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Packing Triangles in g-Regular Tournaments

Islam Akaria

Abstract

For a tournament T, let v3(7") denote the maximum number of pairwise arc-disjoint triangles
(cycles of length 3) in T. Let v3(n) denote the minimum of v3(7T") ranging over all regular (in-
degree=out-degree) tournaments with n vertices (n odd). It is conjectured that v3(n) = (1 +

0,(1))n?/9 and proved that

2 2

L (1 - 0n(1)) < ws(n) <

11.43

This result is an improvement of the best upper bound known to date proven by Yuster, which is :

n? n2—1
< .

The result is generalized to tournaments where the in-degree and out-degree at each vertex may

differ by at most fn.

v



1 Introduction

All graphs and digraphs considered here are finite and contain no parallel arcs or anti-parallel arcs.
In this thesis we will focous on special digraphs called tournaments. A tournament is an orientation
of the complete graph. In particular, we focus on regular tournaments, where the in-degree and the
out-degree of each vertex is the same. Notice that regular tournaments must have an odd number
of vertices, so that the in-degree and out-degree at each vertex is (n — 1)/2.

There are exponentially many non-isomorphic regular tournaments with n vertices [5], but they
do all share some properties other than just being regular. Most notably, they all have the same
number of triangles (which is ’;—Z(l —on(1)), 0,(1) is a very small number relative to n) and the
same number of transitive triples, where a triangle is a set of three arcs {(z,y), (y, ), (z,x)} while
a transitive triple is a set of three arcs {(x,y), (v, 2), (z,z)}. Throughout this paper a triangle is
denoted by C3 and a transitive triple is denoted by T'T5. An arc triangle packing of a digraph is a
set of pairwise arc-disjoint subgraphs that are isomorphic to a triangle.

We denote by v3(T') the size of a largest triangle packing for a tournament 7', and let v3(n)

denote the minimum of v3(7") ranging over all regular tournaments with n vertices (recall that n is

N

@ —> 0

Figure 1: The unique regular tournament on 5 vertices showing that v3(T") = 2.

Trivial bounds imply that

n? n?

20— 0u(1) < wyln) < (1= 0n(1))

The r.h.s. is trivial since any tournament has (Z) arcs and each traingle occupies three of them.



The Lh.s. is trivial since any complete graph has a packing with (1 — 0,(1))n?/6 undirected
triangles (because of the existence of Steiner triple systems [4]) so consider the number of undirected
triangles that eventually become a C3 after assigning the orientation to the edges. As packings of
K, are invariant under vertex permutations, the expected number of C5 in the resulting packing
of the tournament is asymptotically 1/4 of the elements of the (undirected) packing. Therefore,
v3(n) > (1 —o0,(1))n?/24 since, as noted above, any regular tournament has g—z(l —op(1) triangles,
which is asymptotically 1/4 of the total number of triples of vertices.

Some exact values for small n are easy to compute. Clearly, v3(3) = 1 and it is easy to see that
v3(5) = 2 (see Figure 1).

The best bounds for v3(n) are given by Yuster [8]. He proved that:

n2 n?—1
— (1 — < < .
15— on(1)) Sws(n) < —2

The upper bound of Yuster follows from a construction of a regular tournament with a relatively
small feedback arc set, which is a set of arcs whose removal makes a digraph acyclic.

Our first main result improves this upper bound. We will use the same construction from [8]
but with a more careful analysis. To this end, we use a result connecting the fractional relaxation

of the packing problem with its integral one. Our analysis shows that, in fact,

n2

v3(n) < 5(1 +on(1)) .

We also prove that our analysis of this construction is tight. Namely, the maximum triangle packing
of our construction is of size (1 + 0,(1))n?/9. And it is natural to suspect that the construction
yielding the upper bound is, in a sense, a “worst case” construction. Thus, we make the following
conjecture.

Conjecture 1.1.
2

va(n) = (1 + 0a(1)).

The proof of the lower bound is similar in many aspects in [8]. The additional important
ingredient that enables us to obtain the improved lower bound is a strengthening of Lemma 3.3
there, replaced by the significantly more involved Lemma 5.4 here, which bounds the number of
triangles containing “dense” arcs (arcs that appear in many triangles). However, we improved the

two bounds:

Theorem 1.2.

n2

<; - ;1n(190)> n?(1 = 0,(1)) < wa(n) <



Notice that § — Z1In(32) > 1/11.43.

Moreover, this result is generalized to S-regular tournament, which is a tournament in which
the difference between the in-degree and the out-degree at each vertex is at most Sn. So, regular
tournaments are S-regular with 5 = 0, and § = 1 coincides with the family of all tournaments.
Here we no longer need to require that n has a certain parity. Generalizing the above notation, we
denote by v3(,n) the minimum of v3(7") ranging over all S-regular tournaments with n vertices.

The following extends Theorem 1.2.

Theorem 1.3.

