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Abstract

For a tournament T , let ν3(T ) denote the maximum number of pairwise arc-disjoint triangles

in T . Let ν3(n) denote the minimum of ν3(T ) ranging over all regular tournaments with n

vertices (n odd). It is conjectured that ν3(n) = (1 + on(1))n2/9 and proved that

n2

11.43
(1− on(1)) ≤ ν3(n) ≤ n2

9
(1 + on(1))

improving upon the best known upper bound and lower bound. The result is generalized to

tournaments where the indegree and outdegree at each vertex may differ by at most βn.
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1 Introduction

All graphs and digraphs considered here are finite and contain no parallel edges or anti-parallel

arcs. For standard graph-theoretic terminology the reader is referred to [2]. Tournaments are

orientations of complete graphs, and are a major object of study in combinatorics and social choice

theory. However, while complete graphs are unique for each order, there are exponentially many

tournaments with the same order. As perhaps the most obvious property of a complete graph is

its regularity, it seems interesting to study the properties of regular tournaments. Indeed, regular

tournaments have been studied by several researchers, see. e.g. [8, 10, 11, 14, 16]. As any connected

undirected graph has an Eulerian orientation if and only if every vertex is of even degree, we have

that there exist regular tournaments for every odd order. Eulerian tournaments are, therefore,

the same as regular tournaments. In fact, there are exponentially many non-isomorphic regular

tournaments with n vertices [11].
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All regular tournaments have the same number of triangles, and the same number of transitive

triples where a triangle is a set of three arcs {(x, y), (y, z), (z, x)} while a transitive triple is a set

of three arcs {(x, y), (y, z), (x, z)}. This follows from the well-known fact observed in [5], that the

number of transitive triples (and hence triangles) in any tournament is determined by the score

of the tournament, which is the sorted outdegree sequence. For regular tournaments this amounts

to n(n − 1)(n − 3)/8 transitive triples and therefore to
(
n
3

)
− n(n − 1)(n − 3)/8 = n(n2 − 1)/24

triangles. Asymptotically, this means that a fraction of 1/4 of the triples are triangles while 3/4 of

the triples are transitive. Throughout this paper a triangle is denoted by C3.

An (edge) triangle packing of an undirected graph is a set of pairwise edge-disjoint subgraphs

that are isomorphic to a triangle. The study of triangle packings in graphs was initiated in the

classical result of Kirkman [9] who proved that Kn has a triangle packing of size n(n−1)/6 whenever

n ≡ 1, 3 mod 6. In other words, when n ≡ 1, 3 mod 6 there always exists a Steiner triple system

(STS). This clearly implies that for other moduli of n there are packings with (1 − on(1))n2/6

triangles, and this is asymptotically tight as such packings cover (1 − on(1))
(
n
2

)
edges. In the

directed case, a triangle packing of a tournament requires each subgraph to be isomorphic to

C3. Triangle packings and packings by transitive triples of digraphs have been studied by several

researchers (see, e.g., [4, 7, 13]).

For a tournament T , we denote by ν3(T ) the size of a largest triangle packing. Observe that

ν3(T ) ≥ c3(T )/(n− 2) for every tournament with n ≡ 1, 3 mod 6 where c3(T ) is the total number

of triangles. This can be seen by taking a random STS of n and observing that the expected

number of directed triangles in the STS is (n(n − 1)/6)c3(T )/
(
n
3

)
. In particular, this means that

ν3(T ) ≥ (1 − on(1))n2/24 for any regular tournament T with n vertices. On the other hand, we

always have the trivial upper bound ν3(T ) ≤ (1− on(1))n2/6.

Let, therefore ν3(n) denote the minimum of ν3(T ) ranging over all regular tournaments with n

vertices (assuming, of course, that n is odd). Hence, trivially

n2

24
(1− on(1)) ≤ ν3(n) ≤ n2

6
(1− on(1)) .

While exact small values of ν3(n) are known by brute force computation, determining the asymp-

totic value of ν3(n) seems to be a difficult problem. The best known bounds were given in [16]:

n2

11.5
(1− on(1)) ≤ ν3(n) ≤ n2 − 1

8
.

The present paper improves both the lower bound and the upper bound. While the upper bound

is improved significantly, the improvement in the lower bound is milder.

Theorem 1.1 (
1

3
− 7

3
ln(

10

9
)

)
n2(1− on(1)) ≤ ν3(n) ≤ n2

9
(1 + on(1)) .
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Notice that 1
3 −

7
3 ln(109 ) > 1/11.43. As explained in Section 2, it is natural to suspect that the

construction yielding the upper bound is, in a sense, a “worst case” construction. Thus, we make

the following conjecture.

Conjecture 1.2

ν3(n) =
n2

9
(1 + on(1)) .

While the proof of the upper bound in Theorem 1.1 is different from the one in [16], the proof

of the lower bound is similar in many aspects. The additional important ingredient that enables

us to obtain the improved lower bound is a strengthening of Lemma 3.3 there, replaced by the

significantly more involved Lemma 3.4 here, which bounds the number of triangles containing

“dense” arcs (arcs that appear in many triangles).

We are able to extend our results to not necessarily regular tournaments. We say that a

tournament is β-almost-regular (or, for brevity, and slightly abusing terminology, β-regular) if the

indegree and outdegree at each vertex differ by at most βn. Thus, β = 0 coincides with regular

tournaments and β = 1 coincides with the family of all tournaments. Here we no longer need to

require that n has a certain parity. Generalizing the above notation, we denote by ν3(β, n) the

minimum of ν3(T ) ranging over all β-regular tournaments with n vertices. The following extends

Theorem 1.1.

Theorem 1.3

ν3(β, n) ≤ min

{
1− β2

9
,

(1− β)2

8

}
n2(1 + on(1)) .

ν3(β, n) ≥ ln

(
12(1 + β)

11 + 12β + 3β2

)
n2(1− on(1)) if β ≤ 1

2 ,

ν3(β, n) ≥ ln

(
6(1 + β)

5 + 9β − 3β2 + β3

)
n2(1− on(1)) if β > 1

2 .

