
Journal of Scheduling
https://doi.org/10.1007/s10951-019-00629-3

An optimal online algorithm for scheduling with general machine cost
functions

Islam Akaria1 · Leah Epstein1

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
We present two deterministic online algorithms for the problem of scheduling with a general machine cost function. In this
problem, every machine has a cost that is given by a nonnegative cost function, and the objective function is the sum of
makespan and the cost of the purchased machines. In previous work by Imreh, it was shown that no deterministic algorithm
has competitive ratio below 2, and an algorithm whose competitive ratio does not exceed (3+√

5)/2 ≈ 2.618 was presented.
Our first algorithm imitates an optimal offline solution with respect to the number of machines used, and we show that its
competitive ratio is exactly 2.5. Then, we modify our algorithm by imitating a preemptive optimal offline solution instead of
a non-preemptive one. This leads to the design of a 2-competitive algorithm, which is the best possible.

Keywords Online scheduling · Competitive ratio · Machine cost · Preemptive scheduling

1 Introduction

In onlinemachine scheduling problems, usually a fixed set of
machines is given to the algorithm to be used for scheduling
arriving jobs. It is often assumed that the provided machines
do not incur any cost. Here, we study an online scheduling
problem where it is the role of the algorithm to decide how
many machines it will use, where the number of machines
can be increased by the algorithm at any time. The goal of
such studies is to design a more realistic model and to find
the effect of this kind of modification of the model on basic
scheduling problems. Online scheduling with machine cost
was introduced by Imreh and Noga (1999).

Before considering scheduling models with machine cost,
we define classic variants and in particular, those without
machine cost.

Online scheduling on identical machines In this basic
problem, a set of m machines is given to the algorithm.

Partially supported by a grant from GIF—the German-Israeli
Foundation for Scientific Research and Development (Grant Number
I-1366-407.6/2016).

B Leah Epstein
lea@math.haifa.ac.il

Islam Akaria
islam.akaria@gmail.com

1 Department of Mathematics, University of Haifa, Haifa, Israel

Jobs are presented one by one or over a list, and the algo-
rithm assigns each job completely and irrevocably prior to
the arrival of the next job. Every machine can run at most
one job at each time, and every job can be run on at most
one machine at each time. In the non-preemptive variant of
our model, every job selects one machine where it should be
executed continuously. In the preemptive variant, a job can
be run on different machines at different times, and it does
not necessarily have to be run continuously. Thus, in the non-
preemptive case, it is sufficient to select a machine for every
job. (And we assume that jobs are assigned to run there with-
out idle time starting at time zero.) In the preemptive case,
every job may be split into a finite number of parts, each to
be assigned to a time slot on some machine, under the condi-
tion that the parts cannot run simultaneously. The objective
is to minimize the makespan, which is the largest completion
time (or load) of any machine or equivalently, the maximum
completion time over the jobs. These problems (with fixed
numbers ofmachines)were studied in the online environment
and the offline environment (McNaughton 1959; Graham
1966; Hochbaum and Shmoys 1987; Chen et al. 1995; Fleis-
cher and Wahl 2000). The offline non-preemptive variant is
NP-hard, while the offline preemptive one has a polynomial
time algorithm by McNaughton (1959) (which computes an
optimal solution).

On scheduling with machine cost Unlike standard online
scheduling problems, no machines are initially provided to

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-019-00629-3&domain=pdf


Journal of Scheduling

the algorithm. A nonnegative function is given in advance
(by an oracle), representing the cost of buying each machine.
When a job is presented, the algorithm may purchase any
number of new machines. The objective is to minimize a
function that is the sum of the makespan plus the cost of
the machines ever purchased by the algorithm. Once the
algorithm has a machine, it can schedule any new job on
this machine (but previously assigned jobs cannot be re-
assigned). This problem is called Scheduling with machine
cost (SMC). Here and in most previous work, SMC is inves-
tigated in the online list model where the jobs arrive one
by one, and the decision maker has to schedule every job
immediately in the sense that it is assigned irrevocably to
the exiting machines without any information about further
jobs, exactly as in the basic variant defined above. At each
step, the algorithm may buy any number of machines, and
then, it schedules the new job. We allow an algorithm to buy
more than one machine and to schedule the new job on any
machine it has ever bought and not only a newmachine, even
though in such cases (where a newly bought machine does
not receive a job or a part of it just after it is bought), the
purchase of new machines can be postponed.

