can be viewed as a definable family of complex manifolds in the structure R. A
torus & is called an abelian variety if it is biholomorphic to a projective algebraic
variety. We first review briefly the relevant information regarding abelian varieties
(see [5] [16]).

We already discussed the fact that every 1-torus is an abelian variety. When
n > 1, the family of abelian varieties is a proper sub-collection of the family of all
n-tori, given as countable union of definable subfamilies Fp, where D runs over
all n x n diagonal matrices

D= Diag(dladZa"'vdn)a

with di|ds] ... |d, positive integers. Each Fp, is defined as follows:

We denote by H,, the Siegel half space of all n x n complex symmetric matrices
with a positive definite imaginary part. We now fix D as above (called the polar-
ization type). For 7 € H, we denote by A, p the lattice which is generated by
the columns of the n x 2n complex matrix (7, D). We let £, p denote the corre-
sponding torus. Let Fp = {&; p : 7 € H,} be the family of all polarized tori with
polarization type D. It is known that a complex n-torus is an abelian variety if
and only if it is biholomorphic to a torus from one of the families Fp (but each
abelian variety appears in more than one such family).

Let Sp(D,Z) be the group of 2nx 2n integral matrices preserving the alternating

form
0 D
(1)
The group Sp(D,Z) acts on H,, and any two polarized varieties &, p and &, p in
Fp are isomorphic (as polarized varieties) if and only if they are in the same orbit
of Sp(D,Z).

There is a natural number £ such that every &£, p can be embedded, via a map
which we denote by O p, into P¥(C). We are interested in uniform definability of
these embeddings.

As in the case n = 1, although each O, p is definable in R,,,, the whole family
O, p(2), 7 € Hy, can not be defined in any o-minimal structure because of pe-
riodicity in 7, and we need to choose an appropriate subfamily. It follows from
Siegel’s reduction theory (see [16], p. 189-197), that there is a a semi-algebraic set
FP C *H,, containing finitely many representatives for each orbit of Sp(D,Z).

Theorem 6.4. For every polarization type D the family of embeddings {©, p: T €
&?} is definable in the structure Ryp eqop-

The above theorem is equivalent to definability of certain theta functions which
we now describe.

We use (:)Tp : C* — P*(C) to denote the pullback of O, p, le. éT,D is
a A, p-periodic map which induces O, p, and let (:)D : Hp, x C* — P*(C) be
Op(r,z2) = é-,—yD(Z). The map ©p can be obtained as the composition 7 o 9p,
where 7: CF+1 — PF(C) is the canonical projection, and ¥p: Hy, x C* — CF1is a



18 Y. Peterzil and S. Starchenko

map whose coordinate functions are given by theta functions ¥, (2, 7), for various
a,b € Q™. The theta functions are given explicitly by the following formula:

For a,b € R", z € C" column vectors and a matrix 7 € H,, (we use % to denote
the transpose of a column vector z),

9, b(7'7 Z) — Z eiw(t(m+a)7(m+a)+2 t(7n+a)(z+b))_

mezn
We define
Q,={(r,2) € Hp xC": 7€ F" and z € E. 1 }.
Theorem 6.4 can be deduced from the following result.

Theorem 6.5. For every a,b € R™, the map (7,2) — Vqu(T, 2) restricted to Qy,
is definable in the o-minimal structure Rqp, cxp-

We end this section by observing how o-minimality can be be used in the
construction of moduli spaces of polarized abelian varieties. We assume that D is
a polarization type with d; divisible by 4.

We need the following fact (see Theorem V.4 in [16])

Fact 6.6. There is a subgroup T' < Sp(D,Z) of finite index and a holomorphic
map ¢: H, — PN(C), whose coordinates are given by maps T +— ,(,0) such
that (1) = (') if and only if T and 7' are in the same orbit of .

The map ¢ from the above fact induces a map from I'\ H,, into P¥(C), and an
important issue in the theory of moduli spaces is the nature of the image of this
map. The main result is that this image is dense inside some algebraic subvariety of
PN (C) (see Theorem V.8 in [16]). Let us see how o-minimality yields an alternative
proof of this fact.

Since T has finite index in Sp(D, Z), we can choose a semi-algebraic F' consisting
of finitely many translates of FZ such that p(H,,) = ¢(F).

Using Theorem 6.5 and transformation formulas for theta functions, we can
get ¢ to be definable on an open set U C H,, containing the closure of F. We
now view ¢: U — PV (C) as a definable holomorphic map from an open subset
of C* (with ¢ = dim(H,)) into the definable manifold PV (C). We can therefore
apply Theorem 5.7 and deduce that the closure of p(F') is an analytic subvariety
of PV (C), so by Chow’s Theorem must be algebraic. It immediately follows that
the closure of image of T\ H,, under ¢ is algebraic as well.

7. Appendix

7.1. Definability of compact real analytic manifolds in R,,.
We prove here the result claimed in Section 4.2.
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Proposition 7.1. Let M be a n-dimensional compact real analytic manifold with a
given finite atlas {(Uy, ¢;) : i € I}. Then there is a finite open cover M =, x Ba
with the properties:

(i) For each x € X there is an i(x) € I with By C Uy(yy, such that ¢;)(Bz) is a
subset of R™ which is definable in Rg,.