The rest of this paper is organized as follows. In Section 2, we prove the upper bound in Theorem

1.1. To this end, we need to define the fractional relaxation of the problem and consider its dual

covering problem. We also prove that the upper bound we obtain cannot be improved using our

construction. We explain why it is natural to suspect that this construction is “the worst”, and

hence the justification for conjecture 1.2. We also show how to generalize the construction to β-

regular tournaments and obtain the upper bound in Theorem 1.3. In Section 3 we prove the lower

bound in Theorem 1.1. As in [16] our main tool is a result of Haxell and Rödl [6] tailored to the

directed setting in [12] connecting the fractional value of a maximum packing with its integral one.

Section 4 addresses the changes needed in the statements given in Section 3 in order to apply them

to the more general setting of β-regular tournaments, resulting in the proof of the lower bound in

Theorem 1.3.

3



2 Upper bounds

2.1 Fractional relaxation of packing and covering

We start this section by defining the fractional relaxation of the triangle packing problem together

with its dual fractional covering problem, and define the parameters ν∗3(n) and τ∗3 (n) that are the

fractional analogue of ν3(n) and its dual, respectively.

Let R+ denote the set of nonnegative reals. A fractional triangle packing of a digraph G is a

function ψ from the set F3 of copies of C3 in G to R+, satisfying
∑

e∈X∈F3
ψ(X) ≤ 1 for each arc

e ∈ E(G). Letting |ψ| =
∑

X∈F3
ψ(X), the fractional triangle packing number, denoted ν∗3(G), is

defined to be the maximum of |ψ| taken over all fractional triangle packings ψ. Since a triangle

packing is also a fractional triangle packing (by letting ψ = 1 for elements of F3 in the packing

and ψ = 0 for the other elements), we always have ν∗3(G) ≥ ν3(G). However, the two parameters

may differ. In particular, they may differ for regular tournaments. Consider, for example, the 5-

vertex regular tournament obtained by the following orientation ofK5 on the vertex set {1, 2, 3, 4, 5}.
Orient a Hamilton cycle (1, 2, 3, 4, 5) and another Hamilton cycle as (1, 4, 2, 5, 3). Clearly, ν3(T ) = 2.

On the other hand, we may assign each of the five triangles (1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 1), (5, 1, 2)

the value 1/2 thereby obtaining a fractional triangle packing of value 2.5.

A fractional triangle cover of a digraph G is a function φ from the set of arcs E(G) of G to R+,

satisfying
∑

e∈X∈F3
φ(e) ≥ 1 for each triangle X ∈ F3. Letting |φ| =

∑
e∈E(G) φ(e), the fractional

triangle cover number, denoted τ∗3 (G), is defined to be the minimum of |φ| taken over all fractional

triangle covers φ. By linear programming duality, τ∗3 (G) = ν∗3(G). For example, in the 5-vertex

regular tournament of the previous paragraph, we may assign the value 1/2 to each arc on the cycle

(1, 2, 3, 4, 5) and obtain a valid fractional triangle cover of value 2.5.

2.2 Upper bound for regular tournaments

In order to obtain a good upper bound, we must first construct a regular tournament which is

“as transitive as possible” so that it will not be able to accommodate many pairwise arc disjoint

triangles. Naturally, any regular tournament on n vertices cannot have a transitive subset on more

than (n + 1)/2 vertices, since in such a subset the outdegree of the source would already be more

than (n − 1)/2. The following regular tournament, denoted Rn, does have a transitive subset on

(n + 1)/2 vertices, in fact it has many such subsets. It even has many pairs of arc-disjoint such

subsets (each pair sharing exactly one vertex). It is reasonable to suspect that a maximum triangle

packing of Rn yields the value of ν3(n).

For n odd, we define Rn as follows. Its vertices are {0, . . . , n − 1} (one can view them as

elements of the cyclic group Zn). Vertex i has an outgoing arc towards vertex j if and only if

1 ≤ (j − i) mod n ≤ (n − 1)/2. Thus, if we think of the vertices as lying on a directed cycle of

length n, each vertex sends outgoing arcs to the (n−1)/2 vertices following it on the cycle. Observe
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that Rn is a regular tournament and that for any vertex i, the set of vertices {i, i+1, . . . , i+(n−1)/2}
(indices modulo n) forms a transitive subset. We will prove that ν(Rn) ≤ (n+o(n))2

9 , which implies

that ν3(n) ≤ (n+o(n))2

9 . Since, by the previous subsection, τ∗3 (Rn) = ν∗3(Rn) ≥ ν3(Rn), it suffices to

prove the following.

Lemma 2.1

τ∗3 (Rn) ≤ (n+ o(n))2

9
.

Proof. We consider first case where n ≡ 1 mod 6. We will construct a particular covering which

attains the bound stated in the lemma. Define the length of an arc of Rn from i to j by length(i, j) =

(j − i) mod n. We give all the arcs of length 1, . . . ,
⌊
n
6

⌋
the weight 0 (i.e. φ(e) = 0 for length(e) ∈{

1, . . . ,
⌊
n
6

⌋}
.) To each arc e of length ` >

⌊
n
6

⌋
we give the weight φ(e) = 2

n+1

(
`−

⌊
n
6

⌋)
.

Proposition 2.2 The assignment φ is a fractional triangle cover.

Proof. Let (h, i, j) be a triangle, without loss of generality h = 0 so the triangle is (0, i, j).

First case: i ∈
{

1, . . . ,
⌊
n
6

⌋}
. Then the other arcs of the triangle must have length larger than

⌊
n
6

⌋
and hence φ((i, j)) = 2

n+1

(
j − i−

⌊
n
6

⌋)
and φ((j, 0)) = 2

n+1

(
n− j −

⌊
n
6

⌋)
. The sum of weights of

the arcs of the triangle (0, i, j) is:

0 +
2

n+ 1

(
j − i−

⌊n
6

⌋)
+

2

n+ 1

(
n− j −

⌊n
6

⌋)
=

2

n+ 1

(
n− i− 2

⌊n
6

⌋)
≥ 2

n+ 1

(
n− 3

⌊n
6

⌋)
=

2

n+ 1

(
n− 3

n− 1

6

)
=

2

n+ 1

(
n− n− 1

2

)
= 1 .