As we study online algorithms for which it is generally
not possible to obtain an optimal solution, we use com-
petitive analysis for measuring quality of algorithms. An
online scheduling algorithm isC-competitive if its cost never
exceedsC times the optimal cost (for the same input), i.e., the
cost of an optimal offline solution. The competitive ratio of
an algorithm is the infimum C for which it is C-competitive.
In other words, the competitive ratio of a given algorithm
A for an input I is the ratio between the cost of A for I
and the optimal cost for I , and the competitive ratio of A is
the supremum C over the competitive ratios for all possible
inputs.

In the study of Imreh and Noga (1999), the cost of every
machine is defined to be 1, and therefore, the cost of k
machines is simply k. In their work, they showed that the
best possible competitive ratio for SMC is in the interval
[4/3, (1 + √

5)/2 ≈ 1.618]. After this work, there was
a sequence of improvements for the case of unit machine
costs. An improved algorithmwith competitive ratio 2(

√
6+

3)/5 ≈ 1.5798 was presented by Dósa and He (2004). Dósa
and Tan (2010) designed a new algorithm with competitive
ratio (2 + √

7)/3 ≈ 1.5486 and showed a lower bound of√
2 on the competitive ratio of the non-preemptive variant.

For the preemptive variant, it was shown by Jiang and He
(2005) that the lower bound of 4

3 still holds, and an algo-
rithm whose competitive ratio does not exceed 1.3798 was
designed. In the algorithm of Imreh and Noga (1999), the
main idea is to buy a new machine when the total size of
jobs increases to some pre-defined value. Those values are
based on powers of 2 of integers. Jobs were scheduled by
the simple greedy approach of Graham (1966), under which

every job is assigned to the least loaded (currently existing)
machine. In the improved algorithms, not only the total size
of jobs is used for finding the required number of machines,
but also the maximum size of any job is taken into account.
A variant with rejection (under penalties) was studied too
(Dósa and He 2006; Nagy-György and Imreh 2007). Other
variants such as semi-online algorithms, randomized online
algorithms, and offline variants were studied (Seiden 2000;
He andCai 2002; Jiang andHe 2006; Leung et al. 2012; Dósa
and Imreh 2013).

Scheduling with general machine cost functions Imreh
(2009) considered the problem with general cost function. In
this variant, the cost of themachines can be arbitrary, and it is
defined by a non-decreasing machine cost function denoted
by c(m) (where we assume that we can compute it exactly
using an oracle). The value c(m) is the cost of purchasing the
first m machines, i.e., the cost of the mth machine ever pur-
chased is c(m) − c(m − 1). This problem models a situation
where new machines require space, and the cost of adding
a new machine depends on how much empty space there is,
and whether a new room is needed for the new machine. He
analyzed an algorithm from a class of algorithms defined in
Imreh andNoga (1999) and showed that the competitive ratio
of that algorithm is (3+√

5)/2 ≈ 2.618. He also considered
a special case with small jobs where the processing time of
a job cannot be larger than the minimal cost of any machine.
For this case (only), he showed a 2-competitive algorithm.
Furthermore, he showed that no online algorithm can have a
smaller competitive ratio than 2, which is valid even for the
case of small jobs. A special casewith concave cost was stud-
ied by Jiang et al. (2014). For this variant, it was shown that
no (non-preemptive or preemptive) algorithm has competi-
tive ratio below 1.5, and algorithms with competitive ratios
not exceeding 1.6403 and 1.5654 for the non-preemptive and
preemptive variants, respectively, were designed.

In summary, the online problem is defined as follows. We
are given a monotonically non-decreasing function c(m).
Jobs are presented one by one to the algorithm. For every
arriving job, the algorithm can buy additional machines, and
then, it is required for it to assign the new job to be processed
by its machines in a valid way. For a schedule where the algo-
rithm hasm machines and makespan T , its cost is c(m)+ T .
The goal is to minimize the objective function value.