(ii) For all x,y € X, the sets ¢;5)(B, N By) and the restriction of the transition
map ¢i(y)¢i_(;) to this set are definable in Rg,.

Proof. Without loss of generality each ¢;(U;) is a bounded subset of R™. We denote
by ¢;; the real analytic transition map

$id; 'z b5 (Ui NU;) — (Ui N U;).
As was pointed out in the examples of Section 2, if B C ¢;(U;NU;) is a definable set
whose closure is contained ¢;(U; N U;) then the restriction of ¢;; to B is definable
in Ry,
By compactness, for each i € I there is an open V; C CI(V;) C U; such that
M = ;1 Vi. Now, for every 2 € M, we choose a neighborhood B, of = such that

B, CCIB,)C (Y Vin (Y U;n [) CiW)e, (2)

zeV; zeUj zeCl(Vy)e
and
for every i € I for which « € Uj;, the set ¢;(B,) is definable in R,,. (3)

Indeed, this is possible to do since we only we need to choose B, small enough
to satisfy (2) and in addition require that for some fixed U; > z, the set ¢;(B;)
is an open rectangular box in R™. To verify (2), by our choice of By, if x € U;
then CI(B,) C U; N U; and hence ¢;(CIl(B,)) is a closed rectangular box inside
¢j(U;NUj). Therefore, as we observed already, the restriction of ¢;; to Cl(¢;(B))
is definable in R,,. But then, ¢;(B.) = ¢;;(¢;(Bs)) is definable as well, as re-
quired.

Claim Given i,j € I, assume that z € V;, y € V; and B, N B, # (. Then
Cl(B,UBy) CU;NU; and ¢;(By), ¢i(By), ¢;(Bz), ¢;(By) are all definable in Ry,

Indeed, since B, N By, # 0 and B, C V; we have B, NV; # () and therefore
y € CU(V;) (for otherwise, by the choice of By, we would have B, C CI(V;)¢,
a contradiction). By our choice the V;’s, it follows that y € U; and therefore
Cl(By) C U;. We also have Cl(B,) C CIl(V;) C U; and therefore Cl1(B,UB,) C Us;.
Similarly, we have Cl(B, U By) € U;. By our definition of B,, B, we have
¢i(Bz), $i(By), ¢j(Bz), ¢;(By) all definable, proving the claim.

By compactness, there is a finite set X € M, such that M = J,.x B.. For
each z € X we choose i(z) € I such that = € Vj,). By the claim, if B, N B, # 0
then ¢;(,)(Bx N By) = ¢i(z)(Bz) N ¢i(z)(By) is definable in R, and furthermore,
the closure of ¢;(,) (B, N By) is contained in ¢;(q) (Uiz) N Ui(y))- 1t follows that the
restriction of ¢i(y)¢ii) to this set is definable. O
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7.2. The proof of Theorem 5.7.

Proof. Let Fr(¢p(U)) = AN ¢(U) be the frontier of ¢(U). We first prove that
dimg (Fr(¢(U))) < 2n — 2.

Consider C™ as a subset P"(C), namely we write P"(C) = C" U H for H a
hyperplane at co. Let G be the closure in P*(C) x N of the graph of ¢ and let
7 : P*"(C) x N — N be the projection onto the second coordinate. We claim that
Fr(¢(U)) = n#(GnN (H x N)). The right-to-left inclusion is immediate. For the
converse, if y € Fr(¢(U)) then there is a sequence z,, € U such that ¢(z,,) tends
to y. Since ¢(U) = ¢(D) we may assume that x,, € D. Because D is closed in C"
and y ¢ ¢(U), the sequence x,, does not have any converging subsequence in C"
and therefore it is unbounded in C™. But then, viewed in P*(C), the sequence has
a converging subsequence to an element z € H, and then (z,y) € GN (H x N),
hence y € 7(GN (H x N))

Next, consider the set B¢ of all (z,y) € G N (H x N) such that there are
infinitely many ¥’ € N with (2,7") € G and let By, = GN (H x N) \ Bins. By
[29], Lemma 6.7 (ii), dimg (Bin¢) < 2n— 2, and since dimg H = 2n— 2 we also have

dimg Byip, < 2n — 2. It follows that dimg(G' N (H x N)) < 2n — 2. We now have,
dimg(Fr(¢(U))) = dimg(7(G N (H x N))) < 2n — 2,

as claimed.

By Theorem 5.6 (1), there is a definable closed set E C N, with dimg(FE) <
dimg ¢(U) — 2, such that ¢(U) \ E is locally analytic in N. Because A = (¢(U)
E)UEUFr(¢(U)), we have

Singc(A) € EUFr(¢(U)) U Singc(p(U) \ E).

Since ¢ is finite-to-one, the real dimension of ¢(U) is 2n everywhere and therefore
the real dimension of Singc(¢(U) \ E) is at most 2n — 2 everywhere (see 5.2(3)).
We thus have for all open W C N,

dimg(Singc(ANW)) < 2n — 2 =dimg(W N A) — 2.

We can now apply Theorem 5.2(3) once more and conclude that A is an analytic
subset of N. |
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