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ABSTRACT. We study infinite groups interpretable in V -minimal, power bounded T -convex or cer-
tain expansions of p-adically closed fields. We show that every such group G has unbounded expo-
nent and if G is dp-minimal then it is abelian-by-finite.

Along the way, we associate with any infinite interpretable group an infinite type-definable sub-
group which is definably isomorphic to a group in one of four distinguished sorts: the underlying
valued field K, its residue field k (when infinite), its value group Γ, or K/O, where O is the valua-
tion ring.

Our work uses and extends techniques developed in [8] to circumvent elimination of imaginaries.
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1. INTRODUCTION

We continue our work from [8], where we studied interpretable fields in a variety of valued fields,
and extend our investigation to interpretable groups. To recall, in [8] we considered interpretable
objects, namely quotients of definable sets by definable equivalence relations, in valued fields, with
a focus on interpretable fields in three families of valued fields: (i) V-minimal (e.g. algebraically
closed valued fields of residue characteristic 0), (ii) power bounded T -convex expansions of o-
minimal structures (e.g. real closed valued fields) and (iii) certain expansions of p-adically closed
fields (e.g. finite extensions of Qp). As a corollary of our work here, we obtain:
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{intro-1}
Theorem 1.1 (Section 7). Let K be a valued field of characteristic 0 and K an expansion of K
that is either (i) V -minimal, (ii) power bounded T -convex, or (iii) p-adically closed. Then every
dp-minimal group interpretable in K is abelian-by-finite.

This means, in particular, that 1-dimensional groups definable in any of these fields are abelian-
by-finite, extending the work of Pillay and Yao, [20] in Qp and of Onshuus and Vicaria [18, The-
orem 1.1] in models of Presburger Arithmetic. It also complements the work of Simonetta, [27],
who gave an example of a dp-minimal group interpretable in an algebraically closed valued field
of characteristic p that is nilpotent of class 2 (so not abelian-by-finite).

By a result of Simon, [23, Proposition 3.1], if G is dp-minimal then it has a definable abelian
normal subgroup, H , such that G/H has bounded exponent. Thus, it is sufficient to prove that
every infinite dp-minimal group in our setting has unbounded exponent (i.e. G/H must be finite).
The advantage of this approach is that unbounded exponent can be detected locally, namely it will
suffice – given a dp-minimal group G – to find a subgroup H ≤ G of unbounded exponent. So our
strategy relies on finding in G a (type) definable subgroup that can be better studied than G itself,
and show that it has unbounded exponent.

The key idea from [8] is to bypass results on elimination of imaginaries and replace them with
a reduction to four distinguished sorts: the valued field K itself, the residue field k (when infinite),
the value group Γ, and the quotient K/O, where O is the valuation ring. Applying techniques
similar to those developed in [8] we show that our interpretable group G has a (type) definable
subgroup ν definably isomorphic to a (type) definable group in one of these sorts. This part of the
analysis does not require dp-minimality of the group G, and we show:

{intro-2}
Theorem 1.2 (Section 7). Let K be a valued field of characteristic 0 and K an expansion of K
that is either (i) V -minimal, (ii) power bounded T -convex, or (iii) p-adically closed.

Let G be an infinite group interpretable in K. Then, after possibly replacing G with a quotient
by a finite normal subgroup, there is an infinite type-definable subgroup ν ≤ G of unbounded
exponent such that one of the following holds:

(1) ν is definably isomorphic to a group type definable in either K, or k, or
(2) ν is definably isomorphic to a type definable subgroup of ⟨Γn,+⟩, or to a definable sub-

group of ⟨(K/O)n,+⟩.
In practice, we first construct ν satisfying conditions (1) or (2) of the theorem, and exploit

this information (as well as some properties of the construction) to deduce that ν has unbounded
exponent. In the appendix we show that, in fact, when K is power-bounded T -convex and G is
dp-minimal, ν is a type-definable ordered group.

Studying groups instead of fields somewhat complicates the situation with respect to our work
in [8]. For instance, when studying groups in p-adically closed fields, we are forced to consider the
sorts Γ andK/O, that were easily eliminated when we were interested in fields only. Consequently,
the distinguished sorts, break into three types: topological (such as the valued field sort K in all
settings), discrete (such as Γ and K/O in the p-adically closed setting) and strongly minimal (k in
the V -minimal setting).

Finding a uniform environment, allowing us to avoid repetition of proofs as we move across
the different settings and different distinguished sorts, turned out to be one of the challenges of
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the present work. In [8], much of the work was carried out in a setting (introduced by Simon and
Walsberg in [26]) of dp-minimal uniform structures, that we call SW-uniformities. This setting
fits the sorts K, Γ and K/O in all non p-adically closed fields considered here. In the p-adically
closed case, the natural topology on the sorts K/O and Γ is discrete and the quantifier ∃∞ is
not eliminable. They are, therefore, not SW-uniformities. However, both admit a non-definable,
non-Hausdorff topology (generated by the image of balls of non-standard, infinite, negative radius)
which is still useful for our purposes. In Section 3.1 we prove the necessary results for K/O, and
then give an ad hoc axiomatization covering both SW-uniformities and the discrete sorts in the
p-adically closed case, K/O and Γ (the strongly minimal case still has to be treated separately).

As in [8], our method is local, in the following sense: given an infinite interpretable group, G,
we find a definable infinite X ⊆ G of maximal dp-rank with respect to the property that, after
possibly passing to a quotient by a finite normal subgroup, there is a definable injection from X
into Dn for one of the distinguished sorts, D (we call roughly such sets D-sets, see Definition 4.16
for a precise formulation). We show that there is at least one such D and a corresponding D-set
X ⊆ G of positive dp-rank.

When such a set X exists, we call (roughly) the group a D-group. Within our axiomatic frame-
work, we develop in Section 5 the basics of D-groups. Using methods in the spirit of [8] we
associate with a D-group an infinite type-definable subgroup νD(G) ≤ G definably isomorphic to
a type-definable group within the sort D. In some cases, we can even find a definable such sub-
group of G. When G is dp-minimal and D is an SW-uniformity, this gives rise to an SW-uniform
structure on G. In general, however, the type-definable subgroup νD(G) is not necessarily a topo-
logical group, and our analysis depends on the distinguished sortD as well as on the class of valued
fields we are studying.

Acknowledgements We thank Pablo Cubides Kovacsics, Amnon Besser and Dugald Macpherson
for several discussions during the preparation of the article.

1.1. Previous work on groups in valued fields. We list briefly additional work on groups in val-
ued fields, beyond what has been mentioned above. Definable groups in Qp were first studied by
Pillay, [19]. Hrushovski and Pillay, [11], discuss connections between definable groups in local
fields and algebraic groups. In [2] Acosta gives an exhaustive list of all 1-dimensional groups
definable in Qp. In [1] he extends this result to 1-dimensional commutative groups definable in al-
gebraically closed valued fields1 Johnson and Yao, [14], study definable, definably compact, groups
in Qp. Montenegro, Onshuus and Simon, [17, Theorem 2.19], work under general assumptions,
applicable in several examples of our setting (e.g., ACVF0,0, RCVF, p-adically closed fields). A
classification of definably simple groups definable in henselian fields of characteristic 0 (or, more
generally, in 1-h-minimal fields of characteristic 0) is obtained in an unpublished work of Gismat-
ullin, Halupczok and Macpherson.

While the above results mostly study definable groups, the work of Hrushovski and Rideau-
Kikuchi, [12], covers interpretable, stably dominated groups in algebraically closed valued fields,

1By Theorem 1.1 the commutativity assumption is redundant in algebraically closed valued fields of equi-characteristic
0.
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using the results on elimination of imaginaries in such fields. In a recent pre-print, Johnson [13]
studies topology on groups interpretable in p-adically closed fields.

Finally, although we do not make use of these here, we note the seminal papers of [9], [16],
and [10], where elimination of imaginaries with appropriate sorts is proved for algebraically closed
valued fields, real closed valued fields and p-adically closed fields, respectively.

1.2. Structure of the paper. In Section 2 we review the notion of SW-uniformities and the distin-
guished sorts introduced in [8] and collect some of their useful properties. In Section 3.1, we study
the geometry of K/O in some P-minimal fields, isolating (Section 4.1) key geometric properties
true in all the cases we are studying. Based on these properties we introduce in Section 4.2 the
framework of vicinic structures where most of our work is taking place. It is a generalisation of
SW-uniformities encompassing also the distinguished sorts of P-minimal fields.

The rest of Section 4 is dedicated to collecting the tools needed for the construction in Section
5 of infinitesimal subgroups of interpretable groups. Much of the work in Section 4 is devoted to
dealing with a technical issue not arising in the study of fields: in [8] we have shown that every
interpretable field can be locally injected into one of the distinguished sorts. In the present setting
we are required to work with finite-to-one functions, and this requires some additional work. Also,
in the V-minimal case, the sort D = k is a pure algebraically field, and thus has a different nature.
It is treated in Section 6.

Finally, in Section 7 we collect all of the results of previous sections to prove Theorem 1.1 and
Theorem 1.2. In the final section of the paper we examine several natural examples of interpretable
groups in light of the results of this paper.

2. BACKGROUND AND PRELIMINARIES
{S: background}

2.1. Notation, terminology and some preliminaries. Throughout, structures will be denoted by
calligraphic letters, M, N , K etc., and their respective universes by the corresponding Latin letters,
M , N and K. We reserve K to denote expansions of valued fields, and K will always be a valued
field. All structures may be multi-sorted. A valued field K = (K, v, . . .) is always considered
with a single home sort (for the ground field K) with all other sorts coming from Keq. All sets are
definable using parameters unless specifically mentioned otherwise.

Tuples from a structure M are denoted by small Roman characters a, b, c, . . . . Tuples are al-
ways assumed to be finite, we apply the standard model theoretic abuse of notation writing a ∈M
for a ∈ M |a|. Variables will be denoted x, y, z, . . . with the same conventions as above. We do
not distinguish notationally tuples and variables belonging to different sort, unless some ambiguity
can arise. Capital Roman letters A,B,C, . . . usually denote small subsets of parameters from M .
As is standard in model theory, we write Ab as a shorthand for A∪ {b}. In the context of definable
groups we will, whenever confusion can arise, distinguish between, e.g., Agh := A ∪ {g, h} and
Ag · h := A ∪ {g · h}.

Valued fields When (K, v, . . .) is an expansion of a valued field, we let OK (or just O, if the context
is clear) denote its valuation ring. Its maximal ideal is mK (or m) and k := O/m its residue field.
The value group is ΓK (or just Γ). As in [8], K, k, Γ and K/O are the distinguished sorts. We
shall occasionally (especially in Section 8) also use the sorts RVγ := K×/(1 + mγ) ∪ {0} where,
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for a non-negative γ ∈ Γ we denote mγ := {x ∈ K : v(x) > γ}. We also let rvγ : K → RVγ

denote the quotient map extended by 0 at 0.
A closed ball in K is a set of the form B≥γ(a) := {x ∈ K : v(x − a) ≥ γ} and γ is its

(valuative) radius. Open balls are defined similarly and denoted by B>γ(a). Throughout by "ball"
we mean either an open or a closed ball. An open (closed) ball in Kn is a product of n open
(closed) balls of equal radius, i.e., B1 × · · · × Bn where Bi := B>r(ai) (resp. Bi := B≥r(ai))
for some r ∈ Γ and ai ∈ K. A ball in Kn is either a closed or an open ball, it has radius r if it is a
product of n closed (or n open) balls in K each of radius r.

Throughout this section K is either a V -minimal field, a T -convex expansion of a power bounded
o-minimal T or a 1-h-minimal P -minimal field (see [8, Section 2.3] and references therein for the
definitions and basic properties of such fields). We complement these with the definition of 1-h-
minimal fields of mixed characteristic:

{D: 1-h-min.}
Definition 2.1. A theory T of valued fields of characteristic 0 is 1-h-minimal if for any set of
parameters A ⊆ K ∪ RVn for some positive integer n and any A-definable f : K → K the
following hold:

(1) There exists a finiteA-definableC and a positive integerm such that for any ballB m-next
to C there exists γB ∈ Γ such that or all x, y ∈ B we have

γB − v(m) ≤ v(f(x)− f(y))− v(x− y) ≤ γB + v(m).

(2) The set {y ∈ K : |f−1(y)| = ∞} is infinite.

The above geometric definition is equivalent to the model theoretic definition by [6, Theorem
2.2.7]. It will only be used as a black box (see also Definition 3.13 for the notion of a ball being
m-next to C).

We also assume the reader familiar with the notion of dp-rank, see [8, §2.1] for the definition
and a quick survey of dp-rank and its main properties. It may help the reader to note (and this will
be proved in some cases below) that in every distinguished sort D in our setting the dp-rank of
a ∈ Dn equals its acl-dimension, even if acl does not satisfy exchange.

Finally, when saying that a valued field has definable Skolem functions, we mean that the valued
field sort, K, has definable Skolem functions. Power bounded T -convex valued fields have defin-
able Skolem function by [31, Remark 2.4] (after adding a constant). So do p-adically closed fields
[30, Theorem 3.2] and their expansion by all sub-analytic sets [7, Theorem 3.6].

2.2. Almost strong internality. The starting point of the present work is the following result that
can be deduced from [8, Proposition 5.5] (see also §7, loc. sit. for the details). By a finite-to-finite
correspondence between X1 and X2 we mean a definable relation C ⊆ X1 × X2 such that both
projections πi : C → Xi (i = 1, 2) are sujective with finite fibres.

{F: 5.5}
Fact 2.2. Let K be an either P -minimal, power bounded T -convex or C-minimal expansion of a
valued field. IfX is infinite and interpretable in K then there exist infinite T ⊆ X,S ⊆ D (possibly
defined over additional parameters) and a definable finite-to-finite correspondence C ⊆ T × S
where D is either K, k, Γ or K/O.

When – in the above notation – X was a field, we were able to eliminate the discrete sorts
K/O and Γ in the P -minimal case, and the remaining sots turned out to be rather tame topological
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structures (that we called SW-uniformities – to be described in more detail below). In that setting
(and for X a field) we were able to strengthen Fact 2.2 to obtain a definable bijection between T
and a subset of one of the distinguished sorts. In the present setting some extra work is needed to
obtain a weaker result, i.e. a finite-to-one function from a definable subset of our group G into one
of the distinguished sorts. Extending our terminology from [8] we define:

{Def: internal}
Definition 2.3. A definable set X is A-almost strongly internal to a definable set D if there exists
an A-definable finite-to-one function f : X → Dk, for some k ∈ N. The set X is locally almost
strongly internal toD if there exists an infiniteA-definableX ′ ⊆ X that is almost strongly internal
to D.

Recall that X is strongly internal to D if we can find an injective f : X → Dk. It is somewhat
inconvenient that, in general, a set X locally almost strongly internal to D need not be locally
strongly internal toD. The upshot of this situation is that we have to develop the theory, in parallel,
for subsets of G almost strongly internal to a distinguished sort D, and for subsets of G strongly
internal (possibly to the same sort D). Since the statements and the proofs are, as a rule, similar in
both cases we usually state both results simultaneously; e.g.

“If X is locally (almost) strongly internal to D ... then Y is (almost) strongly
internal...”

with the convention that either all brackets are included or all brackets are omitted. I.e., the two
statements included in the above formulation are “IfX is locally strongly internal toD ... then Y is
strongly internal...” and “If X is locally almost strongly internal to D ... then Y is almost strongly
internal...”.

{ss: SW-uniformities}
2.3. Simon-Walsberg uniformities and group topologies. Though the setting of the present pa-
per requires that we take into account the discrete sorts Γ and K/O (in P -minimal fields), SW-
uniformities still have a significant role to play, and even in the discrete sorts some arguments are
modelled after the analogous arguments in the topological setting. So we remind:

Definition 2.4. A definable set D in a structure M is an SW-uniformity if:
(1) D is dp-minimal.
(2) D has a definable uniform structure (or, uniformity) giving rise to a Hausdorff topology.

I.e., there exists a formula φ(x, y, z) and a definable set S such that {φ(D2, s) : s ∈ S} is
a uniform structure on D, and the intersection of all φ(D2, s), for s ∈ S, is the diagonal.

(3) Every definable subset of D has non-empty interior with respect to the uniform topology.
(4) D has no isolated points in the uniform topology.

One of the most important tools in [8] was the technical fact below. We shall prove here an a
analogue of this result in other settings as well, and eventually include a variant of it as one of the
axioms of our ad hoc setting of vicinic sorts.

{Gen-Os in SW}
Fact 2.5 ([8, Corollary 3.13]). Let D be an SW-uniformity. For every definable X ⊆ Dn, Y ⊆ X
a definable subset, and a in the relative interior of Y in X , and for every b ∈ Dk, and A a small
set of parameters, there exists B ⊇ A and a B-definable open subset U = U1 × · · · × Un ⊆ Dn

such that a ∈ U ∩X ⊆ Y and dp-rk(a, b/B) = dp-rk(a, b/A).
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We will also require the following result (implicit in [8]):
{L: asi from surjective}

Lemma 2.6. Let M be some structure and let D be an SW-uniformity, W a definable set, and
f : Z →W a definable finite-to-one surjection.

(1) If Z is strongly internal to D then there exists a a definable W1 ⊆ W , with dp-rk(W1) =
dp-rk(W ) such that W1 is strongly internal to D.

(2) If Z is almost strongly internal to D then there exists a definable W1 ⊆ W , dp-rk(W1) =
dp-rk(W ), such that W1 is almost strongly internal to D.

Proof. Assume everything is definable over some parameter set A.
(1) Since Z is strongly internal to D we may assume that Z ⊆ Dk for some k. We fix z0 ∈

Z such that dp-rk(z0/A) = dp-rk(Z). We first find a definable open set V ⊆ Dk such that
|[z0]f ∩ V | = 1, where [z0]f = f−1(f(z0)). By Fact 2.5 there exists an open set U , z0 ∈ U ⊆ V ,
definable over some B ⊇ A, such that dp-rk(z0/A) = dp-rk(Z), and [z0]f ∩U = {z0}. But now,
the set Z1 = {z ∈ Z : [z]f ∩ U = {z}} is defined over B and contains z0 hence dp-rk(Z1) =
dp-rk(Z) = dp-rk(W ). Now f ↾ Z1 is injective, and its image W1 is our desired set.

(2) Since Z is almost strongly internal to D there exists σ : Z → Dk with finite fibres. Let

C = {(w, y) ∈W ×Dk : y ∈ σ(f−1(w))};
it is a finite-to-finite correspondence. Choose y0 ∈ π2(C) (the projection of C into Dk) with
dp-rk(y0/A) = dp-rk(π2(C)). Since C is finite-to-finite the set of all y ∈ Dk such that Cy ∩
Cy0 ̸= ∅ is finite, so there exists an open V ∋ y0 such that for all y ∈ V , Cy ∩ Cy0 = ∅.

As above, we may replace V with an openU defined overB such that dp-rk(y0/B) = dp-rk(y0/A).
Then C∩(W ×U) is a graph of a finite-to-one function, F . Since y0 is in the range of that function
and dp-rk(y0/A) = dp-rk(W ), necessarily dp-rk(dom(F )) ≥ dp-rk(W ), so equality must hold,
as required. □

Much of Section 3.1 is dedicated to making sense of these results for K/O in P -minimal fields
and proving an appropriate analogue. Similar results for Z-groups are easier and follow from
known properties of such groups.

When G is locally strongly internal to an SW-uniformity, the group ν we obtain in Theorem 1.2
admits a definable group topology. This will allow us to topologise G, using the following easy
observation.

{L:from H a uniformity on G}
Lemma 2.7. Let G be a group and H a subgroup endowed with a Hausdorff group topology, with
BH a basis for the e neighbourhoods in H . For V ∈ BH , let UV = {(x, y) ∈ G×G : x−1y ∈ V }.

Then the collection UG = {UV : V ∈ BH} is a left-invariant uniformity on G extending the
associated uniformity on H .

The uniformity UG induces a topology on G, call it τG, whose basis is the collection of all
sets UV (h,G), as h varies in G and V varies in BH . Though this need not in general be a group
topology, for every g ∈ G the map x 7→ gx is continuous. We can show, however:

{L: top from H to G}
Lemma 2.8. Assume that H ≤ G is a topological group such that,

(i) For every g ∈ G there is an open V ⊆ H such that V ⊆ Hg ∩H .
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(ii) For every g ∈ G, the function x 7→ xg = gxg−1, from H into Hg, is continuous at e with
respect to the topology on H (this makes sense due to (i)).

Then the uniformity UG defined above makes G a topological group.

Proof. Let BH denote a neighbourhood base for H at e. We may assume that each W ∈ BH is
symmetric. Note also that by Lemma 2.7 for each g ∈ G, the family {gV : V ∈ BH} is a basis for
the τG-neighbourhoods at g.

We prove first that group inverse is continuous. Assume that g−1V is an open neighbourhood
of g−1. We need to find an open neighbourhood gW of g such that W−1g−1 ⊆ g−1V . By our
assumptions, the map x 7→ gxg−1 is continuous at e and hence there is W ∈ BH (in particular
W−1 =W ), such that gWg−1 ⊆ V . It follows that Wg−1 ⊆ g−1V .

To prove continuity of multiplication let g1, g2 ∈ G, and assume that g = g1g2, and gV is a
basic neighbourhood of g and fix some V ′ ∈ BH such that V ′ ⊆ Hg∩H , as provided by (i). Using
the continuity at e of x 7→ xg, we can shrink V ′ so that V ′ ⊆ V g. Using the continuity of x 7→ xg1

and the fact that H is a topological group, we can find W1,W2 ∈ BH , such that

(g1W1g
−1
1 )(gW2g

−1) ⊆ V ′.