Our contribution We present two new online algorithms
for the problem of scheduling with general machine cost
function. Both algorithms have smaller competitive ratios
than the one known in the literature (Imreh 2009), where
these ratios are 2.5 and 2, and their definitions are similar. The
algorithms are based on the number of machines that an opti-
mal offline solution uses at every given moment in the sense
that the algorithm tries to imitate such a solution and it buys
machines whenever its number of machines is smaller. Given
the lower bound of Imreh (2009), our 2-competitive algo-

123



Journal of Scheduling

rithm is the best possible, and therefore, we close the problem
with general machine cost with and without preemption.
Specifically, the algorithms are non-preemptive, though the
better algorithm is compared to optimal offline preemptive
solutions, and thus, its analysis will be valid for preemptive
algorithms, making it an optimal online algorithm among
such algorithms as well. The variant of larger competitive
ratio is a non-preemptive algorithm. It is presented in order
to motivate the usage of the preemptive optimal offline solu-
tion for a non-preemptive algorithm, since we show that
by replacing the preemptive optimal offline solution with
the non-preemptive optimal offline solution, the competitive
ratio increased to 2.5.

2 Preliminaries

Throughout the paper,wewill use the followingnotation. The
jobs will be labeled 1, 2, . . . , n and presented to the online
algorithm in this order. We denote the processing time of job
j by p j > 0. The total processing time of the first k jobs
is denoted by Pk = ∑k

j=1 p j , and the maximum processing
time of any job in the first k jobs is denoted by pmax

k =
max1≤ j≤k p j . For every input, we will consider a specific
optimal offline solution OPT. This offline solution can be
optimal among preemptive solutions, or it can be optimal
among non-preemptive solutions.Wewill writewhich option
is analyzed in each case.

Given optimal offline solutions for all prefixes of the input,
we will consider the numbers of machines used by these
optimal solutions.Wewill use the term time j for themoment
in time just after job j arrived and was assigned, and time
zero is the time before any job has been presented. Let OPT j

denote the optimal offline solution for time j as well as its
cost, where such solutions for distinct values of j can be
very different. For an online algorithm A, we let A j denote
the cost for time j . The number of the machines of OPT j is
denoted bym∗

j (where this value is not necessarily monotone
in j). For a specific online algorithm (in the case where the
algorithm is clear from the context), denote the number of the
machines it buys until time j bym j . Similarly, let T ∗

j and Tj

denote the values of makespan of OPT j and of the algorithm
at time j , respectively. Recall that the cost of the machines is
described by a non-decreasing machine cost function c(m).
(This is the total cost of the firstm machines.) Thus, OPT j =
c(m∗

j ) + T ∗
j and for an algorithm ALG which we analyze,

ALG j = c(m j ) + Tj . We will use T ∗
0 = T0 = 0 and m∗

0 =
m0 = 0. (And therefore, T ∗

1 > T ∗
0 , T1 > T0, m∗

1 > m∗
0,

and m1 > m0 will hold.) We use the notation OPTq
j for the

cost of an optimal offline schedule for the prefix of j jobs,
under the condition that exactly q machines are used. That is,

OPT j = minq=1,2,..., j OPT
q
j , OPT

m∗
j

j = OPT j , and for any

q ′, we have OPTq ′
j ≥ OPT j (as the optimal offline solution

selects its number of machines optimally). As the input of j
jobs contains the input of j − 1 jobs, the function OPT j (of
costs) is monotonically non-decreasing in j .

We start with a general description of our algorithm. First
version of this algorithm runs in exponential time, which is
possible for online algorithms. The second version runs in
polynomial time.

Algorithm imitate The algorithm acts for every new job
as follows. First, compute an optimal offline solution for the
input so far, and let m′ be the number of machines used by
this solution. If the algorithm has less than m′ machines,
it purchases additional machines such that it will have m′
machines. Then, it assigns the new job to the least loaded
machine (breaking ties arbitrarily).

Note that when the first job arrives, an optimal offline
solution will purchase at least one machine. Therefore, the
algorithm will do this as well and it will always have at least
one machine. This means that the algorithm will be able to
assign the first job (and any other job).