Second case: i /∈
{

1, . . . ,
⌊
n
6

⌋}
. Then φ((0, i)) = 2

n+1

(
i−
⌊
n
6

⌋)
and we have three subcases for the

weight of arc (i, j) and arc (j, 0): the first subcase is φ((i, j)) = 2
n+1

(
j − i−

⌊
n
6

⌋)
and φ((j, 0)) = 0,

the second subcase is φ((i, j)) = 0 and φ((j, 0)) = 2
n+1

(
n− j −

⌊
n
6

⌋)
, and the last subcase is

φ((i, j)) = 2
n+1

(
j − i−

⌊
n
6

⌋)
and φ((j, 0)) = 2

n+1

(
n− j −

⌊
n
6

⌋)
. Now we calculate the weight of

the triangle (0, i, j) in the three subcases:

First subcase:

2

n+ 1

(
i−
⌊n

6

⌋)
+

2

n+ 1

(
j − i−

⌊n
6

⌋)
+ 0

=
2

n+ 1

(
j − 2

⌊n
6

⌋)
≥ 2

n+ 1

(
n− n− 1

6
− 2

n− 1

6

)
=

2

n+ 1

(
n+ 1

2

)
= 1 .

We used the fact that in this subcase we must have length(j, 0) ≤
⌊
n
6

⌋
so j ≥ n− (n− 1)/6.
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Second subcase:

2

n+ 1

(
i−
⌊n

6

⌋)
+ 0 +

2

n+ 1

(
n− j −

⌊n
6

⌋)
=

2

n+ 1

(
n− j + i− 2

⌊n
6

⌋)
≥ 2

n+ 1

(
n− n− 1

6
− 2

n− 1

6

)
=

2

n+ 1

(
n+ 1

2

)
= 1 .

Recall that in this subcase length(i, j) = j − i ≤
⌊
n
6

⌋
.

Third subcase:

2

n+ 1

(
i−
⌊n

6

⌋)
+

2

n+ 1

(
j − i−

⌊n
6

⌋)
+

2

n+ 1

(
n− j −

⌊n
6

⌋)
=

2

n+ 1

(
n− 3

⌊n
6

⌋)
=

2

n+ 1

(
n− 3

n− 1

6

)
= 1 .

End of Proposition 2.2.

We calculate the value of this fractional triangle cover. Observe that only lengths between bn/6c+1

until bn/2c (which is the maximum possible length of an arc by the definition of Rn) receive nonzero

weight which is the length minus bn/6c, normalized by multiplying it with 2/(n+ 1). Thus,

|φ| =
∑
e∈E

φ(e) = n
2

n+ 1

(
1 + 2 + 3 + . . .+

n− 1

3

)
(1)

=
2n

n+ 1

(
n−1
3

(
1 + n−1

3

)
2

)

=
n

n+ 1

(
(n− 1)(n+ 2)

9

)
<

n2

9
.

Hence τ∗3 (Rn) < n2

9 for n ≡ 1 mod 6.

Now, if n 6= 1 mod 6, then either n ≡ 3 mod 6 or n ≡ 5 mod 6. Observe that since Rn is a

subgraph of Rn+2 (just delete vertices 0 and (n+ 1)/2 from Rn+2 to obtain a subgraph isomorphic

to Rn) we have τ∗3 (Rn) ≤ τ∗3 (Rn+2) ≤ τ∗3 (Rn+4). Thus, for the case n ≡ 5 mod 6, we have that

n + 2 ≡ 1 mod 6 hence τ∗3 (Rn) ≤ τ∗3 (Rn+2) ≤ (n+2)2

9 = (n+o(n))2

9 . For the case n ≡ 3 mod 6, we

have that n + 4 ≡ 1 mod 6 hence τ∗3 (Rn) ≤ τ∗3 (Rn+4) ≤ (n+4)2

9 = (n+o(n))2

9 . This completes the

proof of Lemma 2.1 and hence the upper bound in Theorem 1.1.

One may wonder whether the fractional cover constructed in Lemma 2.1 is optimal for Rn.

Perhaps we can do better and improve the upper bound (regardless of whether one believes that

Rn is a worst case example). In the following lemma we show that our constructed covering is

asymptotically optimal for Rn.
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Lemma 2.3

ν(Rn) ≥ (n− o(n))2

9
.

Proof. We prove this for n = 9k (k odd). In this case we will show that we can pack exactly
n2

9 = 9k2 pairwise arc-disjoint triangles.

We define the packing as follows. It consists of n = 9k sets of triangles, denoted S0, . . . , Sn−1.

Each set will contain k pairwise arc-disjoint triangles. Overall, the construction consists of nk =

n2/9 triangles. Furthermore, for any two sets Si, Sj , their triangles are pairwise arc-disjoint.

We describe Sj for j = 0, . . . , n − 1. It consists of the triangles (j, (j + ai) mod n, (j + ai +

bi) mod n) for i = 0, . . . , k − 1 where:

bi = (n− 1)/2− 3k/2 + (i+ 2)/2 for i odd.

bi = (n− 1)/2− 2k + i/2 + 1 for i even.

ai = 2k + i/2 for i even.

ai = 3k/2 + i/2 for i odd.

For example, if k = 9 (hence n = 81) we have that S0 is:

{(0, 18, 41), (0, 14, 42), (0, 19, 43), (0, 15, 44), (0, 20, 45), (0, 16, 46), (0, 21, 47), (0, 17, 48), (0, 22, 49)} .

We need to prove that each of the listed triples in each of the Sj is indeed a directed triangle of

Rn, and that no arc repeats twice in any of the Sj .

Each triple is of the form (j, (j+ai) mod n, (j+ai + bi) mod n). The lengths of the arcs in this

triangle are ai, bi and ci = n − ai − bi. Observe that ai is always between 1 and (n − 1)/2 by its

definition. Indeed, if i is even, then

2n

9
= 2k ≤ ai ≤ 2k +

k − 1

2
=

5k − 1

2
=

5n

18
− 1

2
≤ n− 1

2
.

If i is odd, then

n

6
+

1

2
=

3k

2
+

1

2
≤ ai ≤

3k

2
+
k − 2

2
=

4k − 2

2
=

2n

9
− 1 ≤ n− 1

2
.