_ 732 A2
Vg(ﬁ,n)gmin{l 95 a Sﬁ) }n2(1+on(1)).
vs(B,n) > In <11 fg;f)w?) n¥(1—o0a(1)) if A< 1,
6(1 + 5)

N[ =

v3(B,n) > In < ) n?(1—o,(1)) if B>

5+96—362+ 33

The rest of this thesis is organized as follows. In Section 2, we prove the upper bound in Theorem
1.2. To this end, we need to define the fractional relaxation of the problem and consider its dual
covering problem. In Section 3 we prove that the upper bound we obtain cannot be improved using
our construction. We explain why it is natural to suspect that this construction is “the worst”, and
hence the justification for conjecture 1.1. In Section 4 we show how to generalize the construction
to B-regular tournaments and obtain the upper bound in Theorem 1.3. In Section 5 we prove the
lower bound in Theorem 1.2. As in [8] our main tool is a result of Haxell and Rédl [3] tailored to the
directed setting in [6] connecting the fractional value of a maximum packing with its integral one.
Section 6 addresses the changes needed in the statements given in Section 5 in order to apply them
to the more general setting of S-regular tournaments, resulting in the proof of the lower bound in
Theorem 1.3.

2 Proof of the upper bound for regular tournaments

2.1 Fractional relaxation of packing and covering

We start this section by defining the fractional relaxation of the triangle packing problem together
with its dual fractional covering problem, and define the parameters v3(n) and 73(n) that are the
fractional analogue of v3(n) and its dual, respectively.

Let R, denote the set of nonnegative reals. A fractional triangle packing of a digraph G is a

function 1 from the set F3 of copies of Cs3 in G to R4, satisfying ZeeXeﬁ (X) <1 for each arc



e € B(G). Letting [¢| = X" xc 7, ¥(X), the fractional triangle packing number, denoted v3(G), is
defined to be the maximum of |¢| taken over all fractional triangle packings . Since a triangle
packing is also a fractional triangle packing (by letting ) = 1 for elements of F3 in the packing
and ¢ = 0 for the other elements), we always have v3(G) > v3(G). However, the two parameters
may differ. In particular, they may differ for regular tournaments. Consider, for example, the 5-
vertex regular tournament obtained by the following orientation of K5 on the vertex set {1,2,3,4,5}.
Orient a Hamilton cycle (1,2, 3,4, 5) and another Hamilton cycle as (1,4, 2,5, 3). Clearly, v5(T) = 2.
On the other hand, we may assign each of the five triangles (1,2, 3), (2, 3,4), (3,4,5),(4,5,1), (5,1, 2)
the value 1/2 thereby obtaining a fractional triangle packing of value 2.5.

A fractional triangle cover of a digraph G is a function ¢ from the set of arcs E(G) of G to R4,
satisfying > c yer, @(€) = 1 for each triangle X € F3. Letting [¢| = >  c p(q) ¢(€), the fractional
triangle cover number, denoted 735 (G), is defined to be the minimum of |¢| taken over all fractional
triangle covers ¢. By linear programming duality, 75 (G) = v4(G). For example, in the 5-vertex
regular tournament of the previous paragraph, we may assign the value 1/2 to each arc on the cycle

(1,2,3,4,5) and obtain a valid fractional triangle cover of value 2.5.

2.2 Upper bound for regular tournaments

In order to obtain a good upper bound, we must first construct a regular tournament which is
“as transitive as possible” so that it will not be able to accommodate many pairwise arc disjoint
triangles. Naturally, any regular tournament on n vertices cannot have a transitive subset on more
than (n + 1)/2 vertices, since in such a subset the outdegree of the source would already be more
than (n — 1)/2. The following regular tournament, denoted R,, does have a transitive subset on
(n 4+ 1)/2 vertices, in fact it has many such subsets. It even has many pairs of arc-disjoint such
subsets (each pair sharing exactly one vertex). It is reasonable to suspect that a maximum triangle
packing of R, yields the value of v3(n).

For n odd, we define R,, as follows. Its vertices are {0,...,n — 1} (one can view them as
elements of the cyclic group Z,). Vertex i has an outgoing arc towards vertex j if and only if
1< (j—i)modn < (n—1)/2. Thus, if we think of the vertices as lying on a directed cycle of

length n, each vertex sends outgoing arcs to the (n—1)/2 vertices following it on the cycle. Observe

that R, is a regular tournament and that for any vertex i, the set of vertices {i,i+1,...,i+(n—1)/2}
(indices modulo n) forms a transitive subset. We will prove that v3(R,,) < M, which implies

that v3(n) < M. Since, by the previous subsection, 75 (R,,) = v35(Ry) > v3(Ry,), it suffices to

prove the following.



Lemma 2.1.

+ 2
() < (00
Proof. We consider first case where n = 1 mod 6. We will construct a particular covering

which attains the bound stated in the theorem. Define the length of an arc of R, from ¢ to j
by length(i,j) = j —imodn. We give for all the arcs of length 1,...,|%]| the weight 0 (i.e.

¢( ) = 0 for length(e) € {1 LGJ }) For each remaining arc with length ¢ we give the weight

arr (0= 15)):

Proposition 2.2. This assignment is fractional triangle cover.

