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ALGEBRAIC GEOMETRY

VLADIMIR HINICH

1. Introduction

Algebraic geometry studies algebraic varieties that can be described, loosely, as
sets of solutions of systems of polynomial equations. This description can be made
precise in different ways, at different levels of generality. In this introductory
lecture we will give the most elementary version; it will be enough to demonstrate
the richness of questions one can ask about the objects as well as to present some
very classical results.

1.1. Affine varieties. Fix an algebraically closed field k, a number n and a
collection fi of polynomials over k in n indeterminants.

An affine algebraic variety X in kn defined by fi is, by definition, the set of
common zeroes of fi. For instance, for n = 1 X is just a finite number of points
in k, the roots of the greatest common divisor of all fi. For n = 2 and one
equation f = 0 we get an affine plane algebraic curve, for instance, a straight
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line if f(x, y) = ax+ by+ c or an elliptic curve if f(x, y) = y2− x3− ax− b. The
space kn corresponds to the empty set of equations; is called the affine space and
denoted An

k .
One defines a topology on An

k (Zariski topology) declaring the affine varieties
to be the closed sets. This topology has quite a few open/closed sets, but it is
enough for a big part of algebraic geometry.

1.1.1. Exercise. Verify that the above definition yields a topology on the set kn.
Denote by V (I), I ⊂ k[x1, . . . , xn], the affine variety defined by the equations
f = 0 for all f ∈ I. Prove that V (I) ∪ V (J) = V (IJ) where IJ = {fg|f ∈
I, f ∈ J}. Prove that ∩V (Ii) = V (∪Ii).

1.1.2. Affine line A1. As a set, A1 is just k, the algebraically closed field. Zariski
closed subsets are

• A1

• Finite subsets of A1.

1.1.3. Zariski topology induces a topology at any affine variety. As we see from
the example, Zariski topology of an affine variety is very poor so we sould expect
that completely different varieties with be isomorphic as topological spaces.

But, first of all, to talk about isomorphic or nonisomorphic algebraic varieties,
we have to define a morphism between (affine) varieties. We start with the notion
of regular function on X that will be the same as a morphism X → A1.

1.1.4. Regular functions. By definition, a regular function on an affine variety
X ⊂ An is a function f : X → k that can be presented by a polynomial of n
variables. So, regular functions on An for the ring k[x1, . . . , xn]; Regular functions
on an affine variety X defined in An by the equations fi = 0, are also represented
by polynomials; but this representation is not unique; for instance, f and f +∑
aifi define the same function on X.
Interesting question: describe the set of polynomials vanishing at X. It is

easy to see that this is an ideal in k[x1, . . . , xn]. We denote it by I(X). Then,
obviously, the ring of regular functions on X, denoted k[X], can be described
as k[x1, . . . , xn]/I(X) = k[An]/I(X). Assume that X is given by the equations
fi = 0. Denote by I the ideal generated by fi. Then obviously I ⊂ I(X).

1.1.5. Nilpotents. An element a ∈ A in a commutative ring A is called nilpotent
if an = 0 for some n. The ring having no nonzero nilpotents is called reduced.
Obviously k[X] is always reduced as it is a subset if the ring of functions. Thus,
it is not always true that I(X) = I: it is enough to take I = (f 2) and then I(X)
will contain f .
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1.1.6. Exercise. Given an ideal I in a commutative ring A, one defines
√
I = {x ∈ A|∃n : xn ∈ I}.

Prove that
√
I is an ideal. Prove that it is smallest among the ideals J ⊃ I such

that A/J is reduced.
Show that the claim does not necessarily hold if A is not commutative.

1.1.7. Advertisement. We will prove soon that if k is algebraically closed, I ⊂
k[x1, . . . , xn] and X = V (I) then I(X) =

√
I, see Nullstellensatz.

1.1.8. Size of the set of solutions. How can one think about the size of X? Sim-
ilarly to what one does in Linear algebra, one could try to parametrize the set of
solutions (and define dim(X) as the number of parameters).

This approach seldom works, but it is still interesting to give an example.
We skip the trivial example of X ⊂ A2 given by the equation y − x2 = 0, and

look at something more interesting.
Let X ⊂ A2 be given by the equation x2 + y2 = 1. Choose an obvious solution

x = 1, y = 0. Let us look for a solution satisfying the condition

t =
y

x− 1

for a given t. We get the equation

x2 + t2(x− 1)2 = 1,

that is
x2(1 + t2)− 2t2x+ (t2 − 1) = 0.

This is a quadratic equation with respect to x that has a solution x = 1. By
Vieta theorem the second root is x = t2−1

t2+1
and therefore y = t(x − 1) = − 2t

t2+1
.

We get a one-to one correspondence (almost) between the points of X and A1,

carrying t ∈ A1 to the pair ( t
2−1
t2+1

,− 2t
t2+1

) and, in the opposite direction, carrying
(x, y) to y

x−1 .

1.1.9. Exercise. Describe precisely the one-to-one correspondence:

• what subsets of X and of A1 correspond to each other?
• Does the above analysis work when k is a field of characteristic 2?

1.1.10. Going back to linear algebra, there is another way to define the di-
mension of a vector space. dimV can be defined as the maximal length of the
sequence of vector subspaces

V = Vn ⊃ Vn−1 ⊃ . . . ⊃ V0 = 0.

One can try to mimic this definition in our context.
We can safely expect to have dimA1 = 1. However, there are very long se-

quences of proper closed subvarieties, consisting of a different number of points.
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To get a reasonable answer, we should allow one-point closed subset, but sould
not allow many-point subsets. The first idea could be to require subvarieties used
to be connected, but here is a better notion.

1.1.11. Definition. A topological space X is called irreducible if it cannot be
presented as a union X = X1 ∪X2 of two closed smaller subsets.

Not that the above definition makes only sense for very strange topologies,
such as Zariski topology.

Now we are ready to give a formal definition.

1.1.12. Definition. The dimension of an affine variety X is the maximal length
of the sequence

X = Xn ⊃ Xn−1 ⊃ . . . ⊃ X0

of closed irreducible subsets.