We analyze two variants of Imitate. The algorithm
Imitatep uses a fixed preemptive optimal offline solution,
and the algorithm Imitaten uses a fixed non-preemptive opti-
mal offline solution. By the optimal preemptive algorithm
(McNaughton 1959), an optimal preemptive solution for m
machines has makespan that is the maximum between the
largest job and the average load. Thus, for m machines and
j jobs, its cost is c(m) + max{ Pj

m , pmax
j }. Since an optimal

offline algorithm can choose any number of machines, its
cost is

min
m=1,2,..., j

{

c(m) + max

{
Pj

m
, pmax

j

}}

.

The cost of an optimal offline preemptive solution is com-
puted in polynomial time.Weassume that an optimal (offline)
non-preemptive solution can be computed as well. This is
done, however, in exponential running time (which is allowed
for online algorithms).1

Obviously, the optimal non-preemptive cost is not smaller
than the preemptive one, and if a non-preemptive opti-
mal offline solution uses m machines, its cost is at least
c(m) + max

{
Pj
m , pmax

j

}
(but it may be larger). Since it is

easier to analyze optimal offline solutions that are chosen by
a fixed rule (among optimal solutions), we assume that out
of suitable optimal solutions, those with minimum numbers
of machines are chosen.

As we use the algorithm List Scheduling (LS) of Gra-
ham (1966), we will use its analysis as follows. After j jobs

1 We will not discuss how one can use an approximation scheme for
converting it into a polynomial time algorithm as our other variant runs
in polynomial time and its competitive ratio is smaller.

123



Journal of Scheduling

have been assigned to m machines, the makespan is at most
Pj
m + (1 − 1

m ) · pmax
j <

Pj
m + pmax

j .

3 Lower bounds

3.1 A general lower bound

We will show later that the competitive ratio of Imitatep is
at most 2. Using the lower bound of Imreh (2009), we will
show that this is the exact competitive ratio of the algorithm,
and that it is the best possible. Thus, we present a simplified
version of the known lower bound that is based on a ski-
rental-type approach (Karp 1992). The proof is very similar
to that given by Imreh (2009). We provide the proof for com-
pleteness and in order to show that the same lower bound
holds for preemptive algorithms as well.

Proposition 1 No preemptive or non-preemptive algorithm
for SMC with general costs has competitive ratio below 2.

Proof For a large integer M , let

c(m) =
{
0 ifm = 1

M ifm ≥ 2 .

Consider an arbitrary (preemptive or non-preemptive)
online algorithm and a sequence of jobs where each job has
processing time 1; p j = 1 for all j . In what follows, we
assume that the algorithm may preempt jobs, while an opti-
mal offline solution (also among preemptive solutions) is
non-preemptive. Thus, the result holds both for preemptive
algorithms and non-preemptive ones.

If the algorithmdoes not buy a secondmachine after 2M+
2 jobs have arrived, its makespan is equal to the number of
jobs. The competitive ratio is at least 2, as an optimal offline
solution can assign one job to each of 2M + 2 machines,
having a makespan of 1 and machine cost M , for a total cost
of M + 1.

Otherwise, let � ≤ 2M + 2 be the job for which the
algorithm buys the second machine. Consider the sequence
of � jobs, for which the cost of the algorithm is at least
M + � − 1, as its makespan is � − 1 before the second
machine is bought. First, suppose that � ≤ M − 1. In
this case, the competitive ratio of the algorithm is at least
(M + � − 1)/� ≥ (� + 1 + � − 1)/� = 2, since the algo-
rithm can be compared with an offline algorithm that only
purchases one machine, and its cost is �, since this is its
makespan.

Now, if � ≥ M , we compare the algorithm to an offline
algorithm that purchases �machines and produces a schedule
that has makespan 1. Therefore, the optimal offline cost is no
larger than M + 1. This yields that the competitive ratio is

at least (M + � − 1)/(M + 1) ≥ (2M − 1)/(M + 1) =
2 − 3/(M + 1). As M grows to infinity, this ratio increases
to 2. As we considered all possible actions of the algorithm,
we found that its competitive ratio is at least 2. �	

3.2 A lower bound for Imitaten

Next, we show that the analysis of Imitaten will not yield a
competitive ratio of 2.

Theorem 1 The competitive ratio of Imitaten is not smaller
than 5

2 .

Proof Let k ≥ 3 be a positive integer, and ε = 1
2k . Consider

an input consisting of two parts as follows. The input is pre-
sented as a sequence where the processing times of jobs are
stated.