Proof. Let (h,i,j) be a triangle, without loss of generality h = 0 so the triangle is (0,4, j).
First Case: i € {1,...,[%|} then the weight of arc (¢, j) is n%rl (j —i—[%]), and the weight of
arc (4,0) is —2= (n —j— L%J) Total weights of the triangle (0,4, j) is:

O+n-2u<j_i_[gj)+ni1(”_j_lgj):
ey (i 5] 2 (- [g)) =
n—2|rl <n_3ng1> :n—2i—1 (”_n;1> :n—2i—1 (n;1>

Second Case: i ¢ {1,...,|%]|} then the weight of arc (0,4) is TH (i — | #]) and we have three

cases for the weight of arc (4,7) and arc (4,0), the first one is 5 ( —i— |%]) for (i,4) and zero

1

for (4,0), the second case is zero for (7,7) and (j,0) is —( —%]), and the last case is

n+1
i1 (G —i— [§]) for (i,5) and 335 (n —j — [§]) for (5,0).
Now we calculate the weight of the triangle in the three cases:
First Case:

We used the fact that length(j,0) < [%] so j>n—(n—1)/6

Second Case:

at



2 n+1 _q
n—+1 -

2
Recall that in this case length(i,j) = j — L
Third Case:

End of Proposition.

We calculate the value of this assignment. Observe that only lengths between [n/6] 41 until [n/2|
(which is the maximum length by the definition of R,) receive nonzero weight which is the length

minus |n/6], normalized by multiplying it with 2/(n + 1). Thus,

6= o) = nnil(1+2+3+...+"3> (1)

eck
o (0
 on+1 2
n <(n—1)(n+2)>

Hence 73 (R,,) < %2 for n =1 mod 6.

Now, if n # 1 mod 6 then either n = 3 mod 6 or n = 5 mod 6. Observe that R, is a subgraph of
Ry, +2 (just delete vertices 0 and (n+1)/2 from R, +2 to obtain a subgraph isomorphic to R,,) we have
75 (Rp) < 75 (Rp+y2) < 73 (Rpt4). Thus, for the case n = 5 mod 6, we have that n 4+ 2 = 1 mod 6
hence 73 (Ry,) < 73 (Rny2) < (nHBO("))Q = (n+09(n))2. For the case n = 3 mod 6, we have that
n+4 =1 mod 6 hence 75(R,,) < 75 (Rnt4a) < ("+4J;0("))2 = ("+09("))2. Which completes the proof

of Lemma 2.1. ]




3 Tightness of the upper bound construction

In this section we prove that the assignment given in Lemma 2.1 is optimal for R,. Namely, any
attemt to improve the upper bound for v3(n) needs a different construction. In the following lemma

we show that our constructed covering is asymptotically optimal for R,.

Lemma 3.1.
(n —o(n))?
—

v(Ry) >

Proof. We will prove the claim for n = 9% (k odd). In this case we will show that we can pack
exactly %2 = 9k? pairwise arc-disjoint triangles.

We define the packing as follows. It consists of n = 9k sets of triangles, denoted Sp, ..., Sp—1.
Each set will contain k pairwise arc-disjoint triangles. Overall, the construction consists of nk =
n?/9 triangles. Furthermore, for any two sets S;, S;, their traingles are pairwise arc-disjoint.

We denote the vertices by {0,1,...,n —1}. We describe S; for j =0,...,n — 1. S; is defined
as follows. It consists of the triangles (j,j + a; mod n,j + a; + b; mod n) for i =0, ...,k — 1 where
bi=(n—1)/2—3k/2+ (i+ 2)/2 for i odd.
bi=(n—1)/2—2k+i/2+ 1 for i even.

a; =2k +1i/2 for i even.
a; = 3k/2 +1i/2 for ¢ odd.

For example, if £k = 9 (thus n = 81) we have that Sy = {(0, 18, 41), (0, 14,42), (0,19, 43), (0, 15,44),
(0,20,45), (0, 16,46), (0,21,47),(0,17,48), (0,22,49)}.

We need to prove that each of the listed triples in each of the S; is indeed a directed triangle
of R, and that no arc repeats twice in any of the 5.

Each triple is of the form (j,j + a; mod n,j + a; + b; mod n). The lengths of the arcs in this
triangle are a;,b; and ¢; = n — a; — b;. Observe that a; is always between 1 and (n — 1)/2 by its

definition. Indeed, if 7 is even then

2n kE—1 bk —1 n 1 n—1
ok <a; <2 - o2
g ~2ksas22+— 2 18 2° 2
If 7 is odd then
n+1_ L ‘<3k+k—2_4k—2_2n 1 n—1
6 2 2 “i=y 2 2 9 =79

In any case, the first edge of each triangle whose lengthy is a;, is indeed an arc of R,,.
Observe similarly that b; is always between 1 and (n —1)/2 by its definition. Indeed, if i is even

then "
n 1 n—1 n—1 —1 n
4= k1< < —— —2%+14+—"=_—<
18+2 2 k+lsb < 2 k+1+ 2 3~

n—1
2




If 7 is odd then

E_i_l—n_l %+§<b.< +
32 2 2=t 2 2 2 18 27— 2

nol 3k k_Tn 1_n-1
In any case, the second edge of each triangle whose lengthy is b;, is indeed an arc of R,,.

