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ADDITIVE REDUCTS OF REAL CLOSED FIELDS AND STRONGLY BOUNDED

STRUCTURES

HIND ABU SALEH AND YA’ACOV PETERZIL

ABSTRACT. Given a real closed field R, we identify exactly four proper reducts of R which expand

the underlying (unordered) R-vector space structure. Towards this theorem we introduce a new

notion, of strongly bounded reducts of linearly ordered structures:

A reduct M of a linearly ordered structure 〈R;<, · · ·〉 is called strongly bounded if every M-

definable subset of R is either bounded or co-bounded in R. We investigate strongly bounded

additive reducts of o-minimal structures and as a corollary prove the above theorem on additive

reducts of real closed fields.

1. INTRODUCTION

The motivation behind the work here is a conjecture about reducts of real closed fields, from

[10]. Before stating the conjecture, let us clarify our usage of the notion of “reduct” here.

Definition 1.1. Given two structures M and N , we say that M is reduct of N (or, N is an

expansion of M), denoted by M⊆̇N , if M and N have the same universe and every set that is

definable in M is also definable in N (where definability allows parameters). We say that M and

N are interdefinable, denoted by M=̇N , if M is reduct of N and N is reduct of M.

We say M is a proper reduct of N (or, N a proper expansion of M) if M⊆̇N and not M=̇N .

Below, we let ΛR be the family of all R-linear maps λa(x) = αx, for all α ∈ R. Our ultimate

goal here is to prove:

Theorem 1.2. Let R be a real closed field. Then, the only reducts between the vector space

〈R; +,ΛR〉 and the field 〈R;<,+, ·〉 are

Ralg := 〈R;<,+, ·〉

Rsb := 〈R;<,+,ΛR,Bsa〉

Rsemi := 〈R;<,+,ΛR〉 Rbd := 〈R;<∗,+,ΛR,Bsa〉

R∗
lin := 〈R;<∗,+,ΛR〉

Rlin := 〈R; +,ΛR〉,

where <∗ is the linear order on the interval (0, 1) and Bsa the collection of all bounded semialge-

braic sets over R.
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Remark 1.3. (1) The definable sets in Ralg are called semialgebraic, while those definable in

Rsemi are semilinear. The structure Rsb above is called semibounded, as it expands the

ordered vector space by a collection of bounded sets. Semibounded structures were studied

in several articles, for example [3],[1],[11].

(2) Notice that because all the above structures expand the full underlying R-vector space, then

once <∗ is definable then the restriction of < to every bounded interval is definable.

(3) A similar project, in the setting of Presburger Arithmetic, was carried out in [2], where

it was proven that there are no proper reducts between 〈Z; +〉 and 〈Z;<,+〉. We expect

that in arbitrary models of Presburger arithmetic, an analoguous result to Theorem 1.2

holds, with the intermediate reducts corresponding to possible restrictions of < to infinite

subintervals.

Some of the work towards the proof of Theorem 1.2 can be read off earlier results. In particular,

the fact that the semibounded reduct Rsb is the only proper reduct between Rsemi and Ralg, was

proven over R in [10] and can be deduced for arbitrary real closed field from Edmundo’s [3] (see

Fact 5.1 below). However, the bulk of the work here is to show that if a reduct M of Ralg does not

define the full order then it is necessarily a reduct of Rbd. Towards that, we introduce a new notion,

of “a strongly bounded structure” in a more general setting, and most of our results here are about

such structures:

Definition 1.4. Let R = 〈R;<, · · · 〉 be a linearly ordered structure. A reduct M = 〈R; · · · 〉 of R
is called strongly bounded if every M-definable X ⊆ R is either bounded or co-bounded (namely,

R \X is bounded).

Remark 1.5. (1) The term “strongly bounded” was chosen to reflect a combination of a semi-

bounded structure with a strongly minimal one. Almost all of our work here concerns

strongly bounded additive reducts of o-minimal structures, where the underlying linear or-

der is dense. Analogous definitions could be given for, say, models of Presburger arithmetic

if one wishes to study all reducts which expand the underlying ordered group.

(2) The definition of a strongly bounded structure requires an ambient linear order, thus it

might not seem amenable to working in elementarily equivalent structures. However, in

practice we only work in sufficiently saturated elementary extensions of a strongly bounded

M as above, and thus we may assume that this elementary extension is also a reduct of a

linearly ordered elementary extension of R.

By definition, if M is a strongly bounded reduct of a linearly ordered structure then the ordering

< is not definable in M. We prove several results about strongly bounded reducts of o-minimal

structures (see for example Theorem 4.5 and Theorem 4.27):

Theorem. Let 〈R;<,+, · · ·〉 be an o-minimal expansion of an ordered group and let M = 〈R,+, · · ·〉
be a strongly bounded reduct. Then

(1) Every M-definable subset of Rn is already definable in the structure 〈R; +,ΛM,B∗〉,
where ΛM is the collection of M-definable endomorphisms of 〈R,+〉 and B

∗ is the col-

lection of all M-definable bounded sets.

(2) For every N ≡ M, the model theoretic algebraic closure equals the definable closure.
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2. PROPER EXPANSIONS OF Rlin

In this section we assume that Romin is an o-minimal expansion of a real closed field R and

M = 〈R; +, · · ·〉 is an additive reduct of Romin.

Theorem 2.1. If M is not a redcut of Rlin = 〈R; +,ΛR〉 then <∗ is definable in M.

Proof. It is sufficient to prove that some interval [0, b] is M-definable, for b > 0.

Claim 2.2. Th(M) is unstable

Proof. This is based on the work of Hasson and Onshuus with the second author, [4].

Assume towards contradiction that Th(M) is stable. By [4, Theorem 1], every 1-dimensional

stable structure interpretable in an o-minimal structure is necessarily 1-based. So M is 1-based.

By [5, Theorem 4.1], it follows that every M-definable set is a boolean combination of cosets of

definable subgroups of Rn. Every definable subgroup of 〈Rn; +〉 in an o-minimal structure is an

R- vector subspace ofRn and therefore every M-definable set is definable in Rlin, a contradiction.

Hence M is unstable. �

Because M is unstable, it is in particular not strongly minimal. This generally implies that in

some elementary extension of M, we have an M-definable subset in one variable which is infinite

and co-infinite. However, o-minimal structures eliminate ∃∞, and therefore so does M. It follows

that there is some M-definable subset of R itself which is infinite and co-infinite. Call this set Y .

By o-minimality, Y has the following form:

(1) Y := I1 ∪ I2 ∪ · · · ∪ In ∪ L,

such that for every i ∈ {1, ..., n}, Ii := (ai, bi), L is a finite set and in addition −∞ ≤ a1 < b1 <
a2 < ... < an < bn ≤ +∞. Without loss of generality L = ∅.

The following will be used in several places in this thesis.

Lemma 2.3. Assume that Y ⊆ R is definable in an o-minimal expansion of an ordered group. If

both Y and R \ Y are unbounded then full linear order is definable in 〈R; +, Y 〉.