I = 1, 1, · · · , 1
︸ ︷︷ ︸

2k
︸ ︷︷ ︸
the first part

, ε, ε, · · · , ε
︸ ︷︷ ︸
2k(2k−4)

, 2

︸ ︷︷ ︸
the second part

.

Thus, the first part of the input consists of 2k identical jobs,
and the second part of the input is defined by the remaining
jobs of sizes ε and 2, respectively. See Figs. 1 and 2 for the
two parts of the input.

The costs of machines are as follows. For every i such that
1 ≤ i ≤ 2k − 1, the cost is equal to zero, i.e., c(i) = 0, the
cost of machine 2k is 1 − ε, i.e., c(2k) = 1 − ε, the cost of
machine 2k + 1 is 999+ ε, and for every i such that i > 2k,
the cost of machine i is zero, so c(i) = 1000 for i ≥ 2k + 1.
The machine cost function is therefore defined as follows.

c(i) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if 1 ≤ i ≤ 2k − 1

1 − ε if i = 2k

1000 if i = 2k + 1

1000 if i > 2k + 1

For j = 1, 2, . . . , 2k, we compute (non-preemptive)
optimal offline solutions for every prefix of j jobs, and
we calculate the value OPT j for every j , so that we can
deduce the numbers of machines used by the algorithm. For
1 ≤ j ≤ 2k − 1, it is possible to assign each job to a differ-
ent machine still paying zero for the machines and obtaining
makespan 1. As the jobs have unit sizes, this is optimal, and
OPT j = 1 for 1 ≤ j ≤ 2k − 1. Upon arrival of the (2k)th
job, any solution has two options. It can use at most 2k − 1
machines, in which case its makespan is at least 2, and the
resulting cost is 2, or it can use 2k machines (one machine
for each job), having makespan 1 and machine cost 1 − ε.
Thus, OPT2k = 2 − ε, and 2k machines are used by a non-
preemptive optimal offline solution. Imitaten keeps buying

123



Journal of Scheduling

Fig. 1 The input and schedules
for the first part of the input
discussed in the proof of
Theorem 1

Fig. 2 The input and schedules
for the second part of the input
discussed in the proof of
Theorem 1

one machine for each job, as does the optimal offline solu-
tion. At this time, it has 2k machines, and one job is assigned
to every machine. See Fig. 1 for the schedules.

Now, we consider optimal offline solutions for other pre-
fixes. It is possible to schedule all input jobs on 2k − 1
machines with makespan 2 as follows. One machine has a
job of size 2, out of the remaining 2k − 2 machines there
are k machines with two unit jobs, and k − 2 machines with
4k jobs out of the other jobs, that is, jobs whose sizes are
equal to ε and their total size is 2 for each machine. Thus,
as the cost of this solution is 2 (and the cost is not larger
if a proper prefix is considered), and none of the optimal
offline solutions for the prefixes will buy the machine whose
cost is very large (machine 2k + 1). This is an optimal solu-
tion for the entire input as there is a job of size 2, so the
cost for the entire input cannot be below 2. Thus, for these
jobs, Imitaten will apply LS on 2k machines, and it will have
2k−4 jobs whose sizes are ε assigned to each machine. One

machine will also receive the job of size 2, for a makespan
of 1+ (2k − 4)ε + 2 = 4− 2/k. Its cost for the machines is
c(2k) = 1 − ε = 1 − 1/2k. See Fig. 2 for the input and the
schedules.

Thus, the total cost of the algorithm for the full input is
5 − 5/2k. As the cost of an optimal offline solution for the
same input is 2, by letting k grow without bound, we observe
that the competitive ratio of Imitaten is at least 2.5. �	

4 Algorithms

We start with the analysis of Imitatep.

Theorem 2 The competitive ratio of Imitatep is at most 2, no
matter whether it is seen as a non-preemptive algorithm or
as a preemptive algorithm.

Proof As the algorithm does not preempt any job, but it is
compared to a fixed preemptive optimal offline solution, the

123



Journal of Scheduling

resultwill hold both for non-preemptive andpreemptive algo-
rithms.