Finally, ¢; is always between 1 and (n — 1)/2 since by the definitions of a; and b; we have
¢ =(Mn-1)/2—1.

We have proved that each triple in each S; is a directed triangle of R,,. Observe also that the
interval of values of the a; is always between n/6 + 1/2 and 5n/18 — 1/2. The interval of values of
the b; is always between 5n/18 + 1/2 and 7n/18 — 1/2. The interval of values of the ¢; is always
between 7n/18 +1/2 and (n — 1)/2. As these three intervals are disjoint, this proves that no arc is
repated twice in the construction.

This proves the lemma when n = 9k and k is odd. Now, for any other odd number n, let k be

the largest odd number such that 9k < n. Recalling that Rgj is a subgraph of R,, we have that

v(Ry) > v(Rop) > k% = (”_g(”))Q .

4 Upper bound for f-regular tournaments

In this section we prove the upper bound for v3(/3,n) given in Theorem 1.3. Consider the regular
tournament graph R(; ), defined in subsection 2.2. We can assume (1 + 3)n is an odd integer as
rounding issues do not affect the asymptotic claim. Delete from R ), the vertices {0,1,...,Bn—
1} and denote the resulting tournament by 7. Notice that 7" has n vertices and since R, is regular,
and we have removed only Sn vertices from it, we have that T is a S-regular tournament.

We first consider the case where § < 1/5. Let ¢ be the fractional triangle cover defined on
R(144)n, Proved in (1) to satisfy [¢| < (1 + 0,(1))(1 4 3)*n?/9. Let ¢ be the fractional triangle
cover of T induced by ¢. Namely, each arc of T retains its weight under ¢. Now, |¢| — |¢'| is just
the sum of the weights of the arcs incident with the removed vertices {0,1,...,6n — 1}. By (1),
the sum of the weights of the arcs emanating from each vertex of R(;,g), is (1 —0,(1))(1+ 8)n/9
and, by symmetry, the sum of the weights of the arcs entering each vertex of R(i4g), is also
(1—0,(1))(14B)n/9. Now, for all 3 < 1/5 we have that Sn < (1+ 3)n/6. Hence all the arcs (i, j)
where i,j € {0,1,...,8n — 1} have ¢((¢,7)) = 0. Thus,

6| — |¢'] > (Bn) 201 — on<1>>#n



It follows that

o) < 1ol - (1 - on() 20T E) e
2
< (1+ on(l))(lgﬁ)n2 —(1- On(l))w(lgmn?
1- 32

< (14 o0,(1)) 5 n?.

Since v3(8,n) < v3(T) < v3(T) = 75(T) < |¢'| we have that v3(3,n) < (1 + 0,(1))(1 — 5*)n?/9 for
B <1/5.

The following triangle cover, denoted ¢” is valid for all 3 < 1. Assign the weight 1 to all the
arcs of T of the form (7,j) where ¢ > j. All other arcs receive the weight 0. Notice that each
directed triangle must contain an arc having weight 1 and hence ¢” is a valid triangle cover (in
fact, an integral cover). We count the number of arcs receiving weight 1. Vertex (1 + 5)n — 1 (the
vertex with largest index) has an outgoing arc in R(i4g), to all vertices j with j < (1 + 8)n/2.
Hence, it has at most (1 + 8)n/2 — fn — 1 =n/2 — fn/2 — 1 arcs emanating from it in 7" having
weight 1. Similarly, for all k =1,...,n/2 — Bn/2, vertex (14 )n — k has at most n/2 — fn/2 — k
arcs emanating from it in 7" having weight 1. Hence,

n/2—Bn/2 )
1< S w2 pn2- k) < (1ot
k=1
Since v3(8,n) < v3(T) < v3(T) = 75(T) < |¢"| we have that v3(3,n) < (1+0,(1))(1 — 8)?n?/8 for
B < 1. Observe that for all 5 < 1/17 < 1/5 the bound obtained via ¢ is better than the bound

obtained via ¢” hence we may summarize that

52 a2
y3(5,n)§min{1 9/6 , u 85) }n2(1+0n(1)).

5 A lower bound for regular tournaments

5.1 Integer versus fractional packings

A result of Nutov and Yuster [6] asserts that the integral and fractional parameters differ by o(n?).

The following is a very spacial case of their result.
Theorem 5.1. If T is an n-vertex tournament, then v3(T) — v3(T) = o(n?).

An undirected version of Theorem 5.1 has been proved by Haxell and R6dl [3] who were the

first to prove this interesting relationship between integral and fractional packings. The proof of



Theorem 5.1 makes use of the directed version of Szemerédi’s regularity lemma [7] that has been
used implicitly in [2] and proved in [1].

Let v3(n) be the minimum of v3(T") ranging over all n-vertex regular tournaments 7". Similarly,
let v3(B8,n) be the minimum of v3(T) ranging over all n-vertex [-regular tournaments 7. By

Theorem 5.1 and the fact that fractional packings are at least as large as integral packings we have:

Corollary 5.2. vi(n) > v3(n) > vi(n) — o(n?). Similarly, vi(8,n) > v3(8,n) > vi(8,n) — o(n?).