Meanwhile it is not even obvious that dimAn = n (but this is a correct state-
ment).

We have easily

1.1.13. Lemma. An affine algebraic variety X is irreducible iff the ring of regular
functions k[X] is integral domain.

The notion of dimension presented above is compatible with the following
notion of dimension of commutative rings.

An ideal p ⊂ A is called prime if A/p is a domain. The dimension of A is
defined as the maximal length of the chain

p0 ⊂ p1 ⊂ . . . ⊂ pn

of prime ideals of A.

1.2. Projective varieties. Recall that the projective space Pnk is the set of lines
passing through 0 in kn+1. Otherwise, it can be defined as the quotient of the set
kn+1\{0}modulo the equivalence relation x ∼ λx for λ ∈ k∗ = k\{0}. It is worth
thinking of Pn as the space glued from n + 1 copies of the affine n-dimensional
space.
Any k+1-dimensional subspace in kn+1 gives rise to a copy of Pk inside

Pn. For instance, two lines in P2 always meet, the same hold for any

pair of Pk and Pn−k in Pn etc.

Here are the formulas. For each i = 0, . . . , n we define a subset

Ui = {(x0 : x1 : . . . : xn)|xi 6= 0}.
There is a one-to-one correspondence between the points of Ui and the points of
An, given by the formula

(x0 : . . . : xn) ∈ Ui 7→ (
x0
xi
, . . . ,

xn
xi

).
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This formulas allow one to see Pn as covered by (n+ 1) affine spaces.
There are no polynomials f ∈ k[x0, . . . , xn], except for the constants, satisfying

the equation f(x) = f(λx) for all λ ∈ k∗ and all x. But the equation f(x) = 0
has the same roots as f(λx) = 0 in case f is a homogeneous polynomial.

This justifies the following definition.

1.2.1. Definition. A projective variety X ⊂ Pnk defined by a collection of homo-
geneous polynomials fi ∈ k[x0, . . . , xn] is the set of their common zeroes.

If an affine curve X is given by an equation f(x, y) = 0, here is how one
describes its closure in P2. We write f(x1

x0
, x2
x0

) and multiply the rational expression
by the minimal power of x0 to get rid of the denominator. For instance, the circle

defined by the equation x2 + y2 = 1 converts first to
x21
x20

+
x22
x20

= 1 and then to

(1) x21 + x22 = x20.

Any projective variety X, that is, a closed subset of Pn, is covered by the affine
spaces mentioned above. The intersections are open in X and closed in the affine
spaces. That is, a projective variety as we define it is covered by affine varieties.
See the example of (1).

A regular function on a projective variety can be defined as a collection of
compatible regular functions on each affine open subvariety. Typically, there are
no nonconstant regular functions on projective varieties

1.2.2. Exercise. Prove that the only regular functions on Pn are the constants.

1.3. Bézout theorem. Bézout theorem claims that, given two plane curves
without common components of degrees m and n respectively, the number of
their intersection points is precisely m · n. To get this answer, one should be
careful twice:

• Count the intersection points with their multiplicites.
• Not to forget the “points at infinity”.

One should also understand that plane algebraic curves decompose into compo-
nents.

The first condition is widely well-known: we understand that a degree n poly-
nomial has n complex roots if we take into account their multiplicities. The
second condition is also quite transparent: two parallel lines have one intersec-
tion point “at infinity”.
Make this explicit! This should persuade us that it is often better to work

with projective rather than affine varieties.
It is very easy to verify the claim if one of the curves decomposes into a union

of straight lines.



6 VLADIMIR HINICH

1.3.1. Common components. One of the topic studied is the decomposition of
an algebraic variety into irreducible components. This is much easier for plane
curves as they are given by a unique equation and its components correspond to
factors of the equation.

Let us mention

1.3.2. Theorem. The ring of polynomials k[x1, . . . , xn] has a unique decomposi-
tion into primes (in other words, the ring is factorial, or UFD).

Proof. For n = 1 the ring is PID, the rest follows by induction from the Gauss
lemma formulated below. �

1.3.3. Lemma (Gauss lemma). Let A be factorial. Then A[x] is factorial.

�

1.3.4. Exercise. Let A be factorial and a ∈ A. Prove that the ideal (a) is prime
iff a is irreducible.

Thus, irreducibility of a hypersurface X = V (f) ⊂ An is equivalent to irre-
ducibility of the polynomial f ∈ k[x1, . . . , xn].

1.4. 27 lines. Here is a classical result of AG of the 19 century that contains a
lot of ideas relevant till today. Let X be a smooth cubic surface in P3. This is the
set of points (x0 : x1 : x2 : x3) ∈ P3 satisfying a cubic (homogeneous) equation

f(x0, x1, x2, x3) = 0

so that the differential ( ∂f
∂x0
, ∂f
∂x1
, ∂f
∂x2
, ∂f
∂x3

) does not vanish at the points of X

(smoothness).
One equation in 3-dimensional space typically gives a two-dimensional

variety.

.
We study the projective lines lying in X. A classical result due to Arthur

Cayley and George Salmon (1849) says that there are precisely 27 lines on each
smooth cubic surface. Here are the steps of the proof.

• All cubic surfaces are parametrized by their coefficients, up to a scalar.
In the general form

f(x0, x1, x2, x3) =
∑

i+j+k+l=3

cijklx
i
0x

j
1x

k
2x

l
3

there are 6!
3!3!

= 20 coefficients, so cubic surfaces are parametrized by
C = P19.
• A projective line in P3 = P(V ) with dimV = 4 is defined by a two-

dimensional subspace of V . The collection of such is called a Grass-
mannian (Gr(4, 2), the collection of 2-dimensional vector subspaces in a
4-dimensional space) and is given by one equation (Plucker equations) in
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P(∧2V ) = P5. Here is the description of the Plucker embedding.