Proof. If both Y and R \ Y are unbounded then Y has the form (1) above and then without loss of

generality, we may assume that I1 = (−∞, b1), and Ii = (ai, bi) for i ∈ {2, ..., n}.

By replacing Y by Y − b1 we may assume that b1 = 0 and then

−Y ∩ Y = (−bn,−an) ∪ ... ∪ (−b2,−a2) ∪ (a2, b2) ∪ ... ∪ (an, bn)

So (−Y ∩ Y ) ∩ [(−Y ∩ Y ) + (an + bn)] equals the interval In = (an, bn) in Y . Replace Y by

Y1 := Y \ In, now Y1 contains a unbounded ray together with n−2 bounded intervals. Continuing

in this way we obtain a ray (−∞, 0) that is definable, so we can define <. �
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So we assume now that either Y orR\Y are bounded. If Y is bounded then each of the intervals

above in Y is bounded. Let α := bn − b1. The set (Y + α) ∩ Y defines a single interval whose

right endpoint is bn. So, we are done. If Y is unbounded then replace Y by R \ Y and finish as

before. Hence, we showed that <∗ is definable in M. �

3. REDUCTS OF Ralg WHICH ARE NOT SEMILINEAR

HereR is a real closed field and Ralg = 〈R;<,+, ·〉. Before the next theorem we recall previous

work from [7] (see a corrected and more general proof in [1]), which will be used in its proof.

Given a > 0 in R, let I = (−a, a). Denote by +∗ the partial function obtained by intersecting

the graph of + with I3, and for each α ∈ R, let λ∗α be the partial function obtained by intersecting

the graph of λα with I2. Finally, let <∗ be the restriction of < to I2. Notice that for each X ⊆ Rn

such that 〈R;< +, ·,X〉 is o-minimal, the structure

I = 〈I;<∗,+∗, {λ∗α}α∈R,X ∩ In〉

is o-minimal as well.

In [7] the structure 〈I;<∗,+∗〉 was called a group-interval and its o-minimal expansions were

studied there.

A partial endomorphism (p.e. in short) of this group-interval was a function f : I → I which

respects addition when defined: namely, if x, y, x+∗ y ∈ I then f(x+∗ y) = f(x) +∗ f(y).
Notice that in our setting every I-definable p.e. is necessarily the restriction of λα for some

α ∈ R. Indeed, if f : I → I is an I-definable p.e. then it is not hard to verify that the following is

a semialgebraic subgroup of 〈R,+〉 which contains all integers. Let

H = {r ∈ R : ∃ε > 0∀x ∈ (−ε, ε)f(rx) = rf(x)}.

O-minimality of the real field implies thatH = R and therefore f is the restriction of anR-linear

map, namely the restriction of λα for some R.

Now, without going through the precise definition of “a linear theory” from [7], it was shown

in [7, Proposition 4.2] that if Th(I) is linear then every I-definable set is already defined in the

structure 〈I; +∗, <∗, {λ∗α}α∈R〉, (together possibly with additional parameters). Thus if Th(I) is

linear then X
⋂
In is a semilinear set.

The following proposition seems to be obvious but for the sake of completion we include a proof

in the Appendix.

Fact 3.1. Let R be a real closed field and X ⊆ Rn a definable set in an o-minimal expansion of

〈R;<,+, ·〉. If X is not semilinear then, in the structure M = 〈R;<∗,+,ΛR,X〉, there exists a

definable bounded set which is not semilinear.

Theorem 3.2. If X ⊆ Rn is semialgebraic and not definable in Rsemi, then every bounded R-

semialgebraic set is definable in 〈R; +,ΛR,X〉

Proof. Let M := 〈R; +,ΛR,X〉. By Theorem 2.1, the relation <∗ is definable in M. Let us first

see that M defines a real closed field on some interval.

By Fact 3.1, we may assume that X ∩ In is not semilinear, for some bounded interval I =
(−, a, a). Consider the o-minimal structure

I := 〈I;<∗,+∗, {λ∗α}α∈R,X ∩ In〉,
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as we described before stating the theorem. We noted that if Th(I) is linear then the set X
⋂
In

must be semilinear set. Because In ∩X is not semilinear then Th(I) is not linear in the sense of

[7] and therefore by [12, Theorem 1.2], a real closed field is I-definable, hence also M-definable,

on some interval J ⊆ I .

Without loss of generality, assume that J = (−a0, a0), a0 > 0. Denote the field by:

J = 〈J ,�,�〉

The structure J is M-definable. By [10, Corollary 2.4], every R-semialgebraic subset of Jk,

k ∈ N, is definable in J , and therefore in M.

Let B ⊆ (−b, b)n for some b > 0 in R. Using scalar multiplication from ΛR, we can contract

(−b, b) into (−a0, a0), so it is definable in J . It follows that B is definable in M . �

4. STRONGLY BOUNDED STRUCTURES

The ultimate goal of this section is to prove:

Theorem 4.1. Let R be a real closed field. If X ⊆ Rn is semialgebraic and not definable in

Rbd = 〈R;<∗,+,ΛR,Bsa〉 then < is definable in the structure 〈R; +,ΛR,X〉.

We are going to work in a more general setting than that of a real closed field. Recall that a

strongly bounded reduct of a linearly ordered 〈R;<, · · ·〉 is one in which every definable subset of

R is bounded or co-bounded. Below, we will mostly be interested in strongly bounded reducts of

o-minimal structures. By Lemma 2.3 we have:

Lemma 4.2. Let Romin = 〈R;<,+, · · ·〉 be an o-minimal expansion of an ordered group. If

M = 〈R; +, · · · 〉 is a reduct of Romin then M is strongly bounded if and only if < is not definable

in M.

So in order to prove Theorem 4.1 it is sufficient to prove that if X ⊆ Rn is definable in a

strongly bounded M = 〈R;<,+, · · · 〉 then X is definable in 〈R; +,ΛM,BM〉, where BM is the

collection of all M-definable bounded sets. A more precise and slightly stronger theorem will be

proved soon, Theorem 4.5. We first make a general observation which we shall exploit repeatedly.

4.1. Definability of “boundedness”. For X ⊆ T ×Rn, T ⊆ Rm and t ∈ T , we let

Xt = {a ∈ Rn : 〈t, a〉 ∈ X}

The following general result will be very useful here.

Proposition 4.3. Let M = 〈R; +, · · · 〉 be any reduct of an o-minimal expansion of an ordered

group. If {Xt : t ∈ T} is an M-definable family of subsets of Rn, then the set

{t ∈ T : Xt is bounded in Rn}

is definable in M.

Proof. Note that a set Y ⊆ Rn is bounded if and only if for each i, the image of Y under the

projection map πi : 〈y1, ..., yn〉 7−→ yi is bounded in R. Thus, it is sufficient to prove the result

under the assumption that all Xt are subsets of R.
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By o-minimality, each Xt ⊆ R is unbounded if and only it contains an unbounded ray. Thus, it

is easy to see that

{t ∈ T : Xt is bounded} = {t ∈ T : ∃a a+Xt ∩Xt = ∅}

and hence the set is definable in M. �

4.2. The strongly bounded setting. We first clarify and somewhat generalize our setting.

Let Romin = 〈R,<,+, · · ·〉 denote an o-minimal expansion of an ordered group in language

Lomin, and let M = 〈R; +, · · ·〉 denote a strongly bounded reduct of Romin, in language L, such

that aclM(∅) contains at least one nonzero element.