To analyze the algorithm, we will focus on two times dur-
ing its execution for a specific input. Recall that time τ is the
time after job τ was assigned.

Given an input of n ≥ 1 jobs, let t ≤ n be the last time
when the makespan of the algorithm increases, that is, Tt >

Tt−1 and Tj = Tt for j ≥ t . Let s ≤ n be the last time when
the number of machines of the algorithm increases, i.e., the
first time that the number of machines of the preemptive
optimal offline solution is maximum.

Those times are the time when the algorithm determined
its final makespan and final number of machines, respec-
tively. Thus, its final cost for the input is c(mn) + Tn =
c(ms) + Tt .

The main property of our algorithm is that mk =
max1≤ j≤k m∗

j . This property holds by the following. Let
j be the minimum index for which the right-hand side of
this expression is maximized. The algorithm has exactly
m∗

j machines starting at time j and until (at least) time k.
This implies that the algorithm never purchases additional
machines after it purchased at least one machine at time s,
and for any j ′ ≥ s, it holds that

m∗
j ′ ≤ m∗

s . (1)

The case s ≥ t In this case, the algorithm assigns the first
t jobs to mt machines. As the makespan of the algorithm
increases for job t , all mt machines had completion times
of at least Tt − pt prior to the assignment of t , so Pt >

Pt−1 ≥ mt · (Tt − pt ) and we get Tt ≤ Pt
mt

+ pmax
t . As s ≥ t ,

we have pmax
t ≤ pmax

s . Moreover, by the definition of the
algorithm, mt ≥ m∗

t , so
Pt
mt

≤ Pt
m∗
t
. Thus, by Ts = Tt , we get

Ts = Tt ≤ Pt
mt

+ pmax
t ≤ Pt

m∗
t

+ pmax
s .

The cost of the algorithm satisfies ALGn = ALGs =
c(m∗

s ) + Ts . Therefore,

ALGs ≤ c(m∗
s ) + Pt

m∗
t

+ pmax
s .

By

OPTn ≥ OPTs =c(m∗
s )+max

{
Ps
m∗

s
, pmax

s

}

≥c(m∗
s )+pmax

s ,

(2)

and by

OPTs ≥ OPTt = c(m∗
t ) + max

{
Pt
m∗

t
, pmax

t

}

≥ Pt
m∗

t
,

we have ALGn ≤ 2 · OPTn , as required.

The case s < t First, consider the prefix of the input up
to time s. We compare optimal schedules under the condi-
tion that the number of machines is fixed to m∗

s or m∗
t . The

algorithm never purchases machines after time s, and it has
m j = ms for j ≥ s (so mt = ms). It also has ms = m∗

s and
m∗

j ≤ ms for j ≥ s by (1). We will use the notation defined

above: OPTm
j = c(m) + max

{
pmax
j ,

Pj
m

}
.

As OPTs = OPT
m∗
s

s , it holds that OPT
m∗
s

s ≤ OPT
m∗
t

s , and
by writing these costs explicitly, we get

c(m∗
s ) ≤ max

{

pmax
s ,

Ps
m∗

t

}

− max

{

pmax
s ,

Ps
m∗

s

}

+ c(m∗
t ) .

(3)

As in the previous case, we have Tt ≤ Pt
mt

+ pmax
t =

Pt
m∗
s

+ pmax
t , and by (3), we have that

ALGn = ALGt = c(mt ) + Tt = c(m∗
s ) + Tt ≤ c(m∗

s ) + Pt
m∗

s
+ pmax

t

≤ max

{

pmax
s ,

Ps
m∗

t

}

− max

{

pmax
s ,

Ps
m∗

s

}

+ c(m∗
t ) + Pt

m∗
s

+ pmax
t .

We consider two sub-cases, based on the value of
max{pmax

s , Ps
m∗
t
}.

If max{pmax
s , Ps

m∗
t
} = pmax

s , we use max
{
pmax
s , Ps

m∗
s

}
≥

pmax
s and get

ALGn ≤ c(m∗
t ) + Pt

m∗
s

+ pmax
t ≤ c(m∗

t ) + Pt
m∗

t
+ pmax

t , and

by m∗
t ≤ m∗

s . As OPTt = c(m∗
t ) + max{ Pt

m∗
t
, pmax

t }, we get
ALGn ≤ 2 · OPTt ≤ 2 · OPTn .