Given a vector space V , one defines its second exterior power

∧2V as the receptacle of the universal antisymmetric bilinear

map V × V → ∧2V (we will discuss this later). If V has a

basis e1, . . . , en, ∧2V has a basis eij such that eii = 0 and eij =
−eji. In particular, dim∧2V =

(
n
2

)
. Furthermore, the operation

∧2 is functorial, which means that any linear map W → V gives

rise to a linear map ∧2W → ∧2V . In particular, for dimV =
4, any subspace W of dimension 2 gives rise to a line ∧2W in

∧2V (it is worth to write down explicit formulas for the Pl’́ucker

embedding). The image of the grassmannian in P5 is given by one

equation

x01x23 + x02x13 + x03x12 = 0,

where xij are the coordinates of a vector in the vector space ∧2V
with the basis eij.

Thus, the space of lines L in P3 has dimension 4 = 5− 1.
• We define P ⊂ L×C as the set of pairs (L,C) ∈ L×C such that the line
L lies in the surface C. We have two canonical projections, p : P → L

and q : P→ C,
• Let us describe the space of cubics passing through a given line L ∈ L.

This is the fiber PL := p−1(L) of p. We claim that PL is isomorphic
to P15. In fact, the result obviously is independent of the choice of the
line L. If L is given by the equations x2 = x3 = 0, a cubic form F =∑
cijklx

iyjzktl contains L iff c3000 = c2100 = c1200 = c0300 = 0. The
remaining 16 parameters form P15.
• Since p : P→ L has all fibers of dimension 4, we can easily deduce (know-

ing some good properties of the dimension function) that P has dimension
15 + 4 = 19. Of course, we should know that P is a projective

variety and that dimention behaves well.

• Finally, we have a projection P → C of two varieties of dimension 19.
Its image is closed in C (this is because P is projective; the claim is
similar to the claim in general topology saying that the image of compact
topological space is always closed). If it were not surjective, the image
would have dimension smaller than 19 and then the minimal dimension of
a (nonempty) fiber would be positive. Here we use that if there is

a surjective map f : X → Y with dim(X) = n, dim(Y ) = m that

the dimension of fiber f−1(y) is ≥ n − m. Therefore, to deduce
that q is surjectivem it is enough to find C ∈ C for which the fiber q−1(C)
is zero-dimensional. In other words, it is enough to find a cubic surface
C thaht has only finite number of lines on it.
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Take, for instance, F =
∑3

i=0 x
3
i (this surface is called Fermat cubic).

An explicit calculation gives the following description of the lines on F .
These are the lines {(x : αx : y : βy)|x, y ∈ C} with α3 = β3 = 1 as well
as the lines conjugate to the above with respect to permutation of the
variables. This set being finite, this implies that the projection q : P→ C

is surjective.
Thus, any cubic surface (even a singular one) contains at least one line.

• Let now C be a smooth cubic surface. Let L ⊂ C. Look at a plane H
passing through L ⊂ C. The intersection H ∩ C is a plane cubic curve
in H containing L. Thus L is one of its components. Thus, H ∩ X =
L ∪ Q where Q is a quadric (irreducible or union of two lines). The
planes H are parametrized by the projective line P1, and the smoothness
condition onQ in terms ofH is equivalent to an equation of degree 5 on the
value of parameter This is verified by an explicit calculation:

choose the same convenient line x2 = x3 = 0, so that α = (a0 :
a1) ∈ P1 defines Hα = {(x0 : x1 : a0x2 : a1x2)}. Then H ∩ C is

given by the equations∑
cijkla

k
0a

l
1x

i
0x

j
1x

3−i−j
2 ,

so that Q is given by the equation∑
cijkla

k
0a

l
1x

i
0x

j
1x

2−i−j
2 .

This quadric decomposes iff its discriminant that is a degree

5 polynomial of a0, a1, vanishes. Here is the explanation: a quadratic

form can be diagonalized, and the expression
∑
aix

2
i decomposes

iff its rank is ≤ 2.
It turns out that, if C is smooth, this polynomial has no multiple roots

and, for α root of the polynomial, Hα ∩ C is a union of three different
lines.

Thus, there are 5 planes Hα passing through L so that Q is degenerate,
that gives that L intersects 10 other lines on C.
• Choose three lines, L1, L2, L3 that are components of C ∩H. Any other

line L on C intersects with H, so that the intersection point lies on one
of the Li. Three lines L,Li, Lj cannot intersect at one point of C as
otherwise this point would not be smooth (they do not belong to one
plane). Therefore, each one of Li has 8 more lines to meet. This gives
27 = 3 + 3 · 8 lines overall.

2. Spaces with functions

The contemporary way of describing non-affine varieties is via gluing. The
most appropriate language to describe gluing is the language of sheaves which
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is not very elementary for one who sees it for the first time. The language of
“spaces with functions” is less general, but it is much easier for understanding. A
considerable part of ideas of algebraic geometry can be explained in this language.
This is what we will do in this course.

2.1. Basic definitions. Fix a field k.

2.1.1. Definition. A space with functions is a pair (X,O) whereX is a topological
space and O assigns to each open subset U of X a k-subalgebra O(U) of the set of
k-valued functions on U . The assignment U 7→ O(U) ⊂ Map(U, k) should satisfy
the following properties.

1. If f ∈ O(U) and V ⊂ U then f |V ∈ O(V ).
2. If U = ∪Uα, f ∈ Map(U, k) such that f |Uα ∈ O(Uα) then f ∈ O(U).
3. If f ∈ O(U) then D(f) = {x ∈ U |f(x) 6= 0} is open and 1

f
∈ O(D(f)).

We add immediately another definition.

2.1.2. Definition. A morphism of spaces with functions φ : (X,OX) → (Y,OY )
is a continuous map φ : X → Y such that for any open set V ⊂ Y and f ∈ OY (V )
the composition f ◦ φ : φ−1(V )→ k is in OX(φ−1(V )).

The spaces with functions and their morphisms form the category of spaces
with functions denoted Spfu.

Any category C has objects (in this case spaces with functions). For any pair
of objects (spaces with functions) a set of morphism from one to the other is
given. Morphisms can be composed and the composition is associative. For any
object there is the identity morphism from the object to itself.

We need one more very basic definition.