It follows that g1W1g2W2g
−1 ⊆ gV g−1, and hence g1W1g2W2 ⊆ gV , as needed. Thus UG

gives rise to a group topology. □

3. SOME RESULTS ON P-MINIMAL FIELDS
{S:P-minimal}

An important tool in [8] is the analysis of interpretable fields via subsets that are strongly inter-
nal to SW-uniform sorts. Such an analysis is not available to us when studying interpretable groups
in a P -minimal field, K, as neither the value group nor K/O are SW-uniform sorts. In the present
section we endow K/O with a topology – neither uniform nor Hausdorff – where, nonetheless,
many of the tools available in SW-uniformities can still be applied. We isolate three of the geo-
metric properties that suffice to put the machinery in gear, and verify that they hold in models of
Presburger Arithmetic. This will allow, in later sections, a uniform treatment of a wide variety of
examples.

In the present section K = (K,+, ·, . . . ) is a P-minimal field. We study the structure of K/O
from a topological perspective. One of the main results of this section (also needed in the sequel) is
Corollary 3.34 asserting that if K is p-adically closed then definable functions f : (K/O)r → K/O
are generically locally affine (generalising an analogous result from [8]).

We remind that as a pure valued field any P -minimal field K is p-adically closed and as such
it is elementarily equivalent to a finite extension, denoted F, of Qp. We work in a large saturated
P-minimal valued field, K = (K, v, . . . ), and so we may assume that (K, v) is an elementary
extension (in the reduct to the pure valued field language) of (F, v). We add constants for all
elements of F; since its value group ΓF is isomorphic to Z as an ordered abelian group for simplicity
of notation we identify ΓF with Z, and note that kK = kF. It is well known that, as an abelian
group, F/OF is isomorphic to

⊕n
i=1 Z(p∞), where Z(p∞) is the Prüfer p-group and n = [F : Qp].

Throughout, we will use without further reference the fact that v is well-defined on K/O \ {0}
and denote v(0) = ∞ (for 0 ∈ K/O). As usual v extends to (K/O)n by setting v(a1, . . . , an) =
min{v(ai) : i = 1, . . . , n}.
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{F:F is dense in Z-radius balls}
Fact 3.1. (1) For every a ∈ K with v(a) ∈ Z, there is an element r ∈ F with v(a− r) > Z.

(2) For every b ∈ K/O, if v(b) ∈ Z ∪ {∞} then b ∈ F/OF ≤ K/O.
(3) For all n ∈ N, there are only finitely many b ∈ K/O such that nb = 0; in fact any such

element is in F/OF.

Proof. (1) This follows from the completeness of F as a valued field. Indeed, for t ∈ F with
v(at) = 0 we can find c ∈ F with v(at− c) > 0 thus v(a− ct−1) > −v(t); continuing inductively
we construct a pseudo-Cauchy sequence in F, converging, by completeness, to a limit in F. This
limit has the desired properties.

(2) Every b ∈ K/O with v(b) ∈ Z ∪ {∞} is of the form b = B≥0(a) for some a ∈ K with
v(a) ∈ Z ∪ {∞}. By (1) there is r ∈ F with v(a− r) > Z ≥ 0, so r +O = a+O as required.

(3) It suffices to show that if nb = 0 then b ∈ F/OF. If nb = 0 and b′ + O = b then
v(nb′) = v(n) + v(b′) ≥ 0. So v(b′) ∈ Z, i.e., b ∈ F/OF. □

We note that Clause (3) above is not needed for what we prove in the present section. It will,
however, play a role later in the proof of the main results of the paper (Section 7).

{S: local K/O}
3.1. Local analysis inK/O. As noted above, the valuation onK is well-defined onK/O, but the
topology it induces on K/O is discrete. For that reason we introduce a coarser (non-Hausdorff)
topology retaining some properties of SW-uniformities. We first need some preliminaries:

Definition 3.2. A ball B ⊆ Kn is large if r(B), the valuative radius of B, satisfies r(B) < Z.

Let π : K → K/O be the quotient map, we also write π : Kn → (K/O)n for any integer n.

Definition 3.3. A ball U ⊆ (K/O)n is the image under π of a large ball in K.

Note that balls in (K/O)n are precisely images of large balls in K. We consider the topology
on (K/O)n whose basis is the family of balls. Note that (for n > 1) this topology is precisely the
product topology on (K/O)n.

Remark 3.4. The ball topology onK/O is not Hausdorff, in fact, not even T0: for b1 ̸= b2 ∈ K/O,
if v(b1 − b2) ∈ Z then every open set containing b1 also contains b2. In addition, the ball topology
has no definable basis (since the set of balls of infinite radius in K is not definable),

Despite the above remark, some amount of local analysis in K/O is possible using the lemma
below. For a = (a1, . . . , an) ∈ (K/O)n, we let dimacl(a) be the maximal k such that some sub-
tuple a′ of a of length k is algebraically independent and a ∈ acl(a′) (this is well-defined even
when acl does not satisfy exchange).

{L:generic over some gamma in K/O, K}
Lemma 3.5. Let a = (a1, . . . , am) be a tuple of elements in K or K/O and A an arbitrary
parameter set such that dimacl(a/A) = n. Then for any γ0 < γ1 < Z with γ0 − γ1 < Z there
exists γ ∈ Γ such that γ0 < γ < γ1 < Z and dimacl(a/Aγ) = n.

Proof. By passing to a subtuple of awhich is acl-independent overA, we may assume that |a| = n.
By replacing γ0 with γ0 − γ1 < Z it is enough to find γ ∈ Γ, γ0 < γ < Z such that

dimacl(a/Aγ) = n.
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For 1 ≤ i ≤ n, let âi := (a1, . . . , ai−1, ai+1, . . . , an). Assume towards a contradiction that for
every infinite γ > γ0, there is 1 ≤ i ≤ n such that ai ∈ acl(âi, A, γ). We may assume, without
loss of generality, that a1 ∈ acl(â1, A, γ) for arbitrarily large γ below Z. We now consider all
formulas φ(x, y) over â1, A with y a Γ-variable and x a K/O-variable.

By compactness, there are formulas φ1(x, y), . . . , φk(x, y) over â1, A, and some k ∈ N, such
that |φi(K/O, γ)| ≤ ki for every i ≤ k, and for every γ1 ∈ Γ, if γ0 < γ1 < Z then there exists
γ1 < γ < Z, such that

∨k
i=1 φi(a1, γ).

Without loss of generality we may assume that for i = 1 the set of γ > γ0 such that |= φ1(a1, γ),
is cofinal below Z. Since Γ is a pure Z-group in P-minimal structures, we may further assume that
φ1(a1,Γ) is a definable set of the form {t ∈ Γ : α < t < β ∧ x ≡N c} for some N ∈ N and
0 ≤ c < N . By the cofinality assumption, we cannot have β < Z, so there exists m ∈ Z, such that
φ1(a1,m), contradicting the assumption that a1 /∈ acl(A, a2, . . . , an). □

In terms of the large ball topology, the above lemma says that if a ∈ (K/O)n is acl-generic
then any neighbourhood of a contains a ball of “generic radius”. In Proposition 3.8 we strengthen
this to provide a “generic neighbourhood” of a (inside any neighbourhood of a). But we first need
some preliminary results.

{L:full dpr is interior in K/O}
Lemma 3.6. Assume that b ∈ (K/O)n is such that dimacl(b/A) = n, for some parameter set A.

(1) For every A-definable X ⊆ (K/O)n, if b ∈ X then b is in the interior of X .
(2) If p = tp(b/A) then p(K) is open in (K/O)n

(3) dp-rk(b/A) = n.

Proof. Let a ∈ Kn be such that π(a) = b.
(1) We proceed by induction on n. For n = 1, we first prove that every A-definable set Y

containing a must contain a large ball. Indeed, since b ∈ π(Y ) is non-algebraic Y intersects
infinitely many 0-balls. Since K is P-minimal, by [8, Proposition 5.8, Lemma 6.26], Y contains a
large ball.

Let q = tp(a/A); by compactness we conclude that q(K) contains a large ball, but then, as Z is
automorphism invariant, every α |= q belongs to a large ball B ⊆ q(K). In particular, a ∈ B ⊆ Y
for some large ball B.

Now assume that b ∈ X for an A-definable set X ⊆ K/O and apply the above to a ∈ Y =
π−1(X). We conclude that there is a ball U ⊆ K/O with b ∈ U ⊆ X .

For n > 1, write b = (b′, bn) ∈ X for b′ ∈ (K/O)n−1. Let a = (a′, an) ∈ Kn be such that
π(a) = b. Then dimacl(a) = n and dimacl(a

′/anA) = n− 1. Let Y = π−1(X).
Because bn /∈ acl(b′A), it follows that Xb′ = {(b′, t) ∈ X : t ∈ K/O} is infinite, so by the case

n = 1, bn is in the interior ofXb′ . It follows that an is in the interior of Ya′ = {(a′, t) ∈ Y : t ∈ K}
in the large ball topology. Since dimacl(a

′/anA) = n− 1, by Lemma 3.5 we can find γ < Z such
that dimacl(a

′/anAγ) = n− 1 and B≥γ(an) ⊆ Ya′ .
We consider the anAγ-definable set W = {x ∈ Kn−1 : Bγ(an) ⊆ Yx}. It contains a′, so by

induction it contains a large ball B≥γ′(a′). Denoting γ̂ = max{γ, γ′} the ball B≥γ̂(a
′)×B≥γ̂(an)

is centred at a and contained in Y . It follows that b = π(a) is in the interior of X .
(2) Follows by compactness from (1).
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(3) By (2), for p = tp(b/A), p(K) contains a ball U . Such a ball is a Cartesian product of n
balls, each of which has dp-rank 1. So dp-rk(p) ≥ n, and equality must hold. □

We conclude:
{C: dpr=acl-dim in K/O}

Corollary 3.7. For b ∈ (K/O)n and any parameter set A we have dp-rk(b/A) = dimacl(b/A).

Proof. By sub-additivity of the dp-rank we just need to show that dp-rk(b/A) ≥ dimacl(b/A). If
dimacl(b/A) = k then by passing to a subtuple we may assume that dimacl(b1, . . . , bk/A) = k. By
Lemma 3.6(3) we have that dp-rk(b1, . . . , bk/A) = k but then dp-rk(b/A) ≥ k, as needed. □

We can now prove the desired generalisation of Lemma 3.5:
{P:sgenos for K/O}

Proposition 3.8. Let b ∈ (K/O)n, A any set of parameters and c ∈ (K/O)m.
(1) Assume that dp-rk(b/A) = n and that b ∈ W for some ball W . Then there is a ball

V ⊆W , defined over B ⊇ A such that b ∈ V and dp-rk(b/B) = dp-rk(b/A) = n.
(2) For any γ < Z there exists B ⊇ A and a B-definable ball V ⊆ B≥γ(b) such that b ∈ B

and dp-rk(b, c/A) = dp-rk(b, c/B).
(3) Assume that b ∈ X ⊆ (K/O)n for some B-definable X with dp-rk(b/B) = n then there

exists C ⊇ A and a C-definable ball V ⊆ X such that b ∈ V and dp-rk(b, c/C) =
dp-rk(b, c/A).

Proof. In all that follows, we repeatedly use – without further mention – Corollary 3.7, i.e., that
dimacl = dp-rk.

(1) By Lemma 3.6(2) tp(b/A) is open and thus contains a ball, Z, centred at b. Without loss of
generality, Z = W . By Lemma 3.5 we can find γ, r(W ) < γ < Z, such that B≥γ(b) ⊆ W ⊢
tp(b/A) and dp-rk(b/Aγ) = n. We let s = B≥γ(b), r(s) = γ its radius and [s] its code.

Claim 3.8.1. For any parameter set A, any b ∈ (K/O)n and any K/O-ball s containing b, if
r(s) ∈ dcl(A) and dp-rk(b/A) = n then dp-rk(b/A[s]) = n.

Proof. Fix A, b, s as in the statement and let γ = r(s). By Lemma 3.6(2), q := tp(b/A) is open in
(K/O)n. It follows that q contains a large ball U , that we may assume to be contained in s.

The proof is based on the case n = 1 which we prove first: Since U is large, there are bm ∈
U ⊆ s, m ∈ N, such that bm′ ̸= bm for m′ ̸= m. Obviously, bm |= q for all m. Thus, for every
bm, there is σm ∈ Aut(K/A) mapping b to bm. Because bm ∈ s = B≥γ(b) and γ ∈ dcl(A)
also σm(B≥γ(b)) = B≥γ(bm) = B≥γ(b); so σm(s) = s. As a result, we get b /∈ acl(A[s]); i.e.
dp-rk(b/A[s]) = 1.

Assume now b = (b1, . . . , bn), and s ⊆ (K/O)n is a ball containing b as above. We shall see that
for every i = 1, . . . , n, bi is not in the algebraic closure of A[s]b′, where b′ = (b1, . . . , b̂i, . . . , bn).
By Corollary 3.7, this implies dp-rk(b/A[s]) = n. For simplicity of notation, we treat the case
i = n, so b′ = (b1, . . . , bn−1).

We write s′ = B≥γ(b
′) and sn = B≥γ(bn). By applying the case n = 1 to tp(bn/Ab

′),
we get that dp-rk(bn/Ab′[sn]) = 1. Because r(s′) = r(s) ∈ dcl(A) (by assumption) we get
[s′] ∈ dcl(Ab′) and as s = s′ × s also [s] ∈ dcl(Ab′[sn]). Therefore dp-rk(bn/Ab′[s]) = 1, as
required. □ (claim)
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To conclude, recall that we have fixed some γ < Z such that dp-rk(b/Aγ) = n and such that
B≥γ(b) ⊆W . Applying the claim to b over Aγ we obtain the desired conclusion.

(2) To simplify notation, assume that A = ∅. We start with the case where m = 0, i.e.
there is no c. Let b = (b1, . . . , bn) and k = dp-rk(b); without loss of generality, assume that
dp-rk(b1, . . . , bk) = k. Fix any γ < γ′ < Z such that γ − γ′ < Z. Choose γ1 be as provided by
Lemma 3.5 applied to γ′, so γ < γ1, dp-rk(b/γ1) = k and γ − γ1 < Z. Let U1 = B≥γ1(b) and let
b′ = (b1, . . . , bk, b

′
k+1, . . . , b

′
n) ∈ U1 be such that dp-rk(b′/γ1) = n.

By (1), there exists B ⊇ A and a B-definable ball V ⊆ U1 with V ∋ b′ and dp-rk(b′/B) = n.
Since dp-rk(b′/B) = n and γ − γ1 < Z we get by Lemma 3.5 that there exists γ2, γ < γ2 < γ1
with dp-rk(b′/Bγ2) = n. Consider the ball

V ′ = {x ∈ (K/O)n : v(x− y) ≥ γ2 for some y ∈ V }.

Observe that b′ ∈ V ′ as v(b− b′) ≥ γ1 > γ2. Our choice of b′, γ2 assures that dp-rk(b′/Bγ2) = n
and that dp-rk(b/Bγ2) = k. Since V ′ ⊆ B≥γ(b) it satisfies the requirements.

Now, given c ∈ (K/O)m and a ball U ∋ b, we apply the above result to the tuple (b, c) and the
open set U × (K/O)m to obtain the desired conclusion.

(3) By Lemma 3.6(1), b is in the interior of X . Hence, there exists some B≥γ(b) ⊆ X for
γ < Z. By (2), there exists C ⊇ A and a C-definable ball V ⊆ (K/O)n, b ∈ V ⊆ B≥γ(b), with
dp-rk(b, c/C) = dp-rk(b, c/A). □

We conclude this section with a couple of applications of the tools developed thus far. The first
result is known for SW-uniformities (see [8, §6.2]). The present proof is similar, but some extra
care is needed, since the ball topology on K/O is not Hausdorff.

{L:asi diagaram K/O}
Lemma 3.9. (1) Let {Xt : t ∈ T} be a definable family of finite subsets of (K/O)n, such that

for all b1 ̸= b2 ∈ Xt we have v(b1 − b2) ∈ Z and every b ∈ (K/O)n belongs to finitely
many Xt. Then there is a finite-to-one function from T to (K/O)n.

(2) Let f : X → T be a definable finite-to-one surjective map, and assume that X is almost
strongly internal to K/O. Then there exists a definable subset T1 ⊆ T with dp-rk(T1) =
dp-rk(T ) that is almost strongly internal to K/O.

Proof. (1) By saturation,

Z := {v(b1 − b2) : b1, b2 ∈ Xt, t ∈ T}

is finite. Let m0 = min{Z} ∈ Z; then for every t ∈ T the set
⋃
Xt is contained in a single ball of

radius m0.
Let U ⊆ Kn be a closed ball of valuational radius m0 centred at 0. Since (K, v) is p-adically

closed, for each a ∈ Kn, a + U contains only finitely many balls of radius 0. Hence, the map
sending t to the unique coset of U containing Xt is finite-to-one, so we have constructed a finite-
to-one definable map from T into Kn/U . Since (K/O)n and Kn/U are in definable bijection, we
are done.

(2) Let g : X → (K/O)n be a finite-to-one definable map. For any t ∈ T let Xt = g(f−1(t)).
Then {Xt : t ∈ T} is a definable family of finite subsets of (K/O)n such that each b ∈ (K/O)n

belongs to only finitely many Xt.
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By saturation, there is a uniform bound m on |Xt| for t ∈ T . We proceed by induction on m. If
m = 1, we are done; so assume otherwise. For simplicity, assume everything is defined over ∅.

Let t0 ∈ T be with dp-rk(t0) = dp-rk(T ) and assume first that there are b ̸= b′ ∈ Xt with
v(b−b′) < Z; so there exists a ballU ∋ b containing b and not b′. By Proposition 3.8(2), there exists
a ball V ⊆ U containing b defined over parametersB satisfying that dp-rk(b/B) = dp-rk(b). As b
and t0 are inter-algebraic over ∅, we also have dp-rk(t0/B) = dp-rk(t0) = dp-rk(T ). As b′ /∈ V ,
clearly |Xt0 ∩ V | < |Xt0 |.

The set T1 = {t ∈ T : |Xt ∩ V | < |Xt|} is defined over B and contains t0, thus dp-rk(T1) =
dp-rk(T ). We many now replace each Xt with Xt ∩ V and proceed by induction. This completes
the proof in the case where v(b− b′) < Z for some b, b′ ∈ Xt0 .

So we assume now that v(b − b′) ∈ Z for all b ̸= b′ ∈ Xt0 . By saturation there exists m ∈ Z
such that v(b− b′) ≥ m for all b ̸= b′ ∈ Xt0 . Thus, the set

T1 = {t ∈ T : (∀b ̸= b′ ∈ Xt)v(b− b′) ≥ m}

contains t0 so dp-rk(T1) = dp-rk(T ), and we conclude by (1). □

We end this section with a small observation that will be used later on.
{L:Tor of ball}

Lemma 3.10. (1) For any definable subgroup H ⊆ (K/O)n of full dp-rank, Tor(H) =
(F/OF)

n.
(2) Every definable subgroup H ⊆ (K/O)r has non-trivial torsion.

Proof. (1) The fact that every torsion element of H is included in (F/OF)
n is Fact 3.1(3). For the

other direction, assume that H is A-definable and let b ∈ H with dp-rk(b/A) = 1. By Lemma 3.6,
there exists some γ < Z with B>γ(b) ⊆ H; but then B>γ(0) = B>γ(b) − b ⊆ H as well. Now
obviously, F/OF ⊆ B>γ(0) ⊆ H .

(2) Let H ⊆ (K/O)r be a definable subgroup, which we may assume to be infinite, and let
n = dp-rk(H). Since by Lemma 3.7 the dp-rank is given by the acl-dimension, there exists a
finite-to-one coordinate projection τ : H → (K/O)n, with dp-rk(τ(H)) = n. By (1) τ(H) has
non-trivial torsion, and since ker(τ) is a finite group H has non-trivial torsion as well. □

{ss: functions in K/O}
3.2. Definable functions in K/O. In this subsection, we assume that K is a sufficiently satu-
rated 1-h-minimal P-minimal field, e.g. a p-adically closed field.

We show that definable functions in K/O are locally affine at generic points. With the tools
developed in the previous subsection, the proof is quite similar to the one in [8, §6.2]. All results
remain true in Qan

p := (Qp,Lan), the expansion of Qp by all convergent power series f : On → K,
since those are P -minimal with definable Skolem functions [33] and [7, Theorem 3.6], respectively.

Definition 3.11. A partial type P ⊆ Kn over a set of parameters A is large if dp-rk(π∗P ) = n,
where π : K → K/O is the quotient map.

By Lemma 3.6 (and Corollary 3.7), a partial type P is large if and only if (π∗P )(K) has non-
empty interior, if and only if P contains a large ball. Thus, a ball in K is large (as a partial type) if
and only if r(B) < Z, i.e., if it is a large ball.
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For the following, recall that by [8, Example 6.2] K/O is opaque,2 thus by [8, Lemma 6.4] for
every complete type q concentrated of (K/O)n with dp-rk(q) = n there exists a unique complete
type p concentrated on Kn with π∗p = q; moreover dp-rk(p) = n as well.

{L:basic prop large ball}
Lemma 3.12. Let K = (K, v, . . . ) be a P -minimal field and A an arbitrary set of parameters.