5.2 Proof of the lower bound in Theorem 1.2

In this section we prove the following theorem that, together with Corollary 5.2, yields the lower

bound in Theorem 1.2.
Theorem 5.3. A regular tournament T with n vertices has v;(T) > (1 — 0, (1))(3 — %ln(%o))n?

As in [8], we call an arc a-dense if it is contained in at least an triangles. Observe that no
arc is 1/2-dense as any arc of a regular tournament appears in at most (n — 1)/2 triangles. We
require the following lemma that bounds the number of triangles that contain a-dense arcs where

« is relatively large. It is an improvement over Lemma 3.3 in [8].

Lemma 5.4. For all o > 1/4, the number of triangles that contain a-dense arcs is at most

(1-2a)(3a - $)ns.

Proof. As shown in [8], the total number of a-dense arcs entering each vertex is at most
n(l — 2a)). We repeat the details of this observation for completeness. For a vertex v, we compute
the number of a-dense arcs entering it. Let B, C N~ (v) be the set of vertices = such that (z,v) is
a-dense. Consider a vertex = of maximum indegree in the sub-tournament 7'[B,] induced by B,,.
Since in any tournament with |B,| vertices the maximum indegree is at least (|B,| — 1)/2 we have
that x has at least (|B,| — 1)/2 arcs entering it in 7'[B,]. On the other hand, as (z,v) is a-dense,
we also have that x has at least an vertices of N*(v) entering it. Since N*(v) N B, = () we have
that the indegree of x in T is at least (|B,| — 1)/2 + an. But the indegree of x in T is (n — 1)/2
and thus

(|IBo] = 1)/2+an<(n—1)/2.

It follows that |B,| < n(1 — 2«). Similarly, if C,, C N T (v) is the set of vertices = such that (v, x)
is a-dense, we have that |C,| < n(1 — 2a).

But we are not interested in counting the number of a-dense arcs incident with a vertex, rather
we wish to count the number of triangles containing a-dense arcs. To this end, we need to define

certain parameters.

10



1. Let r(v) denote the number of triangles of the form (v,z,y) such that (y,v) is a-dense and

(v, ) is not a-dense.

2. Let s(v) denote the number of triangles of the form (v,x,y) such that (y,v) is not a-dense

and (v, x) is a-dense.

3. Let ¢(v) denote the number of triangles of the form (v,x,y) such that (y,v) is a-dense and

(v, x) is a-dense.

4. Let b(v) = r(v) + t(v) denote the number of triangles of the form (v, z,y) such that (y,v) is

a-dense.

5. Let ¢(v) = s(v) + t(v) denote the number of triangles of the form (v, x,y) such that (v,z) is

a-dense.
6. Let q(v) = 1r(v) + 3s(v) + 3t(v).

We claim that ) .y q(v) is an upper bound for the total number of triangles containing an a-
dense arc. Indeed, consider some triangle (z,y, z) containing an a-dense arc. If it contains a single
a-dense arc, say (x,y), then this triangle is counted 1/2 for s(x) and 1/2 for r(y). If it contains
three a-dense arcs, then it is counted 1/3 for each of t(x),t(y),t(z). If it contains precisely two
a-dense arcs, say (z,y) and (y, z), then it is counted 1/2 for s(x), 1/2 for r(z) and 1/3 for t(y),
so it contributes more than 1. In any case, each triangle containing an a-dense arc contributes at
least 1 to the sum ) i q(v).
It remains to upper bound ) ., q(v). We will upper bound each ¢(v) separately, and multiply
the bound by n. Notice that by the definitions of b(v) and ¢(v),
1 1 2
alv) = 2h(0) + 5e(v) — 2t(v) )
Let fn = |B,| and yn = |C,| and recall that 8 < 1 — 2« and v < 1 — 2a. We start by giving
upper bounds for b(v) and ¢(v) in terms of 5 and v respectively. For any = € B,, let f(z) denote
the number of triangles containing the a-dense arc (z,v). By the definition of B, we have that
f(z) > an. Let d(z) denote the indegree of z in T[B,]. As in the argument at the beginning
of the proof, we have that d(z) + f(x) < (n —1)/2. Now, by the definition of b(v) we have that

b(v) = > .ep, f(z) and therefore
by = 3 fla) < 3 (S~ dw))
xeB, TEBy

On the other hand, } .p d(z) = [By|(|By| — 1)/2. Hence,

1L [B|(IBol =1) _ B(1=5)
- 5 = 5 n? . (3)

n_
b(o) < 1B,

11



Analogously, we have that

1 |Cv|(|cv| B 1) _ ’7(1 _’7)
N 2 =T )

.
c(v) < |Gl

We next give a lower bound for ¢(v). Consider any arc (z,y) that goes from C, to B,. This means
that (v, z,y) is a triangle where both (y,v) and (v, z) are a-dense. Hence, this triangle contributes
to t(v). Thus, the number of arcs going from C, to B, is equal to ¢(v). There are at least |B,| x an
arcs going from N1 (v) to B,. At most ([Nt (v)| —|Cy|)|By| of them go from N*(v)\ C, to B,.