In any case, the first arc of each triangle whose length is ai, is indeed an arc of Rn.

Observe similarly that bi is always between 1 and (n − 1)/2 by its definition. Indeed, if i is

even, then

5n

18
+

1

2
=
n− 1

2
− 2k + 1 ≤ bi ≤

n− 1

2
− 2k + 1 +

k − 1

2
=
n

3
≤ n− 1

2
.

If i is odd, then

n

3
+ 1 =

n− 1

2
− 3k

2
+

3

2
≤ bi ≤

n− 1

2
− 3k

2
+
k

2
=

7n

18
− 1

2
≤ n− 1

2
.

In any case, the second arc of each triangle whose length is bi, is indeed an arc of Rn.
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Finally, ci is always between 1 and (n − 1)/2 since by the definitions of ai and bi we have

ci = (n− 1)/2− i.
We have proved that each triple in each Sj is a directed triangle of Rn. Observe also that the

interval of values of the ai is always between n/6 + 1/2 and 5n/18− 1/2. The interval of values of

the bi is always between 5n/18 + 1/2 and 7n/18 − 1/2. The interval of values of the ci is always

between 7n/18 + 1/2 and (n − 1)/2. As these three intervals are disjoint, this proves that no arc

is repeated twice in the construction. This proves the lemma when n = 9k and k is odd. Now, for

any other odd number n, let k be the largest odd number such that 9k ≤ n. Recalling that R9k is

a subgraph of Rn we have that

ν(Rn) ≥ ν(R9k) ≥ 9k2 =
(n− o(n))2

9
.

2.3 Upper bound for β-regular tournaments

In this subsection we prove the upper bound for ν3(β, n) given in Theorem 1.3. Consider the regular

tournament graph R(1+β)n defined in the previous subsection. We can assume (1 + β)n is an odd

integer as rounding issues do not affect the asymptotic claim. Delete from R(1+β)n the vertices

{0, 1, . . . , βn − 1} and denote the resulting tournament by T . Notice that T has n vertices and

since Rn is regular, and we have removed only βn vertices from it, we have that T is a β-regular

tournament.

We first consider the case where β ≤ 1/5. Let φ be the fractional triangle cover defined on

R(1+β)n, proved in (1) to satisfy |φ| ≤ (1 + on(1))(1 + β)2n2/9. Let φ′ be the fractional triangle

cover of T induced by φ. Namely, each arc of T retains its weight under φ. Now, |φ| − |φ′| is just

the sum of the weights of the arcs incident with the removed vertices {0, 1, . . . , βn − 1}. By (1),

the sum of the weights of the arcs emanating from each vertex of R(1+β)n is (1− on(1))(1 + β)n/9

and, by symmetry, the sum of the weights of the arcs entering each vertex of R(1+β)n is also

(1− on(1))(1 +β)n/9. Now, for all β ≤ 1/5 we have that βn ≤ (1 +β)n/6. Hence all the arcs (i, j)

where i, j ∈ {0, 1, . . . , βn− 1} have φ((i, j)) = 0. Thus,

|φ| − |φ′| ≥ (βn) · 2(1− on(1))
1 + β

9
n .

It follows that

|φ′| ≤ |φ| − (1− on(1))
2β(1 + β)

9
n2

≤ (1 + on(1))
(1 + β)2

9
n2 − (1− on(1))

2β(1 + β)

9
n2

≤ (1 + on(1))
1− β2

9
n2 .
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Since ν3(β, n) ≤ ν3(T ) ≤ ν∗3(T ) = τ∗3 (T ) ≤ |φ′| we have that ν3(β, n) ≤ (1 + on(1))(1− β2)n2/9 for

β ≤ 1/5.

The following triangle cover, denoted φ′′ is valid for all β < 1. Assign the weight 1 to all the

arcs of T of the form (i, j) where i > j. All other arcs receive the weight 0. Notice that each

directed triangle must contain an arc having weight 1 and hence φ′′ is a valid triangle cover (in

fact, an integral cover). We count the number of arcs receiving weight 1. Vertex (1 + β)n− 1 (the

vertex with largest index) has an outgoing arc in R(1+β)n to all vertices j with j < (1 + β)n/2.

Hence, it has at most (1 + β)n/2 − βn − 1 = n/2 − βn/2 − 1 arcs emanating from it in T having

weight 1. Similarly, for all k = 1, . . . , n/2− βn/2, vertex (1 + β)n− k has at most n/2− βn/2− k
arcs emanating from it in T having weight 1. Hence,

|φ′′| ≤
n/2−βn/2∑

k=1

(n/2− βn/2− k) ≤ (1 + on(1))
(1− β)2

8
n2 .

Since ν3(β, n) ≤ ν3(T ) ≤ ν∗3(T ) = τ∗3 (T ) ≤ |φ′′| we have that ν3(β, n) ≤ (1 + on(1))(1− β)2n2/8 for

β ≤ 1. Observe that for all β ≤ 1/17 ≤ 1/5 the bound obtained via φ′ is better than the bound

obtained via φ′′ hence we may summarize that

ν3(β, n) ≤ min

{
1− β2

9
,

(1− β)2

8

}
n2(1 + on(1)) .

3 A lower bound for regular tournaments

3.1 Integer versus fractional packings

A result of Nutov and Yuster [12] asserts that the integral and fractional parameters differ by o(n2).

The following is a very spacial case of their result.

Theorem 3.1 If T is an n-vertex tournament, then ν∗3(T )− ν3(T ) = o(n2).

An undirected version of Theorem 3.1 has been proved by Haxell and Rödl [6] who were the first to

prove this interesting relationship between integral and fractional packings. The proof of Theorem

3.1 makes use of the directed version of Szemerédi’s regularity lemma [15] that has been used

implicitly in [3] and proved in [1].