2.1.3. Definition. Let (X,O) be a space with functions and let U be an open
subset of X. Then a natural (obvious) structure of a space with functions is
induced on U : for V ⊂ U we set OU(V ) = O(V ). The map (U,OU) → (X,O) is
called the open embedding.

Let us show how the formalism of spaces with functions works outside of alge-
braic geometry.

2.1.4. Example. Let k = R, X be a topological space and O(U) is the space of
continuous functions on U . Verify the axioms; one uses that the set of

zeroes of a continuous function is closed.

This is a space with functions. It is not very interesting as it contains the same
information as the topological space X.
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2.1.5. Example: smooth manifold. First of all, we have a local model: this is the
standard open disc D = {x ∈ Rn| ||x|| < 1}, with OD(U) defined as the algebra
of smooth functions on U . Now, (X,O) is a manifold if it is locally isomorphic
to (D,OD). In more detail, (X,O) is a smooth manifold if for any x ∈ X there
exists an open neighborhood U of x such that the space with function defined by
U is isomorphic to (D,OD).

One can define in the same manner Ck-manifolds, complex manifolds (k = C)
or real-analytic manifolds.

2.1.6. Traditionally, the standard definition of a smooth manifold is given in
terms of charts and atlases. It is easy to see that our definition is equivalent to
the standard one; I think it is better as it does not require a choice of the atlas.

2.1.7. Example: a point. Let X = pt be a point. There is only one structure of a
space with functions on pt, for a given k: the functions on X should be a subset
of Map(X, k) = k and, if it is a k-algebra, it should contain k. Thus, Opt(pt) = k
is the only choice.

One can easily verify that for any space with functionsX one has HomSpfu(pt, X) =
X, considered as a set.

2.1.8. By definition of a morphism, any morphism φ : (Y,OY )→ (X,OX) gives
rise to map OX(X)→ OY (Y ). Thus, we have a map

(2) HomSpfu(Y,X)→ HomAlg(k)(OX(X),OY (Y )).

In what follows we assume that k is an algebraically closed field.

2.1.9. Definition. A space with functions (X,OX) is called an affine variety if for
any space with functions (Y,OY ) the natural map HomSpfu(Y,X)→ HomAlg(OX(X),OY (Y ))
is a bijection.

2.2. Existence of affine varieties. Note from the very beginning that if an
affine variety X with OX(X) = A exists for a certain k-algebra A, then it is
unique up to a unique isomorphism (Spinoza principle).
‘‘Spinoza principle’’ is the following very general claim of categorical

nature. Instead of trying to describe it in full generality, we will

present how it works in our specific case.

Let (X,OX) and (X ′,OX′) be two affine varieties with OX(X) = OX′(X ′) =
A. This gives a specific element (isomorphism) in HomAlg(k)(OX(X),OX′(X ′))
and, therefore, by assumption, a corresponding φ : (X ′,OX′)→ (X,OX).
Replacing X with X ′ we get a canonical map ψ : (X,OX) → (X ′,OX′).
Now, the composition φ ◦ ψ : (X,OX) → (X,OX) should be the unique

map corresponding to id : OX → OX. Therefore, φ ◦ ψ = id. The same

hold for the composition ψ◦φ. Thus, affine variety, if exists, is

unique up to unique isomorphism.

We will prove the following result.
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2.2.1. Theorem. Let k be an algebraically closed field and let A be a k-algebra
of finite type with no nilpotents (such algebras are called reduced). Then there
exists an affine variety (X,O) with O(X) = A.

Proof. For given k and A, we define the set X as HomAlg(A, k) (we have no choice
by 2.1.7). We define the topology on X in the “minimal possible way”: for any
S ⊂ A we define V (S) = {x ∈ X|S ⊂ Ker(x)} and D(S) = X \ V (S), and we
declare the set of D(S) for varying S to be the basis of topology of X. Note
that D(S) = ∪s∈SD(s) and V (S) = ∩s∈SV (s), so the collection of D(S) defines
a topology on X.

By definition there is an evaluation map ev : A × X → k that carries a pair
(f, x) to evx(f). We will determine O(U) “in a most minimal way”. This means
that a function φ : U → k will be called regular for a certain open covering
U = ∪Ui there exist si, ti ∈ A such ti does not vanish in Ui [Ui ⊂ D(ti)] and
φ(x) = evx(si)/evx(ti) for all x ∈ Ui.

The pair (X,O) is automatically a space with functions. In the next section
we will prove that the map ev : A → O(X) is bijective. This will follow from
Nullstellensatz. This explains why did we have to restrict ourselves to algebras
of finite type over the algebraically closed fields.

Let us now verify that for any ring homomorphism f : OX(X)→ OY (Y ) there
exists a unique map F : Y → X of spaces with functions inducing f on the
algebras of regular functions.

Given y ∈ Y , a map

ev y ◦ f : OX(X)→ OY (Y )
evy→ k

is, by definition, a point in X. This defines a map F : Y → X. Let us verify that
F is continuous. In fact, for any s ∈ A the preimage of D(s) is the collection of
y ∈ Y such that f(s)(y) 6= 0. By definition of a space with function, this is an
open set in Y .

Finally, we have to make sure that for any open U ⊂ X, V = F−1(U), and
any φ ∈ OX(U) the composition

V
F

→ U
φ→ k

belongs to OY (V ). By definition, there is a covering U = ∪Ui and si, ti ∈ A
such that ti does not vanish at Ui and φ(x) = si(x)/ti(x) for x ∈ Ui. The
open spaces Vi = F−1(Ui) cover V , the functions f(ti) do not valish on Vi, so
f(si)/f(ti) ∈ OY (Vi). This implies that φ ◦ F is regular at V .

�

Notation: the affine variety with the k-algebra A of regular functions will be
denoted by speck(A) or simply spec(A).

We are now ready to define general algebraic varieties.
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2.2.2. Definition. A space with functions (X,O) is called an algebraic variety if
it admits a finite open covering with affine varieties.

2.3. Examples.

2.3.1. A1 and P1. Let us describe two simplest algebraic varieties: the affine line
A1 and the projective line P1.

We fix an algebraically closed field k.
The affine line A1 is defined as spec(k[x]).
The set of points of A1 is just k, and the topology is defined by declaring that

k as well as all finite subsets of k are the closed sets. Open subsets are, therefore,
the empty set and the complements to a finite number of points.