Hence,

N2 amBn > la— 5+’

t(v) > |Bulan — (INT(v)| = |Cul)| Bu| = aBn® — (

We can similarly estimate t(v) by the fact that there are at least |C,| x an arcs going from C, to
N~ (v). At most (|[N~(v)| — |By|)|Cy| of them go from C, to N~ (v) \ B,. Hence,

1(v) 2 [Colan — (IN~(@)] = [B)IC] = arn? = ("= = By 2 Afa— 5 + B)n.

Using the last two inequalities we obtain that

t(v) > (67 Gt [Chk) a)z(ﬁ +7)) n?.

By (2), (3), (4), (5) we get that

5 _¢a _M_ﬁfy>n2' (6)

o0 < (5 - Do+ - L E

Hence, our remaining task is to maximize the expression (% - 5)B+7) — M - %7 subject to
the constraints 0 < f < 1—2a and 0 < v < 1—2a« (and recall that o < 1/2). Simple analysis of the
partial derivatives show that for all & > 3/8, the maximum is obtained when = v = 1—2a. When
1/4 < a < 3/8 the bound in the statement of the lemma trivially holds as (1 —2a)(3a—3) > 1/24
in this range (and recall that a regular tournament has less than n3/24 triangles). Thus, in any

case, plugging in § =~ =1 — 2a in (6) and rearranging the terms we obtain that

0) < (1 -20) (2o~ )n?

Consequently, for all @ > 1/4, the number of triangles that contain a-dense arcs is at most

v;qw) < (1-20)Ca— )n*
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For an arc e let f(e) denote the number of triangles that contain e. We define a fractional
triangle packing 1 as in [8] by assigning to a triangle X the value
1
P(X) =

- 7
maxeex f(e) (™)
In other words, we consider the three arcs of X and take the arc e with f(e) maximal, setting (X))
to 1/f(e). Notice that 1 is a valid fractional triangle packing. Indeed, the sum of the weights of

triangles containing any arc e is at most f(e) - f(e)~! = 1.

Proof of Theorem 5.3: Let k be a positive integer, and let 1 > = > 3/4 be a parameter to be
chosen later. Define ¢ = z%/*+1) and let o; = %c”l for i = 0,...,k. Observe that ay = x/2 so

1/2 > a; > oy, > 3/8. Define as in [8]
E,={ec E(T) : f(e) > a;n}.

So, F; is the set of all a;-dense arcs and notice that Ey C B4 C --- C E. Fori=0,...,k, let S;
denote the set of all triangles that contain an arc from E; and do not contain an arc from F; where

j < i. In particular, Sy is just the set of triangles that contain an arc from Fy. Finally, let Siiq

be the triangles that are not in UfZOSi and observe that Sy, ..., Sgy1 is a partition of the set of all
n(n? — 1)/24 triangles of T.
For ¢ = 0,...,k, all the elements of Sy U --- U .S; contain arcs that are «a;-dense and therefore

by Lemma 5.4 we have that for i =0,... k:

L 3

i 5
t; = | Uj:() S]| < (1 — 20&1)(§O@ — g)n . (8)

By the definition of ¢; we have that for i = 1,... k, |S;| = t; — t;—1 and that |Sy| = to. Thus, we

also have that

n(n? —1)

Sl (9)

For i =1,...,k+ 1, all the elements of S; receive weight that is greater than 1/(c;_in). Indeed,

|Sky1] =

consider X € S;. We know that it does not contain an arc from Ej; for j < i. So the maximum
value of f(e) for an arc e of X is smaller than «;_in. By the definition of ¢ we therefore have that
P(X) > 1/(aj—1n). For elements X € Sy we use the trivial bound (X)) > 2/n. Summing up the
weights of all the triangles of T" we find that:

k 2
WJ’ZtO'%“FZ(ti—ti—l) ! +<n(n24 1)—tk>1.

a;—1Nn
i—1 i—1

Rearranging the terms we have:

2 k
n“—1 o[ 1 t; (1 1
> SO}y : 10
[l = 240y, n <a0 ) - n<04i ai—l) (10)
=1




Using (8) we have that:

2_q 5 1./ 1 k 5 1./1 1
"‘M > 71240% —n2(1 — 20[0)<§Oéo — g) ( — 2> — ;nQ(l — 2ai)(§ai — g) < — ) .

@

Thus, we must choose k and x so as to maximize

2410% - (1- 2040)(%040 - %> <0i) - 2) ; zk:(l B 2%)(2% B %) <OZ - O"il—1> '

=1

Recalling that a;/a;—1 = c the last expression is identical to

1 1 20, 1 1 7 7 10 10
348 a2 — e L (2N ) - (e 3.
2oy | 3ag St Faot g — g — gkt ek ( Za’) (Fe2 o)

Since >°,_; kay = 0.5¢2(c® — 1)/(c — 1) the last expression is identical to
3 549 7 5 9, &
W—3+4C—§C +§k(c—1>—§c (C —1) .