Let ν∗3(n) be the minimum of ν∗3(T ) ranging over all n-vertex regular tournaments T . Similarly,

let ν∗3(β, n) be the minimum of ν∗3(T ) ranging over all n-vertex β-regular tournaments T . By

Theorem 3.1 and the fact that fractional packings are at least as large as integral packings we have:

Corollary 3.2 ν∗3(n) ≥ ν3(n) ≥ ν∗3(n)− o(n2). Similarly, ν∗3(β, n) ≥ ν3(β, n) ≥ ν∗3(β, n)− o(n2).
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3.2 Proof of the lower bound in Theorem 1.1

In this section we prove the following theorem that, together with Corollary 3.2, yields the lower

bound in Theorem 1.1.

Theorem 3.3 A regular tournament T with n vertices has ν∗3(T ) ≥ (1− on(1))(13 −
7
3 ln(109 ))n2.

As in [16], we call an arc α-dense if it is contained in at least αn triangles. Observe that no

arc is 1/2-dense as any arc of a regular tournament appears in at most (n − 1)/2 triangles. We

require the following lemma that bounds the number of triangles that contain α-dense arcs where

α is relatively large. It is an improvement over Lemma 3.3 in [16].

Lemma 3.4 For all α ≥ 1/4, the number of triangles that contain α-dense arcs is at most (1 −
2α)(53α−

1
3)n3.

Proof. As shown in [16], the total number of α-dense arcs entering each vertex is at most n(1−2α).

We repeat the details of this observation for completeness. For a vertex v, we compute the number

of α-dense arcs entering it. Let Bv ⊂ N−(v) be the set of vertices x such that (x, v) is α-dense.

Consider a vertex x of maximum indegree in the sub-tournament T [Bv] induced by Bv. Since in

any tournament with |Bv| vertices the maximum indegree is at least (|Bv| − 1)/2 we have that x

has at least (|Bv| − 1)/2 arcs entering it in T [Bv]. On the other hand, as (x, v) is α-dense, we also

have that x has at least αn vertices of N+(v) entering it. Since N+(v) ∩Bv = ∅ we have that the

indegree of x in T is at least (|Bv| − 1)/2 + αn. But the indegree of x in T is (n− 1)/2 and thus

(|Bv| − 1)/2 + αn ≤ (n− 1)/2 .

It follows that |Bv| ≤ n(1 − 2α). Similarly, if Cv ⊂ N+(v) is the set of vertices x such that (v, x)

is α-dense, we have that |Cv| ≤ n(1− 2α).

But we are not interested in counting the number of α-dense arcs incident with a vertex, rather

we wish to count the number of triangles containing α-dense arcs. To this end, we need to define

certain parameters.

1. Let r(v) denote the number of triangles of the form (v, x, y) such that (y, v) is α-dense and

(v, x) is not α-dense.

2. Let s(v) denote the number of triangles of the form (v, x, y) such that (y, v) is not α-dense

and (v, x) is α-dense.

3. Let t(v) denote the number of triangles of the form (v, x, y) such that (y, v) is α-dense and

(v, x) is α-dense.

4. Let b(v) = r(v) + t(v) denote the number of triangles of the form (v, x, y) such that (y, v) is

α-dense.
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5. Let c(v) = s(v) + t(v) denote the number of triangles of the form (v, x, y) such that (v, x) is

α-dense.

6. Let q(v) = 1
2r(v) + 1

2s(v) + 1
3 t(v).

We claim that
∑

v∈V q(v) is an upper bound for the total number of triangles containing an α-

dense arc. Indeed, consider some triangle (x, y, z) containing an α-dense arc. If it contains a single

α-dense arc, say (x, y), then this triangle is counted 1/2 for s(x) and 1/2 for r(y). If it contains

three α-dense arcs, then it is counted 1/3 for each of t(x), t(y), t(z). If it contains precisely two

α-dense arcs, say (x, y) and (y, z), then it is counted 1/2 for s(x), 1/2 for r(z) and 1/3 for t(y),

so it contributes more than 1. In any case, each triangle containing an α-dense arc contributes at

least 1 to the sum
∑

v∈V q(v).

It remains to upper bound
∑

v∈V q(v). We will upper bound each q(v) separately, and multiply

the bound by n. Notice that by the definitions of b(v) and c(v),

q(v) =
1

2
b(v) +

1

2
c(v)− 2

3
t(v) . (2)

Let βn = |Bv| and γn = |Cv| and recall that β ≤ 1 − 2α and γ ≤ 1 − 2α. We start by giving

upper bounds for b(v) and c(v) in terms of β and γ respectively. For any x ∈ Bv, let f(x) denote

the number of triangles containing the α-dense arc (x, v). By the definition of Bv we have that

f(x) ≥ αn. Let d(x) denote the indegree of x in T [Bv]. As in the argument at the beginning

of the proof, we have that d(x) + f(x) ≤ (n − 1)/2. Now, by the definition of b(v) we have that

b(v) =
∑

x∈Bv
f(x) and therefore

b(v) =
∑
x∈Bv

f(x) ≤
∑
x∈Bv

(
n− 1

2
− d(x)) .

On the other hand,
∑

x∈Bv
d(x) = |Bv|(|Bv| − 1)/2. Hence,

b(v) ≤ |Bv|
n− 1

2
− |Bv|(|Bv| − 1)

2
=
β(1− β)

2
n2 . (3)

Analogously, we have that

c(v) ≤ |Cv|
n− 1

2
− |Cv|(|Cv| − 1)

2
=
γ(1− γ)

2
n2 . (4)

We next give a lower bound for t(v). Consider any arc (x, y) that goes from Cv to Bv. This means

that (v, x, y) is a triangle where both (y, v) and (v, x) are α-dense. Hence, this triangle contributes

to t(v). Thus, the number of arcs going from Cv to Bv is equal to t(v). There are at least |Bv|×αn
arcs going from N+(v) to Bv. At most (|N+(v)| − |Cv|)|Bv| of them go from N+(v) \ Cv to Bv.

Hence,

t(v) ≥ |Bv|αn− (|N+(v)| − |Cv|)|Bv| = αβn2 − (
n− 1

2
− γn)βn ≥ β(α− 1

2
+ γ)n2 .
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We can similarly estimate t(v) by the fact that there are at least |Cv| × αn arcs going from Cv to

N−(v). At most (|N−(v)| − |Bv|)|Cv| of them go from Cv to N−(v) \Bv. Hence,

t(v) ≥ |Cv|αn− (|N−(v)| − |Bv|)|Cv| = αγn2 − (
n− 1

2
− βn)γn ≥ γ(α− 1

2
+ β)n2 .