Definition 4.4. An interval (a, b) ⊆ R is called a ∅-interval in M if a, b ∈ aclM(∅). A subset

X ⊆ Rn is called ∅-bounded in M if X is contained in some In, for I a ∅-interval in M.

Our standing assumption is that for every ∅-interval I ⊆ R, the restricted order <↾ I is ∅-

definable in M. Notice that, using Theorem 2.1, this is true when M is elementarily equivalent to

a reduct of a real closed field which properly expands Rlin.

We let ΛM be the collection of all M-definable endomorphisms of 〈R,+〉, defined over ∅. We

let Lbd(M) be the language consisting of {+, {λ}λ∈ΛM
}, augmented by a predicate for every

∅-definable, ∅-bounded set in M.

By expanding L and Lomin by function symbols and predicates for ∅-definable sets, we may

assume that

Lbd ⊆ L ⊆ Lomin.

We let Mbd be the reduct of M to Lbd.

Our ultimate goal in this section is to prove:

Theorem 4.5. For M strongly bounded as above, every definable subset of Rn is definable in

Mbd.

One of our main difficulties in working with strongly bounded structures is the failure of global

cell decomposition. E.g. the set R \ {0} cannot be decomposed definably into definable cells in a

strongly bounded structure, because no ray is definable there.

Another difficulty is the fact that a-priori we do not know whether the model theoretic algebraic

closure equals the definable closure in strongly bounded structures. However, we shall eventually

show, see Theorem 4.27, that acl = dcl in this setting.

We assume from now on throughout this section that M is strongly bounded as above.

4.3. Definable subsets of R in strongly bounded structures. Notice that although the full order

is not definable in M, a basis for the <-topology on R and the product topology on Rn is definable

in M, using the restricted order. Thus we have:

Lemma 4.6. If {Xt : t ∈ T} is an M-definable family of subsets of Rn, then the families

{Cl(Xt) : t ∈ T} , {Int(Xt) : t ∈ T} , {Fr(Xt) : t ∈ T}

are definable in M.
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Every M-definable X ⊆ R is a union of finitely many pairwise disjoint maximal open sub-

intervals of X (which are possibly not M-definable) and a finite set. Below, when we say that I is

an interval in X we mean that I is one of these open components of X.

Definition 4.7. Let Y ⊆ R be an M-definable set, we define:

∂−(Y ) := {y ∈ R : y is a left endpoint of an interval in Y }.

∂+(Y ) := {y ∈ R : y is a right endpoint of an interval in Y }.

Lemma 4.8. If {Yt : t ∈ T} is an M-definable family of bounded subsets of R then the families

{∂−(Yt) : t ∈ T}, {∂+(Yt) : t ∈ T} are M-definable, over the same parameter set.

Proof. We fix an M-definable <↾(0, a0) for some a0 > 0. We define ∂−(Yt) by the formula :

(x /∈ Yt ∧ ∃ǫ < a0 (x, x+ ǫ) ⊆ Yt)

∨

(x ∈ Yt ∧ ∃ǫ ≤ a0 ∧ (x− ǫ, x) ∩ Yt = ∅ ∧ (x, x+ ǫ) ⊆ Yt)).

Because of the definability of <∗ in M, {∂−(Yt) : t ∈ T} is M-definable. We similarly handle

∂+(Yt). �

The next theorem is an important component of our analysis of strongly bounded structures.

Theorem 4.9. If {Xt : t ∈ T} is an M-definable family of bounded subsets of R, then there

is a uniform bound on the length of each interval in Xt. Moreover, there exists such a bound in

dclM(∅).

Proof. By Proposition 4.3, every M-definable family {Xt : t ∈ T} of bounded subsets of R is a

sub-family of a ∅-definable family of such sets. Namely, if φ(x, t, a) is the formula defining the

Xt’s over a, as t varies, then we can consider the formula

ψ(x, t, y) : φ(x, t, y) ∧ ψ(R, t, y) is a bounded set.

Thus, it is sufficient to prove the result for ∅-definable families.

By Lemma 4.6, we may assume that each Xt is an open set. We will use induction on n :=
the maximum number of intervals in Xt, for t ∈ T .

For n = 1, write Xt = (at, bt).
Consider the family {Xt − at : t ∈ T}. By Lemma 4.8, the family is ∅-definable.

Thus, the set Y =
⋃
t∈T

Xt − at is an M-definable interval, over ∅, whose left end-point is 0.

Because M is strongly bounded, this interval must be bounded, hence its right endpoint is some

K ∈M . By Lemma 4.8, the point K is definable over ∅.

Consider now the case n = k+1, namely each Yt consists of at most k+1 pairwise disjoint open

intervals. For each t ∈ T , letDt = {c
1
−c2 : c1, c2 ∈ ∂−(Xt)}, an M-definable set by Lemma 4.8.

Claim 4.10. For each t ∈ T , there exists d ∈ Dt such that (Xt + d) ∩Xt is one of the intervals in

Xt.
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Proof. Let Xt = I1,t ∪ I2,t ∪ ... ∪ Ik+1,t, where each Im,t := (am,t, bm,t), such that:

a1,t < b1,t < a2,t < b2,t < ... < ak+1,t < bk+1,t

For an interval I = (a, b), let |I| = b− a.

Let d = ak+1,t − a1,t. In the set Xt + d, for each m, the interval Im,t is shifted to Im,t + d. So

(Xt + d)∩Xt consists of either Ik+1,t (when |Ik+1,t| < |I1,t|) or I1,t + d (when |Ik+1,t| > |I1,t|) .

If it consists of Ik+1 we are done. Otherwise we take

d′ = a1,t − ak+1,t ∈ Dt

and then (Xt + d′) ∩Xt = I1,t.
So in both cases there exists d ∈ Dt such that Xt + d ∩Xt is one of the intervals in Xt. �

We define the set:

D′
t := {d ∈ Dt : (Xt + d) ∩Xt is one of the intervals in Xt}

Claim 4.11. The family {D′
t : t ∈ T} is an M-definable family of nonempty sets.

Proof. For t ∈ T , d ∈ D′
t if and only if the following two hold:

(1) ∂−((Xt + d) ∩Xt) ⊆ ∂−(Xt) and |∂−((Xt + d) ∩Xt)| = 1, and

(2) ∂+((Xt + d) ∩Xt) ⊆ ∂+(Xt) and |∂+((Xt + d) ∩Xt)| = 1.