If max{pmax
s , Ps

m∗
t
} = Ps

m∗
t
, we use max

{
pmax
s , Ps

m∗
s

}
≥ Ps

m∗
s

and have

ALGn ≤ Ps
m∗

t
− Ps

m∗
s

+ c(m∗
t ) + Pt

m∗
s

+ pmax
t

= Ps
m∗

t
+ c(m∗

t ) + Pt − Ps
m∗

s
+ pmax

t .

As t > s, we have Pt − Ps > 0, and we have m∗
t ≤ m∗

s by
(1), so we get

ALGn ≤ Ps
m∗

t
+ c(m∗

t ) + Pt − Ps
m∗

t
+ pmax

t

= c(m∗
t ) + Pt

m∗
t

+ pmax
t ≤ 2 · OPTn,

as in the previous sub-case.
Overall, we get ALGn ≤ 2 · OPTn for all cases. �	

123



Journal of Scheduling

An analysis of the second algorithm

Next, we analyze Imitaten , to show that the example pre-
sented earlier gives a tight bound. This algorithm is a
non-preemptive algorithm and analyzed as such. Further-
more, the competitive ratio of Imitaten is at most 2.5. The
following lemma will be used in the proof.

Lemma 1 Given an input for which an optimal offline solu-
tion uses (which is non-preemptive) m machines and has
makespan T , it holds that c(
m

2 �) + T ≥ c(m).

Proof Given an optimal offline (non-preemptive) solution
with m machines, consider an alternative solution as fol-
lows. The contents of machines 2i and 2i + 1 are assigned
to machine i , for i = 1, . . . , �m

2 
. If m is odd, the contents
of machine m are assigned to machine m+1

2 . The resulting
makespan is at most 2T , and the machine cost is c(
m

2 �).
The claim follows by optimality of the considered optimal
solution. �	
Theorem 3 The competitive ratio of Imitaten is at most 2.5.

Proof We follow the structure of the previous proof. Recall
that t is the last time when the makespan of the algorithm
increases, and s is the last timewhen the number of machines
of the algorithm increases.

The case s ≥ t In this case, the proof is very similar. The
only part that does not necessarily hold is (2), as it is not
always the case, for non-preemptive solutions, that OPTs =
c(m∗

s ) +max
{

Ps
m∗
s
, pmax

s

}
. However, as m∗

s is the number of

machines used by an optimal offline solution, it holds that

OPTs ≥ c(m∗
s ) + max

{
Ps
m∗

s
, pmax

s

}

.

Using this inequality still allows us to continue the proof.
The case s < t In this case, the proof is different, but we

still have

ALGn = ALGt = c(m∗
s ) + Tt ≤ c(m∗

s ) + Pt
m∗

s
+ pmax

t .

We split the analysis into the cases m∗
s ≥ 2 · m∗

t and
m∗

s ≤ 2 · m∗
t − 1.

In the first case, we have

ALGt ≤ c(m∗
s ) + Pt

m∗
s

+ pmax
t ≤ c(m∗

s ) + Pt
2 · m∗

t
+ pmax

t ,

by the condition of the case. As OPTt ≥ pmax
t , OPTt ≥ Pt

m∗
t
,

and OPTt ≥ OPTs ≥ c(m∗
s ), we get ALGt ≤ 2.5 · OPTt . In

this case, the result follows since by decreasing the number of
machines significantly, an optimal offline solution increases
its makespan.

For the case m∗
s ≤ 2 · m∗

t − 1, the result will follow as
the case where decreasing the number of machines is benefi-
cial implies a certain relation between the machine cost and
makespan. The proof of this case is based on Lemma 1.

We apply the lemma with the input consisting of the first
s jobs and m = m∗

s . We get that

c(
m
∗
s

2
�) + T ∗

s ≥ c(m∗
s ).

As in this case m∗
t ≥ m∗

s+1
2 ≥ 
m∗

s
2 �, we have c(m∗

t ) ≥
c(
m∗

s
2 �) ≥ c(m∗

s )−T ∗
s . Therefore, by c(m

∗
s ) ≤ c(m∗

t )+T ∗
s ,

we get

c(m∗
s ) ≤ (c(m∗

s ) + c(m∗
t ) + T ∗

s )/2 = (c(m∗
t ) + OPTs)/2.

Thus,

ALGt ≤ c(m∗
s ) + Pt

m∗
s

+ pmax
t

≤ OPTs/2 + c(m∗
t )/2 + Pt

m∗
s

+ pmax
t .

As OPTt ≥ pmax
t + c(m∗

t ), OPTt ≥ Pt
m∗
t

≥ Pt
m∗
s
by (1), we get

ALGt ≤ 2.5 · OPTt . �	

References

Chen, B., van Vliet, A., & Woeginger, G. J. (1995). An optimal algo-
rithm for preemptive on-line scheduling. Operations Research
Letters, 18(3), 127–131.

Dósa, Gy, &He, Y. (2004). Better online algorithms for scheduling with
machine cost. SIAM Journal on Computing, 33(5), 1035–1051.

Dósa, Gy, &He, Y. (2006). Scheduling withmachine cost and rejection.
Journal of Combinatorial Optimization, 12(4), 337–350.

Dósa, Gy, & Imreh, Cs. (2013). The generalization of scheduling with
machine cost. Theoretical Computer Science, 510, 102–110.

Dósa, Gy, & Tan, Z. (2010). New upper and lower bounds for online
scheduling with machine cost. Discrete Optimization, 7(3), 125–
135.

Fleischer, R., & Wahl, M. (2000). Online scheduling revisited. Journal
of Scheduling, 3(6), 343–353.

Graham, R. L. (1966). Bounds for certain multiprocessing anomalies.
Bell System Technical Journal, 45(9), 1563–1581.

He, Y., & Cai, S. Y. (2002). Semi-online scheduling with machine cost.
Journal of Computer Science and Technology, 17(6), 781–787.

Hochbaum, D. S., & Shmoys, D. B. (1987). Using dual approxima-
tion algorithms for scheduling problems: Theoretical and practical
results. Journal of the ACM, 34(1), 144–162.

Imreh, Cs. (2009). On-line scheduling with general machine cost func-
tions. Discrete Applied Mathematics, 157(9), 2070–2077.

Imreh, Cs. & Noga, J. (1999). Scheduling with machine cost. In
Proceedings of the 2nd international workshop on approx-
imation algorithms for combinatorial optimization problems
(APPROX’99) (pp. 168–176)

Jiang, Y., & He, Y. (2006). Semi-online algorithms for scheduling with
machine cost. Journal ofComputer Science andTechnology, 21(6),
984–988.

123



Journal of Scheduling

Jiang, Y., &He, Z. (2005). Preemptive online algorithms for scheduling
with machine cost. Acta Informatica, 41(6), 315–340.

Jiang, Y., Hu, J., Liu, L., Zhu, Y., & Cheng, T. C. E. (2014). Competitive
ratios for preemptive and non-preemptive online scheduling with
nondecreasing concave machine cost. Information Sciences, 269,
128–141.

Karp, R. M. (1992) On-line algorithms versus off-line algorithms: How
much is it worth to know the future? In Proceedings of the IFIP
12th world computer congress (IFIP1992), algorithms, software,
architecture—information processing, volume A-12 of IFIP trans-
actions (pp. 416–429).

Leung, J. Y.-T., Lee, K., & Pinedo, M. L. (2012). Bi-criteria scheduling
with machine assignment costs. International Journal of Produc-
tion Economics, 139(1), 321–329.

McNaughton, R. (1959). Scheduling with deadlines and loss functions.
Management Science, 6(1), 1–12.

Nagy-György, J.,& Imreh,Cs. (2007).On-line schedulingwithmachine
cost and rejection.Discrete Applied Mathematics, 155(18), 2546–
2554.

Seiden, S. S., (2000). A guessing game and randomized online algo-
rithms. In Proceedings of the 32nd annual ACM symposium on
theory of computing (STOC’00) (pp. 592–601).

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	An optimal online algorithm for scheduling with general machine cost functions
	Abstract
	1 Introduction
	2 Preliminaries
	3 Lower bounds
	3.1 A general lower bound
	3.2 A lower bound for Imitaten

	4 Algorithms
	An analysis of the second algorithm
	References