Using the last two inequalities we obtain that

t(v) ≥

(
βγ −

(12 − α)(β + γ)

2

)
n2 . (5)

By (2), (3), (4), (5) we get that

q(v) ≤
(

(
5

12
− α

3
)(β + γ)− (β + γ)2

4
− βγ

6

)
n2 . (6)

Hence, our remaining task is to maximize the expression ( 5
12 −

α
3 )(β + γ)− (β+γ)2

4 − βγ
6 subject to

the constraints 0 ≤ β ≤ 1−2α and 0 ≤ γ ≤ 1−2α (and recall that α ≤ 1/2). Simple analysis of the

partial derivatives show that for all α ≥ 3/8, the maximum is obtained when β = γ = 1−2α. When

1/4 ≤ α ≤ 3/8 the bound in the statement of the lemma trivially holds as (1− 2α)(53α−
1
3) ≥ 1/24

in this range (and recall that a regular tournament has less than n3/24 triangles). Thus, in any

case, plugging in β = γ = 1− 2α in (6) and rearranging the terms we obtain that

q(v) ≤ (1− 2α)(
5

3
α− 1

3
)n2 .

Consequently, for all α ≥ 1/4, the number of triangles that contain α-dense arcs is at most∑
v∈V

q(v) ≤ (1− 2α)(
5

3
α− 1

3
)n3 .

For an arc e let f(e) denote the number of triangles that contain e. We define a fractional

triangle packing ψ as in [16] by assigning to a triangle X the value

ψ(X) =
1

maxe∈X f(e)
. (7)

In other words, we consider the three arcs of X and take the arc e with f(e) maximal, setting ψ(X)

to 1/f(e). Notice that ψ is a valid fractional triangle packing. Indeed, the sum of the weights of

triangles containing any arc e is at most f(e) · f(e)−1 = 1.

Proof of Theorem 3.3: Let k be a positive integer, and let 1 > x > 3/4 be a parameter to be

chosen later. Define c = x1/(k+1) and let αi = 1
2c
i+1 for i = 0, . . . , k. Observe that αk = x/2 so

1/2 > αi ≥ αk > 3/8. Define as in [16]

Ei = {e ∈ E(T ) : f(e) ≥ αin} .

12



So, Ei is the set of all αi-dense arcs and notice that E0 ⊂ E1 ⊂ · · · ⊂ Ek. For i = 0, . . . , k, let Si

denote the set of all triangles that contain an arc from Ei and do not contain an arc from Ej where

j < i. In particular, S0 is just the set of triangles that contain an arc from E0. Finally, let Sk+1

be the triangles that are not in ∪ki=0Si and observe that S0, . . . , Sk+1 is a partition of the set of all

n(n2 − 1)/24 triangles of T .

For i = 0, . . . , k, all the elements of S0 ∪ · · · ∪ Si contain arcs that are αi-dense and therefore

by Lemma 3.4 we have that for i = 0, . . . , k:

ti = | ∪ij=0 Sj | ≤ (1− 2αi)(
5

3
αi −

1

3
)n3 . (8)

By the definition of ti we have that for i = 1, . . . , k, |Si| = ti − ti−1 and that |S0| = t0. Thus, we

also have that

|Sk+1| =
n(n2 − 1)

24
− tk . (9)

For i = 1, . . . , k + 1, all the elements of Si receive weight that is greater than 1/(αi−1n). Indeed,

consider X ∈ Si. We know that it does not contain an arc from Ej for j < i. So the maximum

value of f(e) for an arc e of X is smaller than αi−1n. By the definition of ψ we therefore have that

ψ(X) > 1/(αi−1n). For elements X ∈ S0 we use the trivial bound ψ(X) > 2/n. Summing up the

weights of all the triangles of T we find that:

|ψ| ≥ t0 ·
2

n
+

k∑
i=1

(ti − ti−1)
1

αi−1n
+

(
n(n2 − 1)

24
− tk

)
1

αkn
.

Rearranging the terms we have:

|ψ| ≥ n2 − 1

24αk
− t0
n

(
1

α0
− 2

)
−

k∑
i=1

ti
n

(
1

αi
− 1

αi−1

)
. (10)

Using (8) we have that:

|ψ| ≥ n2 − 1

24αk
− n2(1− 2α0)(

5

3
α0 −

1

3
)

(
1

α0
− 2

)
−

k∑
i=1

n2(1− 2αi)(
5

3
αi −

1

3
)

(
1

αi
− 1

αi−1

)
.

Thus, we must choose k and x so as to maximize

1

24αk
− (1− 2α0)(

5

3
α0 −

1

3
)

(
1

α0
− 2

)
−

k∑
i=1

(1− 2αi)(
5

3
αi −

1

3
)

(
1

αi
− 1

αi−1

)
.

Recalling that ai/ai−1 = c the last expression is identical to

1

24αk
+

1

3α0
− 3 + 8α0 −

20

3
α2
0 +

1

3αk
− 1

3α0
− 7

3
k +

7

3
ck + (

10

3

k∑
i=1

αi)− (
10

3
c

k∑
i=1

αi) .
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Since
∑

i=1 kαi = 0.5c2(ck − 1)/(c− 1) the last expression is identical to

3

4ck+1
− 3 + 4c− 5

3
c2 +

7

3
k(c− 1)− 5

3
c2(ck − 1) .

Finally, recalling that c = x1/(k+1), the last expression is identical to

3

4x
− 3 + 4x1/(k+1) − 5

3
x2/(k+1) +

7

3
k(x1/(k+1) − 1)− 5

3
x2/(k+1)(xk/(k+1) − 1) .

Taking the limit of the last expression as k →∞ we obtain

3

4x
+ 1 +

7

3
lnx− 5

3
x .

The maximum of the last expression for 1 > x > 3/4 is obtained at x = 9/10 in which case the

expression amounts to
1

3
− 7

3
ln(

10

9
) .

This proves that

|ψ| ≥
(

1

3
− 7

3
ln(

10

9
)

)
n2(1− on(1)) .