(1) A partial type P ⊢ Kn over A is large if and only if there is a completion p of P (over A)
that is large.

(2) If a partial type P ⊢ Kn is large, then dp-rk(P ) = n.
(3) If tp(a1, . . . , an/A) is large, then so is tp(a1/Aa2, . . . , an).
(4) Let B ⊆ Kn be a large open ball. Then B +On = B.

Proof. (1) We only need to show that ifP is large, it has a large completion. Because dp-rk(π∗P ) =
n it has a completion q of full dp-rank, and since K/O is opaque, by [8, Lemma 6.4] there is a
unique complete type p such that π∗(p) = q. Since dp-rank can only decrease under definable
maps, necessarily dp-rk(p) = n.

The rest is as in [8, Lemma 6.9]. □

We need some results from the theory of 1-h-minimal fields in mixed characteristic, as developed
in [6]. Since, as in [8], we apply 1-h-minimality as a black box, we will not dwell on it beyond the
definition already given (Definition 2.1). It suffices for us that p-adically closed fields, as well as
the above-mentioned sub analytic expansions, are P-minimal and 1-h-minimal ([5, Lemma 6.2.7]).

Definition 3.13. [5, Definition 2.1.6] For an integer m ∈ N, a ball B in K is m-next to c ∈ K if{D: m-next to}
B = {x ∈ K : rvm(x− c) = t} for some non-zero t ∈ RVm.

A ball B is m-next to a finite non-empty set C ⊆ K if B =
⋂

c∈C Bc where Bc is a ball m-next
to c for all c ∈ C.

{rem:next}
Remark 3.14. If x0 ̸= c then a ball B is m-next to c if and only if B = B>r(x0), for some x0
with r = v(x0 − c) +m. Indeed, since rvm(x) = rvm(y) ⇐⇒ v(x − y) > v(y) +m, we have
that {x ∈ K : rvm(x− c) = rvm(x0 − c)} = {x ∈ K : v(x− x0) > v(x0 − c) +m}.

The main result concerning 1-h-minimality that we need is:
{F: VJP}

Fact 3.15. [6, Corollary 3.1.3] Let T be a 1-h-minimal theory, K |= T and f : K → K an A-
definable function (A ⊆ K ∪RVn). Then there exists an A-definable finite set C, and m ∈ N such
that for any ball B m-next to C, f is differentiable on B and v(f ′) is constant on B. Moreover:

(1) For all x, x′ ∈ B,

v(f(x)− f(x′)) = v(f ′(x)) + v(x− x′)

(2) If f ′ ̸= 0 on B then for any open ball B′ ⊆ B the image f(B′) is an open ball of radius
v(f ′) + r(B′) where r(B′) is the valuative radius of B′.

To apply this result, we need the following observation:
{L: m-next}

Lemma 3.16. Let p ∈ Sn(A) be a large type in Kn, C ⊆ Kn a finite A-definable set. Then for
any fixed m ∈ N and any b |= p there exists a large ball B, b ∈ B ⊆ p(K), and a large ball
B′ ⊇ B that is m-next to C.
2Opacity is needed only in order to invoke [8, Lemma 6.4], so we omit the definition. See [8, §6.1] for details.
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Proof. Fix b |= p, m ∈ N and a finite A-definable set C; by Lemma 3.6, there exists an open large
ball B>r0(b) ⊆ p(K). Since C is A-definable, p(K) ∩ C = ∅ so v(b− c) ≤ r0 for any c ∈ C. Let
c0 ∈ C with v(b− c0) ≥ v(b− c) for any c ∈ C. It is enough to show that B>r0+m(b) is contained
in a large ball B that is m-next to c0. As v(b − c0) ≤ r0, we also have v(b − c0) +m ≤ r0 +m
and obviously B>r0+m(b) ⊆ p(K). The desired conclusion follows from Remark 3.14. □

Recall the following from [8].

Definition 3.17. A (partial) function f : Kn → K descends to K/O if dom(f) +On = dom(f)
and for every a, b ∈ dom(f), if a − b ∈ On, then f(a) − f(b) ∈ O. The function f descends to
K/O on some (partial) type P ⊢ dom(f) if f ↾ P descends to K/O.

Conversely, a function F : (K/O)n → K/O lifts to K, if it is the image under the natural
quotient map of a definable function f : Kn → K descending to K/O.

The following basic example will play an important role:
{example-descent}

Example 3.18. When a ∈ O the linear function λa : x 7→ a · x descends to an endomorphism
λ̃a : (K/O,+) → (K/O,+). If a ∈ m, then λ̃a has an infinite kernel.

The next technical lemma is an analogue of [8, Lemma 6.14]. The proof is similar with minor
adaptations. For f : Kn → K we let fxi denote the partial derivative with respect to xi.

{L:derivtives in O}
Lemma 3.19. Let p ∈ Sn(A) be a large type, p ⊢ dom(f) for some A-definable f : Kn → K.
Then:

(1) f is differentiable on p.
(2) If f descends to K/O on p then (fx1 , . . . , fxn)(a) ∈ On for all a |= p.
(3) Assume that Im(f) ⊆ O. Then for every a |= p there exists a large ball B ∋ a contained

in p(K) such that for all b ∈ B and 1 ≤ i ≤ n

v(fxi(b)) + 2r(B)) > 0.

In particular fxi(a) ∈ m for all a |= p.

Proof. (1) By [6, Proposition 3.1.1], every definable function is generically differentiable and p is
a generic type in Kn, so the result follows.

(2) For simplicity, assume thatA = ∅. Fix a = (a1, . . . , an) |= p. We show that fx1(a) ∈ O. Set
g(t) = f(t, a2, . . . , an). By Fact 3.15 there is a finite (a2, . . . , an)-definable set, C, and a natural
number m such that g′ is constant on any ball B m-next to C. Since p1 := tp(a1/a2, . . . , an) is
large, it follows from Lemma 3.16 that there is a large ball B ⊆ p1(K) containing a1 where g′ is
constant. By Lemma 3.12, B + 1 = B and therefore by Fact 3.15 we have:

v(g(a1 + 1)− g(a1)) = v(g′(a1)) = v(fx1(a)).

Since f descends toK/O on pwe get that v(f(a1+1, a2, . . . , an)−f(a)) ≥ 0, so that v(fx1(a)) ≥
0, as required.

(3) Let B0 ⊆ p(K) be a large ball containing a, r0 := r(B0). By ℵ1-saturation of K there exists
r0 < r < Z such that r0 − r < Z. For B := B>r(a), let b ∈ B; we claim that v(fxi(b)) + r ≥ 0.

To simplify the notation we show it for i = 1. Let g(t) := f(t, b2, . . . , bn). Note that since
b ∈ B>r0(a), for all r′ > r0 we have that B>r′(b1) ⊆ p1(K) where p1 := tp(b1/b2, . . . , bn).
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In particular, if C is the (b2, . . . , bn)-definable finite set provided by Fact 3.15 (applied to g) and
m ∈ N is the corresponding natural number, then B>r+m(b1) ⊆ p1(K) and therefore v(b1 − c) <
r0+m for all c ∈ C. In particular, B>r(b1) is contained in a ballm-next to C. So v(g′) is constant
on B>r(b1). If g′(t) ≡ 0, the claim holds trivially. Otherwise, by Fact 3.15 g(B>r(b1)) is an open
ball of radius v(g′(b1)) + r. Since g(B>r(b1)) ⊆ O, the claim follows.

Replacing r with r− 1, if needed, we may assume that r is even. Applying the claim to r/2 the
result follows. □

{L:near-affine in K/O}
Lemma 3.20. Let f : K → K be an A-definable partial function and p ⊢ dom(f) a complete
large type over A. If f descends to K/O on p then for every a |= p there is a large ball B,
a ∈ B ⊆ p(K), such that for all x ∈ B.

f(x)− f(a)− f ′(a)(x− a) ∈ m.

Proof. By Lemma 3.19(2), f ′(c) ∈ O for all c |= p. We may thus assume that f ′(c) ∈ O for all
c ∈ dom(f).

For every finite A-definable set C ⊆ K, p(K) ∩ C = ∅. Let a |= p and B0 ⊆ p(K) be a large
ball containing a. Fix r < Z such that r(B0) − r < Z. We let B = B>r(a), then for any m ∈ N
we see (Remark 3.14) that B is contained in a ball m-next to C. By Taylor’s theorem [6, Theorem
3.1.2] , for every x ∈ B.

(1) v(f(x)− f(a)− f ′(a)(x− a)) = v(
1

2
f ′′(a)(x− a)2)

As f ′(B) ⊆ O, Lemma 3.19(3), applied to f ′, gives a large open ball B′, a ∈ B′ ⊆ p(K), such
that for all b ∈ B′,

v(f ′′(b)) + 2r(B′) > 0.

Thus for B1 = B ∩B′, v(f ′′(a)) + 2r(B1) > 0 and for every x ∈ B1, v((x− a)2) > 2r(B1).
Since all of the above remains true if we replace r with r+1 we can ignore the contribution of v(12).
Thus, it follows from the above equation that v(f(x)− f(a)− f ′(a)(x−a)) > 0, as required. □

To conveniently apply the result of the last lemma we make the following definition:

Definition 3.21. A definable function λ : K/O → K/O is a scalar-endomorphism ofK/O if there
exists a ∈ O such that λ(x+O) = λa(x+O) := π(ax) where π : K → K/O is the quotient map.
More generally, λ : (K/O)n → (K/O) is a scalar endomorphism if λ(x1, . . . , xn) =

∑
λi(xi)

where λi are scalar-endomorphisms in one variable.

We now turn to proving that definable functions on (K/O)n are generically given by translates
of scalar endomorphisms. We start by observing that the germs of definable scalar-endomorphism
are ∅-definable (recall that F ⊆ dcl(∅)):

{L:germs of endo in K/O}
Lemma 3.22. For any scalar endomorphism λ : K/O → K/O, there exists r ∈ OF such that
λ(x) = λr(x) for all x in some open ball around 0.

Proof. By assumption λ = λa for some a ∈ O. By Fact 3.1, there exists a′ ∈ OF such that
v(a − a′) > Z thus, λa−a′(b) = 0 for any b ∈ K/O with v(b) ∈ Z. By compactness, λ and λa′
agree on some open ball around 0. □
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When K has definable Skolem functions, every definable function f : (K/O)n → K/O lifts
to a function F : Kn → K. So the assumptions in the next proposition (and until the end of this
section) are naturally met in those contexts. This is our only use of definable Skolem functions.

The proof of [8, Proposition 6.16] (for unary functions) goes through unaltered using Lemmas
3.19 and 3.20 giving the following.

{P: K/O-affine}
Proposition 3.23. Let f : K/O → K/O be an A-definable partial function with dom(f) open
in the ball topology. If f lifts to K then for every a ∈ dom(f) with dp-rk(a/A) = 1 there exist
a ball U ⊆ dom(f) with a ∈ U and a scalar endomorphism L : (K/O) → (K/O) such that
f(x) = L(x− a) + f(a) for all x ∈ U .

Corollary 3.24. Let f : K/O → K/O be a partial A-definable function lifting to K on some
non-algebraic p ∈ S1(A). Then there is t ∈ OF such that f(x)− λt(x) is locally constant on p.

Proof. By Proposition 3.23, if a |= p then there is some scalar endomorphism λ (that may depend
on a) such that f(x) = f(a)+λ(x−a) for all x in some ballB ⊆ p(K). By Lemma 3.22, we may
assume that λ = λt for some t ∈ OF. Hence, f(x) = λt(x) + d on some large sub-ball of B, for
some d ∈ K/O depending on a. As t ∈ OF and F ⊆ dcl(∅), t is constant on p, and the conclusion
follows. □

Summing up all of the above we get.
{P: n-dim affine}

Proposition 3.25. Let f : (K/O)n → K/O be a partialA-definable function lifting toK on some
p ∈ Sn(A) with dp-rk(p) = n. Then there exists a scalar-endomorphism λ : (K/O)n → (K/O)
definable over OF such that f − λ is locally constant on p(K).

Proof. Without loss of generality A = ∅. Let a = (a1, . . . , an) |= p and consider the function
g1(t) := f(t, a2, . . . , an). By what we have shown there is r1 ∈ OF such that g1(t)−λr1 is locally
constant on tp(a1/a2, . . . , an). Similarly, for all 1 ≤ i ≤ n we can find λri such that gi(t) =
f(a1, . . . , âi, . . . , an) is locally constant on tp(ai/a1, . . . , âi, . . . ., an). The result follows. □

Our next goal is to extend the above result to types, not necessarily of full dp-rank in (K/O)r.
To do so we introduce a notion that will be of importance in the sequel as well:

Definition 3.26. A set S ⊆ (K/O)n has minimal fibres if dp-rk(S) = k and there exists a
coordinate projection π : S → (K/O)k and some m ∈ N such that for every y ∈ (K/O)k,
|π−1(y)| ≤ m and there is no definable (possibly over additional parameters) S1 ⊆ S such that
dp-rk(S1) = dp-rk(S) and for every y ∈ (K/O)k, |f−1(y) ∩X1| < m.

Remark 3.27. It is easy to see that a set S ⊆ (K/O)n has minimal fibres if and only if dp-rk(S) =
k and there exists a coordinate projection π : S → (K/O)k with finite fibres such that for any
definable S′ ⊆ S, dp-rk(π−1(π(S′) \ S′) < dp-rk(S).

Notice that if some S ⊆ (K/O)n of rank k, projects finite-to-one into (K/O)k then there
exists S′ ⊆ S, dp-rk(S′) = dp-rk(S) (possibly defined over additional parameters) such that S′

has minimal fibres with respect to the same projection. Indeed, we just choose S′ ⊆ S with the
property that the fibres of π ↾ S′ are of minimal size among all definable subsets of S of maximal
dp-rank. The following is a local version of this observation:
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{L:wma has finite fibres around a generic in K/O}
Lemma 3.28. Let X ⊆ (K/O)r be an A-definable subset. For any a ∈ X with dp-rk(a/A) =
dp-rk(X) there exists X ′ ⊆ X definable over some set C ⊆ A such that a ∈ X ′, dp-rk(a/C) =
dp-rk(a/A) and X ′ has minimal fibres.

Proof. Let p = tp(a/A) and set dp-rk(a/A) = dimacl(a/A) = dp-rk(X) = n. Let τ :
(K/O)r → (K/O)n be a coordinate projection such that dimacl(τ(a)/A) = dimacl(a/A). Letting
q = τ∗p it follows that dp-rk(q) = n.

By Proposition 3.8, there exits a large ball B ⊆ q(K) containing τ(a); so without loss of
generality X = τ−1(B) ∩ p(K), as it is a definable set of dp-rank n. Note that f ↾ X has finite
fibres and as dp-rk(X) = n, there exists X ′ ⊆ X satisfying that dp-rk(X ′) = dp-rk(X) with
minimal fibres for τ ; assume that X ′ is definable over some parameter set C ′.

Let a′ ∈ X ′ be an element with dp-rk(a′/C ′) = dp-rk(X ′). Since a′ |= p there exists an
automorphism σ over A mapping a′ to a. Then σ(X ′) ⊆ X contains a and has minimal fibres for
τ and is definable over C := σ(C). □

For any function f : X → Y , we write [x]f = f−1(f(x)). For the next result recall that we
view F/OF as canonically embedded inside K/O.

{L:fibres is a coset in K/O}
Lemma 3.29. LetX ⊆ (K/O)r be anA-definable set with minimal fibres. Assume that dp-rk(X) =
n and let a ∈ X be such that dp-rk(a/A) = n. Then there exists an A-definable subset X1 ⊆ X
with a ∈ X1, a finite subgroup Ga ⊆ (F/OF)

r and a coordinate projection τ : (K/O)r →
(K/O)n such that for every b ∈ X1, [b]τ = Ga + b.

Proof. Let τ : X → (K/O)n be a coordinate projection witnessing that X has minimal fibres. For
b ∈ X , set Gb = {x− b : x ∈ [b]τ}.

Let a ∈ X , dp-rk(a/A) = n. We claim that for all b ∈ [a]τ , v(b − a) ∈ Z. Indeed, assume
towards a contradiction that there is b ∈ [a]τ with v(b− a) < Z. By Proposition 3.8 we can find a
ball U containing a, defined over some parameters C such that dp-rk(b/C) = n and b /∈ U . Thus
|[a]τ ∩ U | < |[a]τ |. Now the set S′ = {x ∈ X : |[x]τ ∩ U | < |[a]τ ]|} contradicts the assumption
that X has minimal fibres.

Therefore, v(Ga) ⊆ Z and by Fact 3.1(2), Ga ⊆ F/OF and so it is ∅-definable. Thus, replacing
X by a subset X1 of the same dp-rank, we may assume that Ga = Gb for all b ∈ X . In particular,
Ga = Gb for any b ∈ [a]τ . It easily follows that Ga is a subgroup and [a]τ its coset. □

Definition 3.30. For a ∈ (K/O)r, let

Z(a) := {x ∈ (K/O)r : v(x− a) ∈ Z ∪∞}.

For X ⊆ (K/O)r and a ∈ X we let ZX(a) := Z(a) ∩X .

Notice that ZX(a) is a
∨

-definable set. The next lemma shows that ZX(a) does not depend on
the choice of X:

Lemma 3.31. Let X1 ⊆ X ⊆ (K/O)r be A-definable subsets with minimal fibres and a ∈ X1

with dp-rk(a/A) = n = dp-rk(X). Then ZX(a) = ZX1(a).
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Proof. Let τ : X → (K/O)n be a coordinate projection witnessing minimal fibres. It follows that
[a]τ ∩ X1 = [a]τ . By replacing X1 with a subset of minimal fibres, still of full dp-rank we may
assume that for all x ∈ X1 we have [x]τ ∩X1 = [x]τ .

By Lemma 3.6(1), we have that τ(a) is in the interior of τ(X1). Thus, there exists a ball
V ⊆ (K/O)n, with τ(a) ∈ V ⊆ τ(X1). By our choice of X1, we have τ−1(V ) ⊆ X1; the result
follows. □

From now on, we further assume that definable function onK/O lift to definable functions
on K. This holds, e.g., if K has definable Skolem functions.

The next lemma is the main result of this section. It states that definable sets are locally affine at
all generic points:

{L:sets are locally cosets in K/O}
Lemma 3.32. Let X ⊆ (K/O)r be A-definable with minimal fibres, dp-rk(X) = n. Let a ∈ X
be such that dp-rk(a/A) = n. Then there exists C ⊇ A, with dp-rk(a/C) = n, a C-definable
ball U ⊆ (K/O)r, 0 ∈ U , (hence U is a subgroup), a ∅-definable subgroup H ⊆ (K/O)r, and
a C-definable X1 ⊆ X containing a, such that X1 = a + (H ∩ U). In particular, ZX1(a) =
a+H(F/OF).

Proof. By Lemma 3.29, after reducing X and permuting the coordinates, we may assume that
the fibres of the projection τ on the first n-coordinates are all cosets of the same finite subgroup
G ⊆ (F/OF)

r. Since, by definition, τ(G) = 0 we identify G with a subgroup of (F/OF)
r−n. We

also let σ : (K/O)r → (K/O)r−n be the projection onto the last r − n coordinates.
Let k = |G|, (x, x′) ∈ X such that x ∈ τ(X), denote

f(x) := σ

 ∑
b∈τ−1(x)

b

 ∈ (K/O)r−n,

and note that f(x) = kx′, as the sum over all elements of G is 0. Let p = tp(τ(a)/A) ⊢ (K/O)n.
Since in K every definable function f : (K/O)n → K/O lifts to K, we may apply Proposi-
tion 3.25 to find some ball V ⊆ p(K) with τ(a) ∈ V , such that f is a translate of a scalar-
endomorphism, on V . By Proposition 3.8(1), we may assume that V is defined over some C ⊇ A
with dp-rk(τ(a)/C) = n. Let Y := Graph(f ↾ V ). The graph of f is a coset of a ∅-definable
subgroup H1 ⊆ (K/O)r, and thus

Y = (b+H1) ∩ (V × (K/O)r−n),

for some b ∈ (K/O)r. Let X1 := {(x, y) ∈ X : (x, ky) ∈ Y }. Note that X1 is definable over C,
contains a, and hence dp-rk(X1) = n.

Because the map (x, y) 7→ (x, ky) is a ∅-definable endomorphism of (K/O)n× (K/O)n−r, the
pre-image of b + H1 under the map (x, y) → (x, ky) is of the form a + H for some ∅-definable
subgroupH , and the pre-image of V is a ball V ′ ∋ a in (K/O)r, which we may write V ′ = a+U ,
for some ball U ∋ 0. Thus, X1 = a+H ∩ a+U = a+ (H ∩U). By Fact 3.1(2), we now get that
ZX1(a) = a+H(F/OF). □

Remark 3.33. In the statement of the previous lemma we cannot require that the ball U is ∅-
definable. Indeed, if X itself was a ball around 0, which is smaller than all ∅-definable balls, then
we cannot find a ∅-definable such U .
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{C: KO affine}
Corollary 3.34. If f : (K/O)r → K/O is an A-definable partial function and a ∈ dom(f) is
such that dp-rk(a/A) = dp-rk(dom(f)) then there existsC ⊇ A, aC-definable cosetX := H+d
and a ∅-definable scalar endomorphism ℓ : (K/O)r → K/O such that

(1) dp-rk(a/C) = dp-rk(a/A).
(2) a ∈ X .
(3) f ↾ X = ℓ(x− a) + ℓ(a).