By Lemma 4.8, (1), (2) are a definable properties in M. By Claim 4.10, each D′
t is non-

empty. �

We proceed with the proof of Theorem 4.9. Consider the M-definable family

{ Yt,d := Xt + d ∩Xt : d ∈ D′
t, t ∈ T},

still defined in M over ∅. For every t and d ∈ D′
t, the set Yt,d consists of a single interval which is

one of the intervals in Xt. By case n = 1 we know that there is a uniform bound on length of each

Yt,d, call it w1 which can be chosen in dclM(∅). We now define, still over ∅, the following family

{Zt,d := Xt \ Yt,d : d ∈ D′
t, t ∈ T}

Each subset Zt,d consists of at most k intervals among the k + 1 intervals of Xt. By the induction

hypothesis, we know that there is a uniform bound on the length of each interval, call it w2 which

we may choose in dclM(∅).
Thus the maximum of w1, w2, which is in dclM(∅), is the bound on the length of each interval

of Xt, as t varies. This ends the proof of Theorem 4.9. �

As a corollary we can now match, definably in M, each left endpoint of an interval in Xt with

the corresponding right endpoint:

Proposition 4.12. Let {Xt : t ∈ T} be an M-definable family of bounded subsets of R, and let

Lt = {〈a, b〉 ∈ ∂−(Xt)× ∂+(Xt): the interval (a, b) is one the intervals of Xt}

Then the family {Lt : t ∈ T} is M-definable.
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Proof. By Theorem 4.9, there is a bound, call it K ∈ dclM(∅), for the length of each interval in

Xt, for all t ∈ T . For each t ∈ T , we have

(1)〈a, b〉 ∈ Lt ⇐⇒ a ∈ ∂−(Xt) and b = min(∂+(Xt) ∩ [a, a+K])

By Lemma 4.8, ∂−(Xt), ∂
+(Xt) are definable families and since in (1) we only use the order on

[0,K], the family {Lt : t ∈ T} is definable in M. �

Remark 4.13. (1) Notice that Theorem 4.9 fails without the assumption that theXt’s are bounded

sets. Namely, it is not true in general that the length of the bounded components of Xt is

bounded in t. For example, the sets Xt = R \ {−t, t} has (−t, t) as an open component,

with unbounded length as t→ ∞.

Also, even if each Xt’s is bounded it is not true that the diameter of theXt’s is uniformly

bounded. For example, take the family {(−t, t − 1) ∪ (t, t+ 1) : t ∈ R} that is definable

using <↾ (0, 1).
(2) We do not know whether Proposition 4.12 holds if we drop the assumption that theXt’s are

bounded. Namely, can we still match definably the left and right endpoints of the bounded

components of Xt, when the Xt’s are unbounded?

4.4. Affine sets and functions. Recall that Romin is an o-minimal expansion of an ordered divis-

ible abelian group R, and we assume that M = 〈R; +, · · ·〉 is a strongly bounded reduct of Romin

in which < is ∅-definable on every ∅-interval. We let <∗ denote the ordering on some fixed interval

we call (0, 1).

Definition 4.14. Let 〈R;<,+〉 be an abelian ordered divisible group.

(1) A map f : Rn → Rk is affine if it is of the form ℓ(x)+d for ℓ : Rn → Rk a homomorphism

between 〈Rn,+〉 and 〈Rk,+〉, and d ∈ Rk.

(2) A (partial) function f : R → R , is eventually affine if there exists a > 0 such that

(a,∞) ⊆ dom(f) and the restriction of f to (a,+∞) is affine.

(3) X ⊆ Rn is locally affine at a ∈ X there is an open neighborhood U ∋ a such that for all

x, y, z ∈ U ∩X, x− y + z ∈ X. The affine part of X is the set;

A (X) = {x ∈ X : X is locally affine at x}.

Notice that if X is the graph of an affine map then A (X) = X. Also, because a basis for the

Rn-topology is definable in M, we immediately have:

Lemma 4.15. Let {Xt : t ∈ T} be an M-definable family of subsets of Rn, defined over ∅. Then

the family {A (Xt) : t ∈ T} is M-definable, over ∅.

We now prove:

Proposition 4.16. Every M-definable endomorphism f : R→ R is ∅-definable.

Proof. Assume that f is defined by M-formula φ(x, y, a), over the parameter a. We will show that

f can be defined without parameters.

Since being anR-endomorphism is M-definable, we may assume that there is some M-definable

T ⊆ Rk, such that for all t ∈ T . If φ(R2, t) is non-empty then it defines a non-zero endomorphism

ft of 〈R; +〉.
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Assume first that the set of endomorphisms ft’s defined by φ is finite. Define t1Et2 iff ft1 = ft2 ,

an M-definable equivalence relation. Consider the functions near 0, and define [t1]E < [t2]E if for

all x > 0 sufficiently small, we have ft1(x) < ft2(x). By o-minimality, we obtain a linear ordering

of the finitely many E-classes, and since < is M-definable in a neighborhood of 0, this ordering is

M-definable. Thus, each ft in this finite family of endomorphisms is ∅-definable.

Assume now that the family {ft : t ∈ T} is infinite, and we shall reach a contradiction. Consider

the set {ft(1) : t ∈ T}. By o-minimality it contains an open interval (a, b), and by replacing each

ft with ft − ft0 , for some t0 ∈ T for which ft0 ∈ (a, b), we may assume that the interval (a, b)
contains 0 and the ordering on (a, b) is M-definable (we think of ft(a) as “the slope” of ft). Let

T0 = {t ∈ T : ft(1) ∈ (0, b)}.

We write t1 ∼ t2 if ft1 = ft2 , and let [t] be the equivalence class of t. In abuse of notation we

let f[t] denote the corresponding endomorphism of R.

By o-minimality, if ft1(1) = ft1(1) then ft1 = ft2 , thus we obtain an M-definable function

t : (0, b) → T0/ ∼, defined by f[t(x)](1) = x. Namely, f[t(x)] is the endomorphism whose “slope”

is x. Fix an element d > 0, and define σ : (0, b) → R by: σ(x) = f−1
[t(x)](d). Namely, σ(x) = y

if there exists t ∈ T0 such that ft(1) = x and ft(y) = d (we may think of σ(x) as “d/x”). The

function σ is also M-definable. For every t ∈ T0, we have ft(1) > 0, hence ft(x) > 0 if and only

if x > 0. Threfore, σ is positive on (0, b).

Claim Im(σ) is unbounded in R.

Indeed, assume towards contradiction that K = sup(Im(σ)) <∞. By our observation, K > 0.

Choose y0 ∈ Im(σ), y0 < K and sufficient close to K , such that K < 2y0. By assumption, there

exists t0 ∈ T0 and x0 > 0, such that ft0(1) = x0 and ft0(y0) = d.

Let t1 ∈ T0 be such that [t1] = t(x0/2). Then ft1(1) = x0/2 = ft0(1)/2. It follows that

ft1 = ft0/2 and hence

ft1(2y0) = ft0(2y0)/2 = ft0(y0) = d

But then ft1(1) = x0/2 and ft1(2y0) = d, so by definition, σ(x0/2) = 2y0 > K , contradicting

the assumption that K bounds Im(σ).
Thus, Im(σ) is an M-definable set which is unbounded and positive, contradicting the assump-

tion that M is strongly bounded. �

Definition 4.17. We denote by Λomin the set of all Romin-definable endomorphism f : 〈R,+〉 →
〈R,+〉. and we still let ΛM denote the set of all M-definable endomorphisms of R, which by

Proposition 4.16, is necessarily ∅-definable. Let Λ∗
omin and Λ∗

M
denote those non-zero endomor-

phisms.

4.5. Definable functions of 1-variable. Our goal is to describe definable functions in 1-variable,

and prove that M has no definable “poles”.

Proposition 4.18. If g : R → R is an M-definable partial function whose domain is co-bounded

and Im(g) is bounded. Then g is constant on a co-bounded set.

Proof. By o-minimality, there exists L ∈ R such that lim
x→+∞

g(x) = L. We shall see that g ≡ L on

a co-bounded set.
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The function g is definable in an o-minimal structure, thus there exists a1 ∈ R such that g ↾

(a1,+∞) is either constant or strictly monotone, and there exists a2 such that g is constant or

strictly monotone on (−∞, a2).
If g is constant L on (a1,+∞) then {x ∈ R : g(x) = L} is unbounded and since M strongly

bounded the set must be co-bounded and we are done. Assume towards contradiction that g ↾

(a1,∞) is strictly monotone.

Assume first that g is strictly increasing on (a1,∞). Notice that the property of being locally

increasing in a neighborhood of x ∈ R is definable using <∗, thus the set

{x ∈ R : g is locally increasing at x}

is M-definable, contains (a1,∞) and hence must be co-bounded. It follows that g is strictly

increasing on (−∞, a2).
Because limx→∞ g(x) = L and g is increasing, there exists b ∈ R such that for all x > b,

L− 1 < g(x) < L. Because <∗ is M-definable the set of all x ∈ R such that L− 1 < g(x) < L
is M-definable so must be co-bounded. In particular, we may assume that L− 1 < g(x) < L for

all x < a2 and thus g(x) has a limit L1 ∈ R as x→ −∞.

But since g is increasing on x < a2, it follows that L1 < L and in addition there exists a′2 ≤ a2
and ǫ > 0, such that for all x < a′2,

L1 < g(x) < L1 + ǫ < L.

Using <∗ again, this is an M-definable property of x so must hold also for all x > a′1, contra-

dicting the fact that limx→+∞ g(x) = L.

A similar argument works when g is eventually decreasing. �

Remark 4.19. By [3], if N = 〈R;<,+, · · ·〉 is an o-minimal expansion of an ordered group in

which every definable bounded function is eventually constant then N is semibounded, namely

every definable set is definable using the underlying vector space, together with all the definable

bounded sets. This might suggest a fast deduction of Theorem 4.5 from Proposition 4.18. The

problem of this approach is that we do not know that the definable functions in the strongly bounded

M = 〈R; +, <∗, · · ·〉 are the same as in its expansion by the full <. Thus, we do not see how to

apply Edmundo’s theorem here.

Next, using almost identical arguments to Edmundo’s [3] we shall show that every M-definable

function f : R → R is affine on a co-bounded set. For that, we recall some notation and facts,

based on work of Miller and Starchenko [8].

Notation For Romin-definable positive (partial) functions f, g : R → R, such that (a,∞) ⊆
dom(f), dom(g), we write f ≤ g (or f < g) if f(x) ≤ g(x) (or, f(x) < g(x)) for all large enough

x.

We write v(f) < v(g)) if |f | > |λ ◦ g| for all λ ∈ Λ∗
omin such that λ > 0. We also write

v(f) = v(g) if there are λ1, λ2 ∈ Λ∗
omin, both positive, such that

|λ1 ◦ g| ≤ |f | ≤ |λ2 ◦ g|.

This easily seen to be an equivalence relation.

Finally, we write ∆(f) = f(x+ 1)− f(x).
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Fact 4.20. [3] For every Romin-definable function on unbounded ray.

(1) If v(f) > v(x) then limx→∞∆(f) = 0.

(2) If v(f) < v(x) then v(f−1) > v(x).
(3) If v(f) = v(x) then ∆(f)(x) has a limit in R as x→ ∞.

The following is just a warm-up towards Theorem 4.25. The proof follows closely the proof of

[3, Poposition 2.8], which uses results of Miller and Starchenko [8]:

Lemma 4.21. If f : R → R is M-definable on a co-bounded set, then f is eventually affine.

Moreover, there exists a ∅-definable endomorphism λ ∈ ΛM and A > 0 such that for all x with

|x| > A, we have f(x) = λ(x) + d, for some d ∈ R.

Proof. Assume towards contradiction that f : R → R is not eventually affine. Without loss of

generality, f is eventually increasing, and by Proposition 4.18, it must approach +∞. If v(f) >
v(x) then by Fact 4.20, limx→∞∆(f) = 0. Since ∆(f) := f(x+ 1)− f(x) is definable in M, it

follows from Proposition 4.18 that it must be eventually 0 and therefore f is eventually affine.

If v(f) < v(x) then by 4.20, v(f−1) > v(x), where f−1 is taken to be the eventual composi-

tional inverse of f , which is also definable in M. Thus, as above, f−1 is eventually affine so also

f is.

We are left with the case v(f) = v(x). By Fact 4.20 (3), the M-definable function ∆(f)
approaches a limit c in R. By Proposition 4.18, we have ∆(f) eventually constant, and thus, by

o-minimality, f is eventually affine.

Thus, we showed so far that there exists a definable endomorphism λ ∈ ΛM such that f(x) =
λ(x) + d for all x > 0 large enough. By Proposition 4.16, λ is ∅-definable. The set

{x ∈ R : f(x) = λ(x) + d}

is M-definable and contains an bounded ray so must be co-bounded. �

Before the next proposition, we introduce a new notion.

Definition 4.22. Given X ⊆ Rn, let

Stabbd(X) := {a ∈ Rn : (a+X)△X is bounded},

where A△B = A ∪B \ A ∩B.

For a function f , we let Γ(f) denote its graph.

By Proposition 4.3, if X is definable in M over A then so is Stabbd(X). The following are easy

to verify:

Fact 4.23. (1) For every X ⊆ Rn, Stabbd(X) is a subgroup of 〈Rn,+〉.
(2) If X ⊆ R2 is the graph of an affine function f(x) = λ(x) + b, on a co-bounded subset of

R, then

Stabbd(X) = Γ(λ).

(3) If a definable set X ⊆ R2 is a finite union of graphs of affine functions, all of the form

λ + d for a fixed λ, and at least one of the functions is defined on an unbounded set then

Stabbd(X) = Γ(λ).
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The following statement would have been immediately true if definable sets in M admitted

definable cell decomposition (with respect to the ambient ordering).

Proposition 4.24. Assume that X ⊆ R2 is M-definable over A, and dim(X) ≤ 1. Assume that

there exists an Romin-definable endomorphism λ : R→ R, and some a, d ∈ R such that graph of

λ(x) + d ↾ (a,∞) is contained in X. Then λ is M-definable (necessarily over ∅).

Proof. Recall that A (X), the affine part of X is M-definable over A. For large enough a, it

contains Γ(λ+ d ↾ (a,∞)). So, without loss of generality, X = A (X).
We define for each x, y ∈ X, the relation x ∼ y iff there exist open sets U, V ∋ 0 in R2, such

that

(y − x) + (x+ U ∩X) = y + V ∩X.

Said differently, up to translation, X has the same germ at x and at y. Because a basis for the R2

topology is definable in M, the relation ∼ is definable in M.

Notice that for x large enough, all elements on Γ(λ + d) ∩ X are in the same ∼-class, so we

may replace X by this ∼-class, which is M-definable.

Thus, we may assume that all elements of X are ∼-equivalent, and X contains Γ(λ + d ↾

(a,∞)). It follows that X is contained in finitely many translates of the graph of λ. Applying

Fact 4.23(3), we conclude that Stabbd(X) is exactly the graph of λ, thus the function λ(x) is

M-definable. By Lemma 4.16, λ is ∅-definable. �

4.6. Definable subsets of R2. The next result is the main structure theorem of the paper.

Theorem 4.25. Under our standing assumptions on M.

Assume that X ⊆ R2 is definable in M over a parameters set A ⊆ R, with dim(X) ≤ 1.

Then, there are λ1, . . . , λr ∈ ΛM, and there are M-definable finite set Di ⊆ R, i = 1, . . . , r,

and D ⊆ R all defined over A, such that

(i) for every i = 1, . . . , r, and d ∈ Di, Γ(λi + d) \X is bounded (i.e. X contains the restriction

of λi + d to a co-bounded set).

(ii) For every d ∈ D, ({d} ×R) \X is bounded.

(ii) The set

X \ (
r⋃

i=1

⋃

d∈Di

Γ(λi + d) ∪
⋃

d∈D

{d} ×R)

is bounded in R2.

Proof. If X is bounded then there is nothing to prove so we assume dim(X) = 1 and X is un-

bounded. By the cell decomposition theorem in o-minimal structure, X can be decomposed into a

finite union of cells of dimension 0 and 1. However, these cells are not in general definable in M.

Assume first that X contains the graph of a function f : (a,+∞) → R, and let Ψ(x, y) be the

M-formula that defines X.

Case (i) f is bounded at ∞.

In this case we prove a general statement:
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Claim 4.26. If dimX ≤ 1 and X contains the graph of a bounded function f : (a,∞) → R then

f is eventually constant.

Proof. By o-minimality, limx→+∞ f(x) = L for some L ∈ R.

By our standing assumption, <↾ (0, a0) is M-definable, for some a0 > 0, and thus < is

definable on every interval of length ≤ a0. Let XL := R × [L − a0, L + a0]) ∩ X. By o-

minimality, there exists m ∈ N, such that for all large enough a ∈ R, we have |Xa| ≤ m. The

set Z = {a ∈ R : |Xa| ≤ m} is definable in M and unbounded, thus we may replace XL by

XL ∩ Z ×R, containing the graph of f . We call it XL again.

Using the restricted order, we can partition XL, definably in M, into finitely many graphs of

functions g1, g2, . . . , gk, k ≤ m. E.g, we let

g1(x) = min{y ∈ [L− a0, L+ a0] : 〈x, y〉 ∈ XL}

and continue similarly to obtain the other gi’s. For x large enough, the function f is one of those

gi’s, therefore it is M-definable. Using Proposition 4.18 we get that f is eventually constant. �

Case (ii): lim
x→+∞

f(x) = +∞:

We recall the proof of Lemma 4.21, and consider three cases: v(f) > v(x), v(f) < v(x) and

v(f) = v(x) (remembering though that we do not know yet that f is an M-definable function).

Assume first that v(f) > v(x). By Fact 4.20, f(x + 1) − f(x) → 0, as x → ∞. We want to

capture ∆(f) = f(x+ 1)− f(x) within an M-definable set.

The formula

ϕ(x, y) := ∃z1∃z2(Ψ(x+ 1, z1) ∧Ψ(x, z2) ∧ (y = z1 − z2)),

defines in M a new subset of R2 call it ∆(X) which contains the graph of ∆(f) (but possibly

more functions).

We first note that dim(∆(X)) = 1: Indeed, for a ∈ R, ∆(X)a is infinite if either Xa or Xa+1

is infinite. Since only finitely many Xa’s are infinite the same is true for ∆(X). Thus, the graph of

∆(f) is contained in the one-dimensional M-definable set ∆(X), so by Claim 4.26, ∆(f) must

be eventually constant, implying that f is eventually affine.

Assume now that v(f) < v(x). The formula Υ(x, y) := Ψ(y, x) defines in M a new set X−1

containing in it the graph of f−1 (a partial function). The graph of f−1 is still contained in X−1

and we have v(f−1) > v(x). Thus, applying the case we already handled, we see that f−1, and

hence also f , is eventually affine.

We are left with the case v(f) = v(x). Using Fact 4.20 (3), the function ∆(f) tends to a

constant. Thus, as above, we may use the M-definable set ∆(X) to deduce that ∆(f) is eventually

constant and thus f is eventually affine.

So far we handled all cases where the bounded cell in X has is the graph of some function on

a ray (a,∞). The same reasoning applies to rays (−∞, a). Applying this reasoning to X−1, we

obtain in addition those functions which are eventually constant in X−1, namely sets of the form

{d} × R whose intersection with X is co-unbounded in {d} × R. The set of such d’s is clearly

definable over A.
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To summarize, we showed that every unbounded cell in X is either contained in the graph of an

eventually affine function f definable in M, or in {d} × R for some d. By Proposition 4.24, the

function f has the form λ(x) + d, for λ ∈ ΛM. Thus, we have λ1, . . . , λk ∈ ΛM, and for each

such i = 1, . . . , k, the set Di of d ∈ R such that Γ(λi+ d)∩X is unbounded, is M-definable over

A, and must be finite. For every such d, Γ(λi + d) \X is bounded.

The above proof handles all unbounded cells, so the set

X \ (
r⋃

i=1

⋃

d∈Di

Γ(λi + d) ∪
⋃

d∈D

{d} ×R)

is bounded. �

4.7. The algebraic closure and definable closure in strongly bounded structures. Even though

the full ordering on R is not definable, we can still prove:

Theorem 4.27. The algebraic closure in M equals the definable closure. Moreover, if a ∈ aclM(b̄)
then b is in the Lbd-definable closure of b̄.

Proof. We use acl, dcl and aclbd, dclbd, to denote the corresponding operations in M and Mbd,

respectively. We shall prove by induction on n: If a ∈ acl(b1, . . . , bn), for some a, bi ∈ R, then

a ∈ dclbd(b1, . . . bn).
We first handle the case n = 0, namely a ∈ acl(∅). In this case, there is a finite ∅-definable set

A ⊆ M such that a ∈ A. Viewing the set A in Romin, we can order the elements, a1 < · · · < an.

The interval (a1, an) is a ∅-interval, and <↾ (a1, an) is Mbd-definable over ∅, hence each ai ∈
dclbd(∅).

We proceed by induction, and assume that we proved the result for n − 1. Assume now that

a ∈ acl(b1, . . . , bn−1, bn). Let X ⊆ Rn+1 be a ∅-definable set such that 〈b1, . . . , bn, a〉 and

Xb1,...,bn has size m. Without loss of generality, for every b′n, the set Xb1,...,bn−1,b′n
has size m.

Let b′ = (b1, . . . , bn−1) and consider the set Xb′ = {〈x, y〉 ∈ R2 : 〈b′, x, y〉 ∈ X}. By our

assumption, dim(Xb′) ≤ 1, and 〈bn, a〉 ∈ Xb′ .

We now apply Theorem 4.25. We obtain finitely many ∅-definable endomorphisms λ1, . . . , λk ∈
ΛM and for each i = 1, . . . , k, we have a b′-definable finite set Ai, such that

Xbd
b′ = Xb′ \ (

k⋃

i=1

⋃

d∈Di

Γ(λi + d))

is bounded in R2.

Since |b′| = n − 1, it follows by induction that every d ∈ Ai is in dclbd(b
′). Assume first that

〈bn, a〉 is in the graph of one of the λi + d, d ∈ Di, namely a = λi(bn) + d. Because λi is

∅-definable and d ∈ dclbd(b
′) it follows that a ∈ dclbd(b1, . . . , bn).

We are left with the case 〈bn, a〉 ∈ Xbd
b′ . The set Xbd

b′ is b′-definable so we may assume that

Xb′ = Xbd
b′ is bounded (but possibly not ∅-bounded). Let π1, π2, be the projection of Xb′ onto the

first and second coordiantes. Each of these is a finite union of points and pairwise disjoint bounded
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open intervals. Let

π1(Xb′) = F1 ∪
k⋃

i=1

(ai, bi), for F1 finite and a1 < b1 · · · < ak < bk..

and

π2(Xb′) = F2 ∪
r⋃

j=1

(cj , dj), for F2 finite and c1 < d1 · · · < cr < dr.

By Theorem 4.9, there is a fixed K ∈ dcl(∅) such that for all i,= 1, . . . , k and j = 1, . . . , r, we

have bi − ai, dj − cj ≤ K .

By Proposition 4.8, the sets {ai}, {bi}, {cj}, {dj} are all finite and M-definable over b′, and

thus, by induction each of these endpoints is in dclbd(b
′). Assume that 〈bn, a〉 ∈ X ∩ (ai, bi) ×

(cj , dj), for some i = 1, . . . , k and j = 1, . . . , r. We replace X by the b′-definable set X1 =
X − 〈ai, cj〉 ∩ (0, bi − ai)× (0, dj − cj) ⊆ (0,K)2. Notice that 〈bn − ai, a − cj〉 ∈ X ′, and the

fiber in X ′ over bn − ai is finite. Because the ordering on (0,K) is Mbd-definable over ∅, we have

a − cj ∈ dclbd(b
′, bn − ai), but since ai, cj ∈ dclbd(b

′) we have a ∈ dclbd(b
′, bn). This ends the

proof that acl = dclbd in M. �

4.8. Definable subsets of Rn. We are now ready to prove the main theorem, under the assump-

tions of Section 4.2.

Theorem 4.28. If X ⊆ Rn is M-definable over A ⊆ R then X is definable in Mbd over A.

Proof. It is sufficient to prove the result in N ≻ M, so by replacing Romin (thus also its reducts)

by a sufficiently saturated extension, we may assume that M is ω-saturated.

We prove the result by induction on n. For X ⊆ R, the set X is either bounded or co-bounded,

so we may assume that it is bounded. Thus, it can be written as a disjoint union

(a1, b1) ∪ · · · ∪ (an, bn) ∪ F,

with a1 < b1 < · · · < an < bn and F finite. By Lemma 4.8, each ai and bi is in aclM(A),
so by Theorem 4.27, it belong to dclbd(A). Similarly, F ⊆ dclbd(A). By Theorem 4.9, there

is K ∈ dclbd(∅) such that all intervals (ai, bi) are of length at most K . But then each interval

(0, bi − ai) is contained in a ∅-interval, hence definable in Mbd over A, so also (ai, bi) is Mbd-

definable over A. It follows that X is definable in Mbd.

We now use induction on n: Given X ⊆ Rn+1 that is M-definable over A, we consider, for

each t ∈ Rn, the set Xt = {b ∈ R : 〈t, b〉 ∈ X} ⊆ R. By the case n = 1, each Xt is

Mbd-definable over At. Thus, by compactness and saturation, we can find Lbd-formulas over A,

φ1(t, x), . . . , φk(t, x) such that for every t ∈ Rn, one of the φi(t, x) defines Xt. Let

Ti = {t ∈ Rn : ∃x(〈t, x〉 ∈ X ∧ ∀x(x ∈ Xt ↔ φi(t, x)))}.

The set Ti is M-definable, over A, thus, by induction, it is Mbd-definable over A, by some

ψi(t). The formula φi(t, x) ∧ ψi(t) defines X ∩ Ti ×R, thus X is definable in Mbd over A. �
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4.9. A comment on failure of Definable Choice in strongly bounded M. Recall that a structure

M has Definable Choice if for every definable family {Xt : t ∈ T} of sets, there is a definable

function f : T →
⋃
Xt such that f(t) ∈ Xt and if t1 = t2 then f(t1) = f(t2). Equivalently, every

definable equivalence relation has a definable set of representatives. This fails in strongly bounded

M, because the relation xEy ⇔ y = −x on R cannot have a definable set of representatives. If it

did then it will contain either a positive or a negative ray (without its inverse).

We believe that Elimination of Imaginaries similarly fails.

5. CONCLUSION: THE PROOF OF THEOREM 1.2

We are now ready to collect the results proved thus far in order to prove Theorem 1.2.

Recall that now want to prove that the only reducts between Rlin and Ralg are:

Ralg = 〈R; +, ·, <〉

Rsb = 〈R; +, <,ΛR,B〉

Rsemi = 〈R; +, <,ΛR〉 , Rbd = 〈R; +, <∗,ΛR,B〉

R∗
lin = 〈R; +, <∗,ΛR〉

Rlin = 〈R; +,ΛR〉.

First, we note that using [3] we can generalize [10, Theorem 1.1] from R to arbitrary real closed

fields, and show:

Fact 5.1. Let R be a real closed field. The only reduct between Rsemi and Ralg is Rsb.

Proof. Assume that M is a reduct of Ralg which properly expands Rsemi. By [3, Fact 1.6], either

M is a reduct of Rsb or a real closed field F = 〈R;⊕,⊙〉 whose universe is R is definable in M.

Assume the latter, and then since the field is semialgebraic then, again by [10, Corollary 2.4], every

semialgebraic subset of R is definable in F and hence in M. Thus, M=̇Ralg.

If M is a reduct of Rsb which is not semilinear then by Theorem 3.2, every bounded R-

semialgebraic set is definable in M, thus M=̇Rsb. �

We now consider an arbitrary reduct M of Ralg . Our goal is to show that M is one of the

reducts in the above list.

First, if M is stable then by Claim 2.2, Rlin=̇M. If M is unstable then by Theorem 2.1, <∗ is

definable in M. So R∗
lin⊆̇M. So, we may assume that <∗ is definable in M, thus R∗

lin⊆̇M.

Case 1: M is strongly bounded and M⊆̇Rsemi.

We claim that M=̇R∗
lin: Indeed, because M is strongly bounded then, by Theorem 4.5, M=̇Mbd.

Because M⊆̇Rsemi, every M-definable set is semilinear, and in particular this is true for each of

the ∅-bounded sets in Mbd. However, it is easy to verify that every bounded semilinear set is de-

finable in R∗
lin, so the whole structure Mbd is a reduct of R∗

lin, thus so is M as well. The converse

R∗
lin⊆̇M is already assumed.

Case 2: M is strongly bounded and M*̇Rsemi. We claim that M = Rbd.
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As in Case 1, every M-definable set is definable in Mbd. Because M is a reduct of Ralg then

Mbd is a reduct of Rbd and so M⊆̇Rbd. By the assumption that M*̇Rsemi, we know that there

is an M-definable semialgebraic set which is not semilinear so by Theorem 3.2, we get that every

bounded semialgebraic set is definable in M, hence Rbd⊆̇M.

Next we assume that M is not strongly bounded.

Case 3: M is not strongly bounded and M⊆̇Rsemi. By Lemma 2.3, the linear order < is definable

in M, so, since R∗
semi⊆̇M, we have Rsemi=̇M.

Case 4: M is not strongly bounded and M*̇Rsemi. As in Case 3, the linear order < is definable

in M, so Rsemi⊆̇M . So we know that M is a reduct of Ralg which properly expands Rsemi. By

Fact 5.1, either M=̇Ralg or M=̇Rbd.

This completes the proof that if M is a reduct of Ralg expanding Rlin, then it is one of the

reducts in the above diagram.

It is left to see that all reducts in the above diagram are distinct. Because Rlin is stable and R∗
lin

is unstable, these two are distinct. Also, the fact that R∗
lin and Rbd are distinct is easy to verify

(e.g., the unit circle is definable in Rbd but not in R∗
lin). The fact that Rbd is different than Rsb and

Rsemi follows from the next lemma.

Lemma 5.2. Let R be a real closed field. If B∗ is any collection of bounded subsets of Rn, n ∈ N,

then < is not definable in M = 〈R; +,ΛR,B
∗〉.

Proof. We use a similar idea to [9] Assume towards contradiction that < is definable in M, and let

N = 〈R : +, <,ΛR,B
∗〉.

Let ψ(x, y, ā), ā ∈ R, be the M-formula that defines <. Namely

N |= ∀x∀y (ψ(x, y, ā) ↔ x < y).

Let Ñ = 〈R̃; +, <,ΛR,B
∗〉 ≻ N be an |N |+-saturated elementary extension, whose reduct to

the M-language is M̃. It follows that ψ(x, y, ā) defines < in Ñ as well.

We will show that there is an automorphism of M̃ which fixes ā, thus leaving ψ(R̃ × R̃, ā)
invariant, and yet not respecting <, leading to a contradiction.

The group 〈R̃,+〉 is a vector space over R. We define an R-vector subspace of R̃ by

A = {x ∈ R̃ : ∃α ∈ R, |x| < λα(1)}.

So, by Zorn’s Lemma, there exists an R-vector space V ⊆ R̃ such that R̃ = A � V , and by

the saturation assumption, V is non-trivial. Now we define the following automorphism of the

R-vector space R̃: On A we define τ1(v) = v, on 〈V,+〉 we define τ2(v) = −v, and we let τ :

R̃ −→ R̃ be:

τ(v1 + v2) = τ1(v1) + τ2(v2) = v1 − v2.

This automorphism fixes all elements in A and in particular fixes all sets in B
∗ pointewise,

but does not respect < (as positive elements in V are sent to negative ones). In model theoretic

language τ is an automorphism of the structure M̃, which fixes a (since a ∈ A). However, τ does

not preserve <, contradiction. �
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This ends the proof of Theorem 1.2. �

6. APPENDIX: THE PROOF OF FACT 3.1

We now prove Fact 3.1:

Fact 6.1. Let R be a real closed field and X ⊆ Rn a definable set in an o-minimal expansion of

〈R;<,+, ·〉. If X is not definable in Rsemi then, in the structure M = 〈R;<∗,+,ΛR,X〉 there

exists a definable bounded set which is not definable in Rsemi.

Proof. We believe that this is known so we shall be brief. We prove the result by induction on

dim(X), where the case dimX = 0 is trivially true. Consider the affine part of X, A (X), which

is definable in M.

Assume first A (X) is not dense in X. Then there is an open box U ⊆ Rn such that U ∩X 6= ∅
and U ∩ A (X) = ∅. We claim that U ∩ X is not semilinear. Indeed, if it were then A (U ∩X)
must be nonempty, but because U ∩X is relatively open in X then A (U ∩X) = U ∩A (X) = ∅,

contradiction.

Thus, U ∩X above is not semilinear. and this gives the desired box when A (X) is not dense in

X.

We assume then that A (X) is dense in X, and consider two cases: A (X) is either semilinear or

not. If it were semilinear then necessarily X \ A (X) is not semilinear, and because of the density

assumption, dim(X \ A (X)) < dim(X) and we can finish by induction.

Thus, we are left with the case that A (X) is not semilinear. For simplicity, we may assume now

that X = A (X). We recall the M-definable relation a ∼ b from the proof of Proposition 4.24,

defined by: X has the same germ at a and b, up to translation.

Because X = A (X), each ∼-class is open in X, thus there are finitely many classes, at least

one of which is not semilinear. Thus, we may assume that X = A (X) consists of a single ∼-class.

It follows that there is some R-subspace L ⊆ Rn, dimL = dimX, such that X is contained in a

finite union of cosets of L. Thus each definably connected component of X is contained in a single

such coset of L.

Each L is definable in M using ΛR, thus the intersection of X with each of these cosets is

definable in M. One of these intersections is not semilinear so we may assume that X ⊆ c + L,

for some c. Because dimX = dimL, and A (X) = X, then X is open in c + L. We claim that

Fr(X) ⊆ c + L is not semilinear: Indeed, Fr(X) is a closed subset of c + L, and X consists of

finitely many components of c+L\Fr(X). If Fr(X) were semilinear then each of its components

will also be, so X would be semilinear.

Thus, Fr(X) is not semilinear, and definable in M. By o-minimality, dim(Fr(X)) < dim(X),
thus by induction we may find an M-definable bounded set which is not semilinear. �

In fact, a stronger result is true: IfX ⊆ Rn is definable in an o-minimal expansion of the fieldR,

and not semilinear then there is some bounded open box U ⊆ Rn such that U ∩X is not semilinear

(we omit the proof here as we do not need it). Notice that this last statement fails if we replace “not

semilinear” by “not semialgebraic”, as Rolin’s example from [6] shows: There exists a definable

function f : R → R in an o-minimal expansion of the real field, such that the restriction of f to

every bounded interval is semialgebraic but f itself is not semialgebraic.
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