Finally, recalling that ¢ = 21/(E+1) the last expression is identical to

3 5 7 5

— 3 4 4/ (k+D) §x2/(k+1) + gk(xl/(kJrl) 1) - ng/(k+1)(xk/(k+1) —1).
Taking the limit of the last expression as k — oo we obtain

3 7 5

—+1+4+-lnzx——-x.
3T
The maximum of the last expression for 1 > x > 3/4 is obtained at x = 9/10 in which case the

expression amounts to

71 (10)
—In(—) .
3

1
3 9

This proves that
1 7. 10
> (2 — —In(=) ) n?(1 = 0,(1)) .
1= (3 - 3 g n - (1)

6 Lower bound for f-regular tournaments

In order to generalize the lower bound for g-regular tournaments we need to address three issues.
The first is that the number of triangles in S-regular tournaments may not be the same for all
such tournaments, (unlike regular tournaments which all have precisely n(n? — 1)/24 triangles),
and we must therefore determine a tight lower bound in terms of 5. The second issue requires an
analogue of Lemma 5.4 suitable for g-regular tournaments. The third issue concerns the analysis
of the fractional packing, generalizing the one given in the proof of Theorem 5.3. We start with a

lower bound for the number of triangles in S-regular tournaments.
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Lemma 6.1. The number of C5 in a B-regular tournament with n vertices is at least 1 3B n3(1 —
on(1)) for B <1/2 and at least % 3(1 —0,(1)) for B> 1/2. This is asymptotically tzght for all
0<pg<1.

Proof. The number of transitive triples (and hence the number of triangles) in any tournaments
is determined by the outdegrees of the vertices. Let d; denote the outdegree of vertex i in a
tournament with vertices 1,...,n. The number of transitive triples is clearly
>(3)
i=1 2
and we wish to maximize this amount. In S-regular tournaments we have the additional restriction
that n(1 — 8)/2 < d; < n(1 4+ B)/2. Now, suppose the degrees are sorted so that d; < d; 41 for
i =1,...,n—1. In order for the tournament to be realized we have the further restriction that
di+...+d; > (2) since already the first ¢ vertices induce a tournament whose outdegree sum is
(;) Similarly, (n — 1 —dp—iy1) +... + (n—1—d,) > (;) since already the last i vertices induce a
tournament whose indegree sum is (;)

As the statement of the lemma is asymptotic, it is more convenient to formulate the analogous

continuous convex optimization problem.
maximize /

s.t. ) is monotone nondecreasing

When S < 1/2 the obvious solution, by convexity, is obtained by setting f(z) = (1 — 5)/2 for
0<z<1/2and f(z) = (1+8)/2 for 1/2 < z < 1. Observe that since § < 1/2, the last two

restrictions of the convex minimization problem trivially hold. In this case we obtain that

f@)? 145
/0 5 dr = 3

> (4) < HEwar .

=1

and correspondingly,

The number of triangles is therefore always at least

(-5 wa o = (F52) sty




When 3 > 1/2, the last two restrictions of the convex minimization problem force f(z) to linearly

increase in the range 1 — 8 < x < 8 and we obtain the optimal solution

5 0<e<1-5

flx) =<z 1-B<ax<p

HE p<a<l.

In this case we obtain that

b f(x)? (1-p)? (1+ 8)? B (1-p3 1 1. 1
[ =-C a5+ a-p+Z 0B 1 151

1
2 , 1 43
8 B+125

and correspondingly,
" (d; 11, 1., 1 3\ 5
E <|—=+-8-—-= — 1 1)) .
i:1<2>_<12+46 46 +126)n( +o,(1))

The number of triangles is therefore always at least

M3
(- 36+ 57— 557 - ou0) = L0 - 0

The result is asymptotically tight for every § as the extremal degree sequences are realizable as
B-regular tournaments. For § < 1/2 we can take two disjoint regular tournaments A and B on
n/2 vertices each. We can then take (1/4 — 5/2)n disjoint perfect matchings between A and B and
direct all edges of these matchings from A to B. The remaining edges between A and B are directed
from B to A. In the resulting tournament, each vertex of A has outdegree n(1—3)/2—1/2 and each
vertex of B has outdegree n(1 + (3)/2 — 1/2, hence a (-regular tournament realizing the extremal
degree sequence. For > 1/2 we can take two disjoint regular tournaments A and B on n vertices
each, and an additional set of vertices denoted as z1,...,2,1_25). Now, fori=1,... ,n(l—205),
direct arcs from z; to all vertices of A and to all vertices x; with j < ¢. Direct arcs to x; from all
vertices of B and from all vertices x; with j > 7. Also direct all arcs from B to A. The resulting
tournament has n vertices, is S-regular, and its degree sequence realizes the extremal case. O

We next need to obtain an analogue of Lemma 5.4 that applies to S-regular tournaments.
Although it is possible to generalize Lemma 5.4 directly, the (already involved) analysis become

less tractable. We settle for a somewhat simpler version with only a small loss in the upper bound.