4 Lower bound for β-regular tournaments

In order to generalize the lower bound for β-regular tournaments we need to address three issues.

The first is that the number of triangles in β-regular tournaments may not be the same for all

such tournaments, (unlike regular tournaments which all have precisely n(n2 − 1)/24 triangles),

and we must therefore determine a tight lower bound in terms of β. The second issue requires an

analogue of Lemma 3.4 suitable for β-regular tournaments. The third issue concerns the analysis

of the fractional packing, generalizing the one given in the proof of Theorem 3.3. We start with a

lower bound for the number of triangles in β-regular tournaments.

Lemma 4.1 The number of C3 in a β-regular tournament with n vertices is at least 1−3β2

24 n3(1−
on(1)) for β ≤ 1/2 and at least (1−β)3

12 n3(1− on(1)) for β > 1/2. This is asymptotically tight for all

0 ≤ β ≤ 1.

Proof. The number of transitive triples (and hence the number of triangles) in any tournaments

is determined by the outdegrees of the vertices. Let di denote the outdegree of vertex i in a

tournament with vertices 1, . . . , n. The number of transitive triples is clearly

n∑
i=1

(
di
2

)
.
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and we wish to maximize this amount. In β-regular tournaments we have the additional restriction

that n(1 − β)/2 ≤ di ≤ n(1 + β)/2. Now, suppose the degrees are sorted so that di ≤ di+1 for

i = 1, . . . , n − 1. In order for the tournament to be realized we have the further restriction that

d1 + . . . + di ≥
(
i
2

)
since already the first i vertices induce a tournament whose outdegree sum is(

i
2

)
. Similarly, (n− 1− dn−i+1) + . . .+ (n− 1− dn) ≥

(
i
2

)
since already the last i vertices induce a

tournament whose indegree sum is
(
i
2

)
.

As the statement of the lemma is asymptotic, it is more convenient to formulate the analogous

continuous convex optimization problem.

maximize

∫ 1

0

f(x)2

2
dx

s.t. f(x) is monotone nondecreasing

1− β
2
≤ f(x) ≤ 1 + β

2∫ α

0
f(x)dx ≥ α2

2∫ 1

α
(1− f(x))dx ≥ (1− α)2

2
.

When β ≤ 1/2 the obvious solution, by convexity, is obtained by setting f(x) = (1 − β)/2 for

0 ≤ x ≤ 1/2 and f(x) = (1 + β)/2 for 1/2 ≤ x ≤ 1. Observe that since β ≤ 1/2, the last two

restrictions of the convex minimization problem trivially hold. In this case we obtain that∫ 1

0

f(x)2

2
dx =

1 + β2

8

and correspondingly,
n∑
i=1

(
di
2

)
≤ 1 + β2

8
n3(1 + on(1)) .

The number of triangles is therefore always at least(
1

6
− 1 + β2

8

)
n3(1− on(1)) =

(
1− 3β2

24

)
n3(1− on(1)) .

When β > 1/2, the last two restrictions of the convex minimization problem force f(x) to linearly

increase in the range 1− β ≤ x ≤ β and we obtain the optimal solution

f(x) =


1−β
2 0 ≤ x ≤ 1− β

x 1− β < x < β

1+β
2 β ≤ x ≤ 1 .

In this case we obtain that∫ 1

0

f(x)2

2
dx =

(1− β)2

8
(1− β) +

(1 + β)2

8
(1− β) +

β3

6
− (1− β)3

6
=

1

12
+

1

4
β − 1

4
β2 +

1

12
β3
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and correspondingly,

n∑
i=1

(
di
2

)
≤
(

1

12
+

1

4
β − 1

4
β2 +

1

12
β3
)
n3(1 + on(1)) .

The number of triangles is therefore always at least(
1

12
− 1

4
β +

1

4
β2 − 1

12
β3
)
n3(1− on(1)) =

(1− β)3

12
n3(1− on(1)) .

The result is asymptotically tight for every β as the extremal degree sequences are realizable as

β-regular tournaments. For β ≤ 1/2 we can take two disjoint regular tournaments A and B on

n/2 vertices each. We can then take (1/4−β/2)n disjoint perfect matchings between A and B and

direct all edges of these matchings from A to B. The remaining edges between A and B are directed

from B to A. In the resulting tournament, each vertex of A has outdegree n(1−β)/2−1/2 and each

vertex of B has outdegree n(1 + β)/2 − 1/2, hence a β-regular tournament realizing the extremal

degree sequence. For β > 1/2 we can take two disjoint regular tournaments A and B on βn vertices

each, and an additional set of vertices denoted as x1, . . . , xn(1−2β). Now, for i = 1, . . . , n(1 − 2β),

direct arcs from xi to all vertices of A and to all vertices xj with j < i. Direct arcs to xi from all

vertices of B and from all vertices xj with j > i. Also direct all arcs from B to A. The resulting

tournament has n vertices, is β-regular, and its degree sequence realizes the extremal case.

We next need to obtain an analogue of Lemma 3.4 that applies to β-regular tournaments.

Although it is possible to generalize Lemma 3.4 directly, the (already involved) analysis become

less tractable. We settle for a somewhat simpler version with only a small loss in the upper bound.

Lemma 4.2 Let T be a β-regular tournament with n vertices. For all 0 < α < (1 + β)/2, the

number of triangles of T that contain α-dense arcs is at most n3(1+β−2α)
2 .

Proof. For a vertex v, we compute the number of α-dense arcs entering it. Let Bv ⊂ N−(v) be

the set of vertices x such that (x, v) is α-dense. Consider a vertex x of maximum indegree in the

sub-tournament T [Bv] induced by Bv. Since in any tournament with |Bv| vertices the maximum

in-degree is at least (|Bv| − 1)/2 we have that x has at least (|Bv| − 1)/2 arcs entering it in T [Bv].

On the other hand, as (x, v) is α-dense, we also have that x has at least αn vertices of N+(v)

entering it. Since N+(v)∩Bv = ∅ we have that the indegree of x in T is at least (|Bv| − 1)/2 +αn.

But the in-degree of x in T is at most (n(1 + β)− 1)/2 and thus

(|Bv| − 1)/2 + αn ≤ (n(1 + β)− 1)/2 .