Proof. By Lemma 3.28 we may assume that the graph of f has minimal fibres. We can now apply
Lemma 3.32 to the graph of f . □

The next example will help us clarify an important distinction arising in Section 4.
{L: not lsi}

Example 3.35. Let F be a residual quadratic extension of Qp and let K ≻ F be a sufficiently
saturated extension. Let Cp ≤ K/O be a cyclic subgroup of order p, and G := (K/O)/Cp. Then
G is locally almost strongly internal to K/O but not locally strongly internal to K/O.

On the other hand, letting H = {x ∈ G : px = 0} the group G/H is strongly internal to K/O.

Proof. Since the quotient map π : K/O → G is finite-to-one it follows directly from Lemma
3.9(2) that G is almost strongly internal to K/O.

We now verify that G is not locally strongly internal to K/O. Assume towards a contradiction
that there exists a definable injection f : X → (K/O)r with X infinite. Let V = π−1(X) and
f̂ : V → (K/O)r the (clearly, definable) lifting of f to K/O. As dp-rk(V ) = 1, we may
assume – shrinking V if needed – that V is an open ball. Assume everything is definable over ∅.
Let a ∈ V with dp-rk(a) = 1. Shrinking V further, we may apply Proposition 3.23, to deduce
that f̂ := (f̂1, . . . , f̂r) where each f̂i is of the form Li(x − a) + f̂i(a) on V , for some scalar
endomorphism, Li. By Fact 3.1(3) and Lemma 3.10, V + Cp = V . Because f̂ factors through
Cp on V , it follows that the scalar endomorphisms Li are all invariant under Cp, and therefore
Cp ⊆ ker(Li) for i = 1, . . . , r.

Since F is a residual extension of Qp, the subgroup H = {x ∈ K/O : v(x) ≥ −1}, where
1 ∈ Γ is the minimal positive element, is readily seen to contain Cp, and |H| = |kK | = p2. It is
also easy to verify that for every scalar endomorphism λ of K/O with non-trivial kernel, we have
H ⊆ ker(λ), so Cp ⊊ H ⊆ ker(Li) for every Li.

Thus, the function f̂ is invariant under the group H ⊇ Cp, contradicting our assumption that f
was injective.

For the final statement, since F/OF is isomorphic to Z(p∞) ⊕ Z(p∞), G/H is definably iso-
morphic to K/O as witnessed by the map x 7→ px. □

Remark 3.36. It can be shown that if F ≡ Qp then (F/O)r/H is definably isomorphic to (F/O)r

for any finite subgroup H . In particular, in the above example, the group G is isomorphic to
(K/O)2, but not definably so.

4. VICINIC SORTS AND THEIR PROPERTIES
{S: asi to D}

In the present section we develop an ad hoc axiomatic setting allowing us to unify the treatment
of all unstable distinguished sorts considered in the sequel. We then apply the technical tools we
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develop to show that, given a group G almost strongly internal to such a set, D, there exists a finite
normal subgroupH ⊴ G such thatG/H is strongly internal toD. This suffices for the construction
of an infinitesimal subgroup in G/H .
Throughout this section we let M be a multi-sorted, |T |+-saturated structure and D a dp-
minimal definable set.

{ss:key geo properties}
4.1. The key geometric properties. To motivate our axiomatic setup we isolate some key geo-
metric properties shared by SW-uniformities, models of Presburger arithmetic and K/O for K =
(K, v, . . . ) p-adically closed. These properties are, in the latter setting, Corollary 3.7, Proposition
3.8 and Lemma 3.9(2). These suffice for the development of much of the theory of infinitesimal
subgroups in both topological and non- topological settings.

For p-adically closed K, the induced structure onK/O is not geometric: it does not eliminate the
quantifier ∃∞ ([8, Lemma 6.27]) nor does acl have the exchange property. Nevertheless, Corollary
3.7 asserting that dimacl = dp-rk gives dp-rank enough geometric flavour to get us going:

{Gamma:A1}
Fact 4.1. If D is an SW-uniformity (in some structure) or a model of Presburger arithmetic then
dimacl(a/A) = dp-rk(a/A) for all a ∈ Dn and any parameter set A.

Proof. For SW-uniformities this follows from [26, Propsition 2.4] noting that by Simon’s work dp-
rank is local in dp-minimal theories, [24, Theorem 0.3]. If D is a model of Presburger Arithmetic
then this follows from [24, Theorem 0.3] since D satisfies exchange. □

Proposition 3.8, originally proved in the context of SW-uniformities (see Fact 2.5) is crucial for
allowing local analysis at a generic point. For Presburger arithmetic, the analogous statement is
simpler to prove, using quantifier elimination and the fact that acl satisfies exchange:

{Gamma: A2}
Lemma 4.2. Let (D,+, <) be a model of Presburger arithmetic. Let A be any set of parameters,
g ∈ Dn, h ∈ Dm. For any set of parameters B and B-definable X ⊆ Dn, if g ∈ X and
dp-rk(g/B) = n then there exists C ⊇ A and a C-definable set X1 ⊆ X such that dp-rk(X1) =
n, g ∈ X1 and dp-rk(g, h/A) = dp-rk(g, h/C).

Proof. By [8, Lemma 3.14(2)], we can find a small model L ⊇ B for which dp-rk(g/L) = n. By
[18, Lemma 3.4], there exists an L-definable subset X0 ⊆ X containing g = (g1, . . . , gn) of the
form I1 × · · · × In, where for each i ≤ n, gi ∈ Ii = {αi ≤ x ≤ βi : x ≡Ni ci}, for some Ni ∈ N,
where both intervals [αi, gi] and [gi, βi] are infinite and 0 ≤ ci < Ni.

For simplicity, we prove the result for n = 1. The general case follows by induction. We use
compactness to find α1 < α′

1 < g1 such that dp-rk(α′
1/g1, hL) = 1 and [α′

1, g1] infinite and then
g1 < β′1 < β1 such that dp-rk(β′1/g1, h, α

′
1L) = 1 and [g1, β

′
1] infinite. We have g1 ∈ I ′1 = {α1 ≤

x ≤ β′1 : x ≡Ni ci} ⊆ I1 and by exchange dp-rk(g1, h/α′
1, β

′
1, L) = dp-rk(g1, h/L). □

Lemma 3.9(2) is the most technical of the three geometric properties we need. It would be nice
to find a slicker description, e.g., in terms of elimination of finite imaginaries. The next lemma
may be a first step in that direction:

{L:asi diagaram with EI}
Lemma 4.3. Let M be any structure, and S a stably embedded definable set. If S has elimination
of imaginaries, X is (almost) strongly internal to S and g : X → Y is a definable surjection then
Y is (almost) strongly internal to S.
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Proof. We consider the almost strongly internal case only, as the strongly internal case is similar
and easier. Let f : X → Sn be a finite-to-one definable function. For any y ∈ Y consider the
definable set Wy = f(g−1(y)) ⊆ Sn. By elimination of imaginaries in S, there exists a definable
function h : Y → Sm such that h(y1) = h(y2) if and only if Wy1 = Wy2 . It will suffice to
show that h is finite-to-one. So assume towards a contradiction that this is not the case. I.e., there
exists b ∈ S with H := h−1(b) infinite. Fix y1 ∈ H . Then for any other y2 ∈ H , obviously,
g−1(y1) ∩ g−1(y2) = ∅ (but g−1(y2) ̸= ∅ because g is onto). Since f is finite to one and H is
infinite, for w ∈ Wy1 there is y2 ∈ H s.t. f−1(w) ∩ g−1(y2) = ∅, contradicting the assumption
that Wy1 =Wy2 . □

Since Presburger arithmetic eliminates imaginaries this gives the analogue of Lemma 3.9(2) for
Presburger Arithmetic. For SW-uniformities this is Lemma 2.6.

{ss: vicinic}
4.2. Vicinic dp-minimal sets. We now introduce the basic axiomatic setting we will be interested
in, but first:

Definition 4.4. Let X be an A-definable set of finite dp-rank, a ∈ X and B ⊇ A a set of parame-
ters.

(1) The point a is B-generic in X (or, generic in X over B) if dp-rk(a/B) = dp-rk(X).
(2) For an A-generic a ∈ X , a set U ⊆ X is a B-generic vicinity of a in X if a ∈ U , U is

B-definable, and dp-rk(a/B) = dp-rk(X) (in particular, dp-rk(U) = dp-rk(X)).

Note that if D is an SW-uniformity then a generic vicinity of a generic point a in a set X ⊆
Dk is, in fact, a neighbourhood of a in the relative topology of X . The existence of generic
neighbourhoods in SW-uniformites is given by Fact 2.5.

Definition 4.5. A dp-minimal set D is vicinic if it satisfies the following axioms:
(A1) dimacl = dp-rk; i.e. for any tuple a ∈ Dn and set A dimacl(a/A) = dp-rk(a/A).
(A2) For any sets of parameters A and B, for every A-generic elements b ∈ Dn, c ∈ Dm and

any B-generic vicinity, X , of b in Dn, there exists C ⊇ A and a C-generic vicinity of b in
X such that dp-rk(b, c/A) = dp-rk(b, c/C).

Note that in Axiom (A2) it is crucial that the parameter set B need not contain A. The topo-
logical intuition is that if b is in the interior of a B-definable set, X , then we can find a smaller
neighbourhood of d defined over a new parameter set, C, that is generic with respect to all the
initial data.

Let us note that indeed all distinguished sorts in our various settings are vicinic:
{E:dist sorts are vicinic}

Fact 4.6. (1) Every SW-uniformity is vicinic.
(2) If K = (K,+, ·, v, . . . ) is either V-minimal, power-bounded T-convex or a P-minimal

valued field, then all the distinguished sorts, except k in the V-minimal case, are vicinic.

Proof. When D is an SW-uniformity, Axiom (A1) holds by [26, Proposition 2.4] and Axiom (A2)
is Fact 2.5. This proves (1) and (2) follows in all cases except when D = K/O and D = Γ in the
P -minimal case.

For K/O, see Corollary 3.7 for (A1), and Proposition 3.8 for (A2). For Γ, see Fact 4.1, for (A1)
and Lemma 4.2, for (A2). □
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Question 4.7. Does any dp-minimal distal structure satisfy Axiom (A2)? Note, however, that
it follows from the above fact that, e.g., the valued field sort of an algebraically closed field of
equi-characteristic 0 satisfies Axioms (A2). Thus, Axiom (A2) does not imply distality.

{R: after vicinic}
Remark 4.8. By Axiom (A1), for every parameter set A, every c ∈ Dm is inter-algebraic over A
with an A-generic c′ ∈ Dk, for k = dp-rk(c/A). Thus, (A2) remains true if we drop the genericity
assumption from c.

Below we assume that D is vicinic.

We first note an immediate implication of Axiom (A1):
{L:acl-dp in asi-abstract}

Lemma 4.9. Let X be a definable set a ∈ X and assume that X is almost strongly internal to D
over A. Then for any B ⊇ A we have dp-rk(a/B) = k if and only if there exists a′ ∈ Dk such
that dp-rk(a′/B) = k, a′ ∈ dcl(aA) and a ∈ acl(a′B).

We now start developing the technical tools needed for the construction of infinitesimal groups
in the setting of vicinic structures. We first want to show that boxes form vicinity-bases at generic
points in the following sense:

{L:genos implies A4}
Lemma 4.10. For anyA ⊆ M,A-generic b = (b1, . . . , bn) ∈ Dn and c ∈ Dm, and anyA-generic
vicinity X of b in Dn, there exists C ⊇ A and C-definable vicinities Ii ∋ bi for i = 1, . . . , n such
that I1 × · · · × In ⊆ X and dp-rk(b, c/C) = dp-rk(b, c/A) = n+m.

Proof. We use induction on n, where the case n = 1 is an immediate application of (A2) to b ∈ D,
and c ∈ Dm.

We now consider b = (b1, . . . , bn) and X an A-vicinity of b in Dn. Let b′ = (b1, . . . , bn−1), and
apply (A2) to bn ∈ Xb′ ⊆ D.

We then find C ′ ⊇ A and a C ′-vicinity I ⊆ Xb′ of bn in D, such that dp-rk(bn, (b′, c)/C ′) =
n+m. Let

X1 := {x ∈ Dn−1 : (∀y)(y ∈ I → (x, y) ∈ X)}.
This is a C ′-definable set, containing b′. So it is a C ′-vicinity of b′ in Dn−1. By induction (now
replacing c with bn, c), there exist Ii ⊆ D, i = 1, . . . , n − 1, defined over C ⊇ C ′, such that
b′ ∈

∏n−1
i=1 Ii ⊆ X1, with dp-rk(b′, bn, c/C) = n + m. The set

∏n
i=1 Ii ⊆ X is the desired

vicinity of b. □

4.3. Functions with minimal fibres. The notion of definable sets with minimal fibres, with re-
spect to some finite-to-one projection, appeared already in Section 3. We slightly generalize.

Definition 4.11. (1) For X a definable set of finite dp-rank, a definable function f : X →
Y has minimal fibres if there exists some m ∈ N such that for every y ∈ Y , we have
|f−1(y)| ≤ m, and there is no definable X1 ⊆ X (possibly over additional parameters),
such that dp-rk(X1) = dp-rk(X) and for every y ∈ Y , |f−1(y) ∩X1| < m.

(2) A set X ⊆ Dn has minimal fibres (in D) if there exists a coordinate projection π : Dn →
Dm such that dp-rk(X) = m, and π has minimal fibres.
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{remark1}
Remark 4.12. (1) Notice that an A-definable finite-to-one f : X → Y has minimal fibres if

and only if for every B ⊇ A and every B-generic a ∈ X , all elements of [a]f satisfy the
same type over f(a)B.

(2) Every definable set Z ⊆ Dr has a definable subset Z1 ⊆ Z (possibly over additional
parameters) such that dp-rk(Z1) = dp-rk(Z) and Z1 has minimal fibres.

(3) If Z ⊆ Dr has minimal fibres and X ′ ⊆ X with dp-rk(X ′) = dp-rk(X) then X ′ has
minimal fibres as well.

Before proceeding to the next lemma we recall that for any function f : X → Y , we write
[x]f = f−1(f(x)).

Our next goal is to show that Axiom (A2) can be pulled back via maps with minimal fibres, in
the following sense:

{L:abstract general gen-os}
Lemma 4.13. Let X be definable in M with dp-rk(X) = n and f : X → Dn an A-definable
function with minimal fibres. Let b ∈ X be A-generic and c ∈ M inter-algebraic over A with
some d ∈ Dm.

Then, for every parameter set, B, and every B-generic vicinity Y ⊆ X of b, there exists C ⊇ A
and a C-generic vicinity Y1 ⊆ Y of b, such that dp-rk(b, c/C) = dp-rk(b, c/A).

Proof. Let B be any set of parameters and Y a B-generic vicinity of b in X . Since has finite fibres
(because it has minimal fibres) our assumptions imply that f(b) is A-generic in Dn, and f(Y ) is
a B-generic vicinity of f(b) in Dn. Thus, by (A2), there exists C ⊇ A, and a C-generic vicinity
W ⊆ f(Y ) of f(b), such that dp-rk(f(b), d/C) = dp-rk(f(b), d/A). Hence, dp-rk(b, c/C) =
dp-rk(b, c/A) as well.

Let m be the size of maximal f -fibres. Since f has minimal fibres, for every C-generic y ∈ Y ,
we have |[y]f | = m, so [y]f ⊆ Y . Thus, the set W1 ⊆ W , of all w ∈ W such that |f−1(w)| = m
satisfies dp-rk(W1) = dp-rk(W ), and we have Y1 := f−1(W1) ⊆ Y . The set Y1 is the desired
C-generic vicinity of b. □

Now we wish to pull back the conclusion of Lemma 4.10 via functions with minimal fibres. We
first note:

{L:product of min fibres is such}
Lemma 4.14. Assume that fi : Xi → Yi, i = 1, 2, have minimal fibres. Then (f1, f2) : X1 ×
X2 → Y1 × Y2 has minimal fibres. In particular, if Xi ⊆ Dmi has minimal fibres then so does
X1 ×X2 ⊆ Dm1 ×Dm2 .

Proof. Let f = (f1, f2) : X1 × X2 → Y1 × Y2 and assume for simplicity that it is ∅-definable.
We apply Remark 4.12(1). Let (a, b) ∈ X1 ×X2 be generic over some B. Then, by sub-additivity
of dp-rank, a is Bb generic in X1, so all elements of [a]f1 realize the same type over f1(a)bB,
hence also over f1(a)f2(b)bB. It follows that all elements of [a]f1 × {b} satisfy the same type
over f1(a)f2(b)B. Similarly, all elements in {a} × [b]f2 satisfy the same type over f1(a)f2(b)B.
It easily follows that all elements of [(a, b)]f realize the same type over f(a, b)B, as needed. □

{C:generic inside product of min fibres}
Corollary 4.15. For i = 1, 2 let Xi be A-definable sets, dp-rk(Xi) = ni, and fi : Xi → Dni

A-definable functions with minimal fibres. Let (d1, d2) ∈ X1 × X2 be A-generic. Then for any
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A-generic vicinity Y ⊆ X1 × X2 of (d1, d2), there exists B ⊇ A and a B-generic vicinity of
(d1, d2) of the form I1 × I2 ⊆ Y , with Ii ⊆ Xi.

Proof. Let f = (f1, f2) : X1 ×X2 → Dn1 ×Dn2 . By the minimality assumption on f1, f2, and
Lemma 4.14, we have [(d1, d2)]f ∩ Y = [(d1, d2)]f . Let

W = {w ∈ f(Y ) : f−1(w) ∩ Y = f−1(w)}.
Then, (f(d1), f(d2)) ∈W , so dp-rk(W ) = dp-rk(d1, d2) = n1 + n2.

By Lemma 4.10, there exists B ⊇ A such that W contains a B-generic vicinity of the form
V1 × V2 of (f1(d1), f2(d2)) in f(X1 ×X2). By definition, f−1

1 (V1)× f−1
2 (V2) is contained in Y

and it is thus a B-generic vicinity of (d1, d2) satisfying the requirements. □

4.4. Critical, almost critical and D-sets. Let M and D be as before. Recall the definition of a
set strongly internal and almost strongly internal to D (Definition 2.3). We remind (and expand) a
definition from [8]:

{D: D-sets}
Definition 4.16. Let S be a definable set of finite dp-rank.

(1) A definable X ⊆ S is m-internal to D if there exists an m-to-one f : X → Dn,
(2) A definable setX ⊆ S isD-critical (for S) ifX is strongly internal to D, and has maximal

dp-rank among all such subsets of S. Its dp-rank is the D-critical rank of S.
(3) A definable set X ⊆ S is almost D-critical (for S) if (i) it is almost-strongly internal to D

and has maximal dp-rank among all such subsets of S, and (ii) it is m-internal for minimal
m among all sets satisfying (i). We call dp-rk(X) the almost D-critical rank of S.

The set X is called (almost) D-critical over A if the corresponding map of X into Dn

is defined over A.
(4) A definable set X ⊆ S an (almost) D-set over A, if X is an (almost) D-critical set,

witnessed by an A-definable f : X → Dn, such that in addition f(X) has minimal fibres.

Notice that the D-critical rank of S is always bounded above by the almost D-critical rank of
S, but the ranks need not be equal, as we shall now see. Thus, a D-critical set is not necessarily
almost D-critical.

{E: crit dim is not a-crit dim}
Example 4.17. Let K be an elementary extension of a quadratic residual extension of Qp, as in
Example 3.35. Let G0 = (K/O)/Cp be as in Example 3.35. Let G = K/O × G0. Then G is
almost strongly internal to K/O, since both K/O and G0 are; so its almost K/O-critical rank is
2.

We claim that the critical K/O-rank of G is 1: The definable set K/O×{0} is strongly internal
to K/O, so we only need to note that G has no definable subset of dp-rank 2 which is strongly
internal to K/O. Indeed, if X ⊆ G of dp-rank 2, then, just like in Lemma 3.6, it contains a
definable set of the form Y1 × Y2, with Y2 ⊆ G0 of dp-rank 1. So if X were strongly internal to
K/O then G0 would be locally strongly internal to K/O, contradicting Example 3.35.

Remark 4.18. Let X ⊆ S be an almost D-critical set, witnessed by f : X → Dk. Then there
exists X1 ⊆ X , defined over some B ⊇ A, such that dp-rk(X1) = dp-rk(X) and X1 is an almost
D-set for S, witnessed by f . If f is injective then we can find such an X1 ⊆ X which is a D-set.

We will use the following remark implicitly throughout.
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{important remark}
Remark 4.19. (1) If f : X → Dn witnesses that X is an (almost) D-set for S then, since

f(X) has minimal fibres, we may compose f with an appropriate coordinate projection to
obtain a map with minimal fibres π ◦ f : X → Dn, such that n = dp-rk(X). Thus, in
Lemma 4.13 the assumption that dp-rk(X) = n can be dropped when X is an (almost)
D-set. Similarly, Lemma 4.15 holds when X1, X2 are (almost) D-sets.

(2) If X1, X2 ⊆ S are (almost) D-sets then so is X1 ×X2 ⊆ S2. Indeed, by Lemma 4.14 it is
sufficient to show that X1 ×X2 is (almost) D-critical in S × S: If Y ⊆ S × S is (almost)
strongly internal to D then so are the fibres Yx and Y x for every x ∈ S. In particular
dp-rk(Yx) ≤ dp-rk(X1) and dp-rk(Y x) ≤ dp-rk(X2) = dp-rk(X1) for any x ∈ S. By
sub-additivity dp-rk(Y ) ≤ 2dp-rk(X1), so 2dp-rk(X1) is the (almost) D-critical rank of
S × S.