Lemma 6.2. Let T be a B-regular tournament with n vertices. For all 0 < o < (1 + B)/2, the

3 _
number of triangles of T that contain a-dense arcs is at most M

Proof. For a vertex v, we compute the number of a-dense arcs entering it. Let B, C N~ (v) be

the set of vertices = such that (z,v) is a-dense. Consider a vertex = of maximum indegree in the
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sub-tournament 7'[B,] induced by B,. Since in any tournament with |B,| vertices the maximum
in-degree is at least (|B,| — 1)/2 we have that x has at least (|B,| — 1)/2 arcs entering it in T[B,].
On the other hand, as (z,v) is a-dense, we also have that z has at least an vertices of N (v)
entering it. Since N (v) N B, = () we have that the indegree of z in T is at least (|B,| —1)/2+ an.
But the in-degree of x in T' is at most (n(1 + 3) — 1)/2 and thus

1Byl =1)/2 + an < (n(1+5) = 1)/2.

It follows that |B,| < n(1 + 8 — 2«a). Similarly, if C, C NT(v) is the set of vertices y such that
(v,y) is a-dense, we have that |C,| < n(1 + 8 — 2a). Now, each x € B, lies in at most |N*(v)]
triangles and each y € C, lies in at most | N~ (v)| triangles. We therefore have that the number of
triangles containing v and an a-dense arc incident with v (either entering v or emanating from v)
is at most n(1+ B8 —2a)(|NT(v)| +|N~(v)|) < n?(1+ B8 — 2a). Summing this value for each v € V
and observing that each triangle that contains an a-dense arc is counted at least twice, we obtain
that the number of triangles containing a-dense arcs is at most n3(1 + 8 — 2a) /2. O

Finally, we need to generalize the analysis given in the proof of Theorem 5.3. We use the exact
same fractional packing ¢ defined in (7). As in the proof of Theorem 5.3 we let k& be a positive
integer, let 2 < 1 be a parameter to be chosen later, define ¢ = 2/ *+1) and define a; = (14 8)c*1/2

for i =0,...,k. By Lemma 6.2, the upper bound for ¢; given in (8) is replaced with:

- 1 —2
t=| Uiy S| < (4'520‘)”3'

(11)

Similarly, using Lemma 6.1, the lower bound for Sk given in (9) is replaced with:

_ 2 a3
L 2;:’5 31— op(1)) — tg if 8 < % S| > (1125)n3(1 —on(1)) — ty if B > % .

As in (10) we have, after rearranging the terms:

|Sk+1]| >

k
1-38% , to (1 2 ti (1 1 . 1
> 1—o0,(1)) == —— -y 2 == fp<i,
W2 S, 00 =G 7 155) " e T an) TS
k
(1-p8)2 , to [ 1 2 ti (1 1 i 1
> " p21l—0,1)=- = —— -y 2 == f 1
[l = 120 n( on(1)) n \ o 1+ Zn Q041 15>2

Using (11) we have that:

6> LEER2(1 - 0,(1)) - 22 (L2

24ay, 2 ag 148
—%a, 1
L i<,
1-8)3 1+5-2
01> Ug2in2(1 — 0,(1)) - n2(H2 200 (L 20
k 14520, .
_Zi:1n2(+62 a)(i_ﬁ) if B> =
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Thus, we must choose k and x so as to maximize

|¢|21242/f _(1+ﬁ2 2a0) (1—2>—ZM<;-— ! ) ifg< 1

1-8)3 (14+8-2a) (1 9 P+ B—2q) [ 1
0> g - ; <a0 1+5)_Z”2<ai‘

Recalling that a;/a;—1 = c¢ the last expression is identical to

11— 128 — 352 2a0 ,
2 — k(1— f3<1/2
—-5-98+38%2 -3 20 ,
2 — k(1 — f 1/2.
20, + 115 +Ek(l—¢) ifp>1/
Recalling that ¢ = 2/* D ag = (1 + )¢/2, ap = (1 + )t /2 we obtain that
—11— 1283 — 342 1/(k+1) 1/(k+1)y s 1
2 — k(1 — f <+
e+ 0" Thl-e ) ifh<y,
—5—98+38% -3 1/(k+1) 1 :
2 — k(1 —2V/+Dy g > L
6201 1 B) + x +Ek(1—= ) i B> 5
Taking the limit of the last expression as k — oo we obtain
—11-128 - 332 , )
1+ 1In(1 f <+
122(1+ B) +1+In(l/z) if g < 5
—5-96+38* - 5 . .
1+ 1In(1 f 5.
6201 1 B) +1+1In(l/z) if B> 3

The maximum of the last expression is obtained at z = LA126436% o B <1/2 and at = =

12(1+0)
% when 5 > 1/2 in which case the expression amounts to

12(14p) .
n (11+12B+3B2> ifh=y

6(1+ B) .
ln<5+95—352+/33> o=

—_

[\

[N

This proves that

12(1
| > In (11 + gzgf)%z) n2(1 = on(1)) if B <

6(1
|¢|21n<5+%(_§§§+53)n2<1—on<1>> if 5> 1

D=

This completes the proof of the lower bound in Theorem 1.3 which, together with the proof of the
upper bound, yields the entire proof. ]
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