It follows that |Bv| ≤ n(1 + β − 2α). Similarly, if Cv ⊂ N+(v) is the set of vertices y such that

(v, y) is α-dense, we have that |Cv| ≤ n(1 + β − 2α). Now, each x ∈ Bv lies in at most |N+(v)|
triangles and each y ∈ Cv lies in at most |N−(v)| triangles. We therefore have that the number of

triangles containing v and an α-dense arc incident with v (either entering v or emanating from v)

16



is at most n(1 + β − 2α)(|N+(v)|+ |N−(v)|) < n2(1 + β − 2α). Summing this value for each v ∈ V
and observing that each triangle that contains an α-dense arc is counted at least twice, we obtain

that the number of triangles containing α-dense arcs is at most n3(1 + β − 2α)/2.

Finally, we need to generalize the analysis given in the proof of Theorem 3.3. We use the exact

same fractional packing ψ defined in (7). As in the proof of Theorem 3.3 we let k be a positive

integer, let x < 1 be a parameter to be chosen later, define c = x1/(k+1) and define αi = (1+β)ci+1/2

for i = 0, . . . , k. By Lemma 4.2, the upper bound for ti given in (8) is replaced with:

ti = | ∪ij=0 Sj | ≤
(1 + β − 2α)

2
n3 . (11)

Similarly, using Lemma 4.1, the lower bound for Sk+1 given in (9) is replaced with:

|Sk+1| ≥
1− 3β2

24
n3(1− on(1))− tk if β ≤ 1

2
, |Sk+1| ≥

(1− β)3

12
n3(1− on(1))− tk if β >

1

2
.

As in (10) we have, after rearranging the terms:

|ψ| ≥ 1− 3β2

24αk
n2(1− on(1))− t0

n

(
1

α0
− 2

1 + β

)
−

k∑
i=1

ti
n

(
1

αi
− 1

αi−1

)
if β ≤ 1

2 ,

|ψ| ≥ (1− β)3

12αk
n2(1− on(1))− t0

n

(
1

α0
− 2

1 + β

)
−

k∑
i=1

ti
n

(
1

αi
− 1

αi−1

)
if β > 1

2 .

Using (11) we have that:

|ψ| ≥ 1−3β2

24αk
n2(1− on(1))− n2 (1+β−2α0)

2

(
1
α0
− 2

1+β

)
−
∑k

i=1 n
2 (1+β−2αi)

2

(
1
αi
− 1

αi−1

)
if β ≤ 1

2
,

|ψ| ≥ (1−β)3
12αk

n2(1− on(1))− n2 (1+β−2α0)
2

(
1
α0
− 2

1+β

)
−
∑k

i=1 n
2 (1+β−2αi)

2

(
1
αi
− 1

αi−1

)
if β >

1

2
.

Thus, we must choose k and x so as to maximize

|ψ| ≥ 1− 3β2

24αk
− (1 + β − 2α0)

2

(
1

α0
− 2

1 + β

)
−

k∑
i=1

(1 + β − 2αi)

2

(
1

αi
− 1

αi−1

)
if β ≤ 1

2 ,

|ψ| ≥ (1− β)3

12αk
− (1 + β − 2α0)

2

(
1

α0
− 2

1 + β

)
−

k∑
i=1

n2
(1 + β − 2αi)

2

(
1

αi
− 1

αi−1

)
if β > 1

2 .

Recalling that ai/ai−1 = c the last expression is identical to

−11− 12β − 3β2

24αk
+ 2− 2α0

1 + β
+ k(1− c) if β ≤ 1/2 ,

−5− 9β + 3β2 − β3

12αk
+ 2− 2α0

1 + β
+ k(1− c) if β > 1/2 .
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Recalling that c = x1/(k+1), α0 = (1 + β)c/2, αk = (1 + β)ck+1/2 we obtain that

−11− 12β − 3β2

12x(1 + β)
+ 2− x1/(k+1) + k(1− x1/(k+1)) if β ≤ 1

2 ,

−5− 9β + 3β2 − β3

6x(1 + β)
+ 2− x1/(k+1) + k(1− x1/(k+1)) if β > 1

2 .

Taking the limit of the last expression as k →∞ we obtain

−11− 12β − 3β2

12x(1 + β)
+ 1 + ln(1/x) if β ≤ 1

2 ,

−5− 9β + 3β2 − β3

6x(1 + β)
+ 1 + ln(1/x) if β > 1

2 .

The maximum of the last expression is obtained at x = 11+12β+3β2

12(1+β) when β ≤ 1/2 and at x =
5+9β−3β2+β3

6(1+β) when β > 1/2 in which case the expression amounts to

ln

(
12(1 + β)

11 + 12β + 3β2

)
if β ≤ 1

2 ,

ln

(
6(1 + β)

5 + 9β − 3β2 + β3

)
if β > 1

2 .

This proves that

|ψ| ≥ ln

(
12(1 + β)

11 + 12β + 3β2

)
n2(1− on(1)) if β ≤ 1

2 ,

|ψ| ≥ ln

(
6(1 + β)

5 + 9β − 3β2 + β3

)
n2(1− on(1)) if β > 1

2 .

This completes the proof of the lower bound in Theorem 1.3 which, together with the upper bound

proved in Section 2, yields the entire proof.
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[10] D. Kühn and D. Osthus. Hamilton decompositions of regular expanders: A proof of kellys

conjecture for large tournaments. Advances in Mathematics, 237:62–146, 2013.

[11] B.D. McKay. The asymptotic numbers of regular tournaments, eulerian digraphs and eulerian

oriented graphs. Combinatorica, 10(4):367–377, 1990.

[12] Z. Nutov and R. Yuster. Packing directed cycles efficiently. Discrete Applied Mathematics,

155(2):82–91, 2007.

[13] K.T. Phelps and C.C. Lindner. On the number of mendelsohn and transitive triple systems.

European Journal of Combinatorics, 5(3):239–242, 1984.

[14] P. Rowlinson. On 4-cycles and 5-cycles in regular tournaments. Bulletin of the London Math-

ematical Society, 18:135–139, 1986.
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