A regular function on U = A1\{a1, . . . , an} is k[x, (x−a1)−1, . . . , (x−an)−1] ⊂
k(x).

The projective space P1 consists of A1 and an extra point ∞. An open set
in P1 is either empty or a complement to a finite collection of points. A regular
function on U0 = P1 \ {∞} is just k[x] ⊂ k(x) as above. A regular function on
U1 = P1 \ {0} is k[x−1] ⊂ k(x). This also defines regular functions on each open
subset of U0 and of U1. A function on U is regular if its restrictions to U ∩Ui are
regular. Another descrption of projective space is presented below.

Note that in the examples above intersection of two nonempty open subsets is
nonempty. This means that A1 and P1 are irreducible.

2.3.2. Pn as the space of lines. We will now present Pn as a space with functions
and show that it is an algebraic variety in the sense of Definition 2.2.2.

As a topological space, Pn is the quotient of An+1 \{0} modulo the equivalence
relation v ∼ λv for λ ∈ k∗. Recall that the latter means that a subset of Pn
is open if and only if its preimage under the factor map An+1 \ {0} → Pn is
open. One can easily verify that this yields precisely the Zariski topology on Pn
as defined in Section 1 (this is an exercise). Finally, to define a structure of a
space with functions on Pn, we have to determine the algebra of regular functions
O(U) on any open subset U of Pn. There is only one way to do this, if we require
that the open embeddings Ui → Pn, where Ui = {x ∈ Pn|xi 6= 0}, is an open
embedding as defined in 2.1.3.

2.3.3. Principal open sets. Let X = speck(A) be an affine variety and let f ∈ A.
The open set

D(f) = X \ V (f)

is called a principal open set. Principal open sets form a basis of Zariski topology.
Let us show that principal open sets define affine open subvarieties of X.

Denote Af := A[x]/(xf − 1). If A is reduced, Af is also reduced (for the

proof of this fact see ??. For the current proof we can just replace

Af with Af/N(Af ) to get a reduced algebra). The algebra Af enjoys a
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very nice “universal” property (we will discuss later the word “universal” in the
previous sentence). The obvious map i : A → Af induces, for any k-algebra B,
an embedding

HomAlgk
(Af , B)→ HomAlgk

(A,B)

whose image consists of homomorphisms φ : A → B for which φ(f) ∈ B is
invertible. Finally, Af is an algebra of finite type over k.

Thus, we have a map
speck(Af )→ speck(A)

that is injective as a map of sets and whose image identifies with D(f). It is easy
to verify that this is an open embedding, that is that D(f) is isomorphic, as a
space with functions, to specAf .

2.3.4. Quasi-affine varieties. There exist, however, open subsets of spec(A) that
are not affine. Here is an example. Let A = k[x1, . . . , xn] and let U = An \ {0}.
If n = 1, U is affine, but this fails to be true for n > 1. In fact, let us describe
the restriction homomorphism A → O(U). We can present U as the union of
affine varieties Ui = spec(Axi), i = 1, . . . , n. A regular function on U is given
by a collection of compatible regular functions fi ∈ Axi . Each of the rings Axi
identifies with a subring in the field of rational functions in x1, . . . , xn. Their
compatibility means that their images in this field coincide. This is only possible
if fi ∈ A coincide for all i. Therefore, the restriction map A→ O(U) is bijective.
This means that if U were affine, it would coincide with An.

Definition. An algebraic variety is called quasi-affine if it is isomorphic to an
open subvariety of an affine variety.

2.4. Language of category theory. We have already used the word “cate-
gory”. We will need more and more the language of categories, so let us start.

2.4.1. Definition of a category. A category C is a collection of the following data:

• a class of objects of C denoted by Ob(C).
• for any pair X, Y of objects, a set HomC(X, Y ) of morphisms from X to
Y .
• for any triple X, Y, Z of object, a composition map

HomC(Y, Z)× HomC(X, Y )→ HomC(X,Z).

The composition is required to be associative, any HomC(X,X) is required to
have the identity morphism idX that is a unit with respect to compositions.

2.4.2. Examples. Categories are everywhere in mathematics. These include

• The category of sets Set.
• The category of vector spaces over a given field k. The category of groups,

of abelian groups. The category Algk of commutative algebras over k.
• The category of topological spaces (and continuous maps).



14 VLADIMIR HINICH

• The category of smooth manifolds.
• The category Vark of algebraic varieties over an algebraically closed field
k.

A morphism f ∈ HomC(X, Y ) is called an isomorphism of there exists g ∈
HomC(Y,X) (we also write g : Y → X) such that f ◦ g = idY and g ◦ d = idX .

2.4.3. Initial object. An object X ∈ C is called initial if Hom(X, Y ) consists of
one element for any Y ∈ Ob(C). In particular, Hom(X,X) = {idX}.

Here are some trivial examples.

• ∅ is an initial object of Set, the category of sets.
• 0 is an initial object in Vect, the category of vector spaces over a fixed

field.
• Z is the initial object in the category of commutative rings (the are as-

sumed to have unit).

Here is the most general form of “Spinoza principle”:

Lemma. If C admits an initial object, it is unique up to a unique isomorphism.

Proof. If both X and X ′ are initial, Hom(X, Y ) = {f} and Hom(Y,X) = {g},
one has f ◦ g = idY and g ◦ f = idX . �

To apply this result “in real life”, that is to deduce uniqueness of a certain
construction, one has to present this construction as an initial object in a certain
category. For example, given a commutative ringA and an element f , let us define
the category C whose objects are ring homomorphisms φ : A→ B carrying f ∈ A
to an invertible element in B. A morphism from φ : A → B to ψ : A → C is a
ring homomorphism t : B → C such that ψ = t ◦ φ.

It is easy to see that C has the ring homomorphism A → A[x]/(xf − 1) is
initial in C.

In a similar way we proved uniqueness of affine varieties.
First of all, a next piece of abstract nonsense: given a category C, we define the

opposite category Cop as the one having the same objects as C, with “inverted
arrows” HomCop(X, Y ) = HomC(Y,X). A terminal object in C is defined as an
initial object in Cop.

Here are some elementary examples of terminal objects in categories.

• a singleton is a terminal object in Set (we see that there is a unique
isomorphism between any two singletons).
• 0 is also a terminal object in Vect.
• The category of commutative rings has a terminal object, a ring that we

seldom remember of its existence. This is the zero ring, the only ring (up
to unique isomorphism) that satisfies the condition 0 = 1 (proof: 0 = 1
implies 0 = 0 · x = 1 · x = x.) This ring has no prime ideals, so this is
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definitely an exception to the theorem saying that any commutative ring
admits prime ideals.

Affine varieties can also be defined as terminal objects in specially designed
categories.

Given a reduced algebra A of finite type over an algebraically closed field k,
we define the category C whose objects are pairs (X, f) where X is a space
with functions and f : A → OX(X) an algebra homomorphism. A morphism
φ : (X, f)→ (Y, g) is a morphism φ : X → Y of spaces with functions such that
f = φ∗ ◦ g. A terminal object in C is a space with functions X endowed with a
homomorphism f : A → OX(X) such that any g : A → OY (Y ) is presented as
g − φ∗ ◦ f for a unique φ : (Y,OY ) → (X,OX). Thus, speck(A) is the terminal
object of the catgeory C defined above.

2.5. Irreducible components. A topological space is called noetherian (Emmy
Noether, 1882–1935) if any descending system of its closed subsets Y0 ⊃ Y1 ⊃ . . .
stabilizes, that is Yn+k = Yn for some n and all k > 0.

2.5.1. Lemma. The topological space underlying an algebraic veriety is noether-
ian.

Proof. A topological space that is a finite union of its open noetherian subspaces
is noetherian. For any descending chain of closed subsets its intersection with
each Ui stabilizes, to the whole thing should stabilize. This reduces the claim
to an affine variety. A descending chain of closed subsets in an affine variety
corresponds to an ascending chain of ideals in the corresponding ring of regu-
lar functions. By Hilbert basis theorem (see the next section) any such chain
stabilizes. �

2.5.2. Remark. A commutative ring A is called noetherian if the following equiv-
alent conditions hold.

• Any ideal of A is finitely generated.
• Any increasing chain of ideals in A stabilizes.

By Hilbert basis theorem the ring k[x1, . . . , xn] is noetherian. This obviously
implies that An as well as any Zariski closed subset of An is noetherian.

2.5.3. Proposition. Any closed subset of a noetherian topological space X can
be presented as a finite union of irreducible closed subsets. This presentation is
unique if we require that none of components lies in another.

Proof. Let Φ be the set of all closed subsets of X that cannot be presented
as a finite union of irreducible closed subsets. This is a poset and, since X is
noetherian, if Φ is nonempty, it has a minimal element. Let Z be a minimal
element. It is not irreducible so Z = Z1 ∪Z2, so at least on of Zi belongs to Φ, –
contradiction. Uniqueness is obvious as the components are uniquely defined by
the property that they are the maximal irreducible closed subsets.
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Once more, irreducible components of a noetherian topological space are the
maximal irreducible closed subsets. �

2.6. Commutative algebra language. Prime ideals in the algebra of regular
functions on an affine variety correspond to irreducible closed subsets. Thus,
decomposition of a variety into irreducible components can be formulated in
terms of commutative algebra.

2.6.1. Proposition. Let A be the ring of regular functions on an affine variety.
Then A has a finite number of minimal prime ideals p1, . . . , pk. Moreover, one
has ∩pi = 0.

The result, with a basically same proof, holds for any noetherian commutative
ring.

2.6.2. Proposition. Let A be a noetherian commutative ring. Then A has a finite
number of minimal prime ideals p1, . . . , pk. Moreover, one has ∩pi = N(A).

2.6.3. Proof of the propositions. Let us show that N(A) is the intersection of
all prime ideals in A. In fact, for any prime p ⊂ A N(A) ⊂ p. In the opposite
direction, if f is not nilpotent, let I the the set of ideals that do not contain fn for
all n. It satisfies Zorn lemma, so I has a maximal element. Let us call it p. It is
prime: if a, b 6∈ p then fn ∈ (a)+p, fm ∈ (b)+p so fm+n ∈ ((a)+p)((b)+p) ⊂ p.

We deduce that N(A) is the intersection of the minimal primes in p. The fact
that there is only a finite number of them follows from the noetherian property
of speck(A) (in the setup of Proposition 2.6.1).

In the more general setup of 2.6.2 one should replace speck(A) with another
topological space that plays the same role in Grothendieck’s approach to algebraic
geometry. We present below the definition.

2.6.4. Definition. Let A be a commutative ring. The spectrum of A, Spec(A) is
the topological space whose underlying set is the set of prime ideals of A. Closed
subsets of Spec(A) are of form

V (I) = {p ∈ Spec(A)|p ⊃ I}
where I is an ideal of A.

When both notions are defined, speck(A) ⊂ Spec(A). We will discuss the rela-
tion between the two later on. If A is a noetherian ring, Spec(A) is a noetherian
topological space. That concludes the proof of 2.6.2.

3. Hilbert’s theorems. Normalization lemma

In two papers on invariant theory published in 1890 and in 1893, Hilbert proved
three famous results that bear his name. We will present here two of them. The
third one (theorem on syzygies) will be mentioned later.
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3.1. Noetherian rings. Noetherian modules. Hilbert basis theorem.
A ring A is called noetherian (Emmy Noether, 1882–1935) if every its ideal is
finitely generated. Examples include fields (no nontrivial ideals) and PID’s (all
ideals are generated by one element).

Equivalently, A is noetherian iff any ascending chain of ideals

I1 ⊂ I2 ⊂ . . .

stabilizes: ∃n : In+k = In for any k > 0.

3.1.1. Theorem (Hilbert’s basis theorem). Assume A is noetherian. Then A[x]
is also noetherian.

Proof. Let I ⊂ A[x] be an ideal. We define Jk as the set of a ∈ A that appear
as a leading coefficient of a degree k polynomial in I. It is easy to see that Jk
is an ideal in A and that Jk ⊂ Jk+1. We denote J = ∪Jk. This is an ideal in A
and J = Jn for some n. The ideals Jk, k = 0, . . . , n are finitely generated. Let
ak,1, . . . , ak,mk be generators of Jk. We choose fk,l a degree k polynomial from I
with the leading term ak,l. We will now prove that the polynomials fk,l generate
I. Let f ∈ I be a degree d polynomial. We will prove, by induction in d, that f
belongs to the ideal generated by fr,s. If d > n, Jd = Jn, so there are a1, . . . , amn
such that f − xd−n

∑
ajfn,j is in I and has a smaller degree.

If d < n, there are a1, . . . , amd such that f −
∑
ajfd,j is in I and has a smaller

degree. This proves the theorem. �

3.2. Chain properties for modules. Apart of rings, it is worth studying mod-
ules over them. A module over a ring A would be just a vector space, if A were
a field.

Here is the definition.

3.2.1. Definition. Given a ring A, an A-module M is an abelian group endowed
with a (left) multiplication by elements of A so that

1. a(m+m′) = am+ am′.
2. (a+ a′)m = am+ a′m.
3. a(bm) = (ab)m.
4. 1m = m.

3.2.2. Example. A is a module over A. We call it a free rank one module, the
name will become clearer later.

The notions of submodule or of homomorphism of modules are quite clear.
The modules over a given ring A form a category, called the category of A-

modules, denoted ModA.

3.2.3. Definition. 1. A module M is said to satisfy ascending chain condi-
tion (acc) if any increasing chain of its submodules stabilizes.
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2. A module M is said to satisfy descending chain condition (dcc) if any
decreasing chain of its submodules stabilizes.

Another name for acc and dcc modules: noetherian and artinian (Emil Artin,
1898–1962). A ring is called noetherian (artinian) if it is noetherian (artinian)
as a module over itself.

The following very easy property is left as an exercise.

3.2.4. Proposition. Let M be a module, M ′ a submodule and M ′ = M/M ′ the
factor module. Then M satisfies acc (resp., dcc) iff M ′ and M ′′ satisfy this
property.

3.2.5. Corollary. Any algebra of finite type over a field is noetherian. Any algebra
of finite type over Z is noetherian.

3.3. Nullstellensatz. The name Nullstellensatz means in German theorem on
zeroes. As we have already seen, it implies that any meaningful system of equa-
tions over an algebraically closed field has a solution.

We will deduce the theorem from the following Zariski lemma.

3.3.1. Theorem (Zariski lemma). Let k be a field, K ⊃ k a field extension that
is finitely generated as k-algebra. Then K is a finite algebraic extension.

We will present a very easy proof that only works when k is not countable. A
proof for arbitrary k is based on different ideas that we postpone till ??.

Proof. The fact thatK is finitely generated as k-algebra means thatK = k[x1, . . . , xn]/m
for some ideal m. Let t ∈ K \ k. The dimension of K as a vector space over
k is at most countable as the dimension of k[x1, . . . , xn] is at most countable.
The elements 1

t−a cannot be linearly independent over k for different a ∈ k as by
the assumption k is not countable. Therefore, there is a finite number of them,
linearly dependent,

n∑
i=1

ci
t− ai

= 0.

Multiplying the left-hand side by
∏

(t−ai), we get a polynomial equation satisfied
by t. This equation is nonzero as all its summands, except for the first one, are
divisible by t − a1, whereas the first summand is not divisible by t − a1. Thus,
we have verified that any element t ∈ K is algebraic over k. Since x1, . . . , xn are
algebraic, they generate a finite field extension. �

Zariski lemma easily implies the following result called the weak Nullstellen-
satz.

3.3.2. Corollary (weak Nullstellensatz). Let k be an algebraically closed field,
I 6= k[x1, . . . , xn] be a proper ideal. Then the solution set V (I) is nonempty.
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Proof. Let m be a maximal ideal containing I (its existence is guaranteed by
Zorn lemma). The factor ring K = k[x1, . . . , xn]/m is a field finitely generated as
algebra over k. Therefore, by Zariski lemma it is an algebraic extension of k. Since
k is algebraically closed, K = k and this proves that m = (x1 − a1, . . . , xn − an)
for some a = (a1, . . . , an) ∈ kn. �

Note the following reformulation of the same result.

3.3.3. Corollary. Let m be a maximal ideal of k[x1, . . . , xn]. Then the field K =
k[x1, . . . , xn]/m is a finite extension of k.

We will now prove

3.3.4. Theorem (Nullstellensatz). Let k be an algebraically closed field, I ⊂
k[x1, . . . , xn]. Then I(V (I)) =

√
I. In other words, if a polynomial f vanishes at

V (I) then fn ∈ I for some n.

The theorem can be deduced from the weak Nullstellensatz using the following
Rabinovitsch trick.

Proof. Let I = (f1, . . . , fm). Define a new ideal J ⊂ k[x0, x1, . . . , xn] generated
by the polynomials f1, . . . , fm, and x0f − 1. By the assumption V (J) = ∅,
as the assumption (a0, . . . , an) ∈ V (J) means that (a1, . . . , an) ∈ V (I) and
f(a1, . . . , an)a0 = 1. Therefore, by the weak Nullstellensatz, J = k[x0, . . . , xn],
that is,

h0(x0f − 1) +
∑

hifi = 1

for some hi ∈ k[x0, . . . , xn]. Define the ring homomorphism

α : k[x0, . . . , xn]→ K

to the field of rational functions K := k(x1, . . . , xn) by the formula α(x0) = 1
f
,

α(xi) = xi for i > 0. We get
m∑
i=1

α(hi)fi = 1.

The elements α(hi) may have only a power of f in the denominator. So, multi-
plying both sides of the last equation by a power of f , we dedince that a power
of f lies in I = (f1, . . . , fm). This proves the theorem. �

3.3.5. Quasicompactness. A topological space X is called quasicompact if for any
open cover X = ∪Ui there is a finite subcover.
To avoid confusion: a compact topological space is one that is quasicompact

and Hausdorff.

Let us show that if A is a reduced algebra of finite type over k = k̄, speck(A)
is quasicompact. Since D(s), s ∈ A, form a base of the Zariski topology, it
is enough to assume that we have an open covering of X = speck(A) by the
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open sets D(s), s ∈ S. Thus, D(S) = X and we have to find a finite subset
S0 ⊂ S such that D(S0) = X. Equivalently, D(S) = X means that V (S) = ∅.
By the weak Nullstellensatz, this means that S generates the whole A, that is
1 =

∑n
i=1 aisi for some finite set of si ∈ S. We can now put S0 = {s1, . . . , sn}.

3.3.6. Existence of affine varieties. We promised to complete the proof of exis-
tence of affine varieties using Hilbert Nullstellensatz. Let A be a reduced algebra
of finite type over k = k̄ and let X = speck(A). We are now ready to prove that
the evaluation map ev : A→ OX(X) is a bijection.

3.3.7. Proposition. The evaluation map ev : A→ OX(X) is a bijection.

Proof. Let A = k[x1, . . . , xn]/I where I =
√
I. Then X identifies with V (I).

Evaluation map evx, x ∈ X, assigns to f ∈ k[x1, . . . , xn] the value f(x) ∈ k. By
Nullstellensatz, any polynomial vanishing at X belongs to I, so Ker(ev) = 0. It
remains to prove that any function in OX(X) is represented by an element of A.
Let f ∈ OX(X), By definition, there is an open covering X = ∪D(hi) such that
f is represented in D(hi) by a fraction fi

gi
for a collection of fi, gi ∈ A such that

gi(x) 6= 0 for x ∈ U(hi). Since D(hi) = D(higi), we can assume that hi = gi so f
is presented by fi

gi
on D(gi). This implies that the function g2i f is represented by

gifi on D(gi). Since both vanish outside of D(gi), g
2
i f is everywhere represented

by gifi ∈ A. Since D(gi) = D(g2i ) cover the whole X, there exist a presentation
1 =

∑
aig

2
i . Then f = 1 · f =

∑
aig

2
i f =

∑
aigifi is represented by an element

of A. �

3.4. Noether normalization lemma.

3.4.1. Theorem. Let A be a finitely generated algebra over a field k. Then there
exists a subring B of A isomorphic to a polynomial ring k[x1, . . . , xd] such that
A is a finitely generated B-module.

We will only prove the result in the case k is infinite. It remain equally correct
for finite fields, but the proof for finite fields is slightly more difficult.

We start with some simple general assertions about infinite fields.

3.4.2. Lemma. Let k be an infinite field and let f ∈ k[x1, . . . , xm] be a nonzero
polynomial. The there exist c1, . . . , cm ∈ k such that f(c1, . . . , cm) 6= 0.

Proof. Induction in m. For m = 0 the claim is vacuous. If m > 0, write f =∑
gkx

k
m where gk are polynomials in x1, . . . xm−1. There exist k such that gk 6= 0

so there exist c1, . . . , cn−1 such that f(c1, . . . , cm−1, xn) is a nonzero polynomial of
xm. Since k is infinite, there exists cm such that it does not vanish at xm = cm. �

3.4.3. Corollary (Preparation lemma). Let k be an infinite field and let f ∈
k[x1, . . . , xn] be a nonconstant polynomial. Then there exists a change of variables
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yi = xi − cixn, i = 1, . . . , n− 1, yn = xn that presents f in the form

(3) f = cydn +
d−1∑
i=0

fiy
i
n

where fi ∈ k[y1, . . . , yn−1] and c 6= 0.

Proof. Let f =
∑d

i=0 Fi where Fi is homogeneous of degree i and Fd 6= 0. Since
the change of variables is homogeneous, we can safely assume that f = Fd is
homogeneous of degree d > 0. Then f/xdn is a polynomial φ(x1/xn, . . . , xn−1/xn).
The claim follows by applying the previous lemma to φ. We get φ(c1, . . . , cn−1) 6=
0 that implies (3). In fact, define the polynomial g so that f(x1, . . . , xn−1, xn) =
g(x1−c1xn, . . . , xn−1−cn−1xn, xn). The condition (3) means that g(0, . . . , 0, 1) =
c that is f(c1, . . . , cn−1, 1) = φ(c1, . . . ,−cn−1) = c.

�

Here is one more easy lemma.

3.4.4. Lemma. Let A ⊂ B ⊂ C be commutative rings. If B is a finitely generated
A-module and C is a finitely generated B-module then A is finitely generated as
an A-module.

Proof. If b1, . . . , bn generate B as A-module and c1, . . . , cm generate C as B-
module then bicj generate C as an A-module. �

Proof of the theorem. Let A be generated over k by a1, . . . , an.
Here is an example of why this theorem is not obvious. We could try to define

the algebra B as generated over k by a maximal set of algebraically independent
generators among ai. Let, for instance, A = k[x, y]/(xy). The elements x, y
generate A, x is algebraically independent (that is, there is no polynomial p in
one variable such that p(x) = 0 in A), and y is dependent, since xy = 0. But y
is not integral over k[x] as the xy considered as a polynomial in y is not monic.
So, one has to find a clever way of choosing the generators for B.

We will prove the assertion by induction in n. If all ai are algebraically in-
dependent, A is a polynomial ring and there is nothing to prove. Otherwise
a1, . . . , an satisfy some nontrivial polynomial equation f(a1, . . . , an) = 0, where
0 6= f ∈ k[x1, . . . , xn].

Using Preparation lemma, we can make a change of variables a′n = an, a
′
i =

ai − cian so that a′n is satisfies a polynomial equation of form (3). This implies
that A is generated by 1, a′n, . . . , (a

′
n)d−1 for certain d, over k[a′1, . . . , a

′
n−1]. By

the inductive hypothesis the latter ring is finitely generated as a module over a
polynomial subring. By transitivity, A is finitely generated module over the same
polynomial subring. �
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