(3) If X ⊆ S is an (almost) D-set and Y ⊆ X with dp-rk(Y ) = dp-rk(X) then Y is also an
(almost) D-set.

Below, if the ambient set is clear from the context or immaterial, we will just refer to (almost)
D-critical sets, without explicit mention of S (though such an S of finite dp-rank is always assumed
to exist in the background).

We end this section with a result on generic vicinities which will play an important role in the
next sections.

{filter base}
Lemma 4.20. Assume thatX is an (almost)D-set overA and d ∈ X generic overA. LetXi ⊆ X ,
i = 1, 2, be two Ai-generic vicinities of d in X for some Ai ⊇ A.

Then there exists C and a C-definable U ⊆ X1 ∩X2 which is a C-generic vicinity of d in X .

Proof. By Remark 4.19 (1) we may apply Lemma 4.13 as follows: first apply the lemma to X
(viewed as A2-definable), d and the A1-generic vicinity X1 (in the role of Y in the lemma) to
obtain U1 ⊆ X1 defined over some A′

2 ⊇ A2 such that d ∈ U is A′
2-generic. Now U1 ∩ X2 is

A′
2-definable, so an A′

2-generic vicinity of d satisfying the requirements.
□

4.5. D-groups. We proceed with a series of technical lemmas ultimately allowing us to construct,
inside a group that is (almost) strongly internal to D, a definable subset that is both (almost)
strongly internal and sufficiently closed under the group operation.

{L:general g/gh-abstract}
Lemma 4.21. Let G be an A-definable group. Let X,Y ⊆ G be A-definable and X (almost)
strongly internal to D over A, and fix an A-generic (g, h) ∈ X × Y .

If dp-rk(g/A, g ·h) < dp-rk(X) then there exists a finite-to-one definable function from a subset
of X × Y onto a set W ⊆ X · Y ⊆ G satisfying dp-rk(W ) > dp-rk(Y ).

Proof. For simplicity of notation assume that A = ∅ and write k = gh ∈ G. Assume that
d := dp-rk(g/k) < m := dp-rk(X), and let n = dp-rk(Y ).

Because X is (almost) strongly internal to D we may apply Lemma 4.9 to obtain a ∈ Dd,
a ∈ dcl(g) such that g ∈ acl(a, k).

Notice that each two pairs of g, h, k are interdefinable over ∅. E.g., the map (x, y) 7→ (x, xy)
sends (g, h) to (g, k). Thus, we have dp-rk(a, k) = dp-rk(g, k) = dp-rk(g, h) = m+ n.
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Since a ∈ Dd, we have dp-rk(a) ≤ d so by sub-additivity of dp-rank we have dp-rk(k/a) ≥
n+m− d > n.

Let φ(x, k) be the formula over a isolating tp(g/a, k).
Let l := |φ(X, k)| and

Z = {(x, y) ∈ X × Y : φ(x, x · y) ∧ (∃≤lz)(z ∈ X ∧ φ(z, x · y)}.
This is an a-definable set containing (g, h), thus its image under (x, y) 7→ x ·y, call it W , is also

a-definable and contains k, so dp-rk(W ) ≥ dp-rk(k/a) > n. Our assumption on φ implies that
the restriction of the group multiplication to Z is a finite-to-one map. □

{C:g/gh - abstract}
Corollary 4.22. Let G be an A-definable group and assume that

(⋆) For any definable finite-to-one surjection f : X → Y with X (almost) strongly internal to
D there exists a definable subset Y ′ ⊆ Y with dp-rk(Y ′) = dp-rk(Y ) (almost) strongly
internal to D.

Let X1 ⊆ G be (almost) strongly internal to D and X2 ⊆ G (almost) D-critical, both over A.
Then for every A-generic (g, h) ∈ X1 ×X2 we have dp-rk(g/A, g · h) = dp-rk(X1).

Proof. Assume towards a contradiction that dp-rk(g/A, g ·h) < m := dp-rk(X1); then by Lemma
4.21 there exists a finite-to-one definable function from a subset ofX1×X2 onto a definable subset
W ⊆ X1 ·X2 with dp-rk(W ) > dp-rk(X2).

SinceX1 andX2 are both (almost) strongly internal toD so isX1×X2, and hence any definable
subset. By (⋆), there exists a definable subset W1 ⊆W with dp-rk(W1) = dp-rk(W ) and a finite-
to-one map from W1 to some Dp, namely W1 is almost strongly internal to D. This contradicts the
maximality of dp-rk(X2). □

The conclusion of Corollary 4.22 is important for much that follows. For the sake of clarity of
exposition we isolate this property of groups and define:

{Def: D-group}
Definition 4.23. Let D be a vicinic sort. An A-definable group G is an (almost) D-group if its
(almost) D-critical rank is at least 1 and for every X1 ⊆ G (almost) strongly internal to D, every
(almost) D-critical set, X2 ⊆ G, both over some B ⊇ A, and for every (g, h) generic in X1 ×X2

over B, we have
dp-rk(g/B, g · h) = dp-rk(X1).

Below we show that groups interpretable in the valued fields we are interested in are (almost)
D-groups (for D one of the distinguished sorts) by showing that they satisfy condition (⋆) in one
of its forms. More precisely:

Remark 4.24. By Corollary 4.22, if D satisfies (⋆) for almost strongly internal sets then every
definable group G locally almost strongly internal to D is an almost D-group. If D satisfies the
version of (⋆) for strongly internal sets then every definable group G which is locally strongly
internal to D is a D-group.

To avoid any confusion we point out that though the name may suggest it, it formally need not
be the case that a D-group is an almost D-group (Example 4.29).

We can now collect our previous results and conclude:
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{E:interp groups in dist sorts are (almost) D-groups}
Fact 4.25. (1) A group of finite dp-rank locally (almost) strongly internal to an SW-uniformity

D is an (almost) D-group.
(2) Let K = (K,+, ·, v, . . . ) be an expansion of a valued field.

• If K is V-minimal then every interpretable group locally (almost) strongly internal to
a distinguished sort D except the residue field, k, is an (almost) D-group.

• If K is power-bounded T -convex then every interpretable group locally (almost) strongly
internal to a distinguished sort D is an (almost) D-group.

• If K is P-minimal then every interpretable group locally almost strongly internal to an
infinite distinguished sort D is an almost D-group.

Proof. (1) follows from 2.6 and 4.6. For (2) first note that by Fact 4.6, all the distinguished sorts in
these cases are vicinic.

If the distinguished sort is an SW-uniformity, then by Lemma 2.6 condition (⋆) holds for both
strongly internal and almost strongly internal sets. This covers the first two cases, so we are left
with the P-minimal case.

If D is a model of Presburger arithmetic then by elimination of imaginaries both versions of
(⋆) hold by Lemma 4.3. If the distinguished sort is K/O condition (⋆) holds of almost strongly
internal sets by Lemma 3.9. □

We also have:
{L: Joint function-abstract}

Lemma 4.26. LetG be a definable (almost)D-group, and letX1 ⊆ G be (almost) strongly internal
to G, X2 ⊆ G (almost) D-critical, both over A.

Assume that (g1, g2) ∈ X1 × X2 is A-generic and let g = g1g
−1
2 . Then X1 ∩ gX2 is an Ag-

generic vicinity of g1 in X1. In particular, if X1 is (almost) D-critical then X1 ∩ gX2 is also
(almost) D-critical.

Proof. Assume for simplicity that A = ∅. As G is an (almost) D-group, it is easy to see that
dp-rk(g1/g1 · g−1

2 ) = dp-rk(X1). Since g1 ∈ (g1 · g−1
2 X2)∩X1 and the intersection is (g1 · g−1

2 )-
definable, it follows that X1 ∩ g1 · g−1

2 X2 is a generic vicinity of g1 in X1. □

We can now deduce the main result of this section.
{L:existence of XX strongly-internal-abstract}

Lemma 4.27. Let G be a definable (almost) D-group, X1, X2 ⊆ G (almost) D-sets over A.
Assume that (g1, g2) ∈ X1 ×X2 is A-generic. Then there exists B ⊇ A and B-definable subsets
X ′

i ⊆ Xi, such thatX ′
1×X ′

2 is aB-generic vicinity of (g1, g2) inX1×X2 and such thatX ′
1 ·X ′

2 ⊆
X1 · g2. Moreover, X ′

1 ·X ′
2 ⊆ X1 · g for any g ∈ X ′

2 and thus X ′
1 ·X ′

2 is an (almost) D-set over
Bg.

Proof. We prove the lemma in case the Xi are almost D-sets (and G is an almost D-group). The
proof for the case where theXi areD-sets andG is aD-group is similar. For simplicity, we assume
A = ∅.

Let k = g1 · g2 ∈ G and let Y2 = {x2 ∈ X2 : k ∈ X1 · x2}. Note that Y2 is k-definable and
contains g2. Since G is an almost D-group, dp-rk(g2/Ak) = n, hence dp-rk(Y2) = n. Since g1 is
inter-algebraic over A with some element in Dl we can apply Lemma 4.13 and Remark 4.19(1) to



ON GROUPS INTERPRETABLE IN VARIOUS VALUED FIELDS 29

obtain a definable subset Y ′
2 ⊆ Y2 containing g2 that is C-definable for some parameter set C such

that dp-rk(g1, g2/C) = dp-rk(g1, g2) = 2n. It follows that dp-rk(gi, k/C) = 2n, for i = 1, 2.
We let

Z =
⋂
y∈Y ′

2

X1y.

It is C-definable, containing k, hence dp-rk(Z) = n. Since g2 ∈ Y ′
2 , we also have Z ⊆ X1g2.

Finally, we consider
S = {(x1, x2) ∈ X1 ×X2 : x1 · x2 ∈ Z}.

It is definable over C, and contains (g1, g2), thus dp-rk(S) = 2n. By Corollary 4.15, there
exists X ′

1 × X ′′
2 ⊆ S, a B-generic vicinity of (g1, g2) in X1 × X2, for some B ⊇ C. Now let

X ′
2 = X ′′

2 ∩ Y ′
2 ; it is still a C-definable vicinity of g2. Note that for any g ∈ X ′

2, we have

X ′
1 ·X ′

2 ⊆ X ′
1 ·X ′′

2 ⊆ Z ⊆ X1 · g,

where the latter follows from the definition of Z and the fact that g ∈ X ′
2. □

{R:variant result for X,Y, XY}
Remark 4.28. A symmetric proof would give that we can findX ′

1 andX ′
2 such thatX ′

1·X ′
2 ⊆ g1X2

The next example shows that interpretable almost D-groups need not be D-groups:
{E:almost d-group not d-group}

Example 4.29. Let K be a sufficiently saturated elementary extension of a quadratic residual ex-
tension of Qp as in Example 4.17 and G = K/O × G0, where G0 = (K/O)/Cp the group from
Example 4.17. Below D = K/O.

As in Example 4.17, G0 is locally almost strongly internal to D, thus so is G. By Fact 4.25, it
is an almost D-group, in particular, dp-rk(g/B, g · h) = dp-rk(X2) for any B-definable almost
D-critical X1, X2 and B-generic (g, h) ∈ X1 ×X2.

By Example 4.17, the D-critial rank of G is 1. To see that G is not a D-group we consider two
D-sets in G: The subgroups X1 = K/O × {0} and X2 = {(h, h + Cp) : h ∈ K/O} are in
bijection with K/O, thus they are D-sets in G. However, the two subgroups generate G, so if we
pick (g, h) ∈ X1 ×X2 generic then dp-rk(g/g + h) = 0.

4.6. From almost strong internality to strong internality. In order to put the machinery for the
construction of infinitesimal subgroups in gear we need to work inside a group locally strongly
internal to a vicinic sort D. As we have seen in Example 3.35, in the case D = K/O, it may
happen that a group is locally almost strongly internal to D, but not locally strongly internal. In
this section we show that modding out a finite normal subgroup resolves this problem. The proof is
inspired by a result of a similar nature due to Hrushovski and Rideau-Kikuchi, [12, Lemma 2.25].

We need (also for later use) an elementary fact from group theory:
{F: finding groups}

Fact 4.30. Let G be a group A,B ⊆ G arbitrary subsets, a ∈ A, b ∈ B. Assume that

a ·B = A ·B = A · b.

Then there is a subgroup H ≤ G such that A = aH and B = Hb.
{L:finding a group from asi}

Lemma 4.31. Let G be a definable group of finite dp-rank and let D be any definable set. Let
X1, X2 ⊆ G, fi : Xi → Dk and h : X1 ·X2 → Dp be generically m-to-one definable functions,
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with f1, f2, h defined overA. Assume, moreover, that noX ′
i ⊆ Xi of the same dp-rank is n-internal

to D for any n < m.
Then for every generic (a, b) ∈ X1 ×X2 over A, there is a finite subgroup H(a, b) ⊆ G such

that [a]f1 = a ·H(a, b) and [b]f2 = H(a, b) · b.
Proof. By the assumption on X1, for any B ⊇ A, any B-definable function F : X1 → Dq (any q)
with finite fibres is, generically, at least m-to-one.

Fix (a, b) ∈ X1 × X2 generic over A. Consider the function F : X1 → Dk+p given by
x 7→ (f1(x), h(x · b)). Notice that [x]F = [x]f1 ∩ ([x · b]h · b−1)), where [x]F = F−1(F (x)).

Since [a]F ⊆ [a]f1 , the assumption that dp-rk(a/Ab) = dp-rk(X1) and the minimality of m
forces |[a]F | ≥ m, so it must be that, in fact, [a]F = [a]f1 . It follows that [a]f1 ⊆ [a · b]h · b−1.
By assumption |[a · b]h| ≤ m, so necessarily [a]f1 = [a · b]h · b−1, and so [a]f1 · b = [a · b]h. If
a′ ∈ [a]f1 then, as a, a′ are interalgebraic, we have dp-rk(a′, b/A) = dp-rk(a, b/A), so we also get
[a′]f1 · b = [a′ · b]h, but [a′]f1 = [a]f1 so [a′ · b]h = [a · b]h. Since the roles of a and b are symmetric
we conclude also that [a · b′]h = [a · b]h and so [a]f1 · b′ = [a · b]h for all b′ ∈ [b]f2 . Therefore

[a]f1 · b = [a]f1 · [b]f2 = a · [b]f2
and we may conclude the proof by Fact 4.30. □

For the main result of this section we need the following facts. The first was proved in the
context of SW-uniformities in [8, Lemma 3.14 ]. It remains valid for vicinic structures as well:

{F:finding mutual generic}
Fact 4.32. Let U ≻ M a monster model, b1, . . . , bn some tuples in U. For every M-definableX ⊆
Dr with finite fibres, there exists anM -generic a ∈ X such that dp-rk(a, bi/M) = dp-rk(a/M)+
dp-rk(bi/M) for all 1 ≤ i ≤ n.

Proof. This was proved in [8] under the assumption that D is an SW-uniformity. However, the
proof only uses the fact that, in the notation of the above statement, there is a finite-to-one projection
π : X → Mk, with k = dp-rk(X), and an M -generic box in its image (i.e., a product of k dp-
minimal subsets). In the vicinic setting this is implied by Axiom (A1) and Corollary 4.15. □

The second of the facts appearing in [8, Lemma 3.14] was proved for a single type. The same
proof works for two (or more) types:

{F: extending to over a model}
Fact 4.33. Let M be a structure of finite dp-rank and U ≻ M a monster model.

For A ⊆ U and a, b ∈ Mn, there exists a small model A ⊆ N ≺ M, such that dp-rk(a/A) =
dp-rk(a/N) and dp-rk(b/A) = dp-rk(a/N).

Proof. Let ⟨It : t < k1⟩ be mutually indiscernible sequences overAwitnessing that dp-rk(a/A) ≥
k1, i.e. each It is not indiscernible over Aa, and let ⟨I ′t : t < k2⟩ be mutually indiscernible
sequences over A witnessing that dp-rk(b/A) ≥ k2, i.e. each I ′t is not indiscernible over Ab. Let
M′ be some small model with A ⊆M ′.

By [25, Lemma 4.2], there exists a mutually indiscernible sequence ⟨Jt : t < k1 + k2⟩ over M ′

such that
tp(⟨It : t < k1⟩⌢⟨I ′t : t < k2⟩/A) = tp(Jt : t < k1 + k2/A).

Let σ be an automorphism of U fixing A and mapping the sequence of the Jt to the sequence of the
It and the I ′t. It follows that ⟨It : t < k1⟩ are mutually indiscernible over N := σ(M ′) and each
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one is still not indiscernible over Aa so not over Na as well; likewise ⟨It : t < k1⟩ are mutually
indiscernible over N an each one is not indiscernible over Na as well. □

{P: G/H s.i.}
Proposition 4.34. Let G be an A-definable group of finite dp-rank locally almost strongly internal
to a definable vicinic set D, and assume that G is an almost D-group.

(1) If X ⊆ G is an almost D-set over A then there exists a finite subgroup HX ≤ G, definable
over A, and an A-definable subset X ′ ⊆ X , with dp-rk(X ′) = dp-rk(X), such that
X ′/HX is strongly internal to D, in particular, G/HX is locally strongly internal to D.

(2) The group HX is normal and does not depend on the choice of X .
(3) The D-critical rank and the almost D-critical rank of the quotient G/H agree and conse-

quently G/H is a D-group.

Proof. For simplicity assume that A = ∅.
(1) Let X ⊆ G be an almost D-set, witnessed by f : X → Dp with fibres of size m. If m = 1

then we takeH = {e}, the trivial subgroup, so assume this is not the case. Note that for any almost
D-critical X ′, any definable function g : X ′ → Dn (defined over arbitrary parameters) and any
generic x′ ∈ X we have |[x′]g| ≥ m.

To any generic (a, b) ∈ X ×X we associate a finite subgroup H(a, b) ≤ G, such that generic
fibres of f are both left and right cosets of H(a, b), as follows: By Lemma 4.27 there is some
parameter set B and respective B-generic vicinities X1, X2 of a and b in X , and c ∈ X2 such that
X1 ·X2 ⊆ Xc, and dp-rk(a, b/Bc) = 2n. Let h be the map on X1 ×X2, z 7→ f(z · c−1). Then
X1, X2 and X1 · X2 are m-strongly internal to D, witnessed by f1 = f ↾ X1, f2 = f ↾ X2 and
h, respectively. By minimality of m, [a]f1 = [a]f , [b]f2 = [b]f and [a · b]h′ = [a · b]h, and in
addition (a, b) is generic in X1 ×X2 over Bc. So Lemma 4.31 provides us with a finite subgroup
H(a, b) ≤ G such that [a]f = a ·H(a, b) and [b]f = H(a, b) · b.

We show that H(a, b) does not depend on the choice of (a, b):

Claim 4.34.1. For any (a′, b′) ∈ X2 generic over A, H(a, b) = H(a′, b′).

Proof. By Fact 4.33 there exists a small model N such that everything we used up until now is
defined over N , dp-rk(a, b/N) = dp-rk(a, b) and dp-rk(a′, b′/N) = dp-rk(a′, b′). Using Fact
4.32 we can find (c, d) ∈ X2 such that dp-rk(a, b, c, d/N) = dp-rk(a′, b′, c, d/N) = 4n. Thus,

H(a, b) = a−1 · [a]f = H(a, d) = [d]f · d−1 = H(a′, d) = (a′)−1 · [a′]f = H(a′, b′),

as needed. □ (claim)

Let HX := H(a, b). As, by the claim, [a]f = a ·H(a, b) = H(b, a) · a we conclude that for all
generic a ∈ X , [a]f = a ·HX = HX · a. As HX is an invariant definable set (any automorphism
preserves generic points), it is definable over A. Consequently, setting X ′ = {x ∈ X : [x]f =
HX · x = x ·HX} we have dp-rk(X ′) = n.

As X ′ ⊆ X ⊆ G we may consider the image X ′/HX of X ′ under the natural quotient (viewing
G/HX as a G-space). Because, as we have just shown, [x]f = HXx the function f induces on
X ′/HX an injective function witnessing local D-strong internality of G/HX .

(2) Assume that X0 ⊆ G is any other almost D-set. By Lemma 4.26, there exists X1 ⊆ X0,
dp-rk(X0) = dp-rk(X), such that X0 is contained in a translate gX . It is easy to see that HgX =
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HX , but then HX0 = HX1 = HgX = HX . Thus HX does not depend on the almost D-critical set
X and on the function f . We denote it H .

Any conjugate Xg is also an almost D-set, thus HXg = (HX)g = H , so H is normal.
(3) Let f : G → G/H be the quotient map. Let X ⊆ G be an almost D-critical set in G and

X ′ ⊆ X as in (1). Let Y ⊆ G/H be an almost D-critical set in G/H . As H is finite, f−1(Y ) is
almost strongly internal to D, so dp-rk(Y ) = dp-rk(f−1(Y )) ≤ dp-rk(X) = dp-rk(X ′/H).

On the other hand, the definable set X ′/H is strongly internal so dp-rk(X ′/H) ≤ dp-rk(Y ) by
the choice of Y . It follows that dp-rk(X ′/H) = dp-rk(Y ), so the almost D-critical rank of G/H
must equal its D-critical rank, and they are both equal to the almost D-critical rank of G.

It remains to show that G/H is a D-group (Definition 4.23). So let X1, X2 ⊆ G/H with
X1 strongly internal to D and X2 D-critical. To simplify notation, we assume that everything is
definable over ∅. Let also (g1, g2) ∈ X1 ×X2 be generic. Since the quotient map f : G → G/H
is a group homomorphism with finite fibres taking g′i ∈ f−1(gi) we get that f−1(Xi) is almost
D-strongly internal (for i = 1, 2) and

dp-rk(g′1/g
′
1 · g′2)) = dp-rk(g1/g1 · g2).

Thus, since G is an almost D-group, to show that G/H is a D-group it will suffice to show that
X ′

2 := f−1(X2) is almost D-critical. By what we have just shown dp-rk(X ′
2) = dp-rk(X2) is the

almost D-critical rank of G, and if g : X2 → D witnesses that X2 is D-strongly internal then g ◦ f
witnesses that X ′

2 is |H|-internal to D. The construction of H assures that no subset of G of the
same rank is m-internal to D for m < |H| so that, indeed, X ′

2 is almost D-critical as needed. □

4.7. Maříková’s Method. Definable functions in the distinguished sorts in our various settings
are generically well- behaved. For example, when D is an SW-uniformity, definable functions are
generically continuous, and in some contexts differentiable with respect to an underlying field. In
the P-minimal setting, when D = K/O or Γ, we saw that definable functions are generically given
by translates of endomorphisms. Our aim is to make use of this generically tame behaviour in order
to show that if a group G is locally strongly internal to D then G has a (type) definable subgroup
with similar properties (e.g. topological, differentiable, linear). The argument goes back to Weil’s
group-chunk theorem, first cast in a model theoretic setting independently by v.d. Dries [29] and
Hrushovski [22, Theorem 4.13]. The specific technique used below is due to Maříková, [15] (this
was similarly used in [8]).

For the rest of this subsection, letD be vicinic and letG be a definableD-group which is locally
strongly internal to D.

{R:recalling before Jana}
Remark 4.35. In the following proof we will frequently use some earlier results, for ease we
collect them here.

Assume that X,Y ⊆ G are D-sets over A and let (g, h) ∈ X × Y be A-generic. Then

(1) There exists B′ ⊇ A and a D-set Z over B′ containing gh, such that dp-rk(g, h/B′) =
2dp-rk(X).

(2) For Z ⊆ G a D-set over A and f : X × Y → Z an A-definable function, if f(g, h) is
A-generic in Z, then for every A-generic vicinity V ⊆ Z of f(g, h) there is B2 ⊇ B and
a B2-generic vicinity of (g, h) of the form X1 × Y1 ⊆ X × Y such that f(X1 × Y1) ⊆ V .
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For (1), letX ′, Y ′ andB be as provided by Lemma 4.27. Choose h′ ∈ Y ′ with dp-rk(g, h, h′/B) =
3dp-rk(X) and apply Lemma 4.27 again to conclude that Y ′ · h′ has the desired properties.

For (2), let S ⊆ X × Y be the A-definable set {(x, y) ∈ X × Y : f(x, y) ∈ V }; by assumption
dp-rk(S) = 2dp-rk(X) so we may conclude by Corollary 4.15.

We make the following ad hoc definition:

Definition 4.36. Assume that ā = (a1, . . . , an) ∈ X1 × · · · ×Xn and

F = (F1, . . . , Fm) : X1 × · · · ×Xn → Y1 × . . .× Ym

is an A-definable function.
We say that ā is sufficiently generic for F over A if each Fi is a function of a sub-tuple

(xi1 , . . . , xir) of (x1, . . . , xn) and the corresponding sub-tuple of ā is generic over A.

For example, if dp-rk(a, b/A) = 2dp-rk(G) then the tuple (a, b, a) is sufficiently generic for
the map (x, y, z) 7→ (xy, z).

The main result here is:
{L:Jana1}

Lemma 4.37. Assume that Y ⊆ G is a D-set over A, d ∈ Y an A-generic point, and consider
F (x, y, z) = xy−1z at (d, d, d). There is B ⊇ A, with dp-rk(d/B) = dp-rk(d/A), and there are
B-definable maps ψ1, ψ2, ψ3, ψ4 whose domain and range are D-sets over B, such that

F ↾ dom(ψ1) = ψ4 ◦ ψ3 ◦ ψ2 ◦ ψ1,

Im(ψi) ⊆ dom(ψi+1), and for every i = 0, . . . , 3 (with ψ0 = id) we have ψi ◦ · · · ◦ ψ0(d, d, d)
sufficiently generic for ψi+1, over B. In addition, we may choose dom(ψ1) to be of the form (Y0)

3,
where Y0 is a B-generic vicinity of d.

Proof. Assume that dp-rk(Y ) = n. Fix b ∈ Y such that dp-rk(d, b/A) = 2n. We first use
an auxiliary variable w and write G(w, x, y, z) = xy−1z as a composition of the following four
functions:

φ1(w, x, y, z) = (w,wx, y−1, z) ; φ2(w, x, y, z) = (w, xy, z)

φ3(w, x, y) = (w−1, xy) ; φ4(x, y) = xy.

A direct computation shows that φ4 ◦ φ3 ◦ φ2 ◦ φ1(w, x, y, z) = xy−1z, and we have

φ1(b, d, d, d) = (b, bd, d−1, d) ; φ2φ1(b, d, d, d) = (b, b, d) ; φ3φ2φ1(b, d, d, d) = (b−1, bd).

We now need to restrict the domain and range of the φi to appropriate D-sets so that Im(φi) ⊆
dom(φi+1), and for each i = 0, . . . , 3, φi ◦ · · · ◦φ0(b, a, a, a) is sufficiently generic for φi+1, over
the defining parameters.

In order to ensure that for each i, Im(φi) ⊆ dom(φi+1), we start from φ4 and work backwards.
• By Remark 4.35 (1), there is B1 ⊇ A and a D-set Z over B1, containing bd, such that
dp-rk(b, d/B1) = 2n.

• By Remark 4.35 (2), there is B2 ⊇ B1 and a B2-generic vicinity Y −1
1 × Z1 ⊆ Y −1 × Z,

of (b−1, bd) such that Y −1
1 · Z1 ⊆ Y .

• Again, by Remark 4.35 (2), there is B3 ⊇ B2 and B3-generic vicinity Y2 × Y3 ⊆ Y × Y
of (b, d) such that Y2 · Y3 ⊆ Z1.
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• Similarly, there is B4 ⊇ B3 and a B4-generic vicinity Z1 × Y −1
5 ⊆ Z × Y −1 of (bd, d−1)

such that Z1 · Y −1
5 ⊆ Y2.

• Finally, there is B ⊇ B4 and a B-generic vicinity Y6 × Y7 ⊆ Y × Y of (b, d) such that
Y6 · Y7 ⊆ Z1. Furthermore, we may assume that Y6 ⊆ Y1.

We now restrict the φi to the appropriate domains and obtain:

φ1 : Y6 × Y7 × Y5 × Y3 → Y6 × Z1 × Y −1
5 × Y3 ; φ2 : Y6 × Z1 × Y −1

5 × Y3 → Y6 × Y2 × Y3,

φ3 : Y6 × Y2 × Y3 → Y −1
6 × Z1 ; φ4 : Y

−1
6 × Z1 → Y.

(for φ4, we used the fact that Y6 ⊆ Y1).
The appropriate tuples are sufficiently generic for the φi, since all coordinate functions are ∅-

definable, and we chose the Zi and Yj , so that the points remain generic in them.
We can now write xy−1z as ψ4 ◦ ψ3 ◦ ψ2 ◦ ψ1, where

ψ1(x, y, z) = φ1(b, x, y, z) ; ψ2(x, y, z) = φ2(b, x, y, z) ; ψ3(x, y) = φ3(b, x, y) ; ψ4(x) = φ4(b
−1, x).

It is easy to verify that (d, d, d) satisfies the requirements.
To obtain dom(φ1) of the form Y 3

0 , we may take Y0 = Y7 ∩ Y5 ∩ Y3. □

5. INFINITESIMAL GROUPS
{S:infint groups}

In the present section we develop the notion of infinitesimal subgroups for groups locally strongly
internal to a vicinic sort D. This generalises analogous results from [8] in the context of SW-
uniformities. Since in the present context we do not have an underlying topology we have to start
by developing the notion of infinitesimal vicinities. The notation and terminology are intended to
maintain the topological intuition.

As above M is a |T |+-saturated structure, D a vicinic sort and G a definable D-group of finite
dp-rank locally strongly internal to D.

5.1. Infinitesimal vicinities.

Definition 5.1. Let Z ⊆ G be a D-set over A and d ∈ Z an A-generic point. The the infinitesimal
vicinity of d in Z, denoted νZ(d), is the partial type consisting of all B-generic vicinities of d in Z,
as B varies over all small parameter subsets of M.

We think of νZ(d) both as a collection of formulas and a set of realization of the partial type in
some monster model.

{R:generic sets; enough to take containing A}
Remark 5.2. In the definition of νZ(d) there is no harm in restricting to B-generic vicinities for
B ⊇ A. Indeed, if X is any B-generic vicinity of d in Z then by Lemma 4.13 there exists C ⊇ A
and a C-generic vicinity X1 ⊆ X of d such that dp-rk(d/A) = dp-rk(d/C).

By Lemma 4.20 and Remark 5.2, we have:
{L:generic sets form filter base}

Lemma 5.3. The collection of definable sets νZ(d) is a filter base, namely if X,Y ∈ νZ(d) then
there exists W ⊆ X ∩ Y in νZ(d).

For the following recall that by Remark 4.19(2), a cartesian product of D-sets is a D-set.
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{L:product of nu}
Lemma 5.4. If Z1, Z2 ⊆ G are D-sets over A and (d1, d2) ∈ Z1 × Z2 is A-generic then
νZ1×Z2(d1, d2) = νZ1(d1)× νZ2(d2).

Proof. That νZ1×Z2(d1, d2) ⊣ νZ1(d1)× νZ2(d2) follows from Corollary 4.15.
For the other direction let Xi ⊆ Zi be Bi-generic vicinities of di in Zi, for i = 1, 2. By Lemma

4.13, twice, we first find B ⊇ A and a B-generic vicinity X ′
1 ⊆ X1 of d1 with dp-rk(d1, d2/B) =

dp-rk(d1, d2/A), and thenC ⊇ B and aC-generic vicinityX ′
2 ⊆ X2 of d2 with dp-rk(d1, d2/C) =

dp-rk(d1, d2/B). Thus X ′
1 ×X ′

2 is a C-generic vicinity of (d1, d2) in Z1 × Z2, as needed. □

The next lemma provides a substitute for generic continuity of definable functions:
{L:definable functions to generics preserve infinit types}

Lemma 5.5. Assume that G1, G2 are D-groups over A, Zi ⊆ Gi are D-sets for Gi over A (i =
1, 2), and f : Z1 → Z2 is an A-definable function. If c is A-generic in Z1 and f(c) is A-generic in
Z2 then f(νZ1(c)) ⊢ νZ2(f(c)).

Proof. Let Y ⊆ Z2 be a B-generic vicinity of f(a) in Z2. Because c is A-interalgebraic with
some element of Dn (some n) we apply Lemma 4.13 to f(c) to conclude that there is C ⊇ A
and a C-generic vicinity Y ′ ⊆ Y of f(c), such that dp-rk(c, f(c)/A) = dp-rk(c, f(c)/C). Since
f(c) ∈ dcl(c), it follows from sub-additivity of dp-rank that: dp-rk(c/A) ≤ dp-rk(f(c)/C, c) +
dp-rk(c/C) ≤ dp-rk(c/A), hence f−1(Y ′) is a C-generic vicinity of c in Z1.

It follows that f(νZ1(c)) ⊢ νZ2(f(c)). □

As a final result, we show that the above definition of νD(G) agrees with the definition given in
[8] when the definable set is strongly internal to an SW-uniformity.

{P: generic neighbourhoods in SW}
Proposition 5.6. Assume that D is an SW-uniformity. Let Z ⊆ G be a D-set over A and let
g : Z → Dm be a definable injection witnessing it. For any A-generic d ∈ Z the partial type
νZ(d) is equivalent to

{g−1(U) : U ⊆ Dm open M -definable containing g(d)}.

Proof. Let g(d) ∈ U ⊆ Dm be open and definable over some B ⊇ A. By [8, Proposition 3.12]
there is some g(d) ∈ V ⊆ U open, definable over C ⊇ A with dp-rk(g(d)/C) = dp-rk(g(d)/A);
thus d ∈ g−1(V ).

For the other inclusion, let Y ∈ νZ(d) beB-definable for someB ⊇ A. LetX := g(Y ) ⊆ g(Z)
be B ⊇ A definable with g(d) ∈ X and dp-rk(d/B) = dp-rk(Z). By [8, Corollary 4.4], g(d)
is in the relative interior of X in g(Z) so there is some open U ⊆ Dm definable over B such that
g(d) ∈ U ∩X ⊆ g(Z). I.e., g−1(U ∩X) ∈ νZ(d) and g−1(U ∩X) ⊆ Y , as required. □

5.2. Groups of infinitesimals vicinities. We are finally ready to introduce infinitesimal subgroups,
associated with D-subsets of definable groups. Recall that throughout G is a D-group. First,
we show that the infinitesimal vicinities constructed in the previous section are cosets of a type-
definable subgroup:

{L:generic vicinities are cosets}
Lemma 5.7. If X,Y ⊆ G are D-sets over A and (c, d) ∈ X × Y is A-generic then

c · νY (d) = νX(c) · νY (d) = νX(c) · d.
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In particular, νX(c) and νY (d) are right and left cosets, respectively, of the same group: νY (d)d−1 =
c−1νX(c).

Proof. Let n = dp-rk(X) = dp-rk(Y ). By Remark 4.35, there areB ⊇ A, andX1×Y1 ⊆ X×Y ,
a B-generic vicinity of (c, d), and Z ⊆ G, a D-set over B containing c · d such that X1 · Y1 ⊆ Z
and dp-rk(c, d/B) = 2n. We fix Z, and by Lemma 5.3 we may assume that X = X1, Y = Y1.
For simplicity assume that A = B = ∅.

Let us see that c · νY (d) = νZ(cd):
The function y 7→ c · y takes Y into Z, thus, since d is generic in Y over c and cd is generic in

Z over c, it follows from Lemma 5.5 that c · νY (d) ⊆ νZ(cd). The map z 7→ c−1z takes cY ⊆ Z
into Y . It follows from Lemma 5.5 again that c−1 · νcY (cd) ⊆ νY (c). However, cY ⊆ Z is a
c-generic vicinity of cd in Z and we have νcY (cd) = νZ(cd), so c−1νZ(cd) ⊆ νY (d), and we have
c · νY (d) = νZ(cd). Similarly, we have νX(c) · d = νZ(cd), hence we can conclude

c · νY (d) = νZ(cd) = νX(c) · d.

Now consider the definable function (x, y) 7→ x · y. By Lemma 5.5, it maps νX(c)× νY (d) into
νZ(cd), i.e. νX(c) · νY (d) ⊆ νz(cd). By the above we conclude that νX(c) · νY (d) = νZ(cd), and
thus

c · νY (d) = νX(c) · νY (d) = νX(c) · d.
That both νX(c) and νY (d) are cosets of the same group now follows from Fact 4.30. □

We can finally prove the main results concerning infinitesimal groups in D-sets.
{P: nu}

Proposition 5.8. Let G be a D-group locally strongly internal to D.

(1) Assume that X ⊆ G is a D-set over A, then for every A-generic a, b ∈ X , we have
νX(a)a−1 = νX(b)b−1 = a−1νX(a). Call this group νX .

(2) If X,Y ⊆ G are D-sets over A then νX = νY , and we can call it ν = νD(G).
(3) For any g ∈ G(M) we have gνg−1 = ν.

Proof. Let n = dp-rk(X).
(1) By Fact 4.32, we find c ∈ X such that dp-rk(a, c/A) = dp-rk(b, c/A) = 2n. Apply-

ing Lemma 5.7 to (a, b) and (a, c) we have νX(a)a−1 = c−1νX(c) = νX(b)b−1, so the group
νX(a)a−1 does not depend on the choice of an A-generic point in X . Similarly, the group
a−1νX(a) does not depend on the choice of a.

Applying this now to a and c with dp-rk(a, c/A) = 2n. we see that νX(a)a−1 = c−1νX(c) =
a−1νX(a), and we may now denote this group by νX .

(2) It follows from Lemma 5.7 that if X,Y are two D-sets then νX = νY .
(3) Let g ∈ G(M) and X be any D-set; say over some A with A ∋ g. Let d ∈ X be such that

dp-rk(d/A) = n, so dp-rk(g · d/A) = n as well. The function x 7→ gx sends X to gX , that is
also a D-set, and by Lemma 5.5, it sends νX(d) to νgX(gd). Hence,

gνg−1 = gνX(d)d−1g−1 = νgX(gd)(gd)−1 = ν,

as needed. □



ON GROUPS INTERPRETABLE IN VARIOUS VALUED FIELDS 37

5.3. The case of D locally linear.

Definition 5.9. A vicinic definable setD is locally linear if it expands an abelian group (D,+) and
for any parameter set A, A-definable partial function f : Dn → D and A-generic a ∈ dom(f),
there exists B ⊇ A, a B-generic vicinity X of a in dom(f) and a definable endomorphism λ :
Dn → D such that f ↾ X = (λ(x− a) + f(a)) ↾ X .

{E:examples of loc linear}
Fact 5.10. The following are locally linear:

(1) The sort K/O, where K is either a V-minimal or power bounded T -convex valued field is
locally linear-see [8, Section 6.3, Proposition 6.16]. Recall that in this setting, K/O is an
SW-uniformity.

(2) IfD is either a pure ordered abelian group or a pure ordered vectors space over an ordered
field then it is locally linear (see [4, Corollary 1.10], and [32, Chapter 1, Corollary 7.6]).
In particular, the value group Γ is locally linear in all of the above valued fields.

(3) The sort K/O, where K is a p-adically closed field, is locally linear (by Corollary 3.34).
{P:infini_vicinity- def iso to subgroup}

Proposition 5.11. LetD be a locally linear vicinic definable set andG a definableD-group, locally
strongly internal to D. Then there exists a definable group isomorphism between the associated
type definable ν ⊆ G and a type-definable subgroup of (Dr,+) for some natural number r.

Proof. Fix X ⊆ G a D-set over some parameter set A and d ∈ X generic over A. Without
loss of generality, X ⊆ Dr has minimal fibres. Write F (x, y, z) = xy−1z around (d, d, d) as a
composition of four maps, as provided by Lemma 4.37, i.e. we find B ⊇ A, Y0 ⊆ D a B-generic
vicinity of d and B-definable maps ψ1, . . . , ψ4 such that F ↾ (Y0)

3 = ψ4 ◦ ψ3 ◦ ψ2 ◦ ψ1 and
ψi ◦ · · · ◦ ψ1(d, d, d) is sufficiently generic for ψi+1. Therefore ψi+1 is a translate of a definable
endomorphism in a vicinity of ψi ◦ · · · ◦ψ1(d, d, d). We can thus find a C-generic vicinity Y1 ⊆ Y0
of d such that F takes values in X and equals on Y 3

1 to λ(x − d, y − d, z − d) + d for some
(D,+)-endomorphism λ.

Since d = F (x, d, d) = λ(x − d, 0, 0) + d, we have λ(x − d, 0, 0) = x − d for any x ∈ Y1.
Similarly, λ(0, 0, z−d) = z−d for any z ∈ Y1. Since F (x, x, d) = d it follows that λ(0, y−d, 0) =
d − y for any y ∈ Y1. As λ is additive we conclude that λ(x − d, y − d, z − d) = x − y + z − d
on Y1; thus

F (x, y, z) = xy−1z = (x− d)− (y − d) + (z − d) + d = x− y + z.

Since, by Proposition 5.8, νX(d) is a coset of a subgroup of G it is closed under F ; therefore
it is also closed under x − y + z. It follows that νX(d) is a coset of a subgroup of (Dr,+). The
function x 7→ (x ·G d)−D d. is an isomorphism of the groups νX(d) · d−1 and νX(d)− d. Hence,
νD(G) is isomorphic to a type definable subgroup of ⟨Dr,+⟩. □

A similar proof gives the following:
{P:def group into K/O}

Proposition 5.12. Let K = (K, v, . . . ) be an expansion of valued field that is either V-minimal,
power-bounded T-convex or p-adically closed and set D = K/O. Let G be a definable D-group.
Then there is a definable subgroup G1 ≤ G that is D-critical and definably isomorphic to a
definable subgroup of (K/O)r, for some natural number r.
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Proof. By Fact 5.10, D is a locally linear vicinic sort. We start as in Proposition 5.11: fix some
B-generic d is some B-definable D-set Y0 ⊆ G such that after identifying Y0 with a subset of Dr,
xy−1z coincides with x− y + z − d on (Y0)

3. We identify Y0 with a subset of Dr

We claim that Y0 may be taken to be of the form d + H for some definable subgroup H of
(K/O)r. If K is p-adically closed, this is Lemma 3.32. When D is an SW-uniformity (i.e. when
K is V-minimal or power-bounded T -convex) we proceed as follows:

By Fact 4.33, there is exists K0 ≺ K, containing C, with dp-rk(d/K0) = dp-rk(d/C). By [26,
Proposition 4.6] (and using Lemma 4.37 again) we may further assume that r = dp-rk(d/K0).
By [8, Proposition 3.12], by passing to a definable subset, we may assume that Y0 is a C ′-generic
vicinity of d in Dr for some C ′ ⊇ K0. Since d is in the interior of Y0 there exists a ball around 0,
B0 ⊆ Dr such that d+B0 ⊆ Y0; so take H = B0 (and thus Y0 = d+H).

As a result (Y0)3 is closed under the function x − y + z hence also under the function xy−1z.
It follows that Y0d−1 is a subgroup, G1 ≤ G, and hence Y0 = G1d = H + d, and the function
x 7→ (x ·G d)−D d is a group isomorphism between G1 and H . □

5.4. The case of D an SW-uniformity. Although some of the results in this section can probably
be proved in a higher level of generality, we restrict to the case where D is an SW-uniformity.
Recall that every SW-uniformity is vicinic and that every definable group locally (almost) strongly
internal to D is an (almost) D-group; consequently the results of the previous sections hold in this
setting.

Let D be an SW-uniformity, definable in M. By Proposition 5.6, we may use the definition of
the infinitesimal group ν as given in [8], i.e., the intersection of all definable open neighbourhoods
of 0.

{P:nu-topological}
Proposition 5.13. Let G be a definable group, Y ⊆ G a D-critical subset, witnessed by a function
f : Y → Dn, all definable over some A. Fix some A-generic c ∈ Y and M̂ ≻ M, an |M |+-
saturated model.

(1) The weak topology induced by x 7→ f(x · c) on ν(M̂) turns it into a topological group.
(2) The topology on ν obtained in the previous clause does not depend on the choice of the

D-critical set Y , the function f , or the choice of the point c.
(3) (i) For every g ∈ G(M̂) there is an open V ⊆ ν(M̂) such that V ⊆ ν(M̂)g ∩ ν(M̂).

(ii) For every g ∈ G(M̂), the function x 7→ xg = gxg−1, from ν(M̂) into ν(M̂)g, is
continuous at e with respect to topology on ν(M̂).

Proof. (1) By Fact 4.33, we may assume that A is a model so by [26, Proposition 4.6] we may
further assume that dp-rk(Y ) = n and that Y ⊆ Dn is open. Since in SW-uniformities every
definable function is generically continuous ([26, Proposition 3.7]), and continuity is preserved
under composition, we can, as in Proposition 5.11, find C ⊇ A with dp-rk(c/C) = dp-rk(c/A)
and a C-definable open subset Y0 ⊆ Y containing c such that F (x, y, z) = xy−1z takes values
in Y and is continuous on (Y0)

3. We have ν = νY (c)c
−1, and thus the pullback, under the map

x 7→ x · c, of the topology on Y endows ν with a topology. It is a group topology since (x, y) 7→
xc−1yc−1c = xc−1y is continuous and so is x 7→ (xc−1)−1c = cx−1c.
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(2) The injection f : Y → Dn endows Y with a definable topology and by [8, Lemma 4.6], this
topology at every A-generic point of Y does not depend on f , call it τY . Thus, we may assume
that Y ⊆ Dn.

Now, given an A-generic c in Y , the above construction endows ν(M̂) with a group topology,
call it τY,c, for which, by definition, the map x 7→ xc is a homeomorphism between (ν(M̂), τY,c)

and (νY (c)(M̂), τY ).
Similarly, if X is any other D-critical set, with d an A-generic in X then the map x 7→ xd en-

dows ν(M̂) with a group topology τX,d which is homeomorphic, via x 7→ xd, to (νX(d)(M̂), τX).
By replacing A by a small model N containing it (see [8, Lemma A.1]), and applying Fact 4.32,
we may assume that dp-rk(c, d/N) = dp-rk(X × Y ).

Thus, the map x 7→ x · (c−1d) is a bijection of νY (d) and νX(c), defined over Nc−1d. Since c
is generic in X over Nc−1d (by Lemma 4.22), the map is a homeomorphism of (νY (c)(M̂), τY )

and (νX(d)(M̂), τX). This shows that τY,c = τX,d.
(3) Let Y be a D-critical set over A, witnessed by some f : Y → Dn and assume e ∈ Y . Recall

that
ν =

⋂
{V : V ∈ τY,f with e ∈ V }.

By Proposition 5.8(3), ν is invariant under conjugation by g ∈ G(M), thus by compactness, for
every U ∈ τY,f with e ∈ U there exists V ∈ τY,f with e ∈ V such that gV g−1 ⊆ U . Since this
statement is first order it also holds of any g ∈ G(M̂) and U an M̂ -definable open basic open set
containing 0. This gives (i) and (ii). □

Using these result we may endow G with a definable group topology.
{C: G locally SW impplies SW}

Corollary 5.14. Let G be a definable group locally strongly internal to D.
(1) The group G has a definable basis for a topology, making G a non-discrete Hausdorff

topological group.
(2) If G is dp-minimal then it is an SW-uniformity.

Proof. (1) Apply Proposition 5.13(3) with Lemma 2.8 to conclude that G(M̂) has a uniformly
definable basis of neighbourhoods of the identity e ∈ G(M̂), for M̂ ≻ M an |M |+-saturated
extension. Since this is first order and G is definable, the same holds for G = G(M). Since D is
an SW-uniformity it has no infinite definable discrete sets, so – in particular – the topology on ν,
and therefore also on G is non-discrete.

(2) Since the topology is a non-discrete group topology it has no isolated points and is automat-
ically uniform by construction. So we only have to check that every definable infinite subset of G
contains a definable open set.

Let S ⊆ G be a definable infinite set and let Y ⊆ G be D-critical set. By Lemma 4.26, there
exists g ∈ G with S ∩ gY infinite. Since gY is strongly internal to D and D is an SW-uniformity,
there exists a definable open subset of S ∩ gY ⊆ S, as required. □

6. THE CASE OF A STRONGLY MINIMAL D
{S: lsi to k}

We consider in this section the case where some infinite definable subset of a definable group G
is almost strongly internal to a strongly minimal set.
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We fix a sufficiently saturated (possibly multi-sorted) structure M and a definable strongly min-
imal set F . We assume further that F is stably embedded and eliminates imaginaries.

We observe:
{C:cor for asi to k}

Lemma 6.1. Assume that G is a definable group in M of finite dp-rank. If X1, X2 ⊆ G are
(almost) F -critical then so is X1 ·X2.

Proof. Since X1 and X2 are both (almost) strongly internal to F , so is X1 × X2, and because
F eliminates imaginaries, it follows from Lemma 4.3, that X1 · X2 is also (almost) F -strongly
internal. Since dp-rk(X1 · X2) ≥ dp-rk(X1), if X1, X2 are (almost) F -critical then equality of
the ranks follows. □

Recall that in a any strongly minimal definable set, the dp-rank and Morley rank coincide. Fur-
thermore, in the following we will repeatedly use the fact that if f : X → Y is a finite-to-one
definable functions then RM(f(X)) = RM(X).

{P: si to sm}
Proposition 6.2. LetG be a definable group of finite dp-rank in M, locally almost strongly internal
to F . Then there exist a definable normal subgroup H ⊴ G and a definable finite normal H0 ⊴ H ,
such that

(1) H is almost F -critical.
(2) H/H0 is strongly internal to F .

Proof. Let Y ⊆ G be almost F -critical with dp-rk(Y ) = n. Because F is strongly minimal
this implies that RM(Y ) = n and by replacing Y with a subset, we may assume that its Morley
degree is 1. Note that the Morley rank of subsets of Y is definable in parameters, since Y is almost
strongly internal to a strongly minimal definable set and so the latter eliminates ∃∞ and Morley
rank is given by acl-dimension.

Define a relation E on G:

g E h⇐⇒ RM(Y g ∩ Y h) = n.

Notice that RM(Y g ∩ Y h) = RM(Y ∩ Y hg−1), and hence it follows from the definability of
RM that E is definable (one can also use the fact that the generic type of Y is definable). Since
DM(Y ) = 1, E is an equivalence relation on G, which is moreover right-invariant under G.
Furthermore, the E-class of the identity element e, call it H , is closed under group inverse. Thus,
H is a definable subgroup of G. Notice that if Y g ∩ Y ̸= ∅ then g ∈ Y −1Y , hence H ⊆ Y −1Y .

Claim 6.2.1. H is almost strongly internal to F , RM(H) = n and H is connected and normal in
G.

Proof. By Lemma 6.1, Y −1Y is almost strongly internal to F so has finite Morley rank. By the
maximality assumption on RM(Y ), we have RM(Y −1Y ) = n (it is clear that n = RM(Y ) ≤
RM(Y −1Y )), hence RM(H) ≤ n. We similarly have RM(Y · Y ) = n.

To see that RM(H) = n, we let k = DM(Y · Y ). Notice first that g1 E g2 if and only if
Hg1 = Hg2. Now, for g1, g2 ∈ Y , we have RM(Y g1) = RM(Y g2) = n. If ¬(g1 E g2), then
RM(Y g1 ∩ Y g2) < n, but since the Morley degree of Y Y is k, there can be at most k different
E-classes intersecting Y , so Y is covered by at most k-many right cosets of H . It follows that
there is some g0 ∈ Y such that RM(Hg0 ∩ Y ) = n. In particular, RM(H) = n. The group H is
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connected because DM(Y ) = 1. Indeed, if H1 was a subgroup of finite index of H then one of
H-cosets of H1 will contain Y g−1

0 up to a set of smaller rank, contradicting the definition of H .
It is left to see that H is normal in G. Indeed, if Hg ̸= H for some g ∈ G then, since H is

connected, it follows that [H : Hg ∩H] is infinite, and therefore the set HgH , which by Lemma
6.1is almost strongly internal to F , contains infinitely many pairwise disjoint right cosets of Hg. It
follows that RM(HgH) > n, contradicting the maximality of n. □ (claim)

It is left to find the desired finite H0. We have so far shown that H is almost strongly internal to
a stably embedded set F , thus by the work of Hrushovski-Rideau, [12, Lemma 2.25], there exists
a finite normal subgroup H0 ≤ H such that H/H0 is internal to F . As F eliminates imaginaries,
H/H0 is strongly internal to F . □

7. THE MAIN THEOREMS
{S: final}

In this section we apply the results obtained in the previous sections to study groups interpretable
in some dp-minimal valued fields. We start with a lemma on definable groups in a slightly more
general context: we show that groups definable in a dp-minimal field, K, of characteristic 0 have
unbounded exponent, under the additional assumption that definable functions are generically dif-
ferentiable (e.g., if K is 1-h-minimal).

The idea for the proof of the next lemma is of S. Starchenko:
{L: no tor}

Lemma 7.1. Let K be a sufficiently saturated SW-uniform structure expanding a field of charac-
teristic 0 with generic differentiability.

(1) If G is an infinite interpretable group locally strongly internal to K then G is a D-group
for D = K and the associated type-definable subgroup νD(G) is torsion-free.

(2) If G is locally almost strongly internal to K then G has unbounded exponent.

Proof. Since K is an SW-uniformity it is vicinic (Fact 4.6), and thus if G is almost locally strongly
internal to D = K it is an almost D-group (Lemma 2.6 and Corollary 4.22). By Proposition 4.34
there is a finite normal subgroup H ≤ G such that G/H is locally strongly internal to K. If G/H
has unbounded exponent then so does G. So it suffices to prove the former. Hence, replacing G
with, G/H Clause (2) follows from Clause (1).

For (1), since K is an SW-uniformity and G is locally strongly internal to K, it is a D-group
(Fact 4.25(1)). Let ν := νK(G) as provided by Proposition 5.8, K̂ ≻ K some |K|+-saturated
extension. As in [8, Proposition 4.19], we endow ν(K̂) with a differential group structure that we
identify with a type-definable group in Km(K̂) for some integer m.

Let λ(x, y) be the multiplication map on ν := ν(K̂). It follows easily from the chain rule that
the differential of λ at (e, e), as a map from the tangent space at (e, e) of ν × ν into Te(ν), is
x + y. Thus, for any n ∈ N, the K-differential of the n-fold multiplication λn(x) mapping x to
λ(x, λ(x, λ(. . . λ(x, x) . . . ) equals to nId, where Id is the identity (matrix or differential). Since
char(K) = 0, nId is an invertible linear map. By the very definition of the derivative, this means
that there exists an open neighbourhood U of e, such that λn(x) = xn ̸= e for all x ∈ U . Since
it is a first-order property, we can take U to be K-definable. As ν(G) is the intersection of all
K-definable open neighbourhoods of e, xn ̸= e for all n and any x ∈ ν(K̂), as claimed. □
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7.1. Power bounded T-convex valued fields. Let K = (K, v, . . . ) be a T-convex valued field
expanding a power bounded o-minimal field which we assume to be one sorted. By naming one
constant c /∈ O we may assume that K has definable Skolem functions. We assume that K is
sufficiently saturated.

We first need the following results.
{F:dp-min unbounded is abelian-by-finite}

Fact 7.2. Assume that M is a structure such that every dp-minimal group interpretable in M has
unbounded exponent then every such group is abelian by finite.

Proof. By [23, Proposition 3.1] a dp-minimal group G has a normal abelian subgroup H such
that G/H has bounded exponent. Our assumption implies that G/H is finite, with the desired
conclusion. □

{L:l.s.i to one dist sorts in tconvex}
Lemma 7.3. Every infinite set interpretable in K is locally strongly internal to one of the distin-
guished sorts.

Proof. Let G = X/E be an infinite interpretable set, where X ⊆ Kn. By [8, Lemma 5.10
and Proposition 5.5] there exists an infinite definable subset S ⊆ G in definable bijection with
an infinite definable subset of K/E′, and a definable finite-to-finite correspondence between S
and one of K, K/O, k or Γ. By weak o-minimality each E′-equivalence class is a finite union
of convex sets. By replacing E′ with the equivalence relation E′′, choosing the first component
in each E′-class, we may assume that E′ is a a convex equivalence relation. Thus S is linearly
ordered (and weakly o-minimal), in particular it eliminates finite imaginaries in the sense of [8,
Section 4.7]. As each of the sorts K, K/O, k or Γ is an SW-uniformity, the result follows by [8,
Lemma 4.28]. □

{T:groups in tconvex}
Theorem 7.4. Let G be an infinite group interpretable in K and K̂ a |K|+-saturated elementary
extension. Then G has unbounded exponent and a type-definable infinite subgroup ν satisfying one
of the following:

(1) ν is definably isomorphic to an infinite type-definable group in K and ν(K̂) carries the
structure of a differential group with respect to K.

(2) ν is definably isomorphic to an infinite type-definable group in k and ν(K̂) carries the
structure of a differential group with respect to k.

(3) ν is definably isomorphic to a type-definable subgroup of (Γr,+) for some integer r.
(4) There exists an infinite definable subgroup H ≤ G definably isomorphic to a subgroup of

((K/O)r,+) for some integer r.
Moreover, if G is dp-minimal then G is abelian-by-finite.

Proof. Let G be in an infinite interpretable group. By Lemma 7.3, G is locally strongly internal to
D where D is one of the distinguished sorts. By Fact 4.6, every such D is vicinic and by Fact 4.25,
G is a D-group.

If D = K or D = k then let ν := νK(G) (or νk(G)). As in [8, Proposition 4.19], we may
endow ν(K̂) with a structure of a differential group. By Lemma 7.1, G has unbounded exponent.
This shows (1) and (2).

If D = Γ then D is locally linear by Fact 5.10 and [31, Theorem B] so (3) follows from
Proposition 5.11. In this caseG has unbounded exponent since every subgroup of Γ is torsion-free.
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IfD = K/O then (4) follows by Proposition 5.12. In this caseG has unbounded exponent since
obviously every subgroup of K/O is torsion-free.

Finally, since as we have just shown, every infinite group interpretable in K has unbounded
exponent, if G is dp-minimal then G is abelian-by-finite by Fact 7.2. □

As we shall see later (Corollary 7.16), if G is dp-minimal then exactly one of (1), (2), (3), (4)
holds.

7.2. V-minimal valued fields. Let K = (K, v, . . . ) be a sufficiently saturated V-minimal valued
field. We need the following result, appearing implicitly in [8]:

{L:from correspondece to lasi in vminimal}
Lemma 7.5. Assume thatX and Y are infinite sets definable in some |T |+-saturated (multi-sorted)
structure M and C ⊆ X × Y a definable finite-to-finite definable correspondence. If Y is either a
field or supports an SW-uniform structure then X is locally almost strongly internal to Y .

Proof. It is not hard to show (see the first part of the proof of [8, Lemma 4.28] for the details)
that if Y eliminates finite imaginaries (in the sense of [8, Section 4.7]) then any finite-to-finite
correspondence C ⊆ X × Y gives rise to a definable finite-to-one function f : X ′ → Y for some
infinite definable X ′ ⊆ X . This gives the desired conclusion if Y is a field.

Assume now that Y supports an SW-uniform structure. For x ∈ X and y ∈ Y denote

Cx = {y ∈ Y : (x, y) ∈ C}, Cy = {x ∈ X : (x, y) ∈ C}

and note that by ℵ0-saturation, |Cx| is uniformly bounded.
Assume everything is definable over some parameters set A and let d ∈ Y with dp-rk(d/A) =

dp-rk(Y ) = 1. Since Cd is finite so is (Cd)−1, where (Cy)−1 := {y ∈ Y : y ∈ Cx, x ∈ Cy}.
Since the topology on the SW-uniformity is Hausdorff, we can find a relatively open subset of Y ,

U ∋ d with (Cd)−1 ∩ U = {d}. By [8, Proposition 3.12] there is some B ⊇ A and a B-definable
open neighbourhood U0 ⊆ U with d ∈ U0 and dp-rk(d/B) = dp-rk(d/A) = 1.

Let Y ′ = {y ∈ U0 : |(Cy)−1 ∩ U0| = {y}}; it is C-definable and as d ∈ Y ′, it has dp-rank 1.
Consider C ′ = {(x, y) ∈ X × Y ′ : (x, y) ∈ C}. It is still a finite-to-finite correspondence and

we claim that for any x ∈ X , |C ′
x| = 1. Indeed, if y ∈ C ′

x then by definition y ∈ (Cy)−1 so it
follows that |C ′

x| = 1 by the definition of Y ′.
It follows that C ′ gives a finite-to-one definable map between X and Y ′. □

{C:l.a.s.i to one dist sorts in vminimal}
Corollary 7.6. Every infinite set interpretable in K is locally almost strongly internal to one of the
distinguished sorts.

Proof. Let G = X/E be an infinite intrepretable set, where X ⊆ Kn. By [8, Proposition 5.6
and Proposition 5.5] there exists an infinite definable subset S ⊆ G, in definable bijection with an
infinite definable subset of K/E′, and a definable finite-to-finite correspondence between S and
and either K, K/O, k or Γ. Since each of these sorts is either a field or an SW-uniformity we can
conclude by Lemma 7.5. □

{T: groups in vminimal}
Theorem 7.7. Let G be an infinite group interpretable in K, and K̂ a |K|+-saturated elementary
extension. Then G has unbounded exponent and there exists a finite normal subgroup H ⊴ G such
that G/H has a type-definable infinite subgroup ν satisfying one of the following:
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(1) ν is definably isomorphic to a type-definable subgroup in K and ν(K̂) carries the structure
of a differential group with respect to K.

(2) There exists an infinite definable subgroup H ′ ≤ G/H definably isomorphic to a k-
definable. In particular, H ′ is a k-algebraic group.

(3) ν is definably isomorphic to a type-definable subgroup of (Γr,+) for some integer r.
(4) There exists an infinite definable subgroup H ′ ≤ G/H definably isomorphic to a subgroup

of ((K/O)r,+) for some integer r.
Moreover, if G is dp-minimal then G is abelian-by-finite.

Proof. Let G be in an infinite interpretable group. By Corollary 7.6, G is locally almost strongly
internal to D where D is one of the distinguished sorts.

Assume first that D = k. By Proposition 6.2, there exists definable subgroups H ⊴ H1 ⊴ G,
where H is finite and H1/H is strongly internal to k. Since k is a stably embedded algebraically
closed field, H1/H is k-algebraic ([21]) and we take H ′ = H1/H .

It is well known that every algebraic group over an algebraically closed field of characteristic 0
has unbounded exponent. This finishes the proof in case D = k.

We assume that G is locally strongly internal to one of Γ, K or K/O. By Fact 4.6, each of those
is vicinic and by Fact 4.25, G is an almost D-group (for a suitable D). Thus, there are H ⊴ G, a
finite normal subgroup as provided by Proposition 4.34 and ν the type definable subgroup of G/H
as in Proposition 5.8.

Since Γ is a pure ordered vector space it is locally linear. From this point the proof of Theorem
7.4 goes through verbatim for the above three sorts.

Finally, if G is dp-minimal then by what we have just shown and Fact 7.2, G is abelian-by-
finite. □

As we shall see later (Corollary 7.16), if G is dp-minimal exactly one of (1), (2), (3), (4) holds.

Remark 7.8. It may be worth pointing out that Theorem 7.7 is wrong in ACVFp,p: interpretable
groups (and even definable ones) need not have unbounded exponent, and as shown by Simonetta
[27] dp-minimal such groups need not be abelian-by-finite. Our methods do carry us a long way
in ACVFp,p (as well as in ACVF0,p), and the failure of our main results in this case seems local.
More explicitly, Lemma 7.5 holds in any C-minimal valued field, and so do [8, Proposition 5.5,
Proposition 5.6]. Since all the distinguished sorts in the C-minimal case are either fields or SW-
uniformities, Corollary 7.6 goes through to assure that and group interpretable in ACVFp,p or
ACVF0,p is almost locally strongly internal to one of the distinguished sorts. Thus, interpretable
groups are almost D-groups for D a vicinic sort – and our construction of the infinitesimal group
νD(G) goes through unaltered. Thus, it seems that clauses (1)-(4) of Theorem 7.7 could still be
true, if – in case D = K/O – we require only that ν be type-definable in K/O (not necessarily a
subgroup). The reason the for this change is that we do not know that K/O is locally linear in this
setting.

An interesting question we leave open is, therefore:

Question 7.9. Let K be a saturated enough algebraically closed valued field or, more generally,
a pure dp-minimal valued field. Let G be a dp-minimal group interpretable in K. If G is locally
almost strongly internal to K, is G abelian-by-finite?
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7.3. p-adically closed valued fields. Let K = (K, v, . . . ) be a sufficiently saturated p-adically
closed valued field (or a model of Qan

p ). As we noted before, it has definable Skolem functions.
{L:l.s.i to one dist sorts in $p$-adically closed}

Lemma 7.10. Every infinite set interpretable in K is locally almost strongly internal to one of the
sorts K,K/O and Γ.

Proof. Assume that X/E is a definable quotient in K. We first apply [8, Proposition 5.5] (noting
that K satisfies the necessary assumptions, see [8, Proposition 5.8]), and conclude that there are
an infinite T ⊆ X/E, a distinguished sort D, an infinite D′ ⊆ D and a definable finite-to-finite
correspondence C ⊆ T ×D′.

When D = K, it is an SW uniformity and the result follows from Lemma 7.5.
When D = Γ, then, since Γ is linearly ordered, the correspondence gives rise to a finite-to-one

function from T into Γ, as needed.
When D = K/O, the second projection map π2 : C → K/O proves that C is almost strongly

internal to K/O. We now consider the first projection π1 : C → T ⊆ X/E. By Lemma 3.9 (2),
there exists an infinite subset of T which is almost strongly internal to K/O. □

{T: groups in padics}
Theorem 7.11. Let G be an infinite group interpretable in K and K̂ a |K|+-saturated elementary
extension. Then G has unbounded exponent and there exists a finite normal subgroup H ⊴ G such
that G/H has a type-definable infinite subgroup ν satisfying one of the following:

(1) ν is definably isomorphic to a type-definable subgroup in K and ν(K̂) carries the structure
of a differential group with resepct to K.

(2) ν is definably isomorphic to a type-definable subgroup of (Γr,+) for some integer r.
(3) There exists an infinite definable subgroup H ′ ≤ G/H definably isomorphic to a subgroup

of ((K/O)r,+) for some integer r.
Moreover, if G is dp-minimal then G is abelian-by-finite.

Proof. Let G be in an infinite interpretable group. By Lemma 7.10, G is locally almost strongly
internal one of the distinguished sorts, D. By Fact 4.6 every such D is vicinic and by Fact4.25 G is
an almost D-group. Let H ⊴ G be a finite normal subgroup as provided by Proposition 4.34 and
let ν be the type definable subgroup of G/H as in Proposition 5.8.

IfD = K then the proof is as in Theorem 7.4(1). IfD = Γ then the result follows by Proposition
5.11 once we recall that Γ is a model of Presburger arithmetic and therefore by Fact 5.10 is locally
linear. Therefore G has unbounded exponent since it has a type-definable subgroup isomorphic to
a type-definable subgroup of Γr (some r) and every subgroup of Γr has unbounded exponent. This
covers Clause (2).

If D = K/O then the result follows by Proposition 5.12 since K/O is locally linear by Fact
5.10. To show that G has unbounded exponent it will suffice to note that any infinite subgroup of
(K/O)r has unbounded exponent: This follows from Fact 3.1(3). This covers Clause (3).

Finally, if G is dp-minimal then as in previous cases, G is abelian-by-finite by Fact 7.2. □

As we shall see later (Corollary 7.16), if G is dp-minimal then exactly one of (1), (2), (3) holds.

7.4. Summary of proof. The combination of Theorem 7.4, Theorem 7.7 and Theorem 7.11 im-
ply Theorem 1.1 and Theorem 1.2, as stated in the introduction. We summarize briefly, without
repeating the references, the strategy implemented in the proof of these results.
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Given an interpretable group G, we first find an an infinite definable X ⊆ G that is almost
strongly internal to one of the distinguished sorts, D. Namely, G is locally almost strongly internal
to D, and show that G is an almost D-group.

We then find a finite normal H ≤ G such that G/H is a D-group, and fix X ⊆ G/H strongly
internal to D of maximal dp-rank, which is a D-set. Using the fact that G/H is a D-group, we
show that for d ∈ X generic, the partial type νX(d) ⊢ G/H is a right coset of the desired group
νD(G/H). Thus, the type definable subgroup we obtain lives in a quotient of our original G by a
finite normal subgroup.

It is possible that from the start,G contains a definable infiniteX ⊆ Gwhich is strongly internal
to D. In this case, we can directly replace X with a critical D-set, which we still call X .

However, in order to apply our machinery we need to show that G is D-group (see Fact 4.25).
When K is either V -minimal or power bounded T -convex, then indeed G is a D-group for all D,
and thus the type definable ν is a subgroup of G itself. The same is true if K is P-minimal and D
is either K or Γ. However, when K is P-minimal and D = K/O then Fact 4.25 implies only that
K/O is locally almost strongly internal toK/O and we are still forced to modG by a finite normal
H , and thus ν is a subgroup of G/H .

7.5. The distinguished sorts are foreign. Using our main theorems we can prove a certain or-
thogonality result for the distinguished sorts. More precisely:

Definition 7.12. Let M be any structure. Two M-definable sets D1, D2 are foreign if there is no
definable finite-to-finite correspondence C ⊆ X × Y , where X ⊆ Dn and Y ⊆ Dm

2 are definable
infinite subsets.

We leave to the reader the proof of the following easy observation:
{L:reduce correspondence to one variable}

Lemma 7.13. If there exists a definable finite-to-finite correspondence between infinite definable
subsets of Dn

1 and Dm
2 then there also exists one between infinite definable subsets of D1 and D2.

We assume now that K is either power bounded T -convex, V-minimal or P-minimal.
{F:any two dist sorts are foreign}

Proposition 7.14. Any two distinct distinguished sorts in K are foreign.

Proof. Most of the cases could have been proved earlier using more elementary methods, but we
find it to be a good application of our results here.

First, assume that D1, D2 are sets that are not foreign, namely (applying Lemma 7.13) there
exists with a definable finite-to-finite correspondence between respective infinite subsets thereof.
We repeatedly use [8, Lemma 4.28], stating that if D1 eliminates finite imaginaries (EfI for short)
and D2 either has (EfI) or supports an SW-uniformity then D1 is locally strongly internal to D2.
We shall use the fact that expansions of fields have (EfI).
K and k are foreign: Note first that if K is P -minimal then there is nothing to prove (k is finite),

so we assume we are not in this case.
By the above, K is locally strongly internal to k. By [8, Theorem 4.21], in the power-bounded

T-convex case, or [8, Theorem 4.24], in the V-minimal case, K is definably isomorphic to k. But
K is a valued field and k is not: it is strongly minimal in the V -minimal case and o-minimal in the
T -convex case.
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K and k are foreign to Γ: Since Γ has definable choice in all settings, it eliminates imaginaries
so by the above, if the sorts were not foreign we would get K (respectively, k) locally strongly
internal to Γ, contradicting [8, Proposition 6.29].
K and k are foreign to K/O: In the P-minimal case, we only need to check that K and K/O

are foreign, which follows from [8, Proposition 6.29].
In the remaining cases, K/O is an SW-uniformity and K, k are fields, so satisfy (Efi), hence by

[8, Proposition 4.28] any correspondence between K/O and K or k such two implies that K, k
are locally strongly internal to K/O. This contradicts [8, Proposition 6.24].

Γ and K/O are foreign: Assume towards contradiction that this is not the case. We first claim
that Γ is locally strongly internal to K/O.

Indeed, Γ eliminates (finite) imaginaries and in the V-minimal and T -convex cases, K/O is an
SW-uniformity, so by [8, Lemma 4.28], Γ is locally strongly internal to K/O in these cases. In the
P-minimal case, we apply Lemma 3.9 (with X = K/O and T = Γ), and conclude that Γ is locally
almost strongly internal to K/O. However, since Γ is ordered it follows that Γ is in fact locally
strongly internal to K/O.

Since Γ is an interpretable group, we may apply Proposition 5.12 and conclude that there exists
a definable infinite subgroup G1 ≤ Γ, which is definably isomorphic to a definable subgroup of
(K/O)r, for some integer r.

In (K/O)r, every infinite definable subgroup has many infinite definable proper subgroups (in-
tersection with balls). However, in the V-minimal and T -convex power bounded cases, Γ is an
ordered vector space thus has no infinite definable subgroups other than itself, contradiction.

In the P-minimal case,3 Γ is torsion-free while every definable subgroup of (K/O)r has torsion
(Lemma 3.10(2)), leading also to a contradiction. □

Question 7.15. Note that a definable quotient of a distinguished sort D by a definable equivalence
relation with infinitely many infinite classes can be foreign toD itself, and thus it is locally (almost)
strongly internal to one of the other sorts. In fact, the sorts K/O, Γ, and k are all quotients of K,
or some subset of K, by such an equivalence relation.

By repeatedly taking appropriate quotients one can alternate between local strong internality
to two different sorts: Consider G = K/m (locally strongly internal to k), and the definable
subgroups rO and sO for r, s ∈ K such that v(r) < v(s) < 0. Then (rO/m)/(sO/m) ∼=
rO/sO ∼= (r/s)O/O (all isomorphisms definable), with the latter definably isomorphic to a ball in
K/O (so obviously locally strongly internal to K/O). Every ball in K/O has a quotient definably
isomorphic to a subgroup of K/m thus this quotient is locally strongly internal to k, and we can
choose the subgroups along the way so this process will go on indefinitely.

It is interesting to ask which of the distinguished sorts may appear in such a sequence of quo-
tients.

Proposition 7.14 allows us to show that dp-minimal groups interpretable in K are pure in the
following sense:

{C:dp min is pure}

3A direct proof, which does not make use of our work here, and is based on [3, Proposition 3.1], was suggested to us by
P. Cubides Kovacsics.
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Corollary 7.16. If G is interpretable in K and X1, X2 ⊆ G are almost strongly internal to foreign
sortsD1, D2, respectively, then dp-rk(G) ≥ dp-rk(X1)+dp-rk(X2). In particular, if dp-rk(G) =
1 then G can be locally almost strongly internal to at most one distinguished sort.

Proof. Assume toward contradiction that dp-rk(G) < dp-rk(X1) + dp-rk(X2), and consider the
function f : X1 ×X2 → G, defined by f(x1, x2) = x1 · x2.

We have dp-rk(X1×X2) = dp-rk(X1)+dp-rk(X2), thus by the dp-rank assumption, f cannot
be everywhere finite-to-one. Hence there is some g ∈ G such that f−1(g) is infinite. But, by its
definition, f−1(g) ⊆ X1 × X2 is the graph of a bijection between (infinite) subsets of X1 and
X2. This gives rise to a finite-to-finite correspondence between infinite subsets of D1 and D2,
contradiction. □

Fact 7.14 and Corollary 7.16 raise interesting questions about the possible dp-rank of subsets of
G that are almost strongly internal to the distinguished sorts. For example:

Question 7.17. Are there always definable X1, . . . , X4 ⊆ G (some possibly empty), with Xi

almost strongly internal to K,k,Γ,K/O, respectively, such that dp-rk(G) =
∑4

i=1 dp-rk(Xi)?

We end with an example of a dp-minimal valued field where the distinguished sorts are not
foreign.

Example 7.18. Let R a sufficiently saturated extension of Rexp and let K be R expanded by a
predicate for the convex hull of Z, which we denote by O. So K an exponential T -convex valued
field and, therefore, dp-minimal (R is o-minimal and O is externally definable). We claim that
K/O is strongly internal to Γ.

We first note that exp(O) = O>0\m. Indeed, for the right-to-left, since log is a ∅-definable con-
tinuous function, if x ∈ O>0 then log(x) ∈ O. For the other direction, assume for a contradiction
that a = exp(b) ∈ m for some b ∈ O. Then a−1 = exp(−b) /∈ O, contradicting T -convexity.

Thus (and as O× = O \ m), exp induces map E : K/O → K×/O× given by E(x + O) :=
exp(x) + O×. It is easy to check that E is a homomorphism of (ordered) groups. It is injective
because exp is.

8. EXAMPLES
{S: examples}

We end by studying some examples of interpretable groups in the valued fields we considered
and see how our results are reflected in those examples. The examples are, mostly, common to all
contexts, but their nature may vary between the different settings.

Let K = (K, v, . . . ) be some expansion of a valued field.

Example 8.1 (K/m). If K is V -minimal or power bounded T -convex then as m is an additive
subgroup of K, K/m is an infinite interpretable group. Since O ⊆ K, (k,+) is a subgroup of
K/m. I.e. K/m is locally strongly internal to k. If K is P -minimal then K/m ∼= K/O.

Example 8.2 (K/O⋊O×). Multiplication defines an action of O× onK/O by automorphisms and
K/O ⋊O× is a solvable group of class 2 since G′ ≤ K/O (so, in particular, it is not abelian-by-
finite). Its dp-rank is 2 (the universe of the group being K/O ×O×). It is locally strongly internal
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to both K and K/O: the subgroup 0 × O× witnesses the former and (K/O, 1) the latter. The
admissible dimension (in the sense of [13]) is 1 (since it is the admissible dimension ofK/O×O×).
This shows that Theorem 1.1 does not extend to definable groups of admissible dimension 1.

Example 8.3 (RVγ). (1) Assume first that (K, v) is p-adically closed and identify the standard
part of Γ with Z. Since in p-adically closed fields there are definable angular component maps
acn : K× → O/mn−1, for any (standard) natural n, we can identify Γ with the definable subset of
RVn−1 defined by acn(x) = 1. Thus, RVn is locally strongly internal to Γ.

For γ ∈ Γ non-standard (i.e., γ > n for all n ∈ N) the picture is different. Since γ > Z we
have |O×/mn−1| ≤ |O×/mγ | for all standard n ∈ N and as the left-hand side is unbounded with
n it follows that O×/mγ is infinite. The map a + mγ 7→ a(1 + mγ) is a definable injection from
O×/mγ into RVγ . Since Γ is discrete mγ is a closed ball (of valuative radius γ +1), so O×/mγ is
in definable bijection with a subset of K/O and thus locally strongly internal to K/O.

In fact, if γ is non-standard, and δ ∈ Γ is such that 2δ > γ and such that γ − δ > Z. Then
(1 + mδ)/(1 + mγ) is an infinite subgroup of RVγ definably isomorphic to the additive group
mδ/mγ . Indeed, the definable map a + mγ 7→ (1 + a)(1 + mγ) for a ∈ mδ from mδ/mγ to
(1 + mδ)/(1 + mγ) is a bijective group homomorphism.

(2) Now assume that (K, v) is power-bounded T-convex or V-minimal (actually Γ dense and k
infinite is sufficient).

Consider the definable subset O×/(1+mγ) of RVγ . We claim that there is a definable injection
from k into O×/(1 + mγ); thus RVγ is locally strongly internal to k. Indeed, pick some t ∈ K
with v(t) = γ, thus a + mγ 7→ at−1(1 + mγ) (with v(a) = γ) is an injection of Oγ/mγ (where
Oγ = {x : v(x) ≥ γ}) into O×/(1 + mγ); finally note that Oγ/mγ

∼= k.

Example 8.4. The next example shows, in the power bounded T -convex case, the necessity for the
group ν ⊆ G to be type-definable (rather than definable). It is similar to examples from [28].

We consider the two o-minimal structures, Γ and k and fix a positive γ0 ∈ Γ. We start with
H = Γ× k and in it consider the group Λ generated by ⟨γ0, 1⟩.

We let S = Γ× [0, 1) ⊆ H , and on S define the operation

(x1, y1)⊕ (x2, y2) =

{
(x1 + x2, y1 + y2) y1 + y2 < 1

(x1 + x1 − γ0, y1 + y2 − 1) y1 + y2 ≥ 1

This is a group operation which makes G = (S,⊕) an interpretable group isomorphic to the
quotient of the group ⟨S⟩ ⊆ H by the subgroup Λ.

The group G has one definable subgroup Γ × 0 isomorphic to Γ. However, since Γ and k are
foreign, the only definable subsets of G which are (almost) strongly internal to k are subsets of
{γ} × [0, 1), γ ∈ Γ, or finite unions of such. It is not hard to see that no finite union of such sets
gives rise to a definable subgroup of G. On the other hand, G has a type definable subgroup ν
which is definably isomorphic to the infinitesimals in (k,+).
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APPENDIX A. ENDOWING AN INFINITESIMAL GROUP IN RCVF WITH A LINEAR ORDER

Here we show that if K is power bounded T -convex, G is a dp-minimal group interpretable in K
then ν(G), the associated infinitesimal subgroup, is an ordered group with respect to the induced
ordering:

Proposition A.1. Let G be a dp-minimal interpretable group in a power bounded T -convex struc-
ture, K and assume that it is locally strongly internal to one of the distinguished sorts D. Then the
group ν provided by Theorem 7.11 is ordered with respect to the order induced from its embedding
into D.

Proof. Assume that K is sufficiently saturated. We shall be brief. Since K/O and Γ are ordered
groups and ν is a subgroup, then we have nothing to prove. We prove the result in case D is K.
The proof translates verbatim to the case where D = k since it uses only weak o-minimality of K
and [31, Corollary 2.8] asserting that any definable function f : K → K in a T -convex structure
is piece-wise monotone. By o-minimality, this is also true in k.

The following is a simple corollary of the piece-wise monotonicity of definable functions.

Claim A.1.1. Assume that f : K → K is a definable, continuous, open and injective partial
function with open domain. Then f is locally strictly monotone at every point.

Our goal is to prove: If ν ⊆ K is the type-definable infinitesimal neighbourhood of e ∈ K, en-
dowed with the K-ordering and a K-definable topological group operation then left multiplication
is order preserving (by symmetry, the same is true for right multiplication).

Let e ∈ ν be the identity element and λ(x, y) a ∅-definable function whose restriction to ν is the
group multiplication. We may assume, by compactness, that λ is defined and continuous on U ×U
for some K-definable open U , ν ⊢ U , which satisfies:

• For all x ∈ U the function λx(y) := λ(x, y) is an injective open map. In addition,
λ(x, e) = λ(e, x) = x for all x ∈ U .

We may further find a definable open V ⊆ U , ν ⊢ V , such that:
• For all x ∈ V there exists (a unique) y ∈ U such that λ(x, y) = λ(y, x) = e. By abuse of
notation we let x−1 denote this y.
• V = V −1, V · V · V ⊆ U and λ is associative on V .

Absorbing parameters into the language, assume that U and V above are ∅-definable.
By the above claim, for every g ∈ U the function λg is locally (strictly) monotone at every point.

Let K̂ ≻ K be an |K|+-saturated extension. We first show that for every g ∈ ν(K̂), the function
λg is locally strictly increasing at e.

Let W+ (resp. W−) be the set of g ∈ U(K̂) such that λg is locally strictly increasing (reps.
decreasing) at e. Both sets are ∅-definable, hence ν+ := ν∩ (e,∞), which – by weak o-minimality
– is a complete type over ∅, is concentrated on one of W+ and W−, and the same for ν− :=
ν ∩ (−∞, e). We claim that both are concentrated on W+, and hence ν ⊢W+ (clearly, e ∈W+).

Indeed, assume towards a contradiction that, say, ν− ⊢W−, and fix any a ∈ ν−(K̂) (in particu-
lar, dp-rk(a/M) = 1). Since a ∈W−, the function λa is strictly decreasing on some open interval
J ∋ e. As ae = a belongs to the open set ν−, it follows by continuity that there exists b |= ν− ∩ J
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sufficiently close to e, such that ab ∈ ν−. But then, λab = λa ◦ λb, λb is decreasing at e and λa is
decreasing at b so λab is increasing at e, contradicting the fact that ab ∈ ν−(K̂) ⊆W−.

The cases where ν+ ⊢W− leads to a contradiction in the same way. We may therefore conclude
that for every g ∈ ν(K̂), λg is locally increasing at e. By compactness, we may assume that
U ⊆W+.

Fix g ∈ V (K) (where associativity holds) such that dp-rk(g) = 1. The function λg is continuous
at e, λg(e) = g, hence λg(ν) = ν(g). Furthermore, since g ∈ K, by our assumptions, λg is strictly
increasing on some K-definable open interval I ∋ e. By 2.5 we may choose I to be A-definable,
A ⊆ M , such that dp-rk(g/A) = 1. It follows that for all c |= ν(g), λc is strictly increasing on I ,
so in particular on ν(K̂).

Fix any h ∈ ν, we need to see that x 7→ hx is increasing on ν. We write h = λ−1
g (c), for some

c ∈ ν(g). Now, for x ∈ ν(K̂), we have

h · x = λ−1
g (c) · x = λg−1(c) · x = λg−1(λc(x)),

where the right equality follows from the associativity on V . Now, if x < y ∈ ν(K̂) then λc(x) <
λc(y) and hence (because λg and its inverse are increasing on ν), we have

h · x = λ−1
g (λc(x)) < λ−1

g (λc(y)) = h · y.

It follows that multiplication is order preserving